1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 int release = 0; 60 61 if (!page || page->index) { 62 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 63 if (!page) 64 return -ENOMEM; 65 release = 1; 66 } 67 68 if (!PageUptodate(page)) { 69 void *kaddr = kmap(page); 70 u64 dsize = i_size_read(inode); 71 72 if (dsize > gfs2_max_stuffed_size(ip)) 73 dsize = gfs2_max_stuffed_size(ip); 74 75 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 76 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 77 kunmap(page); 78 79 SetPageUptodate(page); 80 } 81 82 if (gfs2_is_jdata(ip)) { 83 struct buffer_head *bh; 84 85 if (!page_has_buffers(page)) 86 create_empty_buffers(page, BIT(inode->i_blkbits), 87 BIT(BH_Uptodate)); 88 89 bh = page_buffers(page); 90 if (!buffer_mapped(bh)) 91 map_bh(bh, inode->i_sb, block); 92 93 set_buffer_uptodate(bh); 94 gfs2_trans_add_data(ip->i_gl, bh); 95 } else { 96 set_page_dirty(page); 97 gfs2_ordered_add_inode(ip); 98 } 99 100 if (release) { 101 unlock_page(page); 102 put_page(page); 103 } 104 105 return 0; 106 } 107 108 /** 109 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 110 * @ip: The GFS2 inode to unstuff 111 * @page: The (optional) page. This is looked up if the @page is NULL 112 * 113 * This routine unstuffs a dinode and returns it to a "normal" state such 114 * that the height can be grown in the traditional way. 115 * 116 * Returns: errno 117 */ 118 119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 120 { 121 struct buffer_head *bh, *dibh; 122 struct gfs2_dinode *di; 123 u64 block = 0; 124 int isdir = gfs2_is_dir(ip); 125 int error; 126 127 down_write(&ip->i_rw_mutex); 128 129 error = gfs2_meta_inode_buffer(ip, &dibh); 130 if (error) 131 goto out; 132 133 if (i_size_read(&ip->i_inode)) { 134 /* Get a free block, fill it with the stuffed data, 135 and write it out to disk */ 136 137 unsigned int n = 1; 138 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 139 if (error) 140 goto out_brelse; 141 if (isdir) { 142 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 143 error = gfs2_dir_get_new_buffer(ip, block, &bh); 144 if (error) 145 goto out_brelse; 146 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 147 dibh, sizeof(struct gfs2_dinode)); 148 brelse(bh); 149 } else { 150 error = gfs2_unstuffer_page(ip, dibh, block, page); 151 if (error) 152 goto out_brelse; 153 } 154 } 155 156 /* Set up the pointer to the new block */ 157 158 gfs2_trans_add_meta(ip->i_gl, dibh); 159 di = (struct gfs2_dinode *)dibh->b_data; 160 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 161 162 if (i_size_read(&ip->i_inode)) { 163 *(__be64 *)(di + 1) = cpu_to_be64(block); 164 gfs2_add_inode_blocks(&ip->i_inode, 1); 165 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 166 } 167 168 ip->i_height = 1; 169 di->di_height = cpu_to_be16(1); 170 171 out_brelse: 172 brelse(dibh); 173 out: 174 up_write(&ip->i_rw_mutex); 175 return error; 176 } 177 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 394 { 395 sector_t factor = 1, block = 0; 396 int hgt; 397 398 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 399 if (hgt < mp->mp_aheight) 400 block += mp->mp_list[hgt] * factor; 401 factor *= sdp->sd_inptrs; 402 } 403 return block; 404 } 405 406 static void release_metapath(struct metapath *mp) 407 { 408 int i; 409 410 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 411 if (mp->mp_bh[i] == NULL) 412 break; 413 brelse(mp->mp_bh[i]); 414 mp->mp_bh[i] = NULL; 415 } 416 } 417 418 /** 419 * gfs2_extent_length - Returns length of an extent of blocks 420 * @bh: The metadata block 421 * @ptr: Current position in @bh 422 * @limit: Max extent length to return 423 * @eob: Set to 1 if we hit "end of block" 424 * 425 * Returns: The length of the extent (minimum of one block) 426 */ 427 428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 429 { 430 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 431 const __be64 *first = ptr; 432 u64 d = be64_to_cpu(*ptr); 433 434 *eob = 0; 435 do { 436 ptr++; 437 if (ptr >= end) 438 break; 439 d++; 440 } while(be64_to_cpu(*ptr) == d); 441 if (ptr >= end) 442 *eob = 1; 443 return ptr - first; 444 } 445 446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 447 448 /* 449 * gfs2_metadata_walker - walk an indirect block 450 * @mp: Metapath to indirect block 451 * @ptrs: Number of pointers to look at 452 * 453 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 454 * indirect block to follow. 455 */ 456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 457 unsigned int ptrs); 458 459 /* 460 * gfs2_walk_metadata - walk a tree of indirect blocks 461 * @inode: The inode 462 * @mp: Starting point of walk 463 * @max_len: Maximum number of blocks to walk 464 * @walker: Called during the walk 465 * 466 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 467 * past the end of metadata, and a negative error code otherwise. 468 */ 469 470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 471 u64 max_len, gfs2_metadata_walker walker) 472 { 473 struct gfs2_inode *ip = GFS2_I(inode); 474 struct gfs2_sbd *sdp = GFS2_SB(inode); 475 u64 factor = 1; 476 unsigned int hgt; 477 int ret; 478 479 /* 480 * The walk starts in the lowest allocated indirect block, which may be 481 * before the position indicated by @mp. Adjust @max_len accordingly 482 * to avoid a short walk. 483 */ 484 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 485 max_len += mp->mp_list[hgt] * factor; 486 mp->mp_list[hgt] = 0; 487 factor *= sdp->sd_inptrs; 488 } 489 490 for (;;) { 491 u16 start = mp->mp_list[hgt]; 492 enum walker_status status; 493 unsigned int ptrs; 494 u64 len; 495 496 /* Walk indirect block. */ 497 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 498 len = ptrs * factor; 499 if (len > max_len) 500 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 501 status = walker(mp, ptrs); 502 switch (status) { 503 case WALK_STOP: 504 return 1; 505 case WALK_FOLLOW: 506 BUG_ON(mp->mp_aheight == mp->mp_fheight); 507 ptrs = mp->mp_list[hgt] - start; 508 len = ptrs * factor; 509 break; 510 case WALK_CONTINUE: 511 break; 512 } 513 if (len >= max_len) 514 break; 515 max_len -= len; 516 if (status == WALK_FOLLOW) 517 goto fill_up_metapath; 518 519 lower_metapath: 520 /* Decrease height of metapath. */ 521 brelse(mp->mp_bh[hgt]); 522 mp->mp_bh[hgt] = NULL; 523 mp->mp_list[hgt] = 0; 524 if (!hgt) 525 break; 526 hgt--; 527 factor *= sdp->sd_inptrs; 528 529 /* Advance in metadata tree. */ 530 (mp->mp_list[hgt])++; 531 if (hgt) { 532 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 533 goto lower_metapath; 534 } else { 535 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 536 break; 537 } 538 539 fill_up_metapath: 540 /* Increase height of metapath. */ 541 ret = fillup_metapath(ip, mp, ip->i_height - 1); 542 if (ret < 0) 543 return ret; 544 hgt += ret; 545 for (; ret; ret--) 546 do_div(factor, sdp->sd_inptrs); 547 mp->mp_aheight = hgt + 1; 548 } 549 return 0; 550 } 551 552 static enum walker_status gfs2_hole_walker(struct metapath *mp, 553 unsigned int ptrs) 554 { 555 const __be64 *start, *ptr, *end; 556 unsigned int hgt; 557 558 hgt = mp->mp_aheight - 1; 559 start = metapointer(hgt, mp); 560 end = start + ptrs; 561 562 for (ptr = start; ptr < end; ptr++) { 563 if (*ptr) { 564 mp->mp_list[hgt] += ptr - start; 565 if (mp->mp_aheight == mp->mp_fheight) 566 return WALK_STOP; 567 return WALK_FOLLOW; 568 } 569 } 570 return WALK_CONTINUE; 571 } 572 573 /** 574 * gfs2_hole_size - figure out the size of a hole 575 * @inode: The inode 576 * @lblock: The logical starting block number 577 * @len: How far to look (in blocks) 578 * @mp: The metapath at lblock 579 * @iomap: The iomap to store the hole size in 580 * 581 * This function modifies @mp. 582 * 583 * Returns: errno on error 584 */ 585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 586 struct metapath *mp, struct iomap *iomap) 587 { 588 struct metapath clone; 589 u64 hole_size; 590 int ret; 591 592 clone_metapath(&clone, mp); 593 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 594 if (ret < 0) 595 goto out; 596 597 if (ret == 1) 598 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 599 else 600 hole_size = len; 601 iomap->length = hole_size << inode->i_blkbits; 602 ret = 0; 603 604 out: 605 release_metapath(&clone); 606 return ret; 607 } 608 609 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 610 struct gfs2_glock *gl, unsigned int i, 611 unsigned offset, u64 bn) 612 { 613 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 614 ((i > 1) ? sizeof(struct gfs2_meta_header) : 615 sizeof(struct gfs2_dinode))); 616 BUG_ON(i < 1); 617 BUG_ON(mp->mp_bh[i] != NULL); 618 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 619 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 620 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 621 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 622 ptr += offset; 623 *ptr = cpu_to_be64(bn); 624 return ptr; 625 } 626 627 enum alloc_state { 628 ALLOC_DATA = 0, 629 ALLOC_GROW_DEPTH = 1, 630 ALLOC_GROW_HEIGHT = 2, 631 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 632 }; 633 634 /** 635 * gfs2_iomap_alloc - Build a metadata tree of the requested height 636 * @inode: The GFS2 inode 637 * @iomap: The iomap structure 638 * @mp: The metapath, with proper height information calculated 639 * 640 * In this routine we may have to alloc: 641 * i) Indirect blocks to grow the metadata tree height 642 * ii) Indirect blocks to fill in lower part of the metadata tree 643 * iii) Data blocks 644 * 645 * This function is called after gfs2_iomap_get, which works out the 646 * total number of blocks which we need via gfs2_alloc_size. 647 * 648 * We then do the actual allocation asking for an extent at a time (if 649 * enough contiguous free blocks are available, there will only be one 650 * allocation request per call) and uses the state machine to initialise 651 * the blocks in order. 652 * 653 * Right now, this function will allocate at most one indirect block 654 * worth of data -- with a default block size of 4K, that's slightly 655 * less than 2M. If this limitation is ever removed to allow huge 656 * allocations, we would probably still want to limit the iomap size we 657 * return to avoid stalling other tasks during huge writes; the next 658 * iomap iteration would then find the blocks already allocated. 659 * 660 * Returns: errno on error 661 */ 662 663 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 664 struct metapath *mp) 665 { 666 struct gfs2_inode *ip = GFS2_I(inode); 667 struct gfs2_sbd *sdp = GFS2_SB(inode); 668 struct buffer_head *dibh = mp->mp_bh[0]; 669 u64 bn; 670 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 671 size_t dblks = iomap->length >> inode->i_blkbits; 672 const unsigned end_of_metadata = mp->mp_fheight - 1; 673 int ret; 674 enum alloc_state state; 675 __be64 *ptr; 676 __be64 zero_bn = 0; 677 678 BUG_ON(mp->mp_aheight < 1); 679 BUG_ON(dibh == NULL); 680 BUG_ON(dblks < 1); 681 682 gfs2_trans_add_meta(ip->i_gl, dibh); 683 684 down_write(&ip->i_rw_mutex); 685 686 if (mp->mp_fheight == mp->mp_aheight) { 687 /* Bottom indirect block exists */ 688 state = ALLOC_DATA; 689 } else { 690 /* Need to allocate indirect blocks */ 691 if (mp->mp_fheight == ip->i_height) { 692 /* Writing into existing tree, extend tree down */ 693 iblks = mp->mp_fheight - mp->mp_aheight; 694 state = ALLOC_GROW_DEPTH; 695 } else { 696 /* Building up tree height */ 697 state = ALLOC_GROW_HEIGHT; 698 iblks = mp->mp_fheight - ip->i_height; 699 branch_start = metapath_branch_start(mp); 700 iblks += (mp->mp_fheight - branch_start); 701 } 702 } 703 704 /* start of the second part of the function (state machine) */ 705 706 blks = dblks + iblks; 707 i = mp->mp_aheight; 708 do { 709 n = blks - alloced; 710 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 711 if (ret) 712 goto out; 713 alloced += n; 714 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 715 gfs2_trans_remove_revoke(sdp, bn, n); 716 switch (state) { 717 /* Growing height of tree */ 718 case ALLOC_GROW_HEIGHT: 719 if (i == 1) { 720 ptr = (__be64 *)(dibh->b_data + 721 sizeof(struct gfs2_dinode)); 722 zero_bn = *ptr; 723 } 724 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 725 i++, n--) 726 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 727 if (i - 1 == mp->mp_fheight - ip->i_height) { 728 i--; 729 gfs2_buffer_copy_tail(mp->mp_bh[i], 730 sizeof(struct gfs2_meta_header), 731 dibh, sizeof(struct gfs2_dinode)); 732 gfs2_buffer_clear_tail(dibh, 733 sizeof(struct gfs2_dinode) + 734 sizeof(__be64)); 735 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 736 sizeof(struct gfs2_meta_header)); 737 *ptr = zero_bn; 738 state = ALLOC_GROW_DEPTH; 739 for(i = branch_start; i < mp->mp_fheight; i++) { 740 if (mp->mp_bh[i] == NULL) 741 break; 742 brelse(mp->mp_bh[i]); 743 mp->mp_bh[i] = NULL; 744 } 745 i = branch_start; 746 } 747 if (n == 0) 748 break; 749 fallthrough; /* To branching from existing tree */ 750 case ALLOC_GROW_DEPTH: 751 if (i > 1 && i < mp->mp_fheight) 752 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 753 for (; i < mp->mp_fheight && n > 0; i++, n--) 754 gfs2_indirect_init(mp, ip->i_gl, i, 755 mp->mp_list[i-1], bn++); 756 if (i == mp->mp_fheight) 757 state = ALLOC_DATA; 758 if (n == 0) 759 break; 760 fallthrough; /* To tree complete, adding data blocks */ 761 case ALLOC_DATA: 762 BUG_ON(n > dblks); 763 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 764 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 765 dblks = n; 766 ptr = metapointer(end_of_metadata, mp); 767 iomap->addr = bn << inode->i_blkbits; 768 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 769 while (n-- > 0) 770 *ptr++ = cpu_to_be64(bn++); 771 break; 772 } 773 } while (iomap->addr == IOMAP_NULL_ADDR); 774 775 iomap->type = IOMAP_MAPPED; 776 iomap->length = (u64)dblks << inode->i_blkbits; 777 ip->i_height = mp->mp_fheight; 778 gfs2_add_inode_blocks(&ip->i_inode, alloced); 779 gfs2_dinode_out(ip, dibh->b_data); 780 out: 781 up_write(&ip->i_rw_mutex); 782 return ret; 783 } 784 785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 786 787 /** 788 * gfs2_alloc_size - Compute the maximum allocation size 789 * @inode: The inode 790 * @mp: The metapath 791 * @size: Requested size in blocks 792 * 793 * Compute the maximum size of the next allocation at @mp. 794 * 795 * Returns: size in blocks 796 */ 797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 798 { 799 struct gfs2_inode *ip = GFS2_I(inode); 800 struct gfs2_sbd *sdp = GFS2_SB(inode); 801 const __be64 *first, *ptr, *end; 802 803 /* 804 * For writes to stuffed files, this function is called twice via 805 * gfs2_iomap_get, before and after unstuffing. The size we return the 806 * first time needs to be large enough to get the reservation and 807 * allocation sizes right. The size we return the second time must 808 * be exact or else gfs2_iomap_alloc won't do the right thing. 809 */ 810 811 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 812 unsigned int maxsize = mp->mp_fheight > 1 ? 813 sdp->sd_inptrs : sdp->sd_diptrs; 814 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 815 if (size > maxsize) 816 size = maxsize; 817 return size; 818 } 819 820 first = metapointer(ip->i_height - 1, mp); 821 end = metaend(ip->i_height - 1, mp); 822 if (end - first > size) 823 end = first + size; 824 for (ptr = first; ptr < end; ptr++) { 825 if (*ptr) 826 break; 827 } 828 return ptr - first; 829 } 830 831 /** 832 * gfs2_iomap_get - Map blocks from an inode to disk blocks 833 * @inode: The inode 834 * @pos: Starting position in bytes 835 * @length: Length to map, in bytes 836 * @flags: iomap flags 837 * @iomap: The iomap structure 838 * @mp: The metapath 839 * 840 * Returns: errno 841 */ 842 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 843 unsigned flags, struct iomap *iomap, 844 struct metapath *mp) 845 { 846 struct gfs2_inode *ip = GFS2_I(inode); 847 struct gfs2_sbd *sdp = GFS2_SB(inode); 848 loff_t size = i_size_read(inode); 849 __be64 *ptr; 850 sector_t lblock; 851 sector_t lblock_stop; 852 int ret; 853 int eob; 854 u64 len; 855 struct buffer_head *dibh = NULL, *bh; 856 u8 height; 857 858 if (!length) 859 return -EINVAL; 860 861 down_read(&ip->i_rw_mutex); 862 863 ret = gfs2_meta_inode_buffer(ip, &dibh); 864 if (ret) 865 goto unlock; 866 mp->mp_bh[0] = dibh; 867 868 if (gfs2_is_stuffed(ip)) { 869 if (flags & IOMAP_WRITE) { 870 loff_t max_size = gfs2_max_stuffed_size(ip); 871 872 if (pos + length > max_size) 873 goto unstuff; 874 iomap->length = max_size; 875 } else { 876 if (pos >= size) { 877 if (flags & IOMAP_REPORT) { 878 ret = -ENOENT; 879 goto unlock; 880 } else { 881 iomap->offset = pos; 882 iomap->length = length; 883 goto hole_found; 884 } 885 } 886 iomap->length = size; 887 } 888 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 889 sizeof(struct gfs2_dinode); 890 iomap->type = IOMAP_INLINE; 891 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 892 goto out; 893 } 894 895 unstuff: 896 lblock = pos >> inode->i_blkbits; 897 iomap->offset = lblock << inode->i_blkbits; 898 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 899 len = lblock_stop - lblock + 1; 900 iomap->length = len << inode->i_blkbits; 901 902 height = ip->i_height; 903 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 904 height++; 905 find_metapath(sdp, lblock, mp, height); 906 if (height > ip->i_height || gfs2_is_stuffed(ip)) 907 goto do_alloc; 908 909 ret = lookup_metapath(ip, mp); 910 if (ret) 911 goto unlock; 912 913 if (mp->mp_aheight != ip->i_height) 914 goto do_alloc; 915 916 ptr = metapointer(ip->i_height - 1, mp); 917 if (*ptr == 0) 918 goto do_alloc; 919 920 bh = mp->mp_bh[ip->i_height - 1]; 921 len = gfs2_extent_length(bh, ptr, len, &eob); 922 923 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 924 iomap->length = len << inode->i_blkbits; 925 iomap->type = IOMAP_MAPPED; 926 iomap->flags |= IOMAP_F_MERGED; 927 if (eob) 928 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 929 930 out: 931 iomap->bdev = inode->i_sb->s_bdev; 932 unlock: 933 up_read(&ip->i_rw_mutex); 934 return ret; 935 936 do_alloc: 937 if (flags & IOMAP_REPORT) { 938 if (pos >= size) 939 ret = -ENOENT; 940 else if (height == ip->i_height) 941 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 942 else 943 iomap->length = size - pos; 944 } else if (flags & IOMAP_WRITE) { 945 u64 alloc_size; 946 947 if (flags & IOMAP_DIRECT) 948 goto out; /* (see gfs2_file_direct_write) */ 949 950 len = gfs2_alloc_size(inode, mp, len); 951 alloc_size = len << inode->i_blkbits; 952 if (alloc_size < iomap->length) 953 iomap->length = alloc_size; 954 } else { 955 if (pos < size && height == ip->i_height) 956 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 957 } 958 hole_found: 959 iomap->addr = IOMAP_NULL_ADDR; 960 iomap->type = IOMAP_HOLE; 961 goto out; 962 } 963 964 /** 965 * gfs2_lblk_to_dblk - convert logical block to disk block 966 * @inode: the inode of the file we're mapping 967 * @lblock: the block relative to the start of the file 968 * @dblock: the returned dblock, if no error 969 * 970 * This function maps a single block from a file logical block (relative to 971 * the start of the file) to a file system absolute block using iomap. 972 * 973 * Returns: the absolute file system block, or an error 974 */ 975 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock) 976 { 977 struct iomap iomap = { }; 978 struct metapath mp = { .mp_aheight = 1, }; 979 loff_t pos = (loff_t)lblock << inode->i_blkbits; 980 int ret; 981 982 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp); 983 release_metapath(&mp); 984 if (ret == 0) 985 *dblock = iomap.addr >> inode->i_blkbits; 986 987 return ret; 988 } 989 990 static int gfs2_write_lock(struct inode *inode) 991 { 992 struct gfs2_inode *ip = GFS2_I(inode); 993 struct gfs2_sbd *sdp = GFS2_SB(inode); 994 int error; 995 996 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 997 error = gfs2_glock_nq(&ip->i_gh); 998 if (error) 999 goto out_uninit; 1000 if (&ip->i_inode == sdp->sd_rindex) { 1001 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1002 1003 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 1004 GL_NOCACHE, &m_ip->i_gh); 1005 if (error) 1006 goto out_unlock; 1007 } 1008 return 0; 1009 1010 out_unlock: 1011 gfs2_glock_dq(&ip->i_gh); 1012 out_uninit: 1013 gfs2_holder_uninit(&ip->i_gh); 1014 return error; 1015 } 1016 1017 static void gfs2_write_unlock(struct inode *inode) 1018 { 1019 struct gfs2_inode *ip = GFS2_I(inode); 1020 struct gfs2_sbd *sdp = GFS2_SB(inode); 1021 1022 if (&ip->i_inode == sdp->sd_rindex) { 1023 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1024 1025 gfs2_glock_dq_uninit(&m_ip->i_gh); 1026 } 1027 gfs2_glock_dq_uninit(&ip->i_gh); 1028 } 1029 1030 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 1031 unsigned len, struct iomap *iomap) 1032 { 1033 unsigned int blockmask = i_blocksize(inode) - 1; 1034 struct gfs2_sbd *sdp = GFS2_SB(inode); 1035 unsigned int blocks; 1036 1037 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 1038 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 1039 } 1040 1041 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1042 unsigned copied, struct page *page, 1043 struct iomap *iomap) 1044 { 1045 struct gfs2_trans *tr = current->journal_info; 1046 struct gfs2_inode *ip = GFS2_I(inode); 1047 struct gfs2_sbd *sdp = GFS2_SB(inode); 1048 1049 if (page && !gfs2_is_stuffed(ip)) 1050 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1051 1052 if (tr->tr_num_buf_new) 1053 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1054 1055 gfs2_trans_end(sdp); 1056 } 1057 1058 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1059 .page_prepare = gfs2_iomap_page_prepare, 1060 .page_done = gfs2_iomap_page_done, 1061 }; 1062 1063 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1064 loff_t length, unsigned flags, 1065 struct iomap *iomap, 1066 struct metapath *mp) 1067 { 1068 struct gfs2_inode *ip = GFS2_I(inode); 1069 struct gfs2_sbd *sdp = GFS2_SB(inode); 1070 bool unstuff; 1071 int ret; 1072 1073 unstuff = gfs2_is_stuffed(ip) && 1074 pos + length > gfs2_max_stuffed_size(ip); 1075 1076 if (unstuff || iomap->type == IOMAP_HOLE) { 1077 unsigned int data_blocks, ind_blocks; 1078 struct gfs2_alloc_parms ap = {}; 1079 unsigned int rblocks; 1080 struct gfs2_trans *tr; 1081 1082 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1083 &ind_blocks); 1084 ap.target = data_blocks + ind_blocks; 1085 ret = gfs2_quota_lock_check(ip, &ap); 1086 if (ret) 1087 return ret; 1088 1089 ret = gfs2_inplace_reserve(ip, &ap); 1090 if (ret) 1091 goto out_qunlock; 1092 1093 rblocks = RES_DINODE + ind_blocks; 1094 if (gfs2_is_jdata(ip)) 1095 rblocks += data_blocks; 1096 if (ind_blocks || data_blocks) 1097 rblocks += RES_STATFS + RES_QUOTA; 1098 if (inode == sdp->sd_rindex) 1099 rblocks += 2 * RES_STATFS; 1100 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1101 1102 ret = gfs2_trans_begin(sdp, rblocks, 1103 iomap->length >> inode->i_blkbits); 1104 if (ret) 1105 goto out_trans_fail; 1106 1107 if (unstuff) { 1108 ret = gfs2_unstuff_dinode(ip, NULL); 1109 if (ret) 1110 goto out_trans_end; 1111 release_metapath(mp); 1112 ret = gfs2_iomap_get(inode, iomap->offset, 1113 iomap->length, flags, iomap, mp); 1114 if (ret) 1115 goto out_trans_end; 1116 } 1117 1118 if (iomap->type == IOMAP_HOLE) { 1119 ret = gfs2_iomap_alloc(inode, iomap, mp); 1120 if (ret) { 1121 gfs2_trans_end(sdp); 1122 gfs2_inplace_release(ip); 1123 punch_hole(ip, iomap->offset, iomap->length); 1124 goto out_qunlock; 1125 } 1126 } 1127 1128 tr = current->journal_info; 1129 if (tr->tr_num_buf_new) 1130 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1131 1132 gfs2_trans_end(sdp); 1133 } 1134 1135 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1136 iomap->page_ops = &gfs2_iomap_page_ops; 1137 return 0; 1138 1139 out_trans_end: 1140 gfs2_trans_end(sdp); 1141 out_trans_fail: 1142 gfs2_inplace_release(ip); 1143 out_qunlock: 1144 gfs2_quota_unlock(ip); 1145 return ret; 1146 } 1147 1148 static inline bool gfs2_iomap_need_write_lock(unsigned flags) 1149 { 1150 return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT); 1151 } 1152 1153 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1154 unsigned flags, struct iomap *iomap, 1155 struct iomap *srcmap) 1156 { 1157 struct gfs2_inode *ip = GFS2_I(inode); 1158 struct metapath mp = { .mp_aheight = 1, }; 1159 int ret; 1160 1161 if (gfs2_is_jdata(ip)) 1162 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1163 1164 trace_gfs2_iomap_start(ip, pos, length, flags); 1165 if (gfs2_iomap_need_write_lock(flags)) { 1166 ret = gfs2_write_lock(inode); 1167 if (ret) 1168 goto out; 1169 } 1170 1171 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1172 if (ret) 1173 goto out_unlock; 1174 1175 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1176 case IOMAP_WRITE: 1177 if (flags & IOMAP_DIRECT) { 1178 /* 1179 * Silently fall back to buffered I/O for stuffed files 1180 * or if we've got a hole (see gfs2_file_direct_write). 1181 */ 1182 if (iomap->type != IOMAP_MAPPED) 1183 ret = -ENOTBLK; 1184 goto out_unlock; 1185 } 1186 break; 1187 case IOMAP_ZERO: 1188 if (iomap->type == IOMAP_HOLE) 1189 goto out_unlock; 1190 break; 1191 default: 1192 goto out_unlock; 1193 } 1194 1195 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1196 1197 out_unlock: 1198 if (ret && gfs2_iomap_need_write_lock(flags)) 1199 gfs2_write_unlock(inode); 1200 release_metapath(&mp); 1201 out: 1202 trace_gfs2_iomap_end(ip, iomap, ret); 1203 return ret; 1204 } 1205 1206 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1207 ssize_t written, unsigned flags, struct iomap *iomap) 1208 { 1209 struct gfs2_inode *ip = GFS2_I(inode); 1210 struct gfs2_sbd *sdp = GFS2_SB(inode); 1211 1212 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1213 case IOMAP_WRITE: 1214 if (flags & IOMAP_DIRECT) 1215 return 0; 1216 break; 1217 case IOMAP_ZERO: 1218 if (iomap->type == IOMAP_HOLE) 1219 return 0; 1220 break; 1221 default: 1222 return 0; 1223 } 1224 1225 if (!gfs2_is_stuffed(ip)) 1226 gfs2_ordered_add_inode(ip); 1227 1228 if (inode == sdp->sd_rindex) 1229 adjust_fs_space(inode); 1230 1231 gfs2_inplace_release(ip); 1232 1233 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1234 /* Deallocate blocks that were just allocated. */ 1235 loff_t blockmask = i_blocksize(inode) - 1; 1236 loff_t end = (pos + length) & ~blockmask; 1237 1238 pos = (pos + written + blockmask) & ~blockmask; 1239 if (pos < end) { 1240 truncate_pagecache_range(inode, pos, end - 1); 1241 punch_hole(ip, pos, end - pos); 1242 } 1243 } 1244 1245 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1246 gfs2_quota_unlock(ip); 1247 1248 if (unlikely(!written)) 1249 goto out_unlock; 1250 1251 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1252 mark_inode_dirty(inode); 1253 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1254 1255 out_unlock: 1256 if (gfs2_iomap_need_write_lock(flags)) 1257 gfs2_write_unlock(inode); 1258 return 0; 1259 } 1260 1261 const struct iomap_ops gfs2_iomap_ops = { 1262 .iomap_begin = gfs2_iomap_begin, 1263 .iomap_end = gfs2_iomap_end, 1264 }; 1265 1266 /** 1267 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1268 * @inode: The inode 1269 * @lblock: The logical block number 1270 * @bh_map: The bh to be mapped 1271 * @create: True if its ok to alloc blocks to satify the request 1272 * 1273 * The size of the requested mapping is defined in bh_map->b_size. 1274 * 1275 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1276 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1277 * bh_map->b_size to indicate the size of the mapping when @lblock and 1278 * successive blocks are mapped, up to the requested size. 1279 * 1280 * Sets buffer_boundary() if a read of metadata will be required 1281 * before the next block can be mapped. Sets buffer_new() if new 1282 * blocks were allocated. 1283 * 1284 * Returns: errno 1285 */ 1286 1287 int gfs2_block_map(struct inode *inode, sector_t lblock, 1288 struct buffer_head *bh_map, int create) 1289 { 1290 struct gfs2_inode *ip = GFS2_I(inode); 1291 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1292 loff_t length = bh_map->b_size; 1293 struct metapath mp = { .mp_aheight = 1, }; 1294 struct iomap iomap = { }; 1295 int flags = create ? IOMAP_WRITE : 0; 1296 int ret; 1297 1298 clear_buffer_mapped(bh_map); 1299 clear_buffer_new(bh_map); 1300 clear_buffer_boundary(bh_map); 1301 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1302 1303 ret = gfs2_iomap_get(inode, pos, length, flags, &iomap, &mp); 1304 if (!ret && iomap.type == IOMAP_HOLE) { 1305 if (create) 1306 ret = gfs2_iomap_alloc(inode, &iomap, &mp); 1307 else 1308 ret = -ENODATA; 1309 } 1310 release_metapath(&mp); 1311 if (ret) 1312 goto out; 1313 1314 if (iomap.length > bh_map->b_size) { 1315 iomap.length = bh_map->b_size; 1316 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1317 } 1318 if (iomap.addr != IOMAP_NULL_ADDR) 1319 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1320 bh_map->b_size = iomap.length; 1321 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1322 set_buffer_boundary(bh_map); 1323 if (iomap.flags & IOMAP_F_NEW) 1324 set_buffer_new(bh_map); 1325 1326 out: 1327 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1328 return ret; 1329 } 1330 1331 /* 1332 * Deprecated: do not use in new code 1333 */ 1334 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1335 { 1336 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1337 int ret; 1338 int create = *new; 1339 1340 BUG_ON(!extlen); 1341 BUG_ON(!dblock); 1342 BUG_ON(!new); 1343 1344 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1345 ret = gfs2_block_map(inode, lblock, &bh, create); 1346 *extlen = bh.b_size >> inode->i_blkbits; 1347 *dblock = bh.b_blocknr; 1348 if (buffer_new(&bh)) 1349 *new = 1; 1350 else 1351 *new = 0; 1352 return ret; 1353 } 1354 1355 /* 1356 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1357 * uses iomap write to perform its actions, which begin their own transactions 1358 * (iomap_begin, page_prepare, etc.) 1359 */ 1360 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1361 unsigned int length) 1362 { 1363 BUG_ON(current->journal_info); 1364 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1365 } 1366 1367 #define GFS2_JTRUNC_REVOKES 8192 1368 1369 /** 1370 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1371 * @inode: The inode being truncated 1372 * @oldsize: The original (larger) size 1373 * @newsize: The new smaller size 1374 * 1375 * With jdata files, we have to journal a revoke for each block which is 1376 * truncated. As a result, we need to split this into separate transactions 1377 * if the number of pages being truncated gets too large. 1378 */ 1379 1380 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1381 { 1382 struct gfs2_sbd *sdp = GFS2_SB(inode); 1383 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1384 u64 chunk; 1385 int error; 1386 1387 while (oldsize != newsize) { 1388 struct gfs2_trans *tr; 1389 unsigned int offs; 1390 1391 chunk = oldsize - newsize; 1392 if (chunk > max_chunk) 1393 chunk = max_chunk; 1394 1395 offs = oldsize & ~PAGE_MASK; 1396 if (offs && chunk > PAGE_SIZE) 1397 chunk = offs + ((chunk - offs) & PAGE_MASK); 1398 1399 truncate_pagecache(inode, oldsize - chunk); 1400 oldsize -= chunk; 1401 1402 tr = current->journal_info; 1403 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1404 continue; 1405 1406 gfs2_trans_end(sdp); 1407 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1408 if (error) 1409 return error; 1410 } 1411 1412 return 0; 1413 } 1414 1415 static int trunc_start(struct inode *inode, u64 newsize) 1416 { 1417 struct gfs2_inode *ip = GFS2_I(inode); 1418 struct gfs2_sbd *sdp = GFS2_SB(inode); 1419 struct buffer_head *dibh = NULL; 1420 int journaled = gfs2_is_jdata(ip); 1421 u64 oldsize = inode->i_size; 1422 int error; 1423 1424 if (!gfs2_is_stuffed(ip)) { 1425 unsigned int blocksize = i_blocksize(inode); 1426 unsigned int offs = newsize & (blocksize - 1); 1427 if (offs) { 1428 error = gfs2_block_zero_range(inode, newsize, 1429 blocksize - offs); 1430 if (error) 1431 return error; 1432 } 1433 } 1434 if (journaled) 1435 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1436 else 1437 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1438 if (error) 1439 return error; 1440 1441 error = gfs2_meta_inode_buffer(ip, &dibh); 1442 if (error) 1443 goto out; 1444 1445 gfs2_trans_add_meta(ip->i_gl, dibh); 1446 1447 if (gfs2_is_stuffed(ip)) 1448 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1449 else 1450 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1451 1452 i_size_write(inode, newsize); 1453 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1454 gfs2_dinode_out(ip, dibh->b_data); 1455 1456 if (journaled) 1457 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1458 else 1459 truncate_pagecache(inode, newsize); 1460 1461 out: 1462 brelse(dibh); 1463 if (current->journal_info) 1464 gfs2_trans_end(sdp); 1465 return error; 1466 } 1467 1468 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1469 struct iomap *iomap) 1470 { 1471 struct metapath mp = { .mp_aheight = 1, }; 1472 int ret; 1473 1474 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1475 if (!ret && iomap->type == IOMAP_HOLE) 1476 ret = gfs2_iomap_alloc(inode, iomap, &mp); 1477 release_metapath(&mp); 1478 return ret; 1479 } 1480 1481 /** 1482 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1483 * @ip: inode 1484 * @rg_gh: holder of resource group glock 1485 * @bh: buffer head to sweep 1486 * @start: starting point in bh 1487 * @end: end point in bh 1488 * @meta: true if bh points to metadata (rather than data) 1489 * @btotal: place to keep count of total blocks freed 1490 * 1491 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1492 * free, and free them all. However, we do it one rgrp at a time. If this 1493 * block has references to multiple rgrps, we break it into individual 1494 * transactions. This allows other processes to use the rgrps while we're 1495 * focused on a single one, for better concurrency / performance. 1496 * At every transaction boundary, we rewrite the inode into the journal. 1497 * That way the bitmaps are kept consistent with the inode and we can recover 1498 * if we're interrupted by power-outages. 1499 * 1500 * Returns: 0, or return code if an error occurred. 1501 * *btotal has the total number of blocks freed 1502 */ 1503 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1504 struct buffer_head *bh, __be64 *start, __be64 *end, 1505 bool meta, u32 *btotal) 1506 { 1507 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1508 struct gfs2_rgrpd *rgd; 1509 struct gfs2_trans *tr; 1510 __be64 *p; 1511 int blks_outside_rgrp; 1512 u64 bn, bstart, isize_blks; 1513 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1514 int ret = 0; 1515 bool buf_in_tr = false; /* buffer was added to transaction */ 1516 1517 more_rgrps: 1518 rgd = NULL; 1519 if (gfs2_holder_initialized(rd_gh)) { 1520 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1521 gfs2_assert_withdraw(sdp, 1522 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1523 } 1524 blks_outside_rgrp = 0; 1525 bstart = 0; 1526 blen = 0; 1527 1528 for (p = start; p < end; p++) { 1529 if (!*p) 1530 continue; 1531 bn = be64_to_cpu(*p); 1532 1533 if (rgd) { 1534 if (!rgrp_contains_block(rgd, bn)) { 1535 blks_outside_rgrp++; 1536 continue; 1537 } 1538 } else { 1539 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1540 if (unlikely(!rgd)) { 1541 ret = -EIO; 1542 goto out; 1543 } 1544 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1545 0, rd_gh); 1546 if (ret) 1547 goto out; 1548 1549 /* Must be done with the rgrp glock held: */ 1550 if (gfs2_rs_active(&ip->i_res) && 1551 rgd == ip->i_res.rs_rbm.rgd) 1552 gfs2_rs_deltree(&ip->i_res); 1553 } 1554 1555 /* The size of our transactions will be unknown until we 1556 actually process all the metadata blocks that relate to 1557 the rgrp. So we estimate. We know it can't be more than 1558 the dinode's i_blocks and we don't want to exceed the 1559 journal flush threshold, sd_log_thresh2. */ 1560 if (current->journal_info == NULL) { 1561 unsigned int jblocks_rqsted, revokes; 1562 1563 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1564 RES_INDIRECT; 1565 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1566 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1567 jblocks_rqsted += 1568 atomic_read(&sdp->sd_log_thresh2); 1569 else 1570 jblocks_rqsted += isize_blks; 1571 revokes = jblocks_rqsted; 1572 if (meta) 1573 revokes += end - start; 1574 else if (ip->i_depth) 1575 revokes += sdp->sd_inptrs; 1576 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1577 if (ret) 1578 goto out_unlock; 1579 down_write(&ip->i_rw_mutex); 1580 } 1581 /* check if we will exceed the transaction blocks requested */ 1582 tr = current->journal_info; 1583 if (tr->tr_num_buf_new + RES_STATFS + 1584 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1585 /* We set blks_outside_rgrp to ensure the loop will 1586 be repeated for the same rgrp, but with a new 1587 transaction. */ 1588 blks_outside_rgrp++; 1589 /* This next part is tricky. If the buffer was added 1590 to the transaction, we've already set some block 1591 pointers to 0, so we better follow through and free 1592 them, or we will introduce corruption (so break). 1593 This may be impossible, or at least rare, but I 1594 decided to cover the case regardless. 1595 1596 If the buffer was not added to the transaction 1597 (this call), doing so would exceed our transaction 1598 size, so we need to end the transaction and start a 1599 new one (so goto). */ 1600 1601 if (buf_in_tr) 1602 break; 1603 goto out_unlock; 1604 } 1605 1606 gfs2_trans_add_meta(ip->i_gl, bh); 1607 buf_in_tr = true; 1608 *p = 0; 1609 if (bstart + blen == bn) { 1610 blen++; 1611 continue; 1612 } 1613 if (bstart) { 1614 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1615 (*btotal) += blen; 1616 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1617 } 1618 bstart = bn; 1619 blen = 1; 1620 } 1621 if (bstart) { 1622 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1623 (*btotal) += blen; 1624 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1625 } 1626 out_unlock: 1627 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1628 outside the rgrp we just processed, 1629 do it all over again. */ 1630 if (current->journal_info) { 1631 struct buffer_head *dibh; 1632 1633 ret = gfs2_meta_inode_buffer(ip, &dibh); 1634 if (ret) 1635 goto out; 1636 1637 /* Every transaction boundary, we rewrite the dinode 1638 to keep its di_blocks current in case of failure. */ 1639 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1640 current_time(&ip->i_inode); 1641 gfs2_trans_add_meta(ip->i_gl, dibh); 1642 gfs2_dinode_out(ip, dibh->b_data); 1643 brelse(dibh); 1644 up_write(&ip->i_rw_mutex); 1645 gfs2_trans_end(sdp); 1646 buf_in_tr = false; 1647 } 1648 gfs2_glock_dq_uninit(rd_gh); 1649 cond_resched(); 1650 goto more_rgrps; 1651 } 1652 out: 1653 return ret; 1654 } 1655 1656 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1657 { 1658 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1659 return false; 1660 return true; 1661 } 1662 1663 /** 1664 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1665 * @mp: starting metapath 1666 * @h: desired height to search 1667 * 1668 * Assumes the metapath is valid (with buffers) out to height h. 1669 * Returns: true if a non-null pointer was found in the metapath buffer 1670 * false if all remaining pointers are NULL in the buffer 1671 */ 1672 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1673 unsigned int h, 1674 __u16 *end_list, unsigned int end_aligned) 1675 { 1676 struct buffer_head *bh = mp->mp_bh[h]; 1677 __be64 *first, *ptr, *end; 1678 1679 first = metaptr1(h, mp); 1680 ptr = first + mp->mp_list[h]; 1681 end = (__be64 *)(bh->b_data + bh->b_size); 1682 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1683 bool keep_end = h < end_aligned; 1684 end = first + end_list[h] + keep_end; 1685 } 1686 1687 while (ptr < end) { 1688 if (*ptr) { /* if we have a non-null pointer */ 1689 mp->mp_list[h] = ptr - first; 1690 h++; 1691 if (h < GFS2_MAX_META_HEIGHT) 1692 mp->mp_list[h] = 0; 1693 return true; 1694 } 1695 ptr++; 1696 } 1697 return false; 1698 } 1699 1700 enum dealloc_states { 1701 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1702 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1703 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1704 DEALLOC_DONE = 3, /* process complete */ 1705 }; 1706 1707 static inline void 1708 metapointer_range(struct metapath *mp, int height, 1709 __u16 *start_list, unsigned int start_aligned, 1710 __u16 *end_list, unsigned int end_aligned, 1711 __be64 **start, __be64 **end) 1712 { 1713 struct buffer_head *bh = mp->mp_bh[height]; 1714 __be64 *first; 1715 1716 first = metaptr1(height, mp); 1717 *start = first; 1718 if (mp_eq_to_hgt(mp, start_list, height)) { 1719 bool keep_start = height < start_aligned; 1720 *start = first + start_list[height] + keep_start; 1721 } 1722 *end = (__be64 *)(bh->b_data + bh->b_size); 1723 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1724 bool keep_end = height < end_aligned; 1725 *end = first + end_list[height] + keep_end; 1726 } 1727 } 1728 1729 static inline bool walk_done(struct gfs2_sbd *sdp, 1730 struct metapath *mp, int height, 1731 __u16 *end_list, unsigned int end_aligned) 1732 { 1733 __u16 end; 1734 1735 if (end_list) { 1736 bool keep_end = height < end_aligned; 1737 if (!mp_eq_to_hgt(mp, end_list, height)) 1738 return false; 1739 end = end_list[height] + keep_end; 1740 } else 1741 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1742 return mp->mp_list[height] >= end; 1743 } 1744 1745 /** 1746 * punch_hole - deallocate blocks in a file 1747 * @ip: inode to truncate 1748 * @offset: the start of the hole 1749 * @length: the size of the hole (or 0 for truncate) 1750 * 1751 * Punch a hole into a file or truncate a file at a given position. This 1752 * function operates in whole blocks (@offset and @length are rounded 1753 * accordingly); partially filled blocks must be cleared otherwise. 1754 * 1755 * This function works from the bottom up, and from the right to the left. In 1756 * other words, it strips off the highest layer (data) before stripping any of 1757 * the metadata. Doing it this way is best in case the operation is interrupted 1758 * by power failure, etc. The dinode is rewritten in every transaction to 1759 * guarantee integrity. 1760 */ 1761 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1762 { 1763 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1764 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1765 struct metapath mp = {}; 1766 struct buffer_head *dibh, *bh; 1767 struct gfs2_holder rd_gh; 1768 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1769 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1770 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1771 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1772 unsigned int start_aligned, end_aligned; 1773 unsigned int strip_h = ip->i_height - 1; 1774 u32 btotal = 0; 1775 int ret, state; 1776 int mp_h; /* metapath buffers are read in to this height */ 1777 u64 prev_bnr = 0; 1778 __be64 *start, *end; 1779 1780 if (offset >= maxsize) { 1781 /* 1782 * The starting point lies beyond the allocated meta-data; 1783 * there are no blocks do deallocate. 1784 */ 1785 return 0; 1786 } 1787 1788 /* 1789 * The start position of the hole is defined by lblock, start_list, and 1790 * start_aligned. The end position of the hole is defined by lend, 1791 * end_list, and end_aligned. 1792 * 1793 * start_aligned and end_aligned define down to which height the start 1794 * and end positions are aligned to the metadata tree (i.e., the 1795 * position is a multiple of the metadata granularity at the height 1796 * above). This determines at which heights additional meta pointers 1797 * needs to be preserved for the remaining data. 1798 */ 1799 1800 if (length) { 1801 u64 end_offset = offset + length; 1802 u64 lend; 1803 1804 /* 1805 * Clip the end at the maximum file size for the given height: 1806 * that's how far the metadata goes; files bigger than that 1807 * will have additional layers of indirection. 1808 */ 1809 if (end_offset > maxsize) 1810 end_offset = maxsize; 1811 lend = end_offset >> bsize_shift; 1812 1813 if (lblock >= lend) 1814 return 0; 1815 1816 find_metapath(sdp, lend, &mp, ip->i_height); 1817 end_list = __end_list; 1818 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1819 1820 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1821 if (end_list[mp_h]) 1822 break; 1823 } 1824 end_aligned = mp_h; 1825 } 1826 1827 find_metapath(sdp, lblock, &mp, ip->i_height); 1828 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1829 1830 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1831 if (start_list[mp_h]) 1832 break; 1833 } 1834 start_aligned = mp_h; 1835 1836 ret = gfs2_meta_inode_buffer(ip, &dibh); 1837 if (ret) 1838 return ret; 1839 1840 mp.mp_bh[0] = dibh; 1841 ret = lookup_metapath(ip, &mp); 1842 if (ret) 1843 goto out_metapath; 1844 1845 /* issue read-ahead on metadata */ 1846 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1847 metapointer_range(&mp, mp_h, start_list, start_aligned, 1848 end_list, end_aligned, &start, &end); 1849 gfs2_metapath_ra(ip->i_gl, start, end); 1850 } 1851 1852 if (mp.mp_aheight == ip->i_height) 1853 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1854 else 1855 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1856 1857 ret = gfs2_rindex_update(sdp); 1858 if (ret) 1859 goto out_metapath; 1860 1861 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1862 if (ret) 1863 goto out_metapath; 1864 gfs2_holder_mark_uninitialized(&rd_gh); 1865 1866 mp_h = strip_h; 1867 1868 while (state != DEALLOC_DONE) { 1869 switch (state) { 1870 /* Truncate a full metapath at the given strip height. 1871 * Note that strip_h == mp_h in order to be in this state. */ 1872 case DEALLOC_MP_FULL: 1873 bh = mp.mp_bh[mp_h]; 1874 gfs2_assert_withdraw(sdp, bh); 1875 if (gfs2_assert_withdraw(sdp, 1876 prev_bnr != bh->b_blocknr)) { 1877 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1878 "s_h:%u, mp_h:%u\n", 1879 (unsigned long long)ip->i_no_addr, 1880 prev_bnr, ip->i_height, strip_h, mp_h); 1881 } 1882 prev_bnr = bh->b_blocknr; 1883 1884 if (gfs2_metatype_check(sdp, bh, 1885 (mp_h ? GFS2_METATYPE_IN : 1886 GFS2_METATYPE_DI))) { 1887 ret = -EIO; 1888 goto out; 1889 } 1890 1891 /* 1892 * Below, passing end_aligned as 0 gives us the 1893 * metapointer range excluding the end point: the end 1894 * point is the first metapath we must not deallocate! 1895 */ 1896 1897 metapointer_range(&mp, mp_h, start_list, start_aligned, 1898 end_list, 0 /* end_aligned */, 1899 &start, &end); 1900 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1901 start, end, 1902 mp_h != ip->i_height - 1, 1903 &btotal); 1904 1905 /* If we hit an error or just swept dinode buffer, 1906 just exit. */ 1907 if (ret || !mp_h) { 1908 state = DEALLOC_DONE; 1909 break; 1910 } 1911 state = DEALLOC_MP_LOWER; 1912 break; 1913 1914 /* lower the metapath strip height */ 1915 case DEALLOC_MP_LOWER: 1916 /* We're done with the current buffer, so release it, 1917 unless it's the dinode buffer. Then back up to the 1918 previous pointer. */ 1919 if (mp_h) { 1920 brelse(mp.mp_bh[mp_h]); 1921 mp.mp_bh[mp_h] = NULL; 1922 } 1923 /* If we can't get any lower in height, we've stripped 1924 off all we can. Next step is to back up and start 1925 stripping the previous level of metadata. */ 1926 if (mp_h == 0) { 1927 strip_h--; 1928 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1929 mp_h = strip_h; 1930 state = DEALLOC_FILL_MP; 1931 break; 1932 } 1933 mp.mp_list[mp_h] = 0; 1934 mp_h--; /* search one metadata height down */ 1935 mp.mp_list[mp_h]++; 1936 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1937 break; 1938 /* Here we've found a part of the metapath that is not 1939 * allocated. We need to search at that height for the 1940 * next non-null pointer. */ 1941 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1942 state = DEALLOC_FILL_MP; 1943 mp_h++; 1944 } 1945 /* No more non-null pointers at this height. Back up 1946 to the previous height and try again. */ 1947 break; /* loop around in the same state */ 1948 1949 /* Fill the metapath with buffers to the given height. */ 1950 case DEALLOC_FILL_MP: 1951 /* Fill the buffers out to the current height. */ 1952 ret = fillup_metapath(ip, &mp, mp_h); 1953 if (ret < 0) 1954 goto out; 1955 1956 /* On the first pass, issue read-ahead on metadata. */ 1957 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1958 unsigned int height = mp.mp_aheight - 1; 1959 1960 /* No read-ahead for data blocks. */ 1961 if (mp.mp_aheight - 1 == strip_h) 1962 height--; 1963 1964 for (; height >= mp.mp_aheight - ret; height--) { 1965 metapointer_range(&mp, height, 1966 start_list, start_aligned, 1967 end_list, end_aligned, 1968 &start, &end); 1969 gfs2_metapath_ra(ip->i_gl, start, end); 1970 } 1971 } 1972 1973 /* If buffers found for the entire strip height */ 1974 if (mp.mp_aheight - 1 == strip_h) { 1975 state = DEALLOC_MP_FULL; 1976 break; 1977 } 1978 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1979 mp_h = mp.mp_aheight - 1; 1980 1981 /* If we find a non-null block pointer, crawl a bit 1982 higher up in the metapath and try again, otherwise 1983 we need to look lower for a new starting point. */ 1984 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1985 mp_h++; 1986 else 1987 state = DEALLOC_MP_LOWER; 1988 break; 1989 } 1990 } 1991 1992 if (btotal) { 1993 if (current->journal_info == NULL) { 1994 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1995 RES_QUOTA, 0); 1996 if (ret) 1997 goto out; 1998 down_write(&ip->i_rw_mutex); 1999 } 2000 gfs2_statfs_change(sdp, 0, +btotal, 0); 2001 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 2002 ip->i_inode.i_gid); 2003 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2004 gfs2_trans_add_meta(ip->i_gl, dibh); 2005 gfs2_dinode_out(ip, dibh->b_data); 2006 up_write(&ip->i_rw_mutex); 2007 gfs2_trans_end(sdp); 2008 } 2009 2010 out: 2011 if (gfs2_holder_initialized(&rd_gh)) 2012 gfs2_glock_dq_uninit(&rd_gh); 2013 if (current->journal_info) { 2014 up_write(&ip->i_rw_mutex); 2015 gfs2_trans_end(sdp); 2016 cond_resched(); 2017 } 2018 gfs2_quota_unhold(ip); 2019 out_metapath: 2020 release_metapath(&mp); 2021 return ret; 2022 } 2023 2024 static int trunc_end(struct gfs2_inode *ip) 2025 { 2026 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2027 struct buffer_head *dibh; 2028 int error; 2029 2030 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2031 if (error) 2032 return error; 2033 2034 down_write(&ip->i_rw_mutex); 2035 2036 error = gfs2_meta_inode_buffer(ip, &dibh); 2037 if (error) 2038 goto out; 2039 2040 if (!i_size_read(&ip->i_inode)) { 2041 ip->i_height = 0; 2042 ip->i_goal = ip->i_no_addr; 2043 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2044 gfs2_ordered_del_inode(ip); 2045 } 2046 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2047 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2048 2049 gfs2_trans_add_meta(ip->i_gl, dibh); 2050 gfs2_dinode_out(ip, dibh->b_data); 2051 brelse(dibh); 2052 2053 out: 2054 up_write(&ip->i_rw_mutex); 2055 gfs2_trans_end(sdp); 2056 return error; 2057 } 2058 2059 /** 2060 * do_shrink - make a file smaller 2061 * @inode: the inode 2062 * @newsize: the size to make the file 2063 * 2064 * Called with an exclusive lock on @inode. The @size must 2065 * be equal to or smaller than the current inode size. 2066 * 2067 * Returns: errno 2068 */ 2069 2070 static int do_shrink(struct inode *inode, u64 newsize) 2071 { 2072 struct gfs2_inode *ip = GFS2_I(inode); 2073 int error; 2074 2075 error = trunc_start(inode, newsize); 2076 if (error < 0) 2077 return error; 2078 if (gfs2_is_stuffed(ip)) 2079 return 0; 2080 2081 error = punch_hole(ip, newsize, 0); 2082 if (error == 0) 2083 error = trunc_end(ip); 2084 2085 return error; 2086 } 2087 2088 void gfs2_trim_blocks(struct inode *inode) 2089 { 2090 int ret; 2091 2092 ret = do_shrink(inode, inode->i_size); 2093 WARN_ON(ret != 0); 2094 } 2095 2096 /** 2097 * do_grow - Touch and update inode size 2098 * @inode: The inode 2099 * @size: The new size 2100 * 2101 * This function updates the timestamps on the inode and 2102 * may also increase the size of the inode. This function 2103 * must not be called with @size any smaller than the current 2104 * inode size. 2105 * 2106 * Although it is not strictly required to unstuff files here, 2107 * earlier versions of GFS2 have a bug in the stuffed file reading 2108 * code which will result in a buffer overrun if the size is larger 2109 * than the max stuffed file size. In order to prevent this from 2110 * occurring, such files are unstuffed, but in other cases we can 2111 * just update the inode size directly. 2112 * 2113 * Returns: 0 on success, or -ve on error 2114 */ 2115 2116 static int do_grow(struct inode *inode, u64 size) 2117 { 2118 struct gfs2_inode *ip = GFS2_I(inode); 2119 struct gfs2_sbd *sdp = GFS2_SB(inode); 2120 struct gfs2_alloc_parms ap = { .target = 1, }; 2121 struct buffer_head *dibh; 2122 int error; 2123 int unstuff = 0; 2124 2125 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2126 error = gfs2_quota_lock_check(ip, &ap); 2127 if (error) 2128 return error; 2129 2130 error = gfs2_inplace_reserve(ip, &ap); 2131 if (error) 2132 goto do_grow_qunlock; 2133 unstuff = 1; 2134 } 2135 2136 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2137 (unstuff && 2138 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2139 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2140 0 : RES_QUOTA), 0); 2141 if (error) 2142 goto do_grow_release; 2143 2144 if (unstuff) { 2145 error = gfs2_unstuff_dinode(ip, NULL); 2146 if (error) 2147 goto do_end_trans; 2148 } 2149 2150 error = gfs2_meta_inode_buffer(ip, &dibh); 2151 if (error) 2152 goto do_end_trans; 2153 2154 truncate_setsize(inode, size); 2155 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2156 gfs2_trans_add_meta(ip->i_gl, dibh); 2157 gfs2_dinode_out(ip, dibh->b_data); 2158 brelse(dibh); 2159 2160 do_end_trans: 2161 gfs2_trans_end(sdp); 2162 do_grow_release: 2163 if (unstuff) { 2164 gfs2_inplace_release(ip); 2165 do_grow_qunlock: 2166 gfs2_quota_unlock(ip); 2167 } 2168 return error; 2169 } 2170 2171 /** 2172 * gfs2_setattr_size - make a file a given size 2173 * @inode: the inode 2174 * @newsize: the size to make the file 2175 * 2176 * The file size can grow, shrink, or stay the same size. This 2177 * is called holding i_rwsem and an exclusive glock on the inode 2178 * in question. 2179 * 2180 * Returns: errno 2181 */ 2182 2183 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2184 { 2185 struct gfs2_inode *ip = GFS2_I(inode); 2186 int ret; 2187 2188 BUG_ON(!S_ISREG(inode->i_mode)); 2189 2190 ret = inode_newsize_ok(inode, newsize); 2191 if (ret) 2192 return ret; 2193 2194 inode_dio_wait(inode); 2195 2196 ret = gfs2_qa_get(ip); 2197 if (ret) 2198 goto out; 2199 2200 if (newsize >= inode->i_size) { 2201 ret = do_grow(inode, newsize); 2202 goto out; 2203 } 2204 2205 ret = do_shrink(inode, newsize); 2206 out: 2207 gfs2_rs_delete(ip, NULL); 2208 gfs2_qa_put(ip); 2209 return ret; 2210 } 2211 2212 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2213 { 2214 int error; 2215 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2216 if (!error) 2217 error = trunc_end(ip); 2218 return error; 2219 } 2220 2221 int gfs2_file_dealloc(struct gfs2_inode *ip) 2222 { 2223 return punch_hole(ip, 0, 0); 2224 } 2225 2226 /** 2227 * gfs2_free_journal_extents - Free cached journal bmap info 2228 * @jd: The journal 2229 * 2230 */ 2231 2232 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2233 { 2234 struct gfs2_journal_extent *jext; 2235 2236 while(!list_empty(&jd->extent_list)) { 2237 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2238 list_del(&jext->list); 2239 kfree(jext); 2240 } 2241 } 2242 2243 /** 2244 * gfs2_add_jextent - Add or merge a new extent to extent cache 2245 * @jd: The journal descriptor 2246 * @lblock: The logical block at start of new extent 2247 * @dblock: The physical block at start of new extent 2248 * @blocks: Size of extent in fs blocks 2249 * 2250 * Returns: 0 on success or -ENOMEM 2251 */ 2252 2253 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2254 { 2255 struct gfs2_journal_extent *jext; 2256 2257 if (!list_empty(&jd->extent_list)) { 2258 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2259 if ((jext->dblock + jext->blocks) == dblock) { 2260 jext->blocks += blocks; 2261 return 0; 2262 } 2263 } 2264 2265 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2266 if (jext == NULL) 2267 return -ENOMEM; 2268 jext->dblock = dblock; 2269 jext->lblock = lblock; 2270 jext->blocks = blocks; 2271 list_add_tail(&jext->list, &jd->extent_list); 2272 jd->nr_extents++; 2273 return 0; 2274 } 2275 2276 /** 2277 * gfs2_map_journal_extents - Cache journal bmap info 2278 * @sdp: The super block 2279 * @jd: The journal to map 2280 * 2281 * Create a reusable "extent" mapping from all logical 2282 * blocks to all physical blocks for the given journal. This will save 2283 * us time when writing journal blocks. Most journals will have only one 2284 * extent that maps all their logical blocks. That's because gfs2.mkfs 2285 * arranges the journal blocks sequentially to maximize performance. 2286 * So the extent would map the first block for the entire file length. 2287 * However, gfs2_jadd can happen while file activity is happening, so 2288 * those journals may not be sequential. Less likely is the case where 2289 * the users created their own journals by mounting the metafs and 2290 * laying it out. But it's still possible. These journals might have 2291 * several extents. 2292 * 2293 * Returns: 0 on success, or error on failure 2294 */ 2295 2296 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2297 { 2298 u64 lblock = 0; 2299 u64 lblock_stop; 2300 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2301 struct buffer_head bh; 2302 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2303 u64 size; 2304 int rc; 2305 ktime_t start, end; 2306 2307 start = ktime_get(); 2308 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2309 size = (lblock_stop - lblock) << shift; 2310 jd->nr_extents = 0; 2311 WARN_ON(!list_empty(&jd->extent_list)); 2312 2313 do { 2314 bh.b_state = 0; 2315 bh.b_blocknr = 0; 2316 bh.b_size = size; 2317 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2318 if (rc || !buffer_mapped(&bh)) 2319 goto fail; 2320 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2321 if (rc) 2322 goto fail; 2323 size -= bh.b_size; 2324 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2325 } while(size > 0); 2326 2327 end = ktime_get(); 2328 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2329 jd->nr_extents, ktime_ms_delta(end, start)); 2330 return 0; 2331 2332 fail: 2333 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2334 rc, jd->jd_jid, 2335 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2336 jd->nr_extents); 2337 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2338 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2339 bh.b_state, (unsigned long long)bh.b_size); 2340 gfs2_free_journal_extents(jd); 2341 return rc; 2342 } 2343 2344 /** 2345 * gfs2_write_alloc_required - figure out if a write will require an allocation 2346 * @ip: the file being written to 2347 * @offset: the offset to write to 2348 * @len: the number of bytes being written 2349 * 2350 * Returns: 1 if an alloc is required, 0 otherwise 2351 */ 2352 2353 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2354 unsigned int len) 2355 { 2356 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2357 struct buffer_head bh; 2358 unsigned int shift; 2359 u64 lblock, lblock_stop, size; 2360 u64 end_of_file; 2361 2362 if (!len) 2363 return 0; 2364 2365 if (gfs2_is_stuffed(ip)) { 2366 if (offset + len > gfs2_max_stuffed_size(ip)) 2367 return 1; 2368 return 0; 2369 } 2370 2371 shift = sdp->sd_sb.sb_bsize_shift; 2372 BUG_ON(gfs2_is_dir(ip)); 2373 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2374 lblock = offset >> shift; 2375 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2376 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2377 return 1; 2378 2379 size = (lblock_stop - lblock) << shift; 2380 do { 2381 bh.b_state = 0; 2382 bh.b_size = size; 2383 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2384 if (!buffer_mapped(&bh)) 2385 return 1; 2386 size -= bh.b_size; 2387 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2388 } while(size > 0); 2389 2390 return 0; 2391 } 2392 2393 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2394 { 2395 struct gfs2_inode *ip = GFS2_I(inode); 2396 struct buffer_head *dibh; 2397 int error; 2398 2399 if (offset >= inode->i_size) 2400 return 0; 2401 if (offset + length > inode->i_size) 2402 length = inode->i_size - offset; 2403 2404 error = gfs2_meta_inode_buffer(ip, &dibh); 2405 if (error) 2406 return error; 2407 gfs2_trans_add_meta(ip->i_gl, dibh); 2408 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2409 length); 2410 brelse(dibh); 2411 return 0; 2412 } 2413 2414 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2415 loff_t length) 2416 { 2417 struct gfs2_sbd *sdp = GFS2_SB(inode); 2418 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2419 int error; 2420 2421 while (length) { 2422 struct gfs2_trans *tr; 2423 loff_t chunk; 2424 unsigned int offs; 2425 2426 chunk = length; 2427 if (chunk > max_chunk) 2428 chunk = max_chunk; 2429 2430 offs = offset & ~PAGE_MASK; 2431 if (offs && chunk > PAGE_SIZE) 2432 chunk = offs + ((chunk - offs) & PAGE_MASK); 2433 2434 truncate_pagecache_range(inode, offset, chunk); 2435 offset += chunk; 2436 length -= chunk; 2437 2438 tr = current->journal_info; 2439 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2440 continue; 2441 2442 gfs2_trans_end(sdp); 2443 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2444 if (error) 2445 return error; 2446 } 2447 return 0; 2448 } 2449 2450 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2451 { 2452 struct inode *inode = file_inode(file); 2453 struct gfs2_inode *ip = GFS2_I(inode); 2454 struct gfs2_sbd *sdp = GFS2_SB(inode); 2455 unsigned int blocksize = i_blocksize(inode); 2456 loff_t start, end; 2457 int error; 2458 2459 if (!gfs2_is_stuffed(ip)) { 2460 unsigned int start_off, end_len; 2461 2462 start_off = offset & (blocksize - 1); 2463 end_len = (offset + length) & (blocksize - 1); 2464 if (start_off) { 2465 unsigned int len = length; 2466 if (length > blocksize - start_off) 2467 len = blocksize - start_off; 2468 error = gfs2_block_zero_range(inode, offset, len); 2469 if (error) 2470 goto out; 2471 if (start_off + length < blocksize) 2472 end_len = 0; 2473 } 2474 if (end_len) { 2475 error = gfs2_block_zero_range(inode, 2476 offset + length - end_len, end_len); 2477 if (error) 2478 goto out; 2479 } 2480 } 2481 2482 start = round_down(offset, blocksize); 2483 end = round_up(offset + length, blocksize) - 1; 2484 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2485 if (error) 2486 return error; 2487 2488 if (gfs2_is_jdata(ip)) 2489 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2490 GFS2_JTRUNC_REVOKES); 2491 else 2492 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2493 if (error) 2494 return error; 2495 2496 if (gfs2_is_stuffed(ip)) { 2497 error = stuffed_zero_range(inode, offset, length); 2498 if (error) 2499 goto out; 2500 } 2501 2502 if (gfs2_is_jdata(ip)) { 2503 BUG_ON(!current->journal_info); 2504 gfs2_journaled_truncate_range(inode, offset, length); 2505 } else 2506 truncate_pagecache_range(inode, offset, offset + length - 1); 2507 2508 file_update_time(file); 2509 mark_inode_dirty(inode); 2510 2511 if (current->journal_info) 2512 gfs2_trans_end(sdp); 2513 2514 if (!gfs2_is_stuffed(ip)) 2515 error = punch_hole(ip, offset, length); 2516 2517 out: 2518 if (current->journal_info) 2519 gfs2_trans_end(sdp); 2520 return error; 2521 } 2522 2523 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, 2524 loff_t offset) 2525 { 2526 struct metapath mp = { .mp_aheight = 1, }; 2527 int ret; 2528 2529 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode)))) 2530 return -EIO; 2531 2532 if (offset >= wpc->iomap.offset && 2533 offset < wpc->iomap.offset + wpc->iomap.length) 2534 return 0; 2535 2536 memset(&wpc->iomap, 0, sizeof(wpc->iomap)); 2537 ret = gfs2_iomap_get(inode, offset, INT_MAX, 0, &wpc->iomap, &mp); 2538 release_metapath(&mp); 2539 return ret; 2540 } 2541 2542 const struct iomap_writeback_ops gfs2_writeback_ops = { 2543 .map_blocks = gfs2_map_blocks, 2544 }; 2545