1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 60 if (!PageUptodate(page)) { 61 void *kaddr = kmap(page); 62 u64 dsize = i_size_read(inode); 63 64 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 65 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 66 kunmap(page); 67 68 SetPageUptodate(page); 69 } 70 71 if (gfs2_is_jdata(ip)) { 72 struct buffer_head *bh; 73 74 if (!page_has_buffers(page)) 75 create_empty_buffers(page, BIT(inode->i_blkbits), 76 BIT(BH_Uptodate)); 77 78 bh = page_buffers(page); 79 if (!buffer_mapped(bh)) 80 map_bh(bh, inode->i_sb, block); 81 82 set_buffer_uptodate(bh); 83 gfs2_trans_add_data(ip->i_gl, bh); 84 } else { 85 set_page_dirty(page); 86 gfs2_ordered_add_inode(ip); 87 } 88 89 return 0; 90 } 91 92 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page) 93 { 94 struct buffer_head *bh, *dibh; 95 struct gfs2_dinode *di; 96 u64 block = 0; 97 int isdir = gfs2_is_dir(ip); 98 int error; 99 100 error = gfs2_meta_inode_buffer(ip, &dibh); 101 if (error) 102 return error; 103 104 if (i_size_read(&ip->i_inode)) { 105 /* Get a free block, fill it with the stuffed data, 106 and write it out to disk */ 107 108 unsigned int n = 1; 109 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 110 if (error) 111 goto out_brelse; 112 if (isdir) { 113 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 114 error = gfs2_dir_get_new_buffer(ip, block, &bh); 115 if (error) 116 goto out_brelse; 117 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 118 dibh, sizeof(struct gfs2_dinode)); 119 brelse(bh); 120 } else { 121 error = gfs2_unstuffer_page(ip, dibh, block, page); 122 if (error) 123 goto out_brelse; 124 } 125 } 126 127 /* Set up the pointer to the new block */ 128 129 gfs2_trans_add_meta(ip->i_gl, dibh); 130 di = (struct gfs2_dinode *)dibh->b_data; 131 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 132 133 if (i_size_read(&ip->i_inode)) { 134 *(__be64 *)(di + 1) = cpu_to_be64(block); 135 gfs2_add_inode_blocks(&ip->i_inode, 1); 136 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 137 } 138 139 ip->i_height = 1; 140 di->di_height = cpu_to_be16(1); 141 142 out_brelse: 143 brelse(dibh); 144 return error; 145 } 146 147 /** 148 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 149 * @ip: The GFS2 inode to unstuff 150 * 151 * This routine unstuffs a dinode and returns it to a "normal" state such 152 * that the height can be grown in the traditional way. 153 * 154 * Returns: errno 155 */ 156 157 int gfs2_unstuff_dinode(struct gfs2_inode *ip) 158 { 159 struct inode *inode = &ip->i_inode; 160 struct page *page; 161 int error; 162 163 down_write(&ip->i_rw_mutex); 164 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 165 error = -ENOMEM; 166 if (!page) 167 goto out; 168 error = __gfs2_unstuff_inode(ip, page); 169 unlock_page(page); 170 put_page(page); 171 out: 172 up_write(&ip->i_rw_mutex); 173 return error; 174 } 175 176 /** 177 * find_metapath - Find path through the metadata tree 178 * @sdp: The superblock 179 * @block: The disk block to look up 180 * @mp: The metapath to return the result in 181 * @height: The pre-calculated height of the metadata tree 182 * 183 * This routine returns a struct metapath structure that defines a path 184 * through the metadata of inode "ip" to get to block "block". 185 * 186 * Example: 187 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 188 * filesystem with a blocksize of 4096. 189 * 190 * find_metapath() would return a struct metapath structure set to: 191 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 192 * 193 * That means that in order to get to the block containing the byte at 194 * offset 101342453, we would load the indirect block pointed to by pointer 195 * 0 in the dinode. We would then load the indirect block pointed to by 196 * pointer 48 in that indirect block. We would then load the data block 197 * pointed to by pointer 165 in that indirect block. 198 * 199 * ---------------------------------------- 200 * | Dinode | | 201 * | | 4| 202 * | |0 1 2 3 4 5 9| 203 * | | 6| 204 * ---------------------------------------- 205 * | 206 * | 207 * V 208 * ---------------------------------------- 209 * | Indirect Block | 210 * | 5| 211 * | 4 4 4 4 4 5 5 1| 212 * |0 5 6 7 8 9 0 1 2| 213 * ---------------------------------------- 214 * | 215 * | 216 * V 217 * ---------------------------------------- 218 * | Indirect Block | 219 * | 1 1 1 1 1 5| 220 * | 6 6 6 6 6 1| 221 * |0 3 4 5 6 7 2| 222 * ---------------------------------------- 223 * | 224 * | 225 * V 226 * ---------------------------------------- 227 * | Data block containing offset | 228 * | 101342453 | 229 * | | 230 * | | 231 * ---------------------------------------- 232 * 233 */ 234 235 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 236 struct metapath *mp, unsigned int height) 237 { 238 unsigned int i; 239 240 mp->mp_fheight = height; 241 for (i = height; i--;) 242 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 243 } 244 245 static inline unsigned int metapath_branch_start(const struct metapath *mp) 246 { 247 if (mp->mp_list[0] == 0) 248 return 2; 249 return 1; 250 } 251 252 /** 253 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 254 * @height: The metadata height (0 = dinode) 255 * @mp: The metapath 256 */ 257 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 258 { 259 struct buffer_head *bh = mp->mp_bh[height]; 260 if (height == 0) 261 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 262 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 263 } 264 265 /** 266 * metapointer - Return pointer to start of metadata in a buffer 267 * @height: The metadata height (0 = dinode) 268 * @mp: The metapath 269 * 270 * Return a pointer to the block number of the next height of the metadata 271 * tree given a buffer containing the pointer to the current height of the 272 * metadata tree. 273 */ 274 275 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 276 { 277 __be64 *p = metaptr1(height, mp); 278 return p + mp->mp_list[height]; 279 } 280 281 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 282 { 283 const struct buffer_head *bh = mp->mp_bh[height]; 284 return (const __be64 *)(bh->b_data + bh->b_size); 285 } 286 287 static void clone_metapath(struct metapath *clone, struct metapath *mp) 288 { 289 unsigned int hgt; 290 291 *clone = *mp; 292 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 293 get_bh(clone->mp_bh[hgt]); 294 } 295 296 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 297 { 298 const __be64 *t; 299 300 for (t = start; t < end; t++) { 301 struct buffer_head *rabh; 302 303 if (!*t) 304 continue; 305 306 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 307 if (trylock_buffer(rabh)) { 308 if (!buffer_uptodate(rabh)) { 309 rabh->b_end_io = end_buffer_read_sync; 310 submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META | 311 REQ_PRIO, rabh); 312 continue; 313 } 314 unlock_buffer(rabh); 315 } 316 brelse(rabh); 317 } 318 } 319 320 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 321 unsigned int x, unsigned int h) 322 { 323 for (; x < h; x++) { 324 __be64 *ptr = metapointer(x, mp); 325 u64 dblock = be64_to_cpu(*ptr); 326 int ret; 327 328 if (!dblock) 329 break; 330 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]); 331 if (ret) 332 return ret; 333 } 334 mp->mp_aheight = x + 1; 335 return 0; 336 } 337 338 /** 339 * lookup_metapath - Walk the metadata tree to a specific point 340 * @ip: The inode 341 * @mp: The metapath 342 * 343 * Assumes that the inode's buffer has already been looked up and 344 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 345 * by find_metapath(). 346 * 347 * If this function encounters part of the tree which has not been 348 * allocated, it returns the current height of the tree at the point 349 * at which it found the unallocated block. Blocks which are found are 350 * added to the mp->mp_bh[] list. 351 * 352 * Returns: error 353 */ 354 355 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 356 { 357 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 358 } 359 360 /** 361 * fillup_metapath - fill up buffers for the metadata path to a specific height 362 * @ip: The inode 363 * @mp: The metapath 364 * @h: The height to which it should be mapped 365 * 366 * Similar to lookup_metapath, but does lookups for a range of heights 367 * 368 * Returns: error or the number of buffers filled 369 */ 370 371 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 372 { 373 unsigned int x = 0; 374 int ret; 375 376 if (h) { 377 /* find the first buffer we need to look up. */ 378 for (x = h - 1; x > 0; x--) { 379 if (mp->mp_bh[x]) 380 break; 381 } 382 } 383 ret = __fillup_metapath(ip, mp, x, h); 384 if (ret) 385 return ret; 386 return mp->mp_aheight - x - 1; 387 } 388 389 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 390 { 391 sector_t factor = 1, block = 0; 392 int hgt; 393 394 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 395 if (hgt < mp->mp_aheight) 396 block += mp->mp_list[hgt] * factor; 397 factor *= sdp->sd_inptrs; 398 } 399 return block; 400 } 401 402 static void release_metapath(struct metapath *mp) 403 { 404 int i; 405 406 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 407 if (mp->mp_bh[i] == NULL) 408 break; 409 brelse(mp->mp_bh[i]); 410 mp->mp_bh[i] = NULL; 411 } 412 } 413 414 /** 415 * gfs2_extent_length - Returns length of an extent of blocks 416 * @bh: The metadata block 417 * @ptr: Current position in @bh 418 * @limit: Max extent length to return 419 * @eob: Set to 1 if we hit "end of block" 420 * 421 * Returns: The length of the extent (minimum of one block) 422 */ 423 424 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 425 { 426 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 427 const __be64 *first = ptr; 428 u64 d = be64_to_cpu(*ptr); 429 430 *eob = 0; 431 do { 432 ptr++; 433 if (ptr >= end) 434 break; 435 d++; 436 } while(be64_to_cpu(*ptr) == d); 437 if (ptr >= end) 438 *eob = 1; 439 return ptr - first; 440 } 441 442 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 443 444 /* 445 * gfs2_metadata_walker - walk an indirect block 446 * @mp: Metapath to indirect block 447 * @ptrs: Number of pointers to look at 448 * 449 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 450 * indirect block to follow. 451 */ 452 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 453 unsigned int ptrs); 454 455 /* 456 * gfs2_walk_metadata - walk a tree of indirect blocks 457 * @inode: The inode 458 * @mp: Starting point of walk 459 * @max_len: Maximum number of blocks to walk 460 * @walker: Called during the walk 461 * 462 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 463 * past the end of metadata, and a negative error code otherwise. 464 */ 465 466 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 467 u64 max_len, gfs2_metadata_walker walker) 468 { 469 struct gfs2_inode *ip = GFS2_I(inode); 470 struct gfs2_sbd *sdp = GFS2_SB(inode); 471 u64 factor = 1; 472 unsigned int hgt; 473 int ret; 474 475 /* 476 * The walk starts in the lowest allocated indirect block, which may be 477 * before the position indicated by @mp. Adjust @max_len accordingly 478 * to avoid a short walk. 479 */ 480 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 481 max_len += mp->mp_list[hgt] * factor; 482 mp->mp_list[hgt] = 0; 483 factor *= sdp->sd_inptrs; 484 } 485 486 for (;;) { 487 u16 start = mp->mp_list[hgt]; 488 enum walker_status status; 489 unsigned int ptrs; 490 u64 len; 491 492 /* Walk indirect block. */ 493 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 494 len = ptrs * factor; 495 if (len > max_len) 496 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 497 status = walker(mp, ptrs); 498 switch (status) { 499 case WALK_STOP: 500 return 1; 501 case WALK_FOLLOW: 502 BUG_ON(mp->mp_aheight == mp->mp_fheight); 503 ptrs = mp->mp_list[hgt] - start; 504 len = ptrs * factor; 505 break; 506 case WALK_CONTINUE: 507 break; 508 } 509 if (len >= max_len) 510 break; 511 max_len -= len; 512 if (status == WALK_FOLLOW) 513 goto fill_up_metapath; 514 515 lower_metapath: 516 /* Decrease height of metapath. */ 517 brelse(mp->mp_bh[hgt]); 518 mp->mp_bh[hgt] = NULL; 519 mp->mp_list[hgt] = 0; 520 if (!hgt) 521 break; 522 hgt--; 523 factor *= sdp->sd_inptrs; 524 525 /* Advance in metadata tree. */ 526 (mp->mp_list[hgt])++; 527 if (hgt) { 528 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 529 goto lower_metapath; 530 } else { 531 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 532 break; 533 } 534 535 fill_up_metapath: 536 /* Increase height of metapath. */ 537 ret = fillup_metapath(ip, mp, ip->i_height - 1); 538 if (ret < 0) 539 return ret; 540 hgt += ret; 541 for (; ret; ret--) 542 do_div(factor, sdp->sd_inptrs); 543 mp->mp_aheight = hgt + 1; 544 } 545 return 0; 546 } 547 548 static enum walker_status gfs2_hole_walker(struct metapath *mp, 549 unsigned int ptrs) 550 { 551 const __be64 *start, *ptr, *end; 552 unsigned int hgt; 553 554 hgt = mp->mp_aheight - 1; 555 start = metapointer(hgt, mp); 556 end = start + ptrs; 557 558 for (ptr = start; ptr < end; ptr++) { 559 if (*ptr) { 560 mp->mp_list[hgt] += ptr - start; 561 if (mp->mp_aheight == mp->mp_fheight) 562 return WALK_STOP; 563 return WALK_FOLLOW; 564 } 565 } 566 return WALK_CONTINUE; 567 } 568 569 /** 570 * gfs2_hole_size - figure out the size of a hole 571 * @inode: The inode 572 * @lblock: The logical starting block number 573 * @len: How far to look (in blocks) 574 * @mp: The metapath at lblock 575 * @iomap: The iomap to store the hole size in 576 * 577 * This function modifies @mp. 578 * 579 * Returns: errno on error 580 */ 581 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 582 struct metapath *mp, struct iomap *iomap) 583 { 584 struct metapath clone; 585 u64 hole_size; 586 int ret; 587 588 clone_metapath(&clone, mp); 589 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 590 if (ret < 0) 591 goto out; 592 593 if (ret == 1) 594 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 595 else 596 hole_size = len; 597 iomap->length = hole_size << inode->i_blkbits; 598 ret = 0; 599 600 out: 601 release_metapath(&clone); 602 return ret; 603 } 604 605 static inline void gfs2_indirect_init(struct metapath *mp, 606 struct gfs2_glock *gl, unsigned int i, 607 unsigned offset, u64 bn) 608 { 609 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 610 ((i > 1) ? sizeof(struct gfs2_meta_header) : 611 sizeof(struct gfs2_dinode))); 612 BUG_ON(i < 1); 613 BUG_ON(mp->mp_bh[i] != NULL); 614 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 615 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 616 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 617 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 618 ptr += offset; 619 *ptr = cpu_to_be64(bn); 620 } 621 622 enum alloc_state { 623 ALLOC_DATA = 0, 624 ALLOC_GROW_DEPTH = 1, 625 ALLOC_GROW_HEIGHT = 2, 626 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 627 }; 628 629 /** 630 * __gfs2_iomap_alloc - Build a metadata tree of the requested height 631 * @inode: The GFS2 inode 632 * @iomap: The iomap structure 633 * @mp: The metapath, with proper height information calculated 634 * 635 * In this routine we may have to alloc: 636 * i) Indirect blocks to grow the metadata tree height 637 * ii) Indirect blocks to fill in lower part of the metadata tree 638 * iii) Data blocks 639 * 640 * This function is called after __gfs2_iomap_get, which works out the 641 * total number of blocks which we need via gfs2_alloc_size. 642 * 643 * We then do the actual allocation asking for an extent at a time (if 644 * enough contiguous free blocks are available, there will only be one 645 * allocation request per call) and uses the state machine to initialise 646 * the blocks in order. 647 * 648 * Right now, this function will allocate at most one indirect block 649 * worth of data -- with a default block size of 4K, that's slightly 650 * less than 2M. If this limitation is ever removed to allow huge 651 * allocations, we would probably still want to limit the iomap size we 652 * return to avoid stalling other tasks during huge writes; the next 653 * iomap iteration would then find the blocks already allocated. 654 * 655 * Returns: errno on error 656 */ 657 658 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 659 struct metapath *mp) 660 { 661 struct gfs2_inode *ip = GFS2_I(inode); 662 struct gfs2_sbd *sdp = GFS2_SB(inode); 663 struct buffer_head *dibh = mp->mp_bh[0]; 664 u64 bn; 665 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 666 size_t dblks = iomap->length >> inode->i_blkbits; 667 const unsigned end_of_metadata = mp->mp_fheight - 1; 668 int ret; 669 enum alloc_state state; 670 __be64 *ptr; 671 __be64 zero_bn = 0; 672 673 BUG_ON(mp->mp_aheight < 1); 674 BUG_ON(dibh == NULL); 675 BUG_ON(dblks < 1); 676 677 gfs2_trans_add_meta(ip->i_gl, dibh); 678 679 down_write(&ip->i_rw_mutex); 680 681 if (mp->mp_fheight == mp->mp_aheight) { 682 /* Bottom indirect block exists */ 683 state = ALLOC_DATA; 684 } else { 685 /* Need to allocate indirect blocks */ 686 if (mp->mp_fheight == ip->i_height) { 687 /* Writing into existing tree, extend tree down */ 688 iblks = mp->mp_fheight - mp->mp_aheight; 689 state = ALLOC_GROW_DEPTH; 690 } else { 691 /* Building up tree height */ 692 state = ALLOC_GROW_HEIGHT; 693 iblks = mp->mp_fheight - ip->i_height; 694 branch_start = metapath_branch_start(mp); 695 iblks += (mp->mp_fheight - branch_start); 696 } 697 } 698 699 /* start of the second part of the function (state machine) */ 700 701 blks = dblks + iblks; 702 i = mp->mp_aheight; 703 do { 704 n = blks - alloced; 705 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 706 if (ret) 707 goto out; 708 alloced += n; 709 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 710 gfs2_trans_remove_revoke(sdp, bn, n); 711 switch (state) { 712 /* Growing height of tree */ 713 case ALLOC_GROW_HEIGHT: 714 if (i == 1) { 715 ptr = (__be64 *)(dibh->b_data + 716 sizeof(struct gfs2_dinode)); 717 zero_bn = *ptr; 718 } 719 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 720 i++, n--) 721 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 722 if (i - 1 == mp->mp_fheight - ip->i_height) { 723 i--; 724 gfs2_buffer_copy_tail(mp->mp_bh[i], 725 sizeof(struct gfs2_meta_header), 726 dibh, sizeof(struct gfs2_dinode)); 727 gfs2_buffer_clear_tail(dibh, 728 sizeof(struct gfs2_dinode) + 729 sizeof(__be64)); 730 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 731 sizeof(struct gfs2_meta_header)); 732 *ptr = zero_bn; 733 state = ALLOC_GROW_DEPTH; 734 for(i = branch_start; i < mp->mp_fheight; i++) { 735 if (mp->mp_bh[i] == NULL) 736 break; 737 brelse(mp->mp_bh[i]); 738 mp->mp_bh[i] = NULL; 739 } 740 i = branch_start; 741 } 742 if (n == 0) 743 break; 744 fallthrough; /* To branching from existing tree */ 745 case ALLOC_GROW_DEPTH: 746 if (i > 1 && i < mp->mp_fheight) 747 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 748 for (; i < mp->mp_fheight && n > 0; i++, n--) 749 gfs2_indirect_init(mp, ip->i_gl, i, 750 mp->mp_list[i-1], bn++); 751 if (i == mp->mp_fheight) 752 state = ALLOC_DATA; 753 if (n == 0) 754 break; 755 fallthrough; /* To tree complete, adding data blocks */ 756 case ALLOC_DATA: 757 BUG_ON(n > dblks); 758 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 759 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 760 dblks = n; 761 ptr = metapointer(end_of_metadata, mp); 762 iomap->addr = bn << inode->i_blkbits; 763 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 764 while (n-- > 0) 765 *ptr++ = cpu_to_be64(bn++); 766 break; 767 } 768 } while (iomap->addr == IOMAP_NULL_ADDR); 769 770 iomap->type = IOMAP_MAPPED; 771 iomap->length = (u64)dblks << inode->i_blkbits; 772 ip->i_height = mp->mp_fheight; 773 gfs2_add_inode_blocks(&ip->i_inode, alloced); 774 gfs2_dinode_out(ip, dibh->b_data); 775 out: 776 up_write(&ip->i_rw_mutex); 777 return ret; 778 } 779 780 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 781 782 /** 783 * gfs2_alloc_size - Compute the maximum allocation size 784 * @inode: The inode 785 * @mp: The metapath 786 * @size: Requested size in blocks 787 * 788 * Compute the maximum size of the next allocation at @mp. 789 * 790 * Returns: size in blocks 791 */ 792 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 793 { 794 struct gfs2_inode *ip = GFS2_I(inode); 795 struct gfs2_sbd *sdp = GFS2_SB(inode); 796 const __be64 *first, *ptr, *end; 797 798 /* 799 * For writes to stuffed files, this function is called twice via 800 * __gfs2_iomap_get, before and after unstuffing. The size we return the 801 * first time needs to be large enough to get the reservation and 802 * allocation sizes right. The size we return the second time must 803 * be exact or else __gfs2_iomap_alloc won't do the right thing. 804 */ 805 806 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 807 unsigned int maxsize = mp->mp_fheight > 1 ? 808 sdp->sd_inptrs : sdp->sd_diptrs; 809 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 810 if (size > maxsize) 811 size = maxsize; 812 return size; 813 } 814 815 first = metapointer(ip->i_height - 1, mp); 816 end = metaend(ip->i_height - 1, mp); 817 if (end - first > size) 818 end = first + size; 819 for (ptr = first; ptr < end; ptr++) { 820 if (*ptr) 821 break; 822 } 823 return ptr - first; 824 } 825 826 /** 827 * __gfs2_iomap_get - Map blocks from an inode to disk blocks 828 * @inode: The inode 829 * @pos: Starting position in bytes 830 * @length: Length to map, in bytes 831 * @flags: iomap flags 832 * @iomap: The iomap structure 833 * @mp: The metapath 834 * 835 * Returns: errno 836 */ 837 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 838 unsigned flags, struct iomap *iomap, 839 struct metapath *mp) 840 { 841 struct gfs2_inode *ip = GFS2_I(inode); 842 struct gfs2_sbd *sdp = GFS2_SB(inode); 843 loff_t size = i_size_read(inode); 844 __be64 *ptr; 845 sector_t lblock; 846 sector_t lblock_stop; 847 int ret; 848 int eob; 849 u64 len; 850 struct buffer_head *dibh = NULL, *bh; 851 u8 height; 852 853 if (!length) 854 return -EINVAL; 855 856 down_read(&ip->i_rw_mutex); 857 858 ret = gfs2_meta_inode_buffer(ip, &dibh); 859 if (ret) 860 goto unlock; 861 mp->mp_bh[0] = dibh; 862 863 if (gfs2_is_stuffed(ip)) { 864 if (flags & IOMAP_WRITE) { 865 loff_t max_size = gfs2_max_stuffed_size(ip); 866 867 if (pos + length > max_size) 868 goto unstuff; 869 iomap->length = max_size; 870 } else { 871 if (pos >= size) { 872 if (flags & IOMAP_REPORT) { 873 ret = -ENOENT; 874 goto unlock; 875 } else { 876 iomap->offset = pos; 877 iomap->length = length; 878 goto hole_found; 879 } 880 } 881 iomap->length = size; 882 } 883 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 884 sizeof(struct gfs2_dinode); 885 iomap->type = IOMAP_INLINE; 886 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 887 goto out; 888 } 889 890 unstuff: 891 lblock = pos >> inode->i_blkbits; 892 iomap->offset = lblock << inode->i_blkbits; 893 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 894 len = lblock_stop - lblock + 1; 895 iomap->length = len << inode->i_blkbits; 896 897 height = ip->i_height; 898 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 899 height++; 900 find_metapath(sdp, lblock, mp, height); 901 if (height > ip->i_height || gfs2_is_stuffed(ip)) 902 goto do_alloc; 903 904 ret = lookup_metapath(ip, mp); 905 if (ret) 906 goto unlock; 907 908 if (mp->mp_aheight != ip->i_height) 909 goto do_alloc; 910 911 ptr = metapointer(ip->i_height - 1, mp); 912 if (*ptr == 0) 913 goto do_alloc; 914 915 bh = mp->mp_bh[ip->i_height - 1]; 916 len = gfs2_extent_length(bh, ptr, len, &eob); 917 918 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 919 iomap->length = len << inode->i_blkbits; 920 iomap->type = IOMAP_MAPPED; 921 iomap->flags |= IOMAP_F_MERGED; 922 if (eob) 923 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 924 925 out: 926 iomap->bdev = inode->i_sb->s_bdev; 927 unlock: 928 up_read(&ip->i_rw_mutex); 929 return ret; 930 931 do_alloc: 932 if (flags & IOMAP_REPORT) { 933 if (pos >= size) 934 ret = -ENOENT; 935 else if (height == ip->i_height) 936 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 937 else 938 iomap->length = size - iomap->offset; 939 } else if (flags & IOMAP_WRITE) { 940 u64 alloc_size; 941 942 if (flags & IOMAP_DIRECT) 943 goto out; /* (see gfs2_file_direct_write) */ 944 945 len = gfs2_alloc_size(inode, mp, len); 946 alloc_size = len << inode->i_blkbits; 947 if (alloc_size < iomap->length) 948 iomap->length = alloc_size; 949 } else { 950 if (pos < size && height == ip->i_height) 951 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 952 } 953 hole_found: 954 iomap->addr = IOMAP_NULL_ADDR; 955 iomap->type = IOMAP_HOLE; 956 goto out; 957 } 958 959 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 960 unsigned len) 961 { 962 unsigned int blockmask = i_blocksize(inode) - 1; 963 struct gfs2_sbd *sdp = GFS2_SB(inode); 964 unsigned int blocks; 965 966 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 967 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 968 } 969 970 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 971 unsigned copied, struct page *page) 972 { 973 struct gfs2_trans *tr = current->journal_info; 974 struct gfs2_inode *ip = GFS2_I(inode); 975 struct gfs2_sbd *sdp = GFS2_SB(inode); 976 977 if (page && !gfs2_is_stuffed(ip)) 978 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 979 980 if (tr->tr_num_buf_new) 981 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 982 983 gfs2_trans_end(sdp); 984 } 985 986 static const struct iomap_page_ops gfs2_iomap_page_ops = { 987 .page_prepare = gfs2_iomap_page_prepare, 988 .page_done = gfs2_iomap_page_done, 989 }; 990 991 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 992 loff_t length, unsigned flags, 993 struct iomap *iomap, 994 struct metapath *mp) 995 { 996 struct gfs2_inode *ip = GFS2_I(inode); 997 struct gfs2_sbd *sdp = GFS2_SB(inode); 998 bool unstuff; 999 int ret; 1000 1001 unstuff = gfs2_is_stuffed(ip) && 1002 pos + length > gfs2_max_stuffed_size(ip); 1003 1004 if (unstuff || iomap->type == IOMAP_HOLE) { 1005 unsigned int data_blocks, ind_blocks; 1006 struct gfs2_alloc_parms ap = {}; 1007 unsigned int rblocks; 1008 struct gfs2_trans *tr; 1009 1010 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1011 &ind_blocks); 1012 ap.target = data_blocks + ind_blocks; 1013 ret = gfs2_quota_lock_check(ip, &ap); 1014 if (ret) 1015 return ret; 1016 1017 ret = gfs2_inplace_reserve(ip, &ap); 1018 if (ret) 1019 goto out_qunlock; 1020 1021 rblocks = RES_DINODE + ind_blocks; 1022 if (gfs2_is_jdata(ip)) 1023 rblocks += data_blocks; 1024 if (ind_blocks || data_blocks) 1025 rblocks += RES_STATFS + RES_QUOTA; 1026 if (inode == sdp->sd_rindex) 1027 rblocks += 2 * RES_STATFS; 1028 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1029 1030 ret = gfs2_trans_begin(sdp, rblocks, 1031 iomap->length >> inode->i_blkbits); 1032 if (ret) 1033 goto out_trans_fail; 1034 1035 if (unstuff) { 1036 ret = gfs2_unstuff_dinode(ip); 1037 if (ret) 1038 goto out_trans_end; 1039 release_metapath(mp); 1040 ret = __gfs2_iomap_get(inode, iomap->offset, 1041 iomap->length, flags, iomap, mp); 1042 if (ret) 1043 goto out_trans_end; 1044 } 1045 1046 if (iomap->type == IOMAP_HOLE) { 1047 ret = __gfs2_iomap_alloc(inode, iomap, mp); 1048 if (ret) { 1049 gfs2_trans_end(sdp); 1050 gfs2_inplace_release(ip); 1051 punch_hole(ip, iomap->offset, iomap->length); 1052 goto out_qunlock; 1053 } 1054 } 1055 1056 tr = current->journal_info; 1057 if (tr->tr_num_buf_new) 1058 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1059 1060 gfs2_trans_end(sdp); 1061 } 1062 1063 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1064 iomap->page_ops = &gfs2_iomap_page_ops; 1065 return 0; 1066 1067 out_trans_end: 1068 gfs2_trans_end(sdp); 1069 out_trans_fail: 1070 gfs2_inplace_release(ip); 1071 out_qunlock: 1072 gfs2_quota_unlock(ip); 1073 return ret; 1074 } 1075 1076 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1077 unsigned flags, struct iomap *iomap, 1078 struct iomap *srcmap) 1079 { 1080 struct gfs2_inode *ip = GFS2_I(inode); 1081 struct metapath mp = { .mp_aheight = 1, }; 1082 int ret; 1083 1084 if (gfs2_is_jdata(ip)) 1085 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1086 1087 trace_gfs2_iomap_start(ip, pos, length, flags); 1088 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1089 if (ret) 1090 goto out_unlock; 1091 1092 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1093 case IOMAP_WRITE: 1094 if (flags & IOMAP_DIRECT) { 1095 /* 1096 * Silently fall back to buffered I/O for stuffed files 1097 * or if we've got a hole (see gfs2_file_direct_write). 1098 */ 1099 if (iomap->type != IOMAP_MAPPED) 1100 ret = -ENOTBLK; 1101 goto out_unlock; 1102 } 1103 break; 1104 case IOMAP_ZERO: 1105 if (iomap->type == IOMAP_HOLE) 1106 goto out_unlock; 1107 break; 1108 default: 1109 goto out_unlock; 1110 } 1111 1112 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1113 1114 out_unlock: 1115 release_metapath(&mp); 1116 trace_gfs2_iomap_end(ip, iomap, ret); 1117 return ret; 1118 } 1119 1120 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1121 ssize_t written, unsigned flags, struct iomap *iomap) 1122 { 1123 struct gfs2_inode *ip = GFS2_I(inode); 1124 struct gfs2_sbd *sdp = GFS2_SB(inode); 1125 1126 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1127 case IOMAP_WRITE: 1128 if (flags & IOMAP_DIRECT) 1129 return 0; 1130 break; 1131 case IOMAP_ZERO: 1132 if (iomap->type == IOMAP_HOLE) 1133 return 0; 1134 break; 1135 default: 1136 return 0; 1137 } 1138 1139 if (!gfs2_is_stuffed(ip)) 1140 gfs2_ordered_add_inode(ip); 1141 1142 if (inode == sdp->sd_rindex) 1143 adjust_fs_space(inode); 1144 1145 gfs2_inplace_release(ip); 1146 1147 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1148 gfs2_quota_unlock(ip); 1149 1150 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1151 /* Deallocate blocks that were just allocated. */ 1152 loff_t hstart = round_up(pos + written, i_blocksize(inode)); 1153 loff_t hend = iomap->offset + iomap->length; 1154 1155 if (hstart < hend) { 1156 truncate_pagecache_range(inode, hstart, hend - 1); 1157 punch_hole(ip, hstart, hend - hstart); 1158 } 1159 } 1160 1161 if (unlikely(!written)) 1162 return 0; 1163 1164 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1165 mark_inode_dirty(inode); 1166 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1167 return 0; 1168 } 1169 1170 const struct iomap_ops gfs2_iomap_ops = { 1171 .iomap_begin = gfs2_iomap_begin, 1172 .iomap_end = gfs2_iomap_end, 1173 }; 1174 1175 /** 1176 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1177 * @inode: The inode 1178 * @lblock: The logical block number 1179 * @bh_map: The bh to be mapped 1180 * @create: True if its ok to alloc blocks to satify the request 1181 * 1182 * The size of the requested mapping is defined in bh_map->b_size. 1183 * 1184 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1185 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1186 * bh_map->b_size to indicate the size of the mapping when @lblock and 1187 * successive blocks are mapped, up to the requested size. 1188 * 1189 * Sets buffer_boundary() if a read of metadata will be required 1190 * before the next block can be mapped. Sets buffer_new() if new 1191 * blocks were allocated. 1192 * 1193 * Returns: errno 1194 */ 1195 1196 int gfs2_block_map(struct inode *inode, sector_t lblock, 1197 struct buffer_head *bh_map, int create) 1198 { 1199 struct gfs2_inode *ip = GFS2_I(inode); 1200 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1201 loff_t length = bh_map->b_size; 1202 struct iomap iomap = { }; 1203 int ret; 1204 1205 clear_buffer_mapped(bh_map); 1206 clear_buffer_new(bh_map); 1207 clear_buffer_boundary(bh_map); 1208 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1209 1210 if (!create) 1211 ret = gfs2_iomap_get(inode, pos, length, &iomap); 1212 else 1213 ret = gfs2_iomap_alloc(inode, pos, length, &iomap); 1214 if (ret) 1215 goto out; 1216 1217 if (iomap.length > bh_map->b_size) { 1218 iomap.length = bh_map->b_size; 1219 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1220 } 1221 if (iomap.addr != IOMAP_NULL_ADDR) 1222 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1223 bh_map->b_size = iomap.length; 1224 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1225 set_buffer_boundary(bh_map); 1226 if (iomap.flags & IOMAP_F_NEW) 1227 set_buffer_new(bh_map); 1228 1229 out: 1230 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1231 return ret; 1232 } 1233 1234 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock, 1235 unsigned int *extlen) 1236 { 1237 unsigned int blkbits = inode->i_blkbits; 1238 struct iomap iomap = { }; 1239 unsigned int len; 1240 int ret; 1241 1242 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits, 1243 &iomap); 1244 if (ret) 1245 return ret; 1246 if (iomap.type != IOMAP_MAPPED) 1247 return -EIO; 1248 *dblock = iomap.addr >> blkbits; 1249 len = iomap.length >> blkbits; 1250 if (len < *extlen) 1251 *extlen = len; 1252 return 0; 1253 } 1254 1255 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock, 1256 unsigned int *extlen, bool *new) 1257 { 1258 unsigned int blkbits = inode->i_blkbits; 1259 struct iomap iomap = { }; 1260 unsigned int len; 1261 int ret; 1262 1263 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits, 1264 &iomap); 1265 if (ret) 1266 return ret; 1267 if (iomap.type != IOMAP_MAPPED) 1268 return -EIO; 1269 *dblock = iomap.addr >> blkbits; 1270 len = iomap.length >> blkbits; 1271 if (len < *extlen) 1272 *extlen = len; 1273 *new = iomap.flags & IOMAP_F_NEW; 1274 return 0; 1275 } 1276 1277 /* 1278 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1279 * uses iomap write to perform its actions, which begin their own transactions 1280 * (iomap_begin, page_prepare, etc.) 1281 */ 1282 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1283 unsigned int length) 1284 { 1285 BUG_ON(current->journal_info); 1286 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1287 } 1288 1289 #define GFS2_JTRUNC_REVOKES 8192 1290 1291 /** 1292 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1293 * @inode: The inode being truncated 1294 * @oldsize: The original (larger) size 1295 * @newsize: The new smaller size 1296 * 1297 * With jdata files, we have to journal a revoke for each block which is 1298 * truncated. As a result, we need to split this into separate transactions 1299 * if the number of pages being truncated gets too large. 1300 */ 1301 1302 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1303 { 1304 struct gfs2_sbd *sdp = GFS2_SB(inode); 1305 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1306 u64 chunk; 1307 int error; 1308 1309 while (oldsize != newsize) { 1310 struct gfs2_trans *tr; 1311 unsigned int offs; 1312 1313 chunk = oldsize - newsize; 1314 if (chunk > max_chunk) 1315 chunk = max_chunk; 1316 1317 offs = oldsize & ~PAGE_MASK; 1318 if (offs && chunk > PAGE_SIZE) 1319 chunk = offs + ((chunk - offs) & PAGE_MASK); 1320 1321 truncate_pagecache(inode, oldsize - chunk); 1322 oldsize -= chunk; 1323 1324 tr = current->journal_info; 1325 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1326 continue; 1327 1328 gfs2_trans_end(sdp); 1329 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1330 if (error) 1331 return error; 1332 } 1333 1334 return 0; 1335 } 1336 1337 static int trunc_start(struct inode *inode, u64 newsize) 1338 { 1339 struct gfs2_inode *ip = GFS2_I(inode); 1340 struct gfs2_sbd *sdp = GFS2_SB(inode); 1341 struct buffer_head *dibh = NULL; 1342 int journaled = gfs2_is_jdata(ip); 1343 u64 oldsize = inode->i_size; 1344 int error; 1345 1346 if (!gfs2_is_stuffed(ip)) { 1347 unsigned int blocksize = i_blocksize(inode); 1348 unsigned int offs = newsize & (blocksize - 1); 1349 if (offs) { 1350 error = gfs2_block_zero_range(inode, newsize, 1351 blocksize - offs); 1352 if (error) 1353 return error; 1354 } 1355 } 1356 if (journaled) 1357 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1358 else 1359 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1360 if (error) 1361 return error; 1362 1363 error = gfs2_meta_inode_buffer(ip, &dibh); 1364 if (error) 1365 goto out; 1366 1367 gfs2_trans_add_meta(ip->i_gl, dibh); 1368 1369 if (gfs2_is_stuffed(ip)) 1370 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1371 else 1372 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1373 1374 i_size_write(inode, newsize); 1375 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1376 gfs2_dinode_out(ip, dibh->b_data); 1377 1378 if (journaled) 1379 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1380 else 1381 truncate_pagecache(inode, newsize); 1382 1383 out: 1384 brelse(dibh); 1385 if (current->journal_info) 1386 gfs2_trans_end(sdp); 1387 return error; 1388 } 1389 1390 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 1391 struct iomap *iomap) 1392 { 1393 struct metapath mp = { .mp_aheight = 1, }; 1394 int ret; 1395 1396 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp); 1397 release_metapath(&mp); 1398 return ret; 1399 } 1400 1401 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length, 1402 struct iomap *iomap) 1403 { 1404 struct metapath mp = { .mp_aheight = 1, }; 1405 int ret; 1406 1407 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1408 if (!ret && iomap->type == IOMAP_HOLE) 1409 ret = __gfs2_iomap_alloc(inode, iomap, &mp); 1410 release_metapath(&mp); 1411 return ret; 1412 } 1413 1414 /** 1415 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1416 * @ip: inode 1417 * @rd_gh: holder of resource group glock 1418 * @bh: buffer head to sweep 1419 * @start: starting point in bh 1420 * @end: end point in bh 1421 * @meta: true if bh points to metadata (rather than data) 1422 * @btotal: place to keep count of total blocks freed 1423 * 1424 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1425 * free, and free them all. However, we do it one rgrp at a time. If this 1426 * block has references to multiple rgrps, we break it into individual 1427 * transactions. This allows other processes to use the rgrps while we're 1428 * focused on a single one, for better concurrency / performance. 1429 * At every transaction boundary, we rewrite the inode into the journal. 1430 * That way the bitmaps are kept consistent with the inode and we can recover 1431 * if we're interrupted by power-outages. 1432 * 1433 * Returns: 0, or return code if an error occurred. 1434 * *btotal has the total number of blocks freed 1435 */ 1436 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1437 struct buffer_head *bh, __be64 *start, __be64 *end, 1438 bool meta, u32 *btotal) 1439 { 1440 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1441 struct gfs2_rgrpd *rgd; 1442 struct gfs2_trans *tr; 1443 __be64 *p; 1444 int blks_outside_rgrp; 1445 u64 bn, bstart, isize_blks; 1446 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1447 int ret = 0; 1448 bool buf_in_tr = false; /* buffer was added to transaction */ 1449 1450 more_rgrps: 1451 rgd = NULL; 1452 if (gfs2_holder_initialized(rd_gh)) { 1453 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1454 gfs2_assert_withdraw(sdp, 1455 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1456 } 1457 blks_outside_rgrp = 0; 1458 bstart = 0; 1459 blen = 0; 1460 1461 for (p = start; p < end; p++) { 1462 if (!*p) 1463 continue; 1464 bn = be64_to_cpu(*p); 1465 1466 if (rgd) { 1467 if (!rgrp_contains_block(rgd, bn)) { 1468 blks_outside_rgrp++; 1469 continue; 1470 } 1471 } else { 1472 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1473 if (unlikely(!rgd)) { 1474 ret = -EIO; 1475 goto out; 1476 } 1477 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1478 LM_FLAG_NODE_SCOPE, rd_gh); 1479 if (ret) 1480 goto out; 1481 1482 /* Must be done with the rgrp glock held: */ 1483 if (gfs2_rs_active(&ip->i_res) && 1484 rgd == ip->i_res.rs_rgd) 1485 gfs2_rs_deltree(&ip->i_res); 1486 } 1487 1488 /* The size of our transactions will be unknown until we 1489 actually process all the metadata blocks that relate to 1490 the rgrp. So we estimate. We know it can't be more than 1491 the dinode's i_blocks and we don't want to exceed the 1492 journal flush threshold, sd_log_thresh2. */ 1493 if (current->journal_info == NULL) { 1494 unsigned int jblocks_rqsted, revokes; 1495 1496 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1497 RES_INDIRECT; 1498 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1499 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1500 jblocks_rqsted += 1501 atomic_read(&sdp->sd_log_thresh2); 1502 else 1503 jblocks_rqsted += isize_blks; 1504 revokes = jblocks_rqsted; 1505 if (meta) 1506 revokes += end - start; 1507 else if (ip->i_depth) 1508 revokes += sdp->sd_inptrs; 1509 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1510 if (ret) 1511 goto out_unlock; 1512 down_write(&ip->i_rw_mutex); 1513 } 1514 /* check if we will exceed the transaction blocks requested */ 1515 tr = current->journal_info; 1516 if (tr->tr_num_buf_new + RES_STATFS + 1517 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1518 /* We set blks_outside_rgrp to ensure the loop will 1519 be repeated for the same rgrp, but with a new 1520 transaction. */ 1521 blks_outside_rgrp++; 1522 /* This next part is tricky. If the buffer was added 1523 to the transaction, we've already set some block 1524 pointers to 0, so we better follow through and free 1525 them, or we will introduce corruption (so break). 1526 This may be impossible, or at least rare, but I 1527 decided to cover the case regardless. 1528 1529 If the buffer was not added to the transaction 1530 (this call), doing so would exceed our transaction 1531 size, so we need to end the transaction and start a 1532 new one (so goto). */ 1533 1534 if (buf_in_tr) 1535 break; 1536 goto out_unlock; 1537 } 1538 1539 gfs2_trans_add_meta(ip->i_gl, bh); 1540 buf_in_tr = true; 1541 *p = 0; 1542 if (bstart + blen == bn) { 1543 blen++; 1544 continue; 1545 } 1546 if (bstart) { 1547 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1548 (*btotal) += blen; 1549 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1550 } 1551 bstart = bn; 1552 blen = 1; 1553 } 1554 if (bstart) { 1555 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1556 (*btotal) += blen; 1557 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1558 } 1559 out_unlock: 1560 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1561 outside the rgrp we just processed, 1562 do it all over again. */ 1563 if (current->journal_info) { 1564 struct buffer_head *dibh; 1565 1566 ret = gfs2_meta_inode_buffer(ip, &dibh); 1567 if (ret) 1568 goto out; 1569 1570 /* Every transaction boundary, we rewrite the dinode 1571 to keep its di_blocks current in case of failure. */ 1572 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1573 current_time(&ip->i_inode); 1574 gfs2_trans_add_meta(ip->i_gl, dibh); 1575 gfs2_dinode_out(ip, dibh->b_data); 1576 brelse(dibh); 1577 up_write(&ip->i_rw_mutex); 1578 gfs2_trans_end(sdp); 1579 buf_in_tr = false; 1580 } 1581 gfs2_glock_dq_uninit(rd_gh); 1582 cond_resched(); 1583 goto more_rgrps; 1584 } 1585 out: 1586 return ret; 1587 } 1588 1589 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1590 { 1591 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1592 return false; 1593 return true; 1594 } 1595 1596 /** 1597 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1598 * @sdp: The superblock 1599 * @mp: starting metapath 1600 * @h: desired height to search 1601 * @end_list: See punch_hole(). 1602 * @end_aligned: See punch_hole(). 1603 * 1604 * Assumes the metapath is valid (with buffers) out to height h. 1605 * Returns: true if a non-null pointer was found in the metapath buffer 1606 * false if all remaining pointers are NULL in the buffer 1607 */ 1608 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1609 unsigned int h, 1610 __u16 *end_list, unsigned int end_aligned) 1611 { 1612 struct buffer_head *bh = mp->mp_bh[h]; 1613 __be64 *first, *ptr, *end; 1614 1615 first = metaptr1(h, mp); 1616 ptr = first + mp->mp_list[h]; 1617 end = (__be64 *)(bh->b_data + bh->b_size); 1618 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1619 bool keep_end = h < end_aligned; 1620 end = first + end_list[h] + keep_end; 1621 } 1622 1623 while (ptr < end) { 1624 if (*ptr) { /* if we have a non-null pointer */ 1625 mp->mp_list[h] = ptr - first; 1626 h++; 1627 if (h < GFS2_MAX_META_HEIGHT) 1628 mp->mp_list[h] = 0; 1629 return true; 1630 } 1631 ptr++; 1632 } 1633 return false; 1634 } 1635 1636 enum dealloc_states { 1637 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1638 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1639 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1640 DEALLOC_DONE = 3, /* process complete */ 1641 }; 1642 1643 static inline void 1644 metapointer_range(struct metapath *mp, int height, 1645 __u16 *start_list, unsigned int start_aligned, 1646 __u16 *end_list, unsigned int end_aligned, 1647 __be64 **start, __be64 **end) 1648 { 1649 struct buffer_head *bh = mp->mp_bh[height]; 1650 __be64 *first; 1651 1652 first = metaptr1(height, mp); 1653 *start = first; 1654 if (mp_eq_to_hgt(mp, start_list, height)) { 1655 bool keep_start = height < start_aligned; 1656 *start = first + start_list[height] + keep_start; 1657 } 1658 *end = (__be64 *)(bh->b_data + bh->b_size); 1659 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1660 bool keep_end = height < end_aligned; 1661 *end = first + end_list[height] + keep_end; 1662 } 1663 } 1664 1665 static inline bool walk_done(struct gfs2_sbd *sdp, 1666 struct metapath *mp, int height, 1667 __u16 *end_list, unsigned int end_aligned) 1668 { 1669 __u16 end; 1670 1671 if (end_list) { 1672 bool keep_end = height < end_aligned; 1673 if (!mp_eq_to_hgt(mp, end_list, height)) 1674 return false; 1675 end = end_list[height] + keep_end; 1676 } else 1677 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1678 return mp->mp_list[height] >= end; 1679 } 1680 1681 /** 1682 * punch_hole - deallocate blocks in a file 1683 * @ip: inode to truncate 1684 * @offset: the start of the hole 1685 * @length: the size of the hole (or 0 for truncate) 1686 * 1687 * Punch a hole into a file or truncate a file at a given position. This 1688 * function operates in whole blocks (@offset and @length are rounded 1689 * accordingly); partially filled blocks must be cleared otherwise. 1690 * 1691 * This function works from the bottom up, and from the right to the left. In 1692 * other words, it strips off the highest layer (data) before stripping any of 1693 * the metadata. Doing it this way is best in case the operation is interrupted 1694 * by power failure, etc. The dinode is rewritten in every transaction to 1695 * guarantee integrity. 1696 */ 1697 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1698 { 1699 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1700 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1701 struct metapath mp = {}; 1702 struct buffer_head *dibh, *bh; 1703 struct gfs2_holder rd_gh; 1704 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1705 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1706 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1707 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1708 unsigned int start_aligned, end_aligned; 1709 unsigned int strip_h = ip->i_height - 1; 1710 u32 btotal = 0; 1711 int ret, state; 1712 int mp_h; /* metapath buffers are read in to this height */ 1713 u64 prev_bnr = 0; 1714 __be64 *start, *end; 1715 1716 if (offset >= maxsize) { 1717 /* 1718 * The starting point lies beyond the allocated meta-data; 1719 * there are no blocks do deallocate. 1720 */ 1721 return 0; 1722 } 1723 1724 /* 1725 * The start position of the hole is defined by lblock, start_list, and 1726 * start_aligned. The end position of the hole is defined by lend, 1727 * end_list, and end_aligned. 1728 * 1729 * start_aligned and end_aligned define down to which height the start 1730 * and end positions are aligned to the metadata tree (i.e., the 1731 * position is a multiple of the metadata granularity at the height 1732 * above). This determines at which heights additional meta pointers 1733 * needs to be preserved for the remaining data. 1734 */ 1735 1736 if (length) { 1737 u64 end_offset = offset + length; 1738 u64 lend; 1739 1740 /* 1741 * Clip the end at the maximum file size for the given height: 1742 * that's how far the metadata goes; files bigger than that 1743 * will have additional layers of indirection. 1744 */ 1745 if (end_offset > maxsize) 1746 end_offset = maxsize; 1747 lend = end_offset >> bsize_shift; 1748 1749 if (lblock >= lend) 1750 return 0; 1751 1752 find_metapath(sdp, lend, &mp, ip->i_height); 1753 end_list = __end_list; 1754 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1755 1756 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1757 if (end_list[mp_h]) 1758 break; 1759 } 1760 end_aligned = mp_h; 1761 } 1762 1763 find_metapath(sdp, lblock, &mp, ip->i_height); 1764 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1765 1766 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1767 if (start_list[mp_h]) 1768 break; 1769 } 1770 start_aligned = mp_h; 1771 1772 ret = gfs2_meta_inode_buffer(ip, &dibh); 1773 if (ret) 1774 return ret; 1775 1776 mp.mp_bh[0] = dibh; 1777 ret = lookup_metapath(ip, &mp); 1778 if (ret) 1779 goto out_metapath; 1780 1781 /* issue read-ahead on metadata */ 1782 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1783 metapointer_range(&mp, mp_h, start_list, start_aligned, 1784 end_list, end_aligned, &start, &end); 1785 gfs2_metapath_ra(ip->i_gl, start, end); 1786 } 1787 1788 if (mp.mp_aheight == ip->i_height) 1789 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1790 else 1791 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1792 1793 ret = gfs2_rindex_update(sdp); 1794 if (ret) 1795 goto out_metapath; 1796 1797 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1798 if (ret) 1799 goto out_metapath; 1800 gfs2_holder_mark_uninitialized(&rd_gh); 1801 1802 mp_h = strip_h; 1803 1804 while (state != DEALLOC_DONE) { 1805 switch (state) { 1806 /* Truncate a full metapath at the given strip height. 1807 * Note that strip_h == mp_h in order to be in this state. */ 1808 case DEALLOC_MP_FULL: 1809 bh = mp.mp_bh[mp_h]; 1810 gfs2_assert_withdraw(sdp, bh); 1811 if (gfs2_assert_withdraw(sdp, 1812 prev_bnr != bh->b_blocknr)) { 1813 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1814 "s_h:%u, mp_h:%u\n", 1815 (unsigned long long)ip->i_no_addr, 1816 prev_bnr, ip->i_height, strip_h, mp_h); 1817 } 1818 prev_bnr = bh->b_blocknr; 1819 1820 if (gfs2_metatype_check(sdp, bh, 1821 (mp_h ? GFS2_METATYPE_IN : 1822 GFS2_METATYPE_DI))) { 1823 ret = -EIO; 1824 goto out; 1825 } 1826 1827 /* 1828 * Below, passing end_aligned as 0 gives us the 1829 * metapointer range excluding the end point: the end 1830 * point is the first metapath we must not deallocate! 1831 */ 1832 1833 metapointer_range(&mp, mp_h, start_list, start_aligned, 1834 end_list, 0 /* end_aligned */, 1835 &start, &end); 1836 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1837 start, end, 1838 mp_h != ip->i_height - 1, 1839 &btotal); 1840 1841 /* If we hit an error or just swept dinode buffer, 1842 just exit. */ 1843 if (ret || !mp_h) { 1844 state = DEALLOC_DONE; 1845 break; 1846 } 1847 state = DEALLOC_MP_LOWER; 1848 break; 1849 1850 /* lower the metapath strip height */ 1851 case DEALLOC_MP_LOWER: 1852 /* We're done with the current buffer, so release it, 1853 unless it's the dinode buffer. Then back up to the 1854 previous pointer. */ 1855 if (mp_h) { 1856 brelse(mp.mp_bh[mp_h]); 1857 mp.mp_bh[mp_h] = NULL; 1858 } 1859 /* If we can't get any lower in height, we've stripped 1860 off all we can. Next step is to back up and start 1861 stripping the previous level of metadata. */ 1862 if (mp_h == 0) { 1863 strip_h--; 1864 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1865 mp_h = strip_h; 1866 state = DEALLOC_FILL_MP; 1867 break; 1868 } 1869 mp.mp_list[mp_h] = 0; 1870 mp_h--; /* search one metadata height down */ 1871 mp.mp_list[mp_h]++; 1872 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1873 break; 1874 /* Here we've found a part of the metapath that is not 1875 * allocated. We need to search at that height for the 1876 * next non-null pointer. */ 1877 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1878 state = DEALLOC_FILL_MP; 1879 mp_h++; 1880 } 1881 /* No more non-null pointers at this height. Back up 1882 to the previous height and try again. */ 1883 break; /* loop around in the same state */ 1884 1885 /* Fill the metapath with buffers to the given height. */ 1886 case DEALLOC_FILL_MP: 1887 /* Fill the buffers out to the current height. */ 1888 ret = fillup_metapath(ip, &mp, mp_h); 1889 if (ret < 0) 1890 goto out; 1891 1892 /* On the first pass, issue read-ahead on metadata. */ 1893 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1894 unsigned int height = mp.mp_aheight - 1; 1895 1896 /* No read-ahead for data blocks. */ 1897 if (mp.mp_aheight - 1 == strip_h) 1898 height--; 1899 1900 for (; height >= mp.mp_aheight - ret; height--) { 1901 metapointer_range(&mp, height, 1902 start_list, start_aligned, 1903 end_list, end_aligned, 1904 &start, &end); 1905 gfs2_metapath_ra(ip->i_gl, start, end); 1906 } 1907 } 1908 1909 /* If buffers found for the entire strip height */ 1910 if (mp.mp_aheight - 1 == strip_h) { 1911 state = DEALLOC_MP_FULL; 1912 break; 1913 } 1914 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1915 mp_h = mp.mp_aheight - 1; 1916 1917 /* If we find a non-null block pointer, crawl a bit 1918 higher up in the metapath and try again, otherwise 1919 we need to look lower for a new starting point. */ 1920 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1921 mp_h++; 1922 else 1923 state = DEALLOC_MP_LOWER; 1924 break; 1925 } 1926 } 1927 1928 if (btotal) { 1929 if (current->journal_info == NULL) { 1930 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1931 RES_QUOTA, 0); 1932 if (ret) 1933 goto out; 1934 down_write(&ip->i_rw_mutex); 1935 } 1936 gfs2_statfs_change(sdp, 0, +btotal, 0); 1937 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1938 ip->i_inode.i_gid); 1939 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1940 gfs2_trans_add_meta(ip->i_gl, dibh); 1941 gfs2_dinode_out(ip, dibh->b_data); 1942 up_write(&ip->i_rw_mutex); 1943 gfs2_trans_end(sdp); 1944 } 1945 1946 out: 1947 if (gfs2_holder_initialized(&rd_gh)) 1948 gfs2_glock_dq_uninit(&rd_gh); 1949 if (current->journal_info) { 1950 up_write(&ip->i_rw_mutex); 1951 gfs2_trans_end(sdp); 1952 cond_resched(); 1953 } 1954 gfs2_quota_unhold(ip); 1955 out_metapath: 1956 release_metapath(&mp); 1957 return ret; 1958 } 1959 1960 static int trunc_end(struct gfs2_inode *ip) 1961 { 1962 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1963 struct buffer_head *dibh; 1964 int error; 1965 1966 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1967 if (error) 1968 return error; 1969 1970 down_write(&ip->i_rw_mutex); 1971 1972 error = gfs2_meta_inode_buffer(ip, &dibh); 1973 if (error) 1974 goto out; 1975 1976 if (!i_size_read(&ip->i_inode)) { 1977 ip->i_height = 0; 1978 ip->i_goal = ip->i_no_addr; 1979 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1980 gfs2_ordered_del_inode(ip); 1981 } 1982 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1983 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 1984 1985 gfs2_trans_add_meta(ip->i_gl, dibh); 1986 gfs2_dinode_out(ip, dibh->b_data); 1987 brelse(dibh); 1988 1989 out: 1990 up_write(&ip->i_rw_mutex); 1991 gfs2_trans_end(sdp); 1992 return error; 1993 } 1994 1995 /** 1996 * do_shrink - make a file smaller 1997 * @inode: the inode 1998 * @newsize: the size to make the file 1999 * 2000 * Called with an exclusive lock on @inode. The @size must 2001 * be equal to or smaller than the current inode size. 2002 * 2003 * Returns: errno 2004 */ 2005 2006 static int do_shrink(struct inode *inode, u64 newsize) 2007 { 2008 struct gfs2_inode *ip = GFS2_I(inode); 2009 int error; 2010 2011 error = trunc_start(inode, newsize); 2012 if (error < 0) 2013 return error; 2014 if (gfs2_is_stuffed(ip)) 2015 return 0; 2016 2017 error = punch_hole(ip, newsize, 0); 2018 if (error == 0) 2019 error = trunc_end(ip); 2020 2021 return error; 2022 } 2023 2024 void gfs2_trim_blocks(struct inode *inode) 2025 { 2026 int ret; 2027 2028 ret = do_shrink(inode, inode->i_size); 2029 WARN_ON(ret != 0); 2030 } 2031 2032 /** 2033 * do_grow - Touch and update inode size 2034 * @inode: The inode 2035 * @size: The new size 2036 * 2037 * This function updates the timestamps on the inode and 2038 * may also increase the size of the inode. This function 2039 * must not be called with @size any smaller than the current 2040 * inode size. 2041 * 2042 * Although it is not strictly required to unstuff files here, 2043 * earlier versions of GFS2 have a bug in the stuffed file reading 2044 * code which will result in a buffer overrun if the size is larger 2045 * than the max stuffed file size. In order to prevent this from 2046 * occurring, such files are unstuffed, but in other cases we can 2047 * just update the inode size directly. 2048 * 2049 * Returns: 0 on success, or -ve on error 2050 */ 2051 2052 static int do_grow(struct inode *inode, u64 size) 2053 { 2054 struct gfs2_inode *ip = GFS2_I(inode); 2055 struct gfs2_sbd *sdp = GFS2_SB(inode); 2056 struct gfs2_alloc_parms ap = { .target = 1, }; 2057 struct buffer_head *dibh; 2058 int error; 2059 int unstuff = 0; 2060 2061 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2062 error = gfs2_quota_lock_check(ip, &ap); 2063 if (error) 2064 return error; 2065 2066 error = gfs2_inplace_reserve(ip, &ap); 2067 if (error) 2068 goto do_grow_qunlock; 2069 unstuff = 1; 2070 } 2071 2072 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2073 (unstuff && 2074 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2075 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2076 0 : RES_QUOTA), 0); 2077 if (error) 2078 goto do_grow_release; 2079 2080 if (unstuff) { 2081 error = gfs2_unstuff_dinode(ip); 2082 if (error) 2083 goto do_end_trans; 2084 } 2085 2086 error = gfs2_meta_inode_buffer(ip, &dibh); 2087 if (error) 2088 goto do_end_trans; 2089 2090 truncate_setsize(inode, size); 2091 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2092 gfs2_trans_add_meta(ip->i_gl, dibh); 2093 gfs2_dinode_out(ip, dibh->b_data); 2094 brelse(dibh); 2095 2096 do_end_trans: 2097 gfs2_trans_end(sdp); 2098 do_grow_release: 2099 if (unstuff) { 2100 gfs2_inplace_release(ip); 2101 do_grow_qunlock: 2102 gfs2_quota_unlock(ip); 2103 } 2104 return error; 2105 } 2106 2107 /** 2108 * gfs2_setattr_size - make a file a given size 2109 * @inode: the inode 2110 * @newsize: the size to make the file 2111 * 2112 * The file size can grow, shrink, or stay the same size. This 2113 * is called holding i_rwsem and an exclusive glock on the inode 2114 * in question. 2115 * 2116 * Returns: errno 2117 */ 2118 2119 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2120 { 2121 struct gfs2_inode *ip = GFS2_I(inode); 2122 int ret; 2123 2124 BUG_ON(!S_ISREG(inode->i_mode)); 2125 2126 ret = inode_newsize_ok(inode, newsize); 2127 if (ret) 2128 return ret; 2129 2130 inode_dio_wait(inode); 2131 2132 ret = gfs2_qa_get(ip); 2133 if (ret) 2134 goto out; 2135 2136 if (newsize >= inode->i_size) { 2137 ret = do_grow(inode, newsize); 2138 goto out; 2139 } 2140 2141 ret = do_shrink(inode, newsize); 2142 out: 2143 gfs2_rs_delete(ip); 2144 gfs2_qa_put(ip); 2145 return ret; 2146 } 2147 2148 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2149 { 2150 int error; 2151 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2152 if (!error) 2153 error = trunc_end(ip); 2154 return error; 2155 } 2156 2157 int gfs2_file_dealloc(struct gfs2_inode *ip) 2158 { 2159 return punch_hole(ip, 0, 0); 2160 } 2161 2162 /** 2163 * gfs2_free_journal_extents - Free cached journal bmap info 2164 * @jd: The journal 2165 * 2166 */ 2167 2168 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2169 { 2170 struct gfs2_journal_extent *jext; 2171 2172 while(!list_empty(&jd->extent_list)) { 2173 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2174 list_del(&jext->list); 2175 kfree(jext); 2176 } 2177 } 2178 2179 /** 2180 * gfs2_add_jextent - Add or merge a new extent to extent cache 2181 * @jd: The journal descriptor 2182 * @lblock: The logical block at start of new extent 2183 * @dblock: The physical block at start of new extent 2184 * @blocks: Size of extent in fs blocks 2185 * 2186 * Returns: 0 on success or -ENOMEM 2187 */ 2188 2189 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2190 { 2191 struct gfs2_journal_extent *jext; 2192 2193 if (!list_empty(&jd->extent_list)) { 2194 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2195 if ((jext->dblock + jext->blocks) == dblock) { 2196 jext->blocks += blocks; 2197 return 0; 2198 } 2199 } 2200 2201 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2202 if (jext == NULL) 2203 return -ENOMEM; 2204 jext->dblock = dblock; 2205 jext->lblock = lblock; 2206 jext->blocks = blocks; 2207 list_add_tail(&jext->list, &jd->extent_list); 2208 jd->nr_extents++; 2209 return 0; 2210 } 2211 2212 /** 2213 * gfs2_map_journal_extents - Cache journal bmap info 2214 * @sdp: The super block 2215 * @jd: The journal to map 2216 * 2217 * Create a reusable "extent" mapping from all logical 2218 * blocks to all physical blocks for the given journal. This will save 2219 * us time when writing journal blocks. Most journals will have only one 2220 * extent that maps all their logical blocks. That's because gfs2.mkfs 2221 * arranges the journal blocks sequentially to maximize performance. 2222 * So the extent would map the first block for the entire file length. 2223 * However, gfs2_jadd can happen while file activity is happening, so 2224 * those journals may not be sequential. Less likely is the case where 2225 * the users created their own journals by mounting the metafs and 2226 * laying it out. But it's still possible. These journals might have 2227 * several extents. 2228 * 2229 * Returns: 0 on success, or error on failure 2230 */ 2231 2232 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2233 { 2234 u64 lblock = 0; 2235 u64 lblock_stop; 2236 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2237 struct buffer_head bh; 2238 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2239 u64 size; 2240 int rc; 2241 ktime_t start, end; 2242 2243 start = ktime_get(); 2244 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2245 size = (lblock_stop - lblock) << shift; 2246 jd->nr_extents = 0; 2247 WARN_ON(!list_empty(&jd->extent_list)); 2248 2249 do { 2250 bh.b_state = 0; 2251 bh.b_blocknr = 0; 2252 bh.b_size = size; 2253 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2254 if (rc || !buffer_mapped(&bh)) 2255 goto fail; 2256 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2257 if (rc) 2258 goto fail; 2259 size -= bh.b_size; 2260 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2261 } while(size > 0); 2262 2263 end = ktime_get(); 2264 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2265 jd->nr_extents, ktime_ms_delta(end, start)); 2266 return 0; 2267 2268 fail: 2269 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2270 rc, jd->jd_jid, 2271 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2272 jd->nr_extents); 2273 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2274 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2275 bh.b_state, (unsigned long long)bh.b_size); 2276 gfs2_free_journal_extents(jd); 2277 return rc; 2278 } 2279 2280 /** 2281 * gfs2_write_alloc_required - figure out if a write will require an allocation 2282 * @ip: the file being written to 2283 * @offset: the offset to write to 2284 * @len: the number of bytes being written 2285 * 2286 * Returns: 1 if an alloc is required, 0 otherwise 2287 */ 2288 2289 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2290 unsigned int len) 2291 { 2292 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2293 struct buffer_head bh; 2294 unsigned int shift; 2295 u64 lblock, lblock_stop, size; 2296 u64 end_of_file; 2297 2298 if (!len) 2299 return 0; 2300 2301 if (gfs2_is_stuffed(ip)) { 2302 if (offset + len > gfs2_max_stuffed_size(ip)) 2303 return 1; 2304 return 0; 2305 } 2306 2307 shift = sdp->sd_sb.sb_bsize_shift; 2308 BUG_ON(gfs2_is_dir(ip)); 2309 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2310 lblock = offset >> shift; 2311 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2312 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2313 return 1; 2314 2315 size = (lblock_stop - lblock) << shift; 2316 do { 2317 bh.b_state = 0; 2318 bh.b_size = size; 2319 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2320 if (!buffer_mapped(&bh)) 2321 return 1; 2322 size -= bh.b_size; 2323 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2324 } while(size > 0); 2325 2326 return 0; 2327 } 2328 2329 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2330 { 2331 struct gfs2_inode *ip = GFS2_I(inode); 2332 struct buffer_head *dibh; 2333 int error; 2334 2335 if (offset >= inode->i_size) 2336 return 0; 2337 if (offset + length > inode->i_size) 2338 length = inode->i_size - offset; 2339 2340 error = gfs2_meta_inode_buffer(ip, &dibh); 2341 if (error) 2342 return error; 2343 gfs2_trans_add_meta(ip->i_gl, dibh); 2344 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2345 length); 2346 brelse(dibh); 2347 return 0; 2348 } 2349 2350 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2351 loff_t length) 2352 { 2353 struct gfs2_sbd *sdp = GFS2_SB(inode); 2354 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2355 int error; 2356 2357 while (length) { 2358 struct gfs2_trans *tr; 2359 loff_t chunk; 2360 unsigned int offs; 2361 2362 chunk = length; 2363 if (chunk > max_chunk) 2364 chunk = max_chunk; 2365 2366 offs = offset & ~PAGE_MASK; 2367 if (offs && chunk > PAGE_SIZE) 2368 chunk = offs + ((chunk - offs) & PAGE_MASK); 2369 2370 truncate_pagecache_range(inode, offset, chunk); 2371 offset += chunk; 2372 length -= chunk; 2373 2374 tr = current->journal_info; 2375 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2376 continue; 2377 2378 gfs2_trans_end(sdp); 2379 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2380 if (error) 2381 return error; 2382 } 2383 return 0; 2384 } 2385 2386 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2387 { 2388 struct inode *inode = file_inode(file); 2389 struct gfs2_inode *ip = GFS2_I(inode); 2390 struct gfs2_sbd *sdp = GFS2_SB(inode); 2391 unsigned int blocksize = i_blocksize(inode); 2392 loff_t start, end; 2393 int error; 2394 2395 if (!gfs2_is_stuffed(ip)) { 2396 unsigned int start_off, end_len; 2397 2398 start_off = offset & (blocksize - 1); 2399 end_len = (offset + length) & (blocksize - 1); 2400 if (start_off) { 2401 unsigned int len = length; 2402 if (length > blocksize - start_off) 2403 len = blocksize - start_off; 2404 error = gfs2_block_zero_range(inode, offset, len); 2405 if (error) 2406 goto out; 2407 if (start_off + length < blocksize) 2408 end_len = 0; 2409 } 2410 if (end_len) { 2411 error = gfs2_block_zero_range(inode, 2412 offset + length - end_len, end_len); 2413 if (error) 2414 goto out; 2415 } 2416 } 2417 2418 start = round_down(offset, blocksize); 2419 end = round_up(offset + length, blocksize) - 1; 2420 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2421 if (error) 2422 return error; 2423 2424 if (gfs2_is_jdata(ip)) 2425 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2426 GFS2_JTRUNC_REVOKES); 2427 else 2428 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2429 if (error) 2430 return error; 2431 2432 if (gfs2_is_stuffed(ip)) { 2433 error = stuffed_zero_range(inode, offset, length); 2434 if (error) 2435 goto out; 2436 } 2437 2438 if (gfs2_is_jdata(ip)) { 2439 BUG_ON(!current->journal_info); 2440 gfs2_journaled_truncate_range(inode, offset, length); 2441 } else 2442 truncate_pagecache_range(inode, offset, offset + length - 1); 2443 2444 file_update_time(file); 2445 mark_inode_dirty(inode); 2446 2447 if (current->journal_info) 2448 gfs2_trans_end(sdp); 2449 2450 if (!gfs2_is_stuffed(ip)) 2451 error = punch_hole(ip, offset, length); 2452 2453 out: 2454 if (current->journal_info) 2455 gfs2_trans_end(sdp); 2456 return error; 2457 } 2458 2459 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, 2460 loff_t offset) 2461 { 2462 int ret; 2463 2464 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode)))) 2465 return -EIO; 2466 2467 if (offset >= wpc->iomap.offset && 2468 offset < wpc->iomap.offset + wpc->iomap.length) 2469 return 0; 2470 2471 memset(&wpc->iomap, 0, sizeof(wpc->iomap)); 2472 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap); 2473 return ret; 2474 } 2475 2476 const struct iomap_writeback_ops gfs2_writeback_ops = { 2477 .map_blocks = gfs2_map_blocks, 2478 }; 2479