xref: /openbmc/linux/fs/gfs2/bmap.c (revision 62975d27)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	struct buffer_head *bh;
60 	int release = 0;
61 
62 	if (!page || page->index) {
63 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
64 		if (!page)
65 			return -ENOMEM;
66 		release = 1;
67 	}
68 
69 	if (!PageUptodate(page)) {
70 		void *kaddr = kmap(page);
71 		u64 dsize = i_size_read(inode);
72 
73 		if (dsize > gfs2_max_stuffed_size(ip))
74 			dsize = gfs2_max_stuffed_size(ip);
75 
76 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
77 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
78 		kunmap(page);
79 
80 		SetPageUptodate(page);
81 	}
82 
83 	if (!page_has_buffers(page))
84 		create_empty_buffers(page, BIT(inode->i_blkbits),
85 				     BIT(BH_Uptodate));
86 
87 	bh = page_buffers(page);
88 
89 	if (!buffer_mapped(bh))
90 		map_bh(bh, inode->i_sb, block);
91 
92 	set_buffer_uptodate(bh);
93 	if (gfs2_is_jdata(ip))
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	else {
96 		mark_buffer_dirty(bh);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (hgt) {
532 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
533 				goto lower_metapath;
534 		} else {
535 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
536 				break;
537 		}
538 
539 fill_up_metapath:
540 		/* Increase height of metapath. */
541 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
542 		if (ret < 0)
543 			return ret;
544 		hgt += ret;
545 		for (; ret; ret--)
546 			do_div(factor, sdp->sd_inptrs);
547 		mp->mp_aheight = hgt + 1;
548 	}
549 	return 0;
550 }
551 
552 static enum walker_status gfs2_hole_walker(struct metapath *mp,
553 					   unsigned int ptrs)
554 {
555 	const __be64 *start, *ptr, *end;
556 	unsigned int hgt;
557 
558 	hgt = mp->mp_aheight - 1;
559 	start = metapointer(hgt, mp);
560 	end = start + ptrs;
561 
562 	for (ptr = start; ptr < end; ptr++) {
563 		if (*ptr) {
564 			mp->mp_list[hgt] += ptr - start;
565 			if (mp->mp_aheight == mp->mp_fheight)
566 				return WALK_STOP;
567 			return WALK_FOLLOW;
568 		}
569 	}
570 	return WALK_CONTINUE;
571 }
572 
573 /**
574  * gfs2_hole_size - figure out the size of a hole
575  * @inode: The inode
576  * @lblock: The logical starting block number
577  * @len: How far to look (in blocks)
578  * @mp: The metapath at lblock
579  * @iomap: The iomap to store the hole size in
580  *
581  * This function modifies @mp.
582  *
583  * Returns: errno on error
584  */
585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
586 			  struct metapath *mp, struct iomap *iomap)
587 {
588 	struct metapath clone;
589 	u64 hole_size;
590 	int ret;
591 
592 	clone_metapath(&clone, mp);
593 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
594 	if (ret < 0)
595 		goto out;
596 
597 	if (ret == 1)
598 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
599 	else
600 		hole_size = len;
601 	iomap->length = hole_size << inode->i_blkbits;
602 	ret = 0;
603 
604 out:
605 	release_metapath(&clone);
606 	return ret;
607 }
608 
609 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
610 					 struct gfs2_glock *gl, unsigned int i,
611 					 unsigned offset, u64 bn)
612 {
613 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
614 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
615 				 sizeof(struct gfs2_dinode)));
616 	BUG_ON(i < 1);
617 	BUG_ON(mp->mp_bh[i] != NULL);
618 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
619 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
620 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
621 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
622 	ptr += offset;
623 	*ptr = cpu_to_be64(bn);
624 	return ptr;
625 }
626 
627 enum alloc_state {
628 	ALLOC_DATA = 0,
629 	ALLOC_GROW_DEPTH = 1,
630 	ALLOC_GROW_HEIGHT = 2,
631 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
632 };
633 
634 /**
635  * gfs2_iomap_alloc - Build a metadata tree of the requested height
636  * @inode: The GFS2 inode
637  * @iomap: The iomap structure
638  * @mp: The metapath, with proper height information calculated
639  *
640  * In this routine we may have to alloc:
641  *   i) Indirect blocks to grow the metadata tree height
642  *  ii) Indirect blocks to fill in lower part of the metadata tree
643  * iii) Data blocks
644  *
645  * This function is called after gfs2_iomap_get, which works out the
646  * total number of blocks which we need via gfs2_alloc_size.
647  *
648  * We then do the actual allocation asking for an extent at a time (if
649  * enough contiguous free blocks are available, there will only be one
650  * allocation request per call) and uses the state machine to initialise
651  * the blocks in order.
652  *
653  * Right now, this function will allocate at most one indirect block
654  * worth of data -- with a default block size of 4K, that's slightly
655  * less than 2M.  If this limitation is ever removed to allow huge
656  * allocations, we would probably still want to limit the iomap size we
657  * return to avoid stalling other tasks during huge writes; the next
658  * iomap iteration would then find the blocks already allocated.
659  *
660  * Returns: errno on error
661  */
662 
663 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
664 			    struct metapath *mp)
665 {
666 	struct gfs2_inode *ip = GFS2_I(inode);
667 	struct gfs2_sbd *sdp = GFS2_SB(inode);
668 	struct buffer_head *dibh = mp->mp_bh[0];
669 	u64 bn;
670 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
671 	size_t dblks = iomap->length >> inode->i_blkbits;
672 	const unsigned end_of_metadata = mp->mp_fheight - 1;
673 	int ret;
674 	enum alloc_state state;
675 	__be64 *ptr;
676 	__be64 zero_bn = 0;
677 
678 	BUG_ON(mp->mp_aheight < 1);
679 	BUG_ON(dibh == NULL);
680 	BUG_ON(dblks < 1);
681 
682 	gfs2_trans_add_meta(ip->i_gl, dibh);
683 
684 	down_write(&ip->i_rw_mutex);
685 
686 	if (mp->mp_fheight == mp->mp_aheight) {
687 		/* Bottom indirect block exists */
688 		state = ALLOC_DATA;
689 	} else {
690 		/* Need to allocate indirect blocks */
691 		if (mp->mp_fheight == ip->i_height) {
692 			/* Writing into existing tree, extend tree down */
693 			iblks = mp->mp_fheight - mp->mp_aheight;
694 			state = ALLOC_GROW_DEPTH;
695 		} else {
696 			/* Building up tree height */
697 			state = ALLOC_GROW_HEIGHT;
698 			iblks = mp->mp_fheight - ip->i_height;
699 			branch_start = metapath_branch_start(mp);
700 			iblks += (mp->mp_fheight - branch_start);
701 		}
702 	}
703 
704 	/* start of the second part of the function (state machine) */
705 
706 	blks = dblks + iblks;
707 	i = mp->mp_aheight;
708 	do {
709 		n = blks - alloced;
710 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
711 		if (ret)
712 			goto out;
713 		alloced += n;
714 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
715 			gfs2_trans_remove_revoke(sdp, bn, n);
716 		switch (state) {
717 		/* Growing height of tree */
718 		case ALLOC_GROW_HEIGHT:
719 			if (i == 1) {
720 				ptr = (__be64 *)(dibh->b_data +
721 						 sizeof(struct gfs2_dinode));
722 				zero_bn = *ptr;
723 			}
724 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
725 			     i++, n--)
726 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
727 			if (i - 1 == mp->mp_fheight - ip->i_height) {
728 				i--;
729 				gfs2_buffer_copy_tail(mp->mp_bh[i],
730 						sizeof(struct gfs2_meta_header),
731 						dibh, sizeof(struct gfs2_dinode));
732 				gfs2_buffer_clear_tail(dibh,
733 						sizeof(struct gfs2_dinode) +
734 						sizeof(__be64));
735 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
736 					sizeof(struct gfs2_meta_header));
737 				*ptr = zero_bn;
738 				state = ALLOC_GROW_DEPTH;
739 				for(i = branch_start; i < mp->mp_fheight; i++) {
740 					if (mp->mp_bh[i] == NULL)
741 						break;
742 					brelse(mp->mp_bh[i]);
743 					mp->mp_bh[i] = NULL;
744 				}
745 				i = branch_start;
746 			}
747 			if (n == 0)
748 				break;
749 		/* fall through - To branching from existing tree */
750 		case ALLOC_GROW_DEPTH:
751 			if (i > 1 && i < mp->mp_fheight)
752 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
753 			for (; i < mp->mp_fheight && n > 0; i++, n--)
754 				gfs2_indirect_init(mp, ip->i_gl, i,
755 						   mp->mp_list[i-1], bn++);
756 			if (i == mp->mp_fheight)
757 				state = ALLOC_DATA;
758 			if (n == 0)
759 				break;
760 		/* fall through - To tree complete, adding data blocks */
761 		case ALLOC_DATA:
762 			BUG_ON(n > dblks);
763 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
764 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
765 			dblks = n;
766 			ptr = metapointer(end_of_metadata, mp);
767 			iomap->addr = bn << inode->i_blkbits;
768 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
769 			while (n-- > 0)
770 				*ptr++ = cpu_to_be64(bn++);
771 			break;
772 		}
773 	} while (iomap->addr == IOMAP_NULL_ADDR);
774 
775 	iomap->type = IOMAP_MAPPED;
776 	iomap->length = (u64)dblks << inode->i_blkbits;
777 	ip->i_height = mp->mp_fheight;
778 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
779 	gfs2_dinode_out(ip, dibh->b_data);
780 out:
781 	up_write(&ip->i_rw_mutex);
782 	return ret;
783 }
784 
785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
786 
787 /**
788  * gfs2_alloc_size - Compute the maximum allocation size
789  * @inode: The inode
790  * @mp: The metapath
791  * @size: Requested size in blocks
792  *
793  * Compute the maximum size of the next allocation at @mp.
794  *
795  * Returns: size in blocks
796  */
797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
798 {
799 	struct gfs2_inode *ip = GFS2_I(inode);
800 	struct gfs2_sbd *sdp = GFS2_SB(inode);
801 	const __be64 *first, *ptr, *end;
802 
803 	/*
804 	 * For writes to stuffed files, this function is called twice via
805 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
806 	 * first time needs to be large enough to get the reservation and
807 	 * allocation sizes right.  The size we return the second time must
808 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
809 	 */
810 
811 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
812 		unsigned int maxsize = mp->mp_fheight > 1 ?
813 			sdp->sd_inptrs : sdp->sd_diptrs;
814 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
815 		if (size > maxsize)
816 			size = maxsize;
817 		return size;
818 	}
819 
820 	first = metapointer(ip->i_height - 1, mp);
821 	end = metaend(ip->i_height - 1, mp);
822 	if (end - first > size)
823 		end = first + size;
824 	for (ptr = first; ptr < end; ptr++) {
825 		if (*ptr)
826 			break;
827 	}
828 	return ptr - first;
829 }
830 
831 /**
832  * gfs2_iomap_get - Map blocks from an inode to disk blocks
833  * @inode: The inode
834  * @pos: Starting position in bytes
835  * @length: Length to map, in bytes
836  * @flags: iomap flags
837  * @iomap: The iomap structure
838  * @mp: The metapath
839  *
840  * Returns: errno
841  */
842 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
843 			  unsigned flags, struct iomap *iomap,
844 			  struct metapath *mp)
845 {
846 	struct gfs2_inode *ip = GFS2_I(inode);
847 	struct gfs2_sbd *sdp = GFS2_SB(inode);
848 	loff_t size = i_size_read(inode);
849 	__be64 *ptr;
850 	sector_t lblock;
851 	sector_t lblock_stop;
852 	int ret;
853 	int eob;
854 	u64 len;
855 	struct buffer_head *dibh = NULL, *bh;
856 	u8 height;
857 
858 	if (!length)
859 		return -EINVAL;
860 
861 	down_read(&ip->i_rw_mutex);
862 
863 	ret = gfs2_meta_inode_buffer(ip, &dibh);
864 	if (ret)
865 		goto unlock;
866 	mp->mp_bh[0] = dibh;
867 
868 	if (gfs2_is_stuffed(ip)) {
869 		if (flags & IOMAP_WRITE) {
870 			loff_t max_size = gfs2_max_stuffed_size(ip);
871 
872 			if (pos + length > max_size)
873 				goto unstuff;
874 			iomap->length = max_size;
875 		} else {
876 			if (pos >= size) {
877 				if (flags & IOMAP_REPORT) {
878 					ret = -ENOENT;
879 					goto unlock;
880 				} else {
881 					iomap->offset = pos;
882 					iomap->length = length;
883 					goto hole_found;
884 				}
885 			}
886 			iomap->length = size;
887 		}
888 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
889 			      sizeof(struct gfs2_dinode);
890 		iomap->type = IOMAP_INLINE;
891 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
892 		goto out;
893 	}
894 
895 unstuff:
896 	lblock = pos >> inode->i_blkbits;
897 	iomap->offset = lblock << inode->i_blkbits;
898 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
899 	len = lblock_stop - lblock + 1;
900 	iomap->length = len << inode->i_blkbits;
901 
902 	height = ip->i_height;
903 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
904 		height++;
905 	find_metapath(sdp, lblock, mp, height);
906 	if (height > ip->i_height || gfs2_is_stuffed(ip))
907 		goto do_alloc;
908 
909 	ret = lookup_metapath(ip, mp);
910 	if (ret)
911 		goto unlock;
912 
913 	if (mp->mp_aheight != ip->i_height)
914 		goto do_alloc;
915 
916 	ptr = metapointer(ip->i_height - 1, mp);
917 	if (*ptr == 0)
918 		goto do_alloc;
919 
920 	bh = mp->mp_bh[ip->i_height - 1];
921 	len = gfs2_extent_length(bh, ptr, len, &eob);
922 
923 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
924 	iomap->length = len << inode->i_blkbits;
925 	iomap->type = IOMAP_MAPPED;
926 	iomap->flags |= IOMAP_F_MERGED;
927 	if (eob)
928 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
929 
930 out:
931 	iomap->bdev = inode->i_sb->s_bdev;
932 unlock:
933 	up_read(&ip->i_rw_mutex);
934 	return ret;
935 
936 do_alloc:
937 	if (flags & IOMAP_REPORT) {
938 		if (pos >= size)
939 			ret = -ENOENT;
940 		else if (height == ip->i_height)
941 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
942 		else
943 			iomap->length = size - pos;
944 	} else if (flags & IOMAP_WRITE) {
945 		u64 alloc_size;
946 
947 		if (flags & IOMAP_DIRECT)
948 			goto out;  /* (see gfs2_file_direct_write) */
949 
950 		len = gfs2_alloc_size(inode, mp, len);
951 		alloc_size = len << inode->i_blkbits;
952 		if (alloc_size < iomap->length)
953 			iomap->length = alloc_size;
954 	} else {
955 		if (pos < size && height == ip->i_height)
956 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
957 	}
958 hole_found:
959 	iomap->addr = IOMAP_NULL_ADDR;
960 	iomap->type = IOMAP_HOLE;
961 	goto out;
962 }
963 
964 /**
965  * gfs2_lblk_to_dblk - convert logical block to disk block
966  * @inode: the inode of the file we're mapping
967  * @lblock: the block relative to the start of the file
968  * @dblock: the returned dblock, if no error
969  *
970  * This function maps a single block from a file logical block (relative to
971  * the start of the file) to a file system absolute block using iomap.
972  *
973  * Returns: the absolute file system block, or an error
974  */
975 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
976 {
977 	struct iomap iomap = { };
978 	struct metapath mp = { .mp_aheight = 1, };
979 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
980 	int ret;
981 
982 	ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
983 	release_metapath(&mp);
984 	if (ret == 0)
985 		*dblock = iomap.addr >> inode->i_blkbits;
986 
987 	return ret;
988 }
989 
990 static int gfs2_write_lock(struct inode *inode)
991 {
992 	struct gfs2_inode *ip = GFS2_I(inode);
993 	struct gfs2_sbd *sdp = GFS2_SB(inode);
994 	int error;
995 
996 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
997 	error = gfs2_glock_nq(&ip->i_gh);
998 	if (error)
999 		goto out_uninit;
1000 	if (&ip->i_inode == sdp->sd_rindex) {
1001 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1002 
1003 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1004 					   GL_NOCACHE, &m_ip->i_gh);
1005 		if (error)
1006 			goto out_unlock;
1007 	}
1008 	return 0;
1009 
1010 out_unlock:
1011 	gfs2_glock_dq(&ip->i_gh);
1012 out_uninit:
1013 	gfs2_holder_uninit(&ip->i_gh);
1014 	return error;
1015 }
1016 
1017 static void gfs2_write_unlock(struct inode *inode)
1018 {
1019 	struct gfs2_inode *ip = GFS2_I(inode);
1020 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1021 
1022 	if (&ip->i_inode == sdp->sd_rindex) {
1023 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1024 
1025 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1026 	}
1027 	gfs2_glock_dq_uninit(&ip->i_gh);
1028 }
1029 
1030 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1031 				   unsigned len, struct iomap *iomap)
1032 {
1033 	unsigned int blockmask = i_blocksize(inode) - 1;
1034 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1035 	unsigned int blocks;
1036 
1037 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1038 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1039 }
1040 
1041 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1042 				 unsigned copied, struct page *page,
1043 				 struct iomap *iomap)
1044 {
1045 	struct gfs2_trans *tr = current->journal_info;
1046 	struct gfs2_inode *ip = GFS2_I(inode);
1047 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1048 
1049 	if (page && !gfs2_is_stuffed(ip))
1050 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1051 
1052 	if (tr->tr_num_buf_new)
1053 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1054 
1055 	gfs2_trans_end(sdp);
1056 }
1057 
1058 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1059 	.page_prepare = gfs2_iomap_page_prepare,
1060 	.page_done = gfs2_iomap_page_done,
1061 };
1062 
1063 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1064 				  loff_t length, unsigned flags,
1065 				  struct iomap *iomap,
1066 				  struct metapath *mp)
1067 {
1068 	struct gfs2_inode *ip = GFS2_I(inode);
1069 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1070 	bool unstuff;
1071 	int ret;
1072 
1073 	unstuff = gfs2_is_stuffed(ip) &&
1074 		  pos + length > gfs2_max_stuffed_size(ip);
1075 
1076 	if (unstuff || iomap->type == IOMAP_HOLE) {
1077 		unsigned int data_blocks, ind_blocks;
1078 		struct gfs2_alloc_parms ap = {};
1079 		unsigned int rblocks;
1080 		struct gfs2_trans *tr;
1081 
1082 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1083 				       &ind_blocks);
1084 		ap.target = data_blocks + ind_blocks;
1085 		ret = gfs2_quota_lock_check(ip, &ap);
1086 		if (ret)
1087 			return ret;
1088 
1089 		ret = gfs2_inplace_reserve(ip, &ap);
1090 		if (ret)
1091 			goto out_qunlock;
1092 
1093 		rblocks = RES_DINODE + ind_blocks;
1094 		if (gfs2_is_jdata(ip))
1095 			rblocks += data_blocks;
1096 		if (ind_blocks || data_blocks)
1097 			rblocks += RES_STATFS + RES_QUOTA;
1098 		if (inode == sdp->sd_rindex)
1099 			rblocks += 2 * RES_STATFS;
1100 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1101 
1102 		ret = gfs2_trans_begin(sdp, rblocks,
1103 				       iomap->length >> inode->i_blkbits);
1104 		if (ret)
1105 			goto out_trans_fail;
1106 
1107 		if (unstuff) {
1108 			ret = gfs2_unstuff_dinode(ip, NULL);
1109 			if (ret)
1110 				goto out_trans_end;
1111 			release_metapath(mp);
1112 			ret = gfs2_iomap_get(inode, iomap->offset,
1113 					     iomap->length, flags, iomap, mp);
1114 			if (ret)
1115 				goto out_trans_end;
1116 		}
1117 
1118 		if (iomap->type == IOMAP_HOLE) {
1119 			ret = gfs2_iomap_alloc(inode, iomap, mp);
1120 			if (ret) {
1121 				gfs2_trans_end(sdp);
1122 				gfs2_inplace_release(ip);
1123 				punch_hole(ip, iomap->offset, iomap->length);
1124 				goto out_qunlock;
1125 			}
1126 		}
1127 
1128 		tr = current->journal_info;
1129 		if (tr->tr_num_buf_new)
1130 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1131 
1132 		gfs2_trans_end(sdp);
1133 	}
1134 
1135 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1136 		iomap->page_ops = &gfs2_iomap_page_ops;
1137 	return 0;
1138 
1139 out_trans_end:
1140 	gfs2_trans_end(sdp);
1141 out_trans_fail:
1142 	gfs2_inplace_release(ip);
1143 out_qunlock:
1144 	gfs2_quota_unlock(ip);
1145 	return ret;
1146 }
1147 
1148 static inline bool gfs2_iomap_need_write_lock(unsigned flags)
1149 {
1150 	return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT);
1151 }
1152 
1153 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1154 			    unsigned flags, struct iomap *iomap,
1155 			    struct iomap *srcmap)
1156 {
1157 	struct gfs2_inode *ip = GFS2_I(inode);
1158 	struct metapath mp = { .mp_aheight = 1, };
1159 	int ret;
1160 
1161 	iomap->flags |= IOMAP_F_BUFFER_HEAD;
1162 
1163 	trace_gfs2_iomap_start(ip, pos, length, flags);
1164 	if (gfs2_iomap_need_write_lock(flags)) {
1165 		ret = gfs2_write_lock(inode);
1166 		if (ret)
1167 			goto out;
1168 	}
1169 
1170 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1171 	if (ret)
1172 		goto out_unlock;
1173 
1174 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1175 	case IOMAP_WRITE:
1176 		if (flags & IOMAP_DIRECT) {
1177 			/*
1178 			 * Silently fall back to buffered I/O for stuffed files
1179 			 * or if we've got a hole (see gfs2_file_direct_write).
1180 			 */
1181 			if (iomap->type != IOMAP_MAPPED)
1182 				ret = -ENOTBLK;
1183 			goto out_unlock;
1184 		}
1185 		break;
1186 	case IOMAP_ZERO:
1187 		if (iomap->type == IOMAP_HOLE)
1188 			goto out_unlock;
1189 		break;
1190 	default:
1191 		goto out_unlock;
1192 	}
1193 
1194 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1195 
1196 out_unlock:
1197 	if (ret && gfs2_iomap_need_write_lock(flags))
1198 		gfs2_write_unlock(inode);
1199 	release_metapath(&mp);
1200 out:
1201 	trace_gfs2_iomap_end(ip, iomap, ret);
1202 	return ret;
1203 }
1204 
1205 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1206 			  ssize_t written, unsigned flags, struct iomap *iomap)
1207 {
1208 	struct gfs2_inode *ip = GFS2_I(inode);
1209 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1210 
1211 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1212 	case IOMAP_WRITE:
1213 		if (flags & IOMAP_DIRECT)
1214 			return 0;
1215 		break;
1216 	case IOMAP_ZERO:
1217 		 if (iomap->type == IOMAP_HOLE)
1218 			 return 0;
1219 		 break;
1220 	default:
1221 		 return 0;
1222 	}
1223 
1224 	if (!gfs2_is_stuffed(ip))
1225 		gfs2_ordered_add_inode(ip);
1226 
1227 	if (inode == sdp->sd_rindex)
1228 		adjust_fs_space(inode);
1229 
1230 	gfs2_inplace_release(ip);
1231 
1232 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1233 		/* Deallocate blocks that were just allocated. */
1234 		loff_t blockmask = i_blocksize(inode) - 1;
1235 		loff_t end = (pos + length) & ~blockmask;
1236 
1237 		pos = (pos + written + blockmask) & ~blockmask;
1238 		if (pos < end) {
1239 			truncate_pagecache_range(inode, pos, end - 1);
1240 			punch_hole(ip, pos, end - pos);
1241 		}
1242 	}
1243 
1244 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1245 		gfs2_quota_unlock(ip);
1246 
1247 	if (unlikely(!written))
1248 		goto out_unlock;
1249 
1250 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1251 		mark_inode_dirty(inode);
1252 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1253 
1254 out_unlock:
1255 	if (gfs2_iomap_need_write_lock(flags))
1256 		gfs2_write_unlock(inode);
1257 	return 0;
1258 }
1259 
1260 const struct iomap_ops gfs2_iomap_ops = {
1261 	.iomap_begin = gfs2_iomap_begin,
1262 	.iomap_end = gfs2_iomap_end,
1263 };
1264 
1265 /**
1266  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1267  * @inode: The inode
1268  * @lblock: The logical block number
1269  * @bh_map: The bh to be mapped
1270  * @create: True if its ok to alloc blocks to satify the request
1271  *
1272  * The size of the requested mapping is defined in bh_map->b_size.
1273  *
1274  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1275  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1276  * bh_map->b_size to indicate the size of the mapping when @lblock and
1277  * successive blocks are mapped, up to the requested size.
1278  *
1279  * Sets buffer_boundary() if a read of metadata will be required
1280  * before the next block can be mapped. Sets buffer_new() if new
1281  * blocks were allocated.
1282  *
1283  * Returns: errno
1284  */
1285 
1286 int gfs2_block_map(struct inode *inode, sector_t lblock,
1287 		   struct buffer_head *bh_map, int create)
1288 {
1289 	struct gfs2_inode *ip = GFS2_I(inode);
1290 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1291 	loff_t length = bh_map->b_size;
1292 	struct metapath mp = { .mp_aheight = 1, };
1293 	struct iomap iomap = { };
1294 	int ret;
1295 
1296 	clear_buffer_mapped(bh_map);
1297 	clear_buffer_new(bh_map);
1298 	clear_buffer_boundary(bh_map);
1299 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1300 
1301 	if (create) {
1302 		ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1303 		if (!ret && iomap.type == IOMAP_HOLE)
1304 			ret = gfs2_iomap_alloc(inode, &iomap, &mp);
1305 		release_metapath(&mp);
1306 	} else {
1307 		ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1308 		release_metapath(&mp);
1309 	}
1310 	if (ret)
1311 		goto out;
1312 
1313 	if (iomap.length > bh_map->b_size) {
1314 		iomap.length = bh_map->b_size;
1315 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1316 	}
1317 	if (iomap.addr != IOMAP_NULL_ADDR)
1318 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1319 	bh_map->b_size = iomap.length;
1320 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1321 		set_buffer_boundary(bh_map);
1322 	if (iomap.flags & IOMAP_F_NEW)
1323 		set_buffer_new(bh_map);
1324 
1325 out:
1326 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1327 	return ret;
1328 }
1329 
1330 /*
1331  * Deprecated: do not use in new code
1332  */
1333 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1334 {
1335 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1336 	int ret;
1337 	int create = *new;
1338 
1339 	BUG_ON(!extlen);
1340 	BUG_ON(!dblock);
1341 	BUG_ON(!new);
1342 
1343 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1344 	ret = gfs2_block_map(inode, lblock, &bh, create);
1345 	*extlen = bh.b_size >> inode->i_blkbits;
1346 	*dblock = bh.b_blocknr;
1347 	if (buffer_new(&bh))
1348 		*new = 1;
1349 	else
1350 		*new = 0;
1351 	return ret;
1352 }
1353 
1354 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1355 				 unsigned int length)
1356 {
1357 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1358 }
1359 
1360 #define GFS2_JTRUNC_REVOKES 8192
1361 
1362 /**
1363  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1364  * @inode: The inode being truncated
1365  * @oldsize: The original (larger) size
1366  * @newsize: The new smaller size
1367  *
1368  * With jdata files, we have to journal a revoke for each block which is
1369  * truncated. As a result, we need to split this into separate transactions
1370  * if the number of pages being truncated gets too large.
1371  */
1372 
1373 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1374 {
1375 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1376 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1377 	u64 chunk;
1378 	int error;
1379 
1380 	while (oldsize != newsize) {
1381 		struct gfs2_trans *tr;
1382 		unsigned int offs;
1383 
1384 		chunk = oldsize - newsize;
1385 		if (chunk > max_chunk)
1386 			chunk = max_chunk;
1387 
1388 		offs = oldsize & ~PAGE_MASK;
1389 		if (offs && chunk > PAGE_SIZE)
1390 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1391 
1392 		truncate_pagecache(inode, oldsize - chunk);
1393 		oldsize -= chunk;
1394 
1395 		tr = current->journal_info;
1396 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1397 			continue;
1398 
1399 		gfs2_trans_end(sdp);
1400 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1401 		if (error)
1402 			return error;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static int trunc_start(struct inode *inode, u64 newsize)
1409 {
1410 	struct gfs2_inode *ip = GFS2_I(inode);
1411 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1412 	struct buffer_head *dibh = NULL;
1413 	int journaled = gfs2_is_jdata(ip);
1414 	u64 oldsize = inode->i_size;
1415 	int error;
1416 
1417 	if (journaled)
1418 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1419 	else
1420 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1421 	if (error)
1422 		return error;
1423 
1424 	error = gfs2_meta_inode_buffer(ip, &dibh);
1425 	if (error)
1426 		goto out;
1427 
1428 	gfs2_trans_add_meta(ip->i_gl, dibh);
1429 
1430 	if (gfs2_is_stuffed(ip)) {
1431 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1432 	} else {
1433 		unsigned int blocksize = i_blocksize(inode);
1434 		unsigned int offs = newsize & (blocksize - 1);
1435 		if (offs) {
1436 			error = gfs2_block_zero_range(inode, newsize,
1437 						      blocksize - offs);
1438 			if (error)
1439 				goto out;
1440 		}
1441 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1442 	}
1443 
1444 	i_size_write(inode, newsize);
1445 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1446 	gfs2_dinode_out(ip, dibh->b_data);
1447 
1448 	if (journaled)
1449 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1450 	else
1451 		truncate_pagecache(inode, newsize);
1452 
1453 out:
1454 	brelse(dibh);
1455 	if (current->journal_info)
1456 		gfs2_trans_end(sdp);
1457 	return error;
1458 }
1459 
1460 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1461 			 struct iomap *iomap)
1462 {
1463 	struct metapath mp = { .mp_aheight = 1, };
1464 	int ret;
1465 
1466 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1467 	if (!ret && iomap->type == IOMAP_HOLE)
1468 		ret = gfs2_iomap_alloc(inode, iomap, &mp);
1469 	release_metapath(&mp);
1470 	return ret;
1471 }
1472 
1473 /**
1474  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1475  * @ip: inode
1476  * @rg_gh: holder of resource group glock
1477  * @bh: buffer head to sweep
1478  * @start: starting point in bh
1479  * @end: end point in bh
1480  * @meta: true if bh points to metadata (rather than data)
1481  * @btotal: place to keep count of total blocks freed
1482  *
1483  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1484  * free, and free them all. However, we do it one rgrp at a time. If this
1485  * block has references to multiple rgrps, we break it into individual
1486  * transactions. This allows other processes to use the rgrps while we're
1487  * focused on a single one, for better concurrency / performance.
1488  * At every transaction boundary, we rewrite the inode into the journal.
1489  * That way the bitmaps are kept consistent with the inode and we can recover
1490  * if we're interrupted by power-outages.
1491  *
1492  * Returns: 0, or return code if an error occurred.
1493  *          *btotal has the total number of blocks freed
1494  */
1495 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1496 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1497 			      bool meta, u32 *btotal)
1498 {
1499 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1500 	struct gfs2_rgrpd *rgd;
1501 	struct gfs2_trans *tr;
1502 	__be64 *p;
1503 	int blks_outside_rgrp;
1504 	u64 bn, bstart, isize_blks;
1505 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1506 	int ret = 0;
1507 	bool buf_in_tr = false; /* buffer was added to transaction */
1508 
1509 more_rgrps:
1510 	rgd = NULL;
1511 	if (gfs2_holder_initialized(rd_gh)) {
1512 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1513 		gfs2_assert_withdraw(sdp,
1514 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1515 	}
1516 	blks_outside_rgrp = 0;
1517 	bstart = 0;
1518 	blen = 0;
1519 
1520 	for (p = start; p < end; p++) {
1521 		if (!*p)
1522 			continue;
1523 		bn = be64_to_cpu(*p);
1524 
1525 		if (rgd) {
1526 			if (!rgrp_contains_block(rgd, bn)) {
1527 				blks_outside_rgrp++;
1528 				continue;
1529 			}
1530 		} else {
1531 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1532 			if (unlikely(!rgd)) {
1533 				ret = -EIO;
1534 				goto out;
1535 			}
1536 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1537 						 0, rd_gh);
1538 			if (ret)
1539 				goto out;
1540 
1541 			/* Must be done with the rgrp glock held: */
1542 			if (gfs2_rs_active(&ip->i_res) &&
1543 			    rgd == ip->i_res.rs_rbm.rgd)
1544 				gfs2_rs_deltree(&ip->i_res);
1545 		}
1546 
1547 		/* The size of our transactions will be unknown until we
1548 		   actually process all the metadata blocks that relate to
1549 		   the rgrp. So we estimate. We know it can't be more than
1550 		   the dinode's i_blocks and we don't want to exceed the
1551 		   journal flush threshold, sd_log_thresh2. */
1552 		if (current->journal_info == NULL) {
1553 			unsigned int jblocks_rqsted, revokes;
1554 
1555 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1556 				RES_INDIRECT;
1557 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1558 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1559 				jblocks_rqsted +=
1560 					atomic_read(&sdp->sd_log_thresh2);
1561 			else
1562 				jblocks_rqsted += isize_blks;
1563 			revokes = jblocks_rqsted;
1564 			if (meta)
1565 				revokes += end - start;
1566 			else if (ip->i_depth)
1567 				revokes += sdp->sd_inptrs;
1568 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1569 			if (ret)
1570 				goto out_unlock;
1571 			down_write(&ip->i_rw_mutex);
1572 		}
1573 		/* check if we will exceed the transaction blocks requested */
1574 		tr = current->journal_info;
1575 		if (tr->tr_num_buf_new + RES_STATFS +
1576 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1577 			/* We set blks_outside_rgrp to ensure the loop will
1578 			   be repeated for the same rgrp, but with a new
1579 			   transaction. */
1580 			blks_outside_rgrp++;
1581 			/* This next part is tricky. If the buffer was added
1582 			   to the transaction, we've already set some block
1583 			   pointers to 0, so we better follow through and free
1584 			   them, or we will introduce corruption (so break).
1585 			   This may be impossible, or at least rare, but I
1586 			   decided to cover the case regardless.
1587 
1588 			   If the buffer was not added to the transaction
1589 			   (this call), doing so would exceed our transaction
1590 			   size, so we need to end the transaction and start a
1591 			   new one (so goto). */
1592 
1593 			if (buf_in_tr)
1594 				break;
1595 			goto out_unlock;
1596 		}
1597 
1598 		gfs2_trans_add_meta(ip->i_gl, bh);
1599 		buf_in_tr = true;
1600 		*p = 0;
1601 		if (bstart + blen == bn) {
1602 			blen++;
1603 			continue;
1604 		}
1605 		if (bstart) {
1606 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1607 			(*btotal) += blen;
1608 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1609 		}
1610 		bstart = bn;
1611 		blen = 1;
1612 	}
1613 	if (bstart) {
1614 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1615 		(*btotal) += blen;
1616 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1617 	}
1618 out_unlock:
1619 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1620 					    outside the rgrp we just processed,
1621 					    do it all over again. */
1622 		if (current->journal_info) {
1623 			struct buffer_head *dibh;
1624 
1625 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1626 			if (ret)
1627 				goto out;
1628 
1629 			/* Every transaction boundary, we rewrite the dinode
1630 			   to keep its di_blocks current in case of failure. */
1631 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1632 				current_time(&ip->i_inode);
1633 			gfs2_trans_add_meta(ip->i_gl, dibh);
1634 			gfs2_dinode_out(ip, dibh->b_data);
1635 			brelse(dibh);
1636 			up_write(&ip->i_rw_mutex);
1637 			gfs2_trans_end(sdp);
1638 			buf_in_tr = false;
1639 		}
1640 		gfs2_glock_dq_uninit(rd_gh);
1641 		cond_resched();
1642 		goto more_rgrps;
1643 	}
1644 out:
1645 	return ret;
1646 }
1647 
1648 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1649 {
1650 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1651 		return false;
1652 	return true;
1653 }
1654 
1655 /**
1656  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1657  * @mp: starting metapath
1658  * @h: desired height to search
1659  *
1660  * Assumes the metapath is valid (with buffers) out to height h.
1661  * Returns: true if a non-null pointer was found in the metapath buffer
1662  *          false if all remaining pointers are NULL in the buffer
1663  */
1664 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1665 			     unsigned int h,
1666 			     __u16 *end_list, unsigned int end_aligned)
1667 {
1668 	struct buffer_head *bh = mp->mp_bh[h];
1669 	__be64 *first, *ptr, *end;
1670 
1671 	first = metaptr1(h, mp);
1672 	ptr = first + mp->mp_list[h];
1673 	end = (__be64 *)(bh->b_data + bh->b_size);
1674 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1675 		bool keep_end = h < end_aligned;
1676 		end = first + end_list[h] + keep_end;
1677 	}
1678 
1679 	while (ptr < end) {
1680 		if (*ptr) { /* if we have a non-null pointer */
1681 			mp->mp_list[h] = ptr - first;
1682 			h++;
1683 			if (h < GFS2_MAX_META_HEIGHT)
1684 				mp->mp_list[h] = 0;
1685 			return true;
1686 		}
1687 		ptr++;
1688 	}
1689 	return false;
1690 }
1691 
1692 enum dealloc_states {
1693 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1694 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1695 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1696 	DEALLOC_DONE = 3,       /* process complete */
1697 };
1698 
1699 static inline void
1700 metapointer_range(struct metapath *mp, int height,
1701 		  __u16 *start_list, unsigned int start_aligned,
1702 		  __u16 *end_list, unsigned int end_aligned,
1703 		  __be64 **start, __be64 **end)
1704 {
1705 	struct buffer_head *bh = mp->mp_bh[height];
1706 	__be64 *first;
1707 
1708 	first = metaptr1(height, mp);
1709 	*start = first;
1710 	if (mp_eq_to_hgt(mp, start_list, height)) {
1711 		bool keep_start = height < start_aligned;
1712 		*start = first + start_list[height] + keep_start;
1713 	}
1714 	*end = (__be64 *)(bh->b_data + bh->b_size);
1715 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1716 		bool keep_end = height < end_aligned;
1717 		*end = first + end_list[height] + keep_end;
1718 	}
1719 }
1720 
1721 static inline bool walk_done(struct gfs2_sbd *sdp,
1722 			     struct metapath *mp, int height,
1723 			     __u16 *end_list, unsigned int end_aligned)
1724 {
1725 	__u16 end;
1726 
1727 	if (end_list) {
1728 		bool keep_end = height < end_aligned;
1729 		if (!mp_eq_to_hgt(mp, end_list, height))
1730 			return false;
1731 		end = end_list[height] + keep_end;
1732 	} else
1733 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1734 	return mp->mp_list[height] >= end;
1735 }
1736 
1737 /**
1738  * punch_hole - deallocate blocks in a file
1739  * @ip: inode to truncate
1740  * @offset: the start of the hole
1741  * @length: the size of the hole (or 0 for truncate)
1742  *
1743  * Punch a hole into a file or truncate a file at a given position.  This
1744  * function operates in whole blocks (@offset and @length are rounded
1745  * accordingly); partially filled blocks must be cleared otherwise.
1746  *
1747  * This function works from the bottom up, and from the right to the left. In
1748  * other words, it strips off the highest layer (data) before stripping any of
1749  * the metadata. Doing it this way is best in case the operation is interrupted
1750  * by power failure, etc.  The dinode is rewritten in every transaction to
1751  * guarantee integrity.
1752  */
1753 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1754 {
1755 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1756 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1757 	struct metapath mp = {};
1758 	struct buffer_head *dibh, *bh;
1759 	struct gfs2_holder rd_gh;
1760 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1761 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1762 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1763 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1764 	unsigned int start_aligned, uninitialized_var(end_aligned);
1765 	unsigned int strip_h = ip->i_height - 1;
1766 	u32 btotal = 0;
1767 	int ret, state;
1768 	int mp_h; /* metapath buffers are read in to this height */
1769 	u64 prev_bnr = 0;
1770 	__be64 *start, *end;
1771 
1772 	if (offset >= maxsize) {
1773 		/*
1774 		 * The starting point lies beyond the allocated meta-data;
1775 		 * there are no blocks do deallocate.
1776 		 */
1777 		return 0;
1778 	}
1779 
1780 	/*
1781 	 * The start position of the hole is defined by lblock, start_list, and
1782 	 * start_aligned.  The end position of the hole is defined by lend,
1783 	 * end_list, and end_aligned.
1784 	 *
1785 	 * start_aligned and end_aligned define down to which height the start
1786 	 * and end positions are aligned to the metadata tree (i.e., the
1787 	 * position is a multiple of the metadata granularity at the height
1788 	 * above).  This determines at which heights additional meta pointers
1789 	 * needs to be preserved for the remaining data.
1790 	 */
1791 
1792 	if (length) {
1793 		u64 end_offset = offset + length;
1794 		u64 lend;
1795 
1796 		/*
1797 		 * Clip the end at the maximum file size for the given height:
1798 		 * that's how far the metadata goes; files bigger than that
1799 		 * will have additional layers of indirection.
1800 		 */
1801 		if (end_offset > maxsize)
1802 			end_offset = maxsize;
1803 		lend = end_offset >> bsize_shift;
1804 
1805 		if (lblock >= lend)
1806 			return 0;
1807 
1808 		find_metapath(sdp, lend, &mp, ip->i_height);
1809 		end_list = __end_list;
1810 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1811 
1812 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1813 			if (end_list[mp_h])
1814 				break;
1815 		}
1816 		end_aligned = mp_h;
1817 	}
1818 
1819 	find_metapath(sdp, lblock, &mp, ip->i_height);
1820 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1821 
1822 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1823 		if (start_list[mp_h])
1824 			break;
1825 	}
1826 	start_aligned = mp_h;
1827 
1828 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1829 	if (ret)
1830 		return ret;
1831 
1832 	mp.mp_bh[0] = dibh;
1833 	ret = lookup_metapath(ip, &mp);
1834 	if (ret)
1835 		goto out_metapath;
1836 
1837 	/* issue read-ahead on metadata */
1838 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1839 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1840 				  end_list, end_aligned, &start, &end);
1841 		gfs2_metapath_ra(ip->i_gl, start, end);
1842 	}
1843 
1844 	if (mp.mp_aheight == ip->i_height)
1845 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1846 	else
1847 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1848 
1849 	ret = gfs2_rindex_update(sdp);
1850 	if (ret)
1851 		goto out_metapath;
1852 
1853 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1854 	if (ret)
1855 		goto out_metapath;
1856 	gfs2_holder_mark_uninitialized(&rd_gh);
1857 
1858 	mp_h = strip_h;
1859 
1860 	while (state != DEALLOC_DONE) {
1861 		switch (state) {
1862 		/* Truncate a full metapath at the given strip height.
1863 		 * Note that strip_h == mp_h in order to be in this state. */
1864 		case DEALLOC_MP_FULL:
1865 			bh = mp.mp_bh[mp_h];
1866 			gfs2_assert_withdraw(sdp, bh);
1867 			if (gfs2_assert_withdraw(sdp,
1868 						 prev_bnr != bh->b_blocknr)) {
1869 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1870 					 "s_h:%u, mp_h:%u\n",
1871 				       (unsigned long long)ip->i_no_addr,
1872 				       prev_bnr, ip->i_height, strip_h, mp_h);
1873 			}
1874 			prev_bnr = bh->b_blocknr;
1875 
1876 			if (gfs2_metatype_check(sdp, bh,
1877 						(mp_h ? GFS2_METATYPE_IN :
1878 							GFS2_METATYPE_DI))) {
1879 				ret = -EIO;
1880 				goto out;
1881 			}
1882 
1883 			/*
1884 			 * Below, passing end_aligned as 0 gives us the
1885 			 * metapointer range excluding the end point: the end
1886 			 * point is the first metapath we must not deallocate!
1887 			 */
1888 
1889 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1890 					  end_list, 0 /* end_aligned */,
1891 					  &start, &end);
1892 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1893 						 start, end,
1894 						 mp_h != ip->i_height - 1,
1895 						 &btotal);
1896 
1897 			/* If we hit an error or just swept dinode buffer,
1898 			   just exit. */
1899 			if (ret || !mp_h) {
1900 				state = DEALLOC_DONE;
1901 				break;
1902 			}
1903 			state = DEALLOC_MP_LOWER;
1904 			break;
1905 
1906 		/* lower the metapath strip height */
1907 		case DEALLOC_MP_LOWER:
1908 			/* We're done with the current buffer, so release it,
1909 			   unless it's the dinode buffer. Then back up to the
1910 			   previous pointer. */
1911 			if (mp_h) {
1912 				brelse(mp.mp_bh[mp_h]);
1913 				mp.mp_bh[mp_h] = NULL;
1914 			}
1915 			/* If we can't get any lower in height, we've stripped
1916 			   off all we can. Next step is to back up and start
1917 			   stripping the previous level of metadata. */
1918 			if (mp_h == 0) {
1919 				strip_h--;
1920 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1921 				mp_h = strip_h;
1922 				state = DEALLOC_FILL_MP;
1923 				break;
1924 			}
1925 			mp.mp_list[mp_h] = 0;
1926 			mp_h--; /* search one metadata height down */
1927 			mp.mp_list[mp_h]++;
1928 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1929 				break;
1930 			/* Here we've found a part of the metapath that is not
1931 			 * allocated. We need to search at that height for the
1932 			 * next non-null pointer. */
1933 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1934 				state = DEALLOC_FILL_MP;
1935 				mp_h++;
1936 			}
1937 			/* No more non-null pointers at this height. Back up
1938 			   to the previous height and try again. */
1939 			break; /* loop around in the same state */
1940 
1941 		/* Fill the metapath with buffers to the given height. */
1942 		case DEALLOC_FILL_MP:
1943 			/* Fill the buffers out to the current height. */
1944 			ret = fillup_metapath(ip, &mp, mp_h);
1945 			if (ret < 0)
1946 				goto out;
1947 
1948 			/* On the first pass, issue read-ahead on metadata. */
1949 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1950 				unsigned int height = mp.mp_aheight - 1;
1951 
1952 				/* No read-ahead for data blocks. */
1953 				if (mp.mp_aheight - 1 == strip_h)
1954 					height--;
1955 
1956 				for (; height >= mp.mp_aheight - ret; height--) {
1957 					metapointer_range(&mp, height,
1958 							  start_list, start_aligned,
1959 							  end_list, end_aligned,
1960 							  &start, &end);
1961 					gfs2_metapath_ra(ip->i_gl, start, end);
1962 				}
1963 			}
1964 
1965 			/* If buffers found for the entire strip height */
1966 			if (mp.mp_aheight - 1 == strip_h) {
1967 				state = DEALLOC_MP_FULL;
1968 				break;
1969 			}
1970 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1971 				mp_h = mp.mp_aheight - 1;
1972 
1973 			/* If we find a non-null block pointer, crawl a bit
1974 			   higher up in the metapath and try again, otherwise
1975 			   we need to look lower for a new starting point. */
1976 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1977 				mp_h++;
1978 			else
1979 				state = DEALLOC_MP_LOWER;
1980 			break;
1981 		}
1982 	}
1983 
1984 	if (btotal) {
1985 		if (current->journal_info == NULL) {
1986 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1987 					       RES_QUOTA, 0);
1988 			if (ret)
1989 				goto out;
1990 			down_write(&ip->i_rw_mutex);
1991 		}
1992 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1993 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1994 				  ip->i_inode.i_gid);
1995 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1996 		gfs2_trans_add_meta(ip->i_gl, dibh);
1997 		gfs2_dinode_out(ip, dibh->b_data);
1998 		up_write(&ip->i_rw_mutex);
1999 		gfs2_trans_end(sdp);
2000 	}
2001 
2002 out:
2003 	if (gfs2_holder_initialized(&rd_gh))
2004 		gfs2_glock_dq_uninit(&rd_gh);
2005 	if (current->journal_info) {
2006 		up_write(&ip->i_rw_mutex);
2007 		gfs2_trans_end(sdp);
2008 		cond_resched();
2009 	}
2010 	gfs2_quota_unhold(ip);
2011 out_metapath:
2012 	release_metapath(&mp);
2013 	return ret;
2014 }
2015 
2016 static int trunc_end(struct gfs2_inode *ip)
2017 {
2018 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2019 	struct buffer_head *dibh;
2020 	int error;
2021 
2022 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2023 	if (error)
2024 		return error;
2025 
2026 	down_write(&ip->i_rw_mutex);
2027 
2028 	error = gfs2_meta_inode_buffer(ip, &dibh);
2029 	if (error)
2030 		goto out;
2031 
2032 	if (!i_size_read(&ip->i_inode)) {
2033 		ip->i_height = 0;
2034 		ip->i_goal = ip->i_no_addr;
2035 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2036 		gfs2_ordered_del_inode(ip);
2037 	}
2038 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2039 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2040 
2041 	gfs2_trans_add_meta(ip->i_gl, dibh);
2042 	gfs2_dinode_out(ip, dibh->b_data);
2043 	brelse(dibh);
2044 
2045 out:
2046 	up_write(&ip->i_rw_mutex);
2047 	gfs2_trans_end(sdp);
2048 	return error;
2049 }
2050 
2051 /**
2052  * do_shrink - make a file smaller
2053  * @inode: the inode
2054  * @newsize: the size to make the file
2055  *
2056  * Called with an exclusive lock on @inode. The @size must
2057  * be equal to or smaller than the current inode size.
2058  *
2059  * Returns: errno
2060  */
2061 
2062 static int do_shrink(struct inode *inode, u64 newsize)
2063 {
2064 	struct gfs2_inode *ip = GFS2_I(inode);
2065 	int error;
2066 
2067 	error = trunc_start(inode, newsize);
2068 	if (error < 0)
2069 		return error;
2070 	if (gfs2_is_stuffed(ip))
2071 		return 0;
2072 
2073 	error = punch_hole(ip, newsize, 0);
2074 	if (error == 0)
2075 		error = trunc_end(ip);
2076 
2077 	return error;
2078 }
2079 
2080 void gfs2_trim_blocks(struct inode *inode)
2081 {
2082 	int ret;
2083 
2084 	ret = do_shrink(inode, inode->i_size);
2085 	WARN_ON(ret != 0);
2086 }
2087 
2088 /**
2089  * do_grow - Touch and update inode size
2090  * @inode: The inode
2091  * @size: The new size
2092  *
2093  * This function updates the timestamps on the inode and
2094  * may also increase the size of the inode. This function
2095  * must not be called with @size any smaller than the current
2096  * inode size.
2097  *
2098  * Although it is not strictly required to unstuff files here,
2099  * earlier versions of GFS2 have a bug in the stuffed file reading
2100  * code which will result in a buffer overrun if the size is larger
2101  * than the max stuffed file size. In order to prevent this from
2102  * occurring, such files are unstuffed, but in other cases we can
2103  * just update the inode size directly.
2104  *
2105  * Returns: 0 on success, or -ve on error
2106  */
2107 
2108 static int do_grow(struct inode *inode, u64 size)
2109 {
2110 	struct gfs2_inode *ip = GFS2_I(inode);
2111 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2112 	struct gfs2_alloc_parms ap = { .target = 1, };
2113 	struct buffer_head *dibh;
2114 	int error;
2115 	int unstuff = 0;
2116 
2117 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2118 		error = gfs2_quota_lock_check(ip, &ap);
2119 		if (error)
2120 			return error;
2121 
2122 		error = gfs2_inplace_reserve(ip, &ap);
2123 		if (error)
2124 			goto do_grow_qunlock;
2125 		unstuff = 1;
2126 	}
2127 
2128 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2129 				 (unstuff &&
2130 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2131 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2132 				  0 : RES_QUOTA), 0);
2133 	if (error)
2134 		goto do_grow_release;
2135 
2136 	if (unstuff) {
2137 		error = gfs2_unstuff_dinode(ip, NULL);
2138 		if (error)
2139 			goto do_end_trans;
2140 	}
2141 
2142 	error = gfs2_meta_inode_buffer(ip, &dibh);
2143 	if (error)
2144 		goto do_end_trans;
2145 
2146 	truncate_setsize(inode, size);
2147 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2148 	gfs2_trans_add_meta(ip->i_gl, dibh);
2149 	gfs2_dinode_out(ip, dibh->b_data);
2150 	brelse(dibh);
2151 
2152 do_end_trans:
2153 	gfs2_trans_end(sdp);
2154 do_grow_release:
2155 	if (unstuff) {
2156 		gfs2_inplace_release(ip);
2157 do_grow_qunlock:
2158 		gfs2_quota_unlock(ip);
2159 	}
2160 	return error;
2161 }
2162 
2163 /**
2164  * gfs2_setattr_size - make a file a given size
2165  * @inode: the inode
2166  * @newsize: the size to make the file
2167  *
2168  * The file size can grow, shrink, or stay the same size. This
2169  * is called holding i_rwsem and an exclusive glock on the inode
2170  * in question.
2171  *
2172  * Returns: errno
2173  */
2174 
2175 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2176 {
2177 	struct gfs2_inode *ip = GFS2_I(inode);
2178 	int ret;
2179 
2180 	BUG_ON(!S_ISREG(inode->i_mode));
2181 
2182 	ret = inode_newsize_ok(inode, newsize);
2183 	if (ret)
2184 		return ret;
2185 
2186 	inode_dio_wait(inode);
2187 
2188 	ret = gfs2_qa_get(ip);
2189 	if (ret)
2190 		goto out;
2191 
2192 	if (newsize >= inode->i_size) {
2193 		ret = do_grow(inode, newsize);
2194 		goto out;
2195 	}
2196 
2197 	ret = do_shrink(inode, newsize);
2198 out:
2199 	gfs2_rs_delete(ip, NULL);
2200 	gfs2_qa_put(ip);
2201 	return ret;
2202 }
2203 
2204 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2205 {
2206 	int error;
2207 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2208 	if (!error)
2209 		error = trunc_end(ip);
2210 	return error;
2211 }
2212 
2213 int gfs2_file_dealloc(struct gfs2_inode *ip)
2214 {
2215 	return punch_hole(ip, 0, 0);
2216 }
2217 
2218 /**
2219  * gfs2_free_journal_extents - Free cached journal bmap info
2220  * @jd: The journal
2221  *
2222  */
2223 
2224 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2225 {
2226 	struct gfs2_journal_extent *jext;
2227 
2228 	while(!list_empty(&jd->extent_list)) {
2229 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2230 		list_del(&jext->list);
2231 		kfree(jext);
2232 	}
2233 }
2234 
2235 /**
2236  * gfs2_add_jextent - Add or merge a new extent to extent cache
2237  * @jd: The journal descriptor
2238  * @lblock: The logical block at start of new extent
2239  * @dblock: The physical block at start of new extent
2240  * @blocks: Size of extent in fs blocks
2241  *
2242  * Returns: 0 on success or -ENOMEM
2243  */
2244 
2245 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2246 {
2247 	struct gfs2_journal_extent *jext;
2248 
2249 	if (!list_empty(&jd->extent_list)) {
2250 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2251 		if ((jext->dblock + jext->blocks) == dblock) {
2252 			jext->blocks += blocks;
2253 			return 0;
2254 		}
2255 	}
2256 
2257 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2258 	if (jext == NULL)
2259 		return -ENOMEM;
2260 	jext->dblock = dblock;
2261 	jext->lblock = lblock;
2262 	jext->blocks = blocks;
2263 	list_add_tail(&jext->list, &jd->extent_list);
2264 	jd->nr_extents++;
2265 	return 0;
2266 }
2267 
2268 /**
2269  * gfs2_map_journal_extents - Cache journal bmap info
2270  * @sdp: The super block
2271  * @jd: The journal to map
2272  *
2273  * Create a reusable "extent" mapping from all logical
2274  * blocks to all physical blocks for the given journal.  This will save
2275  * us time when writing journal blocks.  Most journals will have only one
2276  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2277  * arranges the journal blocks sequentially to maximize performance.
2278  * So the extent would map the first block for the entire file length.
2279  * However, gfs2_jadd can happen while file activity is happening, so
2280  * those journals may not be sequential.  Less likely is the case where
2281  * the users created their own journals by mounting the metafs and
2282  * laying it out.  But it's still possible.  These journals might have
2283  * several extents.
2284  *
2285  * Returns: 0 on success, or error on failure
2286  */
2287 
2288 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2289 {
2290 	u64 lblock = 0;
2291 	u64 lblock_stop;
2292 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2293 	struct buffer_head bh;
2294 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2295 	u64 size;
2296 	int rc;
2297 	ktime_t start, end;
2298 
2299 	start = ktime_get();
2300 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2301 	size = (lblock_stop - lblock) << shift;
2302 	jd->nr_extents = 0;
2303 	WARN_ON(!list_empty(&jd->extent_list));
2304 
2305 	do {
2306 		bh.b_state = 0;
2307 		bh.b_blocknr = 0;
2308 		bh.b_size = size;
2309 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2310 		if (rc || !buffer_mapped(&bh))
2311 			goto fail;
2312 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2313 		if (rc)
2314 			goto fail;
2315 		size -= bh.b_size;
2316 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2317 	} while(size > 0);
2318 
2319 	end = ktime_get();
2320 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2321 		jd->nr_extents, ktime_ms_delta(end, start));
2322 	return 0;
2323 
2324 fail:
2325 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2326 		rc, jd->jd_jid,
2327 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2328 		jd->nr_extents);
2329 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2330 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2331 		bh.b_state, (unsigned long long)bh.b_size);
2332 	gfs2_free_journal_extents(jd);
2333 	return rc;
2334 }
2335 
2336 /**
2337  * gfs2_write_alloc_required - figure out if a write will require an allocation
2338  * @ip: the file being written to
2339  * @offset: the offset to write to
2340  * @len: the number of bytes being written
2341  *
2342  * Returns: 1 if an alloc is required, 0 otherwise
2343  */
2344 
2345 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2346 			      unsigned int len)
2347 {
2348 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2349 	struct buffer_head bh;
2350 	unsigned int shift;
2351 	u64 lblock, lblock_stop, size;
2352 	u64 end_of_file;
2353 
2354 	if (!len)
2355 		return 0;
2356 
2357 	if (gfs2_is_stuffed(ip)) {
2358 		if (offset + len > gfs2_max_stuffed_size(ip))
2359 			return 1;
2360 		return 0;
2361 	}
2362 
2363 	shift = sdp->sd_sb.sb_bsize_shift;
2364 	BUG_ON(gfs2_is_dir(ip));
2365 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2366 	lblock = offset >> shift;
2367 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2368 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2369 		return 1;
2370 
2371 	size = (lblock_stop - lblock) << shift;
2372 	do {
2373 		bh.b_state = 0;
2374 		bh.b_size = size;
2375 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2376 		if (!buffer_mapped(&bh))
2377 			return 1;
2378 		size -= bh.b_size;
2379 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2380 	} while(size > 0);
2381 
2382 	return 0;
2383 }
2384 
2385 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2386 {
2387 	struct gfs2_inode *ip = GFS2_I(inode);
2388 	struct buffer_head *dibh;
2389 	int error;
2390 
2391 	if (offset >= inode->i_size)
2392 		return 0;
2393 	if (offset + length > inode->i_size)
2394 		length = inode->i_size - offset;
2395 
2396 	error = gfs2_meta_inode_buffer(ip, &dibh);
2397 	if (error)
2398 		return error;
2399 	gfs2_trans_add_meta(ip->i_gl, dibh);
2400 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2401 	       length);
2402 	brelse(dibh);
2403 	return 0;
2404 }
2405 
2406 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2407 					 loff_t length)
2408 {
2409 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2410 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2411 	int error;
2412 
2413 	while (length) {
2414 		struct gfs2_trans *tr;
2415 		loff_t chunk;
2416 		unsigned int offs;
2417 
2418 		chunk = length;
2419 		if (chunk > max_chunk)
2420 			chunk = max_chunk;
2421 
2422 		offs = offset & ~PAGE_MASK;
2423 		if (offs && chunk > PAGE_SIZE)
2424 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2425 
2426 		truncate_pagecache_range(inode, offset, chunk);
2427 		offset += chunk;
2428 		length -= chunk;
2429 
2430 		tr = current->journal_info;
2431 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2432 			continue;
2433 
2434 		gfs2_trans_end(sdp);
2435 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2436 		if (error)
2437 			return error;
2438 	}
2439 	return 0;
2440 }
2441 
2442 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2443 {
2444 	struct inode *inode = file_inode(file);
2445 	struct gfs2_inode *ip = GFS2_I(inode);
2446 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2447 	unsigned int blocksize = i_blocksize(inode);
2448 	loff_t start, end;
2449 	int error;
2450 
2451 	start = round_down(offset, blocksize);
2452 	end = round_up(offset + length, blocksize) - 1;
2453 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2454 	if (error)
2455 		return error;
2456 
2457 	if (gfs2_is_jdata(ip))
2458 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2459 					 GFS2_JTRUNC_REVOKES);
2460 	else
2461 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2462 	if (error)
2463 		return error;
2464 
2465 	if (gfs2_is_stuffed(ip)) {
2466 		error = stuffed_zero_range(inode, offset, length);
2467 		if (error)
2468 			goto out;
2469 	} else {
2470 		unsigned int start_off, end_len;
2471 
2472 		start_off = offset & (blocksize - 1);
2473 		end_len = (offset + length) & (blocksize - 1);
2474 		if (start_off) {
2475 			unsigned int len = length;
2476 			if (length > blocksize - start_off)
2477 				len = blocksize - start_off;
2478 			error = gfs2_block_zero_range(inode, offset, len);
2479 			if (error)
2480 				goto out;
2481 			if (start_off + length < blocksize)
2482 				end_len = 0;
2483 		}
2484 		if (end_len) {
2485 			error = gfs2_block_zero_range(inode,
2486 				offset + length - end_len, end_len);
2487 			if (error)
2488 				goto out;
2489 		}
2490 	}
2491 
2492 	if (gfs2_is_jdata(ip)) {
2493 		BUG_ON(!current->journal_info);
2494 		gfs2_journaled_truncate_range(inode, offset, length);
2495 	} else
2496 		truncate_pagecache_range(inode, offset, offset + length - 1);
2497 
2498 	file_update_time(file);
2499 	mark_inode_dirty(inode);
2500 
2501 	if (current->journal_info)
2502 		gfs2_trans_end(sdp);
2503 
2504 	if (!gfs2_is_stuffed(ip))
2505 		error = punch_hole(ip, offset, length);
2506 
2507 out:
2508 	if (current->journal_info)
2509 		gfs2_trans_end(sdp);
2510 	return error;
2511 }
2512