1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/blkdev.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/crc32.h> 16 #include <linux/iomap.h> 17 #include <linux/ktime.h> 18 19 #include "gfs2.h" 20 #include "incore.h" 21 #include "bmap.h" 22 #include "glock.h" 23 #include "inode.h" 24 #include "meta_io.h" 25 #include "quota.h" 26 #include "rgrp.h" 27 #include "log.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "dir.h" 31 #include "util.h" 32 #include "aops.h" 33 #include "trace_gfs2.h" 34 35 /* This doesn't need to be that large as max 64 bit pointers in a 4k 36 * block is 512, so __u16 is fine for that. It saves stack space to 37 * keep it small. 38 */ 39 struct metapath { 40 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 41 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 42 int mp_fheight; /* find_metapath height */ 43 int mp_aheight; /* actual height (lookup height) */ 44 }; 45 46 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 47 48 /** 49 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 50 * @ip: the inode 51 * @dibh: the dinode buffer 52 * @block: the block number that was allocated 53 * @page: The (optional) page. This is looked up if @page is NULL 54 * 55 * Returns: errno 56 */ 57 58 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 59 u64 block, struct page *page) 60 { 61 struct inode *inode = &ip->i_inode; 62 struct buffer_head *bh; 63 int release = 0; 64 65 if (!page || page->index) { 66 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 67 if (!page) 68 return -ENOMEM; 69 release = 1; 70 } 71 72 if (!PageUptodate(page)) { 73 void *kaddr = kmap(page); 74 u64 dsize = i_size_read(inode); 75 76 if (dsize > gfs2_max_stuffed_size(ip)) 77 dsize = gfs2_max_stuffed_size(ip); 78 79 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 80 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 81 kunmap(page); 82 83 SetPageUptodate(page); 84 } 85 86 if (!page_has_buffers(page)) 87 create_empty_buffers(page, BIT(inode->i_blkbits), 88 BIT(BH_Uptodate)); 89 90 bh = page_buffers(page); 91 92 if (!buffer_mapped(bh)) 93 map_bh(bh, inode->i_sb, block); 94 95 set_buffer_uptodate(bh); 96 if (gfs2_is_jdata(ip)) 97 gfs2_trans_add_data(ip->i_gl, bh); 98 else { 99 mark_buffer_dirty(bh); 100 gfs2_ordered_add_inode(ip); 101 } 102 103 if (release) { 104 unlock_page(page); 105 put_page(page); 106 } 107 108 return 0; 109 } 110 111 /** 112 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 113 * @ip: The GFS2 inode to unstuff 114 * @page: The (optional) page. This is looked up if the @page is NULL 115 * 116 * This routine unstuffs a dinode and returns it to a "normal" state such 117 * that the height can be grown in the traditional way. 118 * 119 * Returns: errno 120 */ 121 122 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 123 { 124 struct buffer_head *bh, *dibh; 125 struct gfs2_dinode *di; 126 u64 block = 0; 127 int isdir = gfs2_is_dir(ip); 128 int error; 129 130 down_write(&ip->i_rw_mutex); 131 132 error = gfs2_meta_inode_buffer(ip, &dibh); 133 if (error) 134 goto out; 135 136 if (i_size_read(&ip->i_inode)) { 137 /* Get a free block, fill it with the stuffed data, 138 and write it out to disk */ 139 140 unsigned int n = 1; 141 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 142 if (error) 143 goto out_brelse; 144 if (isdir) { 145 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 146 error = gfs2_dir_get_new_buffer(ip, block, &bh); 147 if (error) 148 goto out_brelse; 149 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 150 dibh, sizeof(struct gfs2_dinode)); 151 brelse(bh); 152 } else { 153 error = gfs2_unstuffer_page(ip, dibh, block, page); 154 if (error) 155 goto out_brelse; 156 } 157 } 158 159 /* Set up the pointer to the new block */ 160 161 gfs2_trans_add_meta(ip->i_gl, dibh); 162 di = (struct gfs2_dinode *)dibh->b_data; 163 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 164 165 if (i_size_read(&ip->i_inode)) { 166 *(__be64 *)(di + 1) = cpu_to_be64(block); 167 gfs2_add_inode_blocks(&ip->i_inode, 1); 168 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 169 } 170 171 ip->i_height = 1; 172 di->di_height = cpu_to_be16(1); 173 174 out_brelse: 175 brelse(dibh); 176 out: 177 up_write(&ip->i_rw_mutex); 178 return error; 179 } 180 181 182 /** 183 * find_metapath - Find path through the metadata tree 184 * @sdp: The superblock 185 * @block: The disk block to look up 186 * @mp: The metapath to return the result in 187 * @height: The pre-calculated height of the metadata tree 188 * 189 * This routine returns a struct metapath structure that defines a path 190 * through the metadata of inode "ip" to get to block "block". 191 * 192 * Example: 193 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 194 * filesystem with a blocksize of 4096. 195 * 196 * find_metapath() would return a struct metapath structure set to: 197 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 198 * 199 * That means that in order to get to the block containing the byte at 200 * offset 101342453, we would load the indirect block pointed to by pointer 201 * 0 in the dinode. We would then load the indirect block pointed to by 202 * pointer 48 in that indirect block. We would then load the data block 203 * pointed to by pointer 165 in that indirect block. 204 * 205 * ---------------------------------------- 206 * | Dinode | | 207 * | | 4| 208 * | |0 1 2 3 4 5 9| 209 * | | 6| 210 * ---------------------------------------- 211 * | 212 * | 213 * V 214 * ---------------------------------------- 215 * | Indirect Block | 216 * | 5| 217 * | 4 4 4 4 4 5 5 1| 218 * |0 5 6 7 8 9 0 1 2| 219 * ---------------------------------------- 220 * | 221 * | 222 * V 223 * ---------------------------------------- 224 * | Indirect Block | 225 * | 1 1 1 1 1 5| 226 * | 6 6 6 6 6 1| 227 * |0 3 4 5 6 7 2| 228 * ---------------------------------------- 229 * | 230 * | 231 * V 232 * ---------------------------------------- 233 * | Data block containing offset | 234 * | 101342453 | 235 * | | 236 * | | 237 * ---------------------------------------- 238 * 239 */ 240 241 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 242 struct metapath *mp, unsigned int height) 243 { 244 unsigned int i; 245 246 mp->mp_fheight = height; 247 for (i = height; i--;) 248 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 249 } 250 251 static inline unsigned int metapath_branch_start(const struct metapath *mp) 252 { 253 if (mp->mp_list[0] == 0) 254 return 2; 255 return 1; 256 } 257 258 /** 259 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 260 * @height: The metadata height (0 = dinode) 261 * @mp: The metapath 262 */ 263 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 264 { 265 struct buffer_head *bh = mp->mp_bh[height]; 266 if (height == 0) 267 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 268 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 269 } 270 271 /** 272 * metapointer - Return pointer to start of metadata in a buffer 273 * @height: The metadata height (0 = dinode) 274 * @mp: The metapath 275 * 276 * Return a pointer to the block number of the next height of the metadata 277 * tree given a buffer containing the pointer to the current height of the 278 * metadata tree. 279 */ 280 281 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 282 { 283 __be64 *p = metaptr1(height, mp); 284 return p + mp->mp_list[height]; 285 } 286 287 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 288 { 289 const struct buffer_head *bh = mp->mp_bh[height]; 290 return (const __be64 *)(bh->b_data + bh->b_size); 291 } 292 293 static void clone_metapath(struct metapath *clone, struct metapath *mp) 294 { 295 unsigned int hgt; 296 297 *clone = *mp; 298 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 299 get_bh(clone->mp_bh[hgt]); 300 } 301 302 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 303 { 304 const __be64 *t; 305 306 for (t = start; t < end; t++) { 307 struct buffer_head *rabh; 308 309 if (!*t) 310 continue; 311 312 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 313 if (trylock_buffer(rabh)) { 314 if (!buffer_uptodate(rabh)) { 315 rabh->b_end_io = end_buffer_read_sync; 316 submit_bh(REQ_OP_READ, 317 REQ_RAHEAD | REQ_META | REQ_PRIO, 318 rabh); 319 continue; 320 } 321 unlock_buffer(rabh); 322 } 323 brelse(rabh); 324 } 325 } 326 327 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 328 unsigned int x, unsigned int h) 329 { 330 for (; x < h; x++) { 331 __be64 *ptr = metapointer(x, mp); 332 u64 dblock = be64_to_cpu(*ptr); 333 int ret; 334 335 if (!dblock) 336 break; 337 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 338 if (ret) 339 return ret; 340 } 341 mp->mp_aheight = x + 1; 342 return 0; 343 } 344 345 /** 346 * lookup_metapath - Walk the metadata tree to a specific point 347 * @ip: The inode 348 * @mp: The metapath 349 * 350 * Assumes that the inode's buffer has already been looked up and 351 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 352 * by find_metapath(). 353 * 354 * If this function encounters part of the tree which has not been 355 * allocated, it returns the current height of the tree at the point 356 * at which it found the unallocated block. Blocks which are found are 357 * added to the mp->mp_bh[] list. 358 * 359 * Returns: error 360 */ 361 362 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 363 { 364 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 365 } 366 367 /** 368 * fillup_metapath - fill up buffers for the metadata path to a specific height 369 * @ip: The inode 370 * @mp: The metapath 371 * @h: The height to which it should be mapped 372 * 373 * Similar to lookup_metapath, but does lookups for a range of heights 374 * 375 * Returns: error or the number of buffers filled 376 */ 377 378 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 379 { 380 unsigned int x = 0; 381 int ret; 382 383 if (h) { 384 /* find the first buffer we need to look up. */ 385 for (x = h - 1; x > 0; x--) { 386 if (mp->mp_bh[x]) 387 break; 388 } 389 } 390 ret = __fillup_metapath(ip, mp, x, h); 391 if (ret) 392 return ret; 393 return mp->mp_aheight - x - 1; 394 } 395 396 static void release_metapath(struct metapath *mp) 397 { 398 int i; 399 400 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 401 if (mp->mp_bh[i] == NULL) 402 break; 403 brelse(mp->mp_bh[i]); 404 mp->mp_bh[i] = NULL; 405 } 406 } 407 408 /** 409 * gfs2_extent_length - Returns length of an extent of blocks 410 * @bh: The metadata block 411 * @ptr: Current position in @bh 412 * @limit: Max extent length to return 413 * @eob: Set to 1 if we hit "end of block" 414 * 415 * Returns: The length of the extent (minimum of one block) 416 */ 417 418 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 419 { 420 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 421 const __be64 *first = ptr; 422 u64 d = be64_to_cpu(*ptr); 423 424 *eob = 0; 425 do { 426 ptr++; 427 if (ptr >= end) 428 break; 429 d++; 430 } while(be64_to_cpu(*ptr) == d); 431 if (ptr >= end) 432 *eob = 1; 433 return ptr - first; 434 } 435 436 typedef const __be64 *(*gfs2_metadata_walker)( 437 struct metapath *mp, 438 const __be64 *start, const __be64 *end, 439 u64 factor, void *data); 440 441 #define WALK_STOP ((__be64 *)0) 442 #define WALK_NEXT ((__be64 *)1) 443 444 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock, 445 u64 len, struct metapath *mp, gfs2_metadata_walker walker, 446 void *data) 447 { 448 struct metapath clone; 449 struct gfs2_inode *ip = GFS2_I(inode); 450 struct gfs2_sbd *sdp = GFS2_SB(inode); 451 const __be64 *start, *end, *ptr; 452 u64 factor = 1; 453 unsigned int hgt; 454 int ret = 0; 455 456 for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--) 457 factor *= sdp->sd_inptrs; 458 459 for (;;) { 460 u64 step; 461 462 /* Walk indirect block. */ 463 start = metapointer(hgt, mp); 464 end = metaend(hgt, mp); 465 466 step = (end - start) * factor; 467 if (step > len) 468 end = start + DIV_ROUND_UP_ULL(len, factor); 469 470 ptr = walker(mp, start, end, factor, data); 471 if (ptr == WALK_STOP) 472 break; 473 if (step >= len) 474 break; 475 len -= step; 476 if (ptr != WALK_NEXT) { 477 BUG_ON(!*ptr); 478 mp->mp_list[hgt] += ptr - start; 479 goto fill_up_metapath; 480 } 481 482 lower_metapath: 483 /* Decrease height of metapath. */ 484 if (mp != &clone) { 485 clone_metapath(&clone, mp); 486 mp = &clone; 487 } 488 brelse(mp->mp_bh[hgt]); 489 mp->mp_bh[hgt] = NULL; 490 if (!hgt) 491 break; 492 hgt--; 493 factor *= sdp->sd_inptrs; 494 495 /* Advance in metadata tree. */ 496 (mp->mp_list[hgt])++; 497 start = metapointer(hgt, mp); 498 end = metaend(hgt, mp); 499 if (start >= end) { 500 mp->mp_list[hgt] = 0; 501 if (!hgt) 502 break; 503 goto lower_metapath; 504 } 505 506 fill_up_metapath: 507 /* Increase height of metapath. */ 508 if (mp != &clone) { 509 clone_metapath(&clone, mp); 510 mp = &clone; 511 } 512 ret = fillup_metapath(ip, mp, ip->i_height - 1); 513 if (ret < 0) 514 break; 515 hgt += ret; 516 for (; ret; ret--) 517 do_div(factor, sdp->sd_inptrs); 518 mp->mp_aheight = hgt + 1; 519 } 520 if (mp == &clone) 521 release_metapath(mp); 522 return ret; 523 } 524 525 struct gfs2_hole_walker_args { 526 u64 blocks; 527 }; 528 529 static const __be64 *gfs2_hole_walker(struct metapath *mp, 530 const __be64 *start, const __be64 *end, 531 u64 factor, void *data) 532 { 533 struct gfs2_hole_walker_args *args = data; 534 const __be64 *ptr; 535 536 for (ptr = start; ptr < end; ptr++) { 537 if (*ptr) { 538 args->blocks += (ptr - start) * factor; 539 if (mp->mp_aheight == mp->mp_fheight) 540 return WALK_STOP; 541 return ptr; /* increase height */ 542 } 543 } 544 args->blocks += (end - start) * factor; 545 return WALK_NEXT; 546 } 547 548 /** 549 * gfs2_hole_size - figure out the size of a hole 550 * @inode: The inode 551 * @lblock: The logical starting block number 552 * @len: How far to look (in blocks) 553 * @mp: The metapath at lblock 554 * @iomap: The iomap to store the hole size in 555 * 556 * This function modifies @mp. 557 * 558 * Returns: errno on error 559 */ 560 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 561 struct metapath *mp, struct iomap *iomap) 562 { 563 struct gfs2_hole_walker_args args = { }; 564 int ret = 0; 565 566 ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args); 567 if (!ret) 568 iomap->length = args.blocks << inode->i_blkbits; 569 return ret; 570 } 571 572 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 573 struct gfs2_glock *gl, unsigned int i, 574 unsigned offset, u64 bn) 575 { 576 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 577 ((i > 1) ? sizeof(struct gfs2_meta_header) : 578 sizeof(struct gfs2_dinode))); 579 BUG_ON(i < 1); 580 BUG_ON(mp->mp_bh[i] != NULL); 581 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 582 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 583 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 584 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 585 ptr += offset; 586 *ptr = cpu_to_be64(bn); 587 return ptr; 588 } 589 590 enum alloc_state { 591 ALLOC_DATA = 0, 592 ALLOC_GROW_DEPTH = 1, 593 ALLOC_GROW_HEIGHT = 2, 594 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 595 }; 596 597 /** 598 * gfs2_iomap_alloc - Build a metadata tree of the requested height 599 * @inode: The GFS2 inode 600 * @iomap: The iomap structure 601 * @flags: iomap flags 602 * @mp: The metapath, with proper height information calculated 603 * 604 * In this routine we may have to alloc: 605 * i) Indirect blocks to grow the metadata tree height 606 * ii) Indirect blocks to fill in lower part of the metadata tree 607 * iii) Data blocks 608 * 609 * This function is called after gfs2_iomap_get, which works out the 610 * total number of blocks which we need via gfs2_alloc_size. 611 * 612 * We then do the actual allocation asking for an extent at a time (if 613 * enough contiguous free blocks are available, there will only be one 614 * allocation request per call) and uses the state machine to initialise 615 * the blocks in order. 616 * 617 * Right now, this function will allocate at most one indirect block 618 * worth of data -- with a default block size of 4K, that's slightly 619 * less than 2M. If this limitation is ever removed to allow huge 620 * allocations, we would probably still want to limit the iomap size we 621 * return to avoid stalling other tasks during huge writes; the next 622 * iomap iteration would then find the blocks already allocated. 623 * 624 * Returns: errno on error 625 */ 626 627 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 628 unsigned flags, struct metapath *mp) 629 { 630 struct gfs2_inode *ip = GFS2_I(inode); 631 struct gfs2_sbd *sdp = GFS2_SB(inode); 632 struct buffer_head *dibh = mp->mp_bh[0]; 633 u64 bn; 634 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 635 size_t dblks = iomap->length >> inode->i_blkbits; 636 const unsigned end_of_metadata = mp->mp_fheight - 1; 637 int ret; 638 enum alloc_state state; 639 __be64 *ptr; 640 __be64 zero_bn = 0; 641 642 BUG_ON(mp->mp_aheight < 1); 643 BUG_ON(dibh == NULL); 644 BUG_ON(dblks < 1); 645 646 gfs2_trans_add_meta(ip->i_gl, dibh); 647 648 down_write(&ip->i_rw_mutex); 649 650 if (mp->mp_fheight == mp->mp_aheight) { 651 /* Bottom indirect block exists */ 652 state = ALLOC_DATA; 653 } else { 654 /* Need to allocate indirect blocks */ 655 if (mp->mp_fheight == ip->i_height) { 656 /* Writing into existing tree, extend tree down */ 657 iblks = mp->mp_fheight - mp->mp_aheight; 658 state = ALLOC_GROW_DEPTH; 659 } else { 660 /* Building up tree height */ 661 state = ALLOC_GROW_HEIGHT; 662 iblks = mp->mp_fheight - ip->i_height; 663 branch_start = metapath_branch_start(mp); 664 iblks += (mp->mp_fheight - branch_start); 665 } 666 } 667 668 /* start of the second part of the function (state machine) */ 669 670 blks = dblks + iblks; 671 i = mp->mp_aheight; 672 do { 673 n = blks - alloced; 674 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 675 if (ret) 676 goto out; 677 alloced += n; 678 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 679 gfs2_trans_remove_revoke(sdp, bn, n); 680 switch (state) { 681 /* Growing height of tree */ 682 case ALLOC_GROW_HEIGHT: 683 if (i == 1) { 684 ptr = (__be64 *)(dibh->b_data + 685 sizeof(struct gfs2_dinode)); 686 zero_bn = *ptr; 687 } 688 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 689 i++, n--) 690 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 691 if (i - 1 == mp->mp_fheight - ip->i_height) { 692 i--; 693 gfs2_buffer_copy_tail(mp->mp_bh[i], 694 sizeof(struct gfs2_meta_header), 695 dibh, sizeof(struct gfs2_dinode)); 696 gfs2_buffer_clear_tail(dibh, 697 sizeof(struct gfs2_dinode) + 698 sizeof(__be64)); 699 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 700 sizeof(struct gfs2_meta_header)); 701 *ptr = zero_bn; 702 state = ALLOC_GROW_DEPTH; 703 for(i = branch_start; i < mp->mp_fheight; i++) { 704 if (mp->mp_bh[i] == NULL) 705 break; 706 brelse(mp->mp_bh[i]); 707 mp->mp_bh[i] = NULL; 708 } 709 i = branch_start; 710 } 711 if (n == 0) 712 break; 713 /* fall through - To branching from existing tree */ 714 case ALLOC_GROW_DEPTH: 715 if (i > 1 && i < mp->mp_fheight) 716 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 717 for (; i < mp->mp_fheight && n > 0; i++, n--) 718 gfs2_indirect_init(mp, ip->i_gl, i, 719 mp->mp_list[i-1], bn++); 720 if (i == mp->mp_fheight) 721 state = ALLOC_DATA; 722 if (n == 0) 723 break; 724 /* fall through - To tree complete, adding data blocks */ 725 case ALLOC_DATA: 726 BUG_ON(n > dblks); 727 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 728 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 729 dblks = n; 730 ptr = metapointer(end_of_metadata, mp); 731 iomap->addr = bn << inode->i_blkbits; 732 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 733 while (n-- > 0) 734 *ptr++ = cpu_to_be64(bn++); 735 break; 736 } 737 } while (iomap->addr == IOMAP_NULL_ADDR); 738 739 iomap->type = IOMAP_MAPPED; 740 iomap->length = (u64)dblks << inode->i_blkbits; 741 ip->i_height = mp->mp_fheight; 742 gfs2_add_inode_blocks(&ip->i_inode, alloced); 743 gfs2_dinode_out(ip, dibh->b_data); 744 out: 745 up_write(&ip->i_rw_mutex); 746 return ret; 747 } 748 749 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 750 751 /** 752 * gfs2_alloc_size - Compute the maximum allocation size 753 * @inode: The inode 754 * @mp: The metapath 755 * @size: Requested size in blocks 756 * 757 * Compute the maximum size of the next allocation at @mp. 758 * 759 * Returns: size in blocks 760 */ 761 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 762 { 763 struct gfs2_inode *ip = GFS2_I(inode); 764 struct gfs2_sbd *sdp = GFS2_SB(inode); 765 const __be64 *first, *ptr, *end; 766 767 /* 768 * For writes to stuffed files, this function is called twice via 769 * gfs2_iomap_get, before and after unstuffing. The size we return the 770 * first time needs to be large enough to get the reservation and 771 * allocation sizes right. The size we return the second time must 772 * be exact or else gfs2_iomap_alloc won't do the right thing. 773 */ 774 775 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 776 unsigned int maxsize = mp->mp_fheight > 1 ? 777 sdp->sd_inptrs : sdp->sd_diptrs; 778 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 779 if (size > maxsize) 780 size = maxsize; 781 return size; 782 } 783 784 first = metapointer(ip->i_height - 1, mp); 785 end = metaend(ip->i_height - 1, mp); 786 if (end - first > size) 787 end = first + size; 788 for (ptr = first; ptr < end; ptr++) { 789 if (*ptr) 790 break; 791 } 792 return ptr - first; 793 } 794 795 /** 796 * gfs2_iomap_get - Map blocks from an inode to disk blocks 797 * @inode: The inode 798 * @pos: Starting position in bytes 799 * @length: Length to map, in bytes 800 * @flags: iomap flags 801 * @iomap: The iomap structure 802 * @mp: The metapath 803 * 804 * Returns: errno 805 */ 806 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 807 unsigned flags, struct iomap *iomap, 808 struct metapath *mp) 809 { 810 struct gfs2_inode *ip = GFS2_I(inode); 811 struct gfs2_sbd *sdp = GFS2_SB(inode); 812 loff_t size = i_size_read(inode); 813 __be64 *ptr; 814 sector_t lblock; 815 sector_t lblock_stop; 816 int ret; 817 int eob; 818 u64 len; 819 struct buffer_head *dibh = NULL, *bh; 820 u8 height; 821 822 if (!length) 823 return -EINVAL; 824 825 down_read(&ip->i_rw_mutex); 826 827 ret = gfs2_meta_inode_buffer(ip, &dibh); 828 if (ret) 829 goto unlock; 830 mp->mp_bh[0] = dibh; 831 832 if (gfs2_is_stuffed(ip)) { 833 if (flags & IOMAP_WRITE) { 834 loff_t max_size = gfs2_max_stuffed_size(ip); 835 836 if (pos + length > max_size) 837 goto unstuff; 838 iomap->length = max_size; 839 } else { 840 if (pos >= size) { 841 if (flags & IOMAP_REPORT) { 842 ret = -ENOENT; 843 goto unlock; 844 } else { 845 /* report a hole */ 846 iomap->offset = pos; 847 iomap->length = length; 848 goto do_alloc; 849 } 850 } 851 iomap->length = size; 852 } 853 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 854 sizeof(struct gfs2_dinode); 855 iomap->type = IOMAP_INLINE; 856 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 857 goto out; 858 } 859 860 unstuff: 861 lblock = pos >> inode->i_blkbits; 862 iomap->offset = lblock << inode->i_blkbits; 863 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 864 len = lblock_stop - lblock + 1; 865 iomap->length = len << inode->i_blkbits; 866 867 height = ip->i_height; 868 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 869 height++; 870 find_metapath(sdp, lblock, mp, height); 871 if (height > ip->i_height || gfs2_is_stuffed(ip)) 872 goto do_alloc; 873 874 ret = lookup_metapath(ip, mp); 875 if (ret) 876 goto unlock; 877 878 if (mp->mp_aheight != ip->i_height) 879 goto do_alloc; 880 881 ptr = metapointer(ip->i_height - 1, mp); 882 if (*ptr == 0) 883 goto do_alloc; 884 885 bh = mp->mp_bh[ip->i_height - 1]; 886 len = gfs2_extent_length(bh, ptr, len, &eob); 887 888 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 889 iomap->length = len << inode->i_blkbits; 890 iomap->type = IOMAP_MAPPED; 891 iomap->flags |= IOMAP_F_MERGED; 892 if (eob) 893 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 894 895 out: 896 iomap->bdev = inode->i_sb->s_bdev; 897 unlock: 898 up_read(&ip->i_rw_mutex); 899 return ret; 900 901 do_alloc: 902 iomap->addr = IOMAP_NULL_ADDR; 903 iomap->type = IOMAP_HOLE; 904 if (flags & IOMAP_REPORT) { 905 if (pos >= size) 906 ret = -ENOENT; 907 else if (height == ip->i_height) 908 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 909 else 910 iomap->length = size - pos; 911 } else if (flags & IOMAP_WRITE) { 912 u64 alloc_size; 913 914 if (flags & IOMAP_DIRECT) 915 goto out; /* (see gfs2_file_direct_write) */ 916 917 len = gfs2_alloc_size(inode, mp, len); 918 alloc_size = len << inode->i_blkbits; 919 if (alloc_size < iomap->length) 920 iomap->length = alloc_size; 921 } else { 922 if (pos < size && height == ip->i_height) 923 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 924 } 925 goto out; 926 } 927 928 /** 929 * gfs2_lblk_to_dblk - convert logical block to disk block 930 * @inode: the inode of the file we're mapping 931 * @lblock: the block relative to the start of the file 932 * @dblock: the returned dblock, if no error 933 * 934 * This function maps a single block from a file logical block (relative to 935 * the start of the file) to a file system absolute block using iomap. 936 * 937 * Returns: the absolute file system block, or an error 938 */ 939 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock) 940 { 941 struct iomap iomap = { }; 942 struct metapath mp = { .mp_aheight = 1, }; 943 loff_t pos = (loff_t)lblock << inode->i_blkbits; 944 int ret; 945 946 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp); 947 release_metapath(&mp); 948 if (ret == 0) 949 *dblock = iomap.addr >> inode->i_blkbits; 950 951 return ret; 952 } 953 954 static int gfs2_write_lock(struct inode *inode) 955 { 956 struct gfs2_inode *ip = GFS2_I(inode); 957 struct gfs2_sbd *sdp = GFS2_SB(inode); 958 int error; 959 960 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 961 error = gfs2_glock_nq(&ip->i_gh); 962 if (error) 963 goto out_uninit; 964 if (&ip->i_inode == sdp->sd_rindex) { 965 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 966 967 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 968 GL_NOCACHE, &m_ip->i_gh); 969 if (error) 970 goto out_unlock; 971 } 972 return 0; 973 974 out_unlock: 975 gfs2_glock_dq(&ip->i_gh); 976 out_uninit: 977 gfs2_holder_uninit(&ip->i_gh); 978 return error; 979 } 980 981 static void gfs2_write_unlock(struct inode *inode) 982 { 983 struct gfs2_inode *ip = GFS2_I(inode); 984 struct gfs2_sbd *sdp = GFS2_SB(inode); 985 986 if (&ip->i_inode == sdp->sd_rindex) { 987 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 988 989 gfs2_glock_dq_uninit(&m_ip->i_gh); 990 } 991 gfs2_glock_dq_uninit(&ip->i_gh); 992 } 993 994 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 995 unsigned len, struct iomap *iomap) 996 { 997 struct gfs2_sbd *sdp = GFS2_SB(inode); 998 999 return gfs2_trans_begin(sdp, RES_DINODE + (len >> inode->i_blkbits), 0); 1000 } 1001 1002 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1003 unsigned copied, struct page *page, 1004 struct iomap *iomap) 1005 { 1006 struct gfs2_inode *ip = GFS2_I(inode); 1007 struct gfs2_sbd *sdp = GFS2_SB(inode); 1008 1009 if (page && !gfs2_is_stuffed(ip)) 1010 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1011 gfs2_trans_end(sdp); 1012 } 1013 1014 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1015 .page_prepare = gfs2_iomap_page_prepare, 1016 .page_done = gfs2_iomap_page_done, 1017 }; 1018 1019 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1020 loff_t length, unsigned flags, 1021 struct iomap *iomap, 1022 struct metapath *mp) 1023 { 1024 struct gfs2_inode *ip = GFS2_I(inode); 1025 struct gfs2_sbd *sdp = GFS2_SB(inode); 1026 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1027 bool unstuff, alloc_required; 1028 int ret; 1029 1030 ret = gfs2_write_lock(inode); 1031 if (ret) 1032 return ret; 1033 1034 unstuff = gfs2_is_stuffed(ip) && 1035 pos + length > gfs2_max_stuffed_size(ip); 1036 1037 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp); 1038 if (ret) 1039 goto out_unlock; 1040 1041 alloc_required = unstuff || iomap->type == IOMAP_HOLE; 1042 1043 if (alloc_required || gfs2_is_jdata(ip)) 1044 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1045 &ind_blocks); 1046 1047 if (alloc_required) { 1048 struct gfs2_alloc_parms ap = { 1049 .target = data_blocks + ind_blocks 1050 }; 1051 1052 ret = gfs2_quota_lock_check(ip, &ap); 1053 if (ret) 1054 goto out_unlock; 1055 1056 ret = gfs2_inplace_reserve(ip, &ap); 1057 if (ret) 1058 goto out_qunlock; 1059 } 1060 1061 rblocks = RES_DINODE + ind_blocks; 1062 if (gfs2_is_jdata(ip)) 1063 rblocks += data_blocks; 1064 if (ind_blocks || data_blocks) 1065 rblocks += RES_STATFS + RES_QUOTA; 1066 if (inode == sdp->sd_rindex) 1067 rblocks += 2 * RES_STATFS; 1068 if (alloc_required) 1069 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1070 1071 if (unstuff || iomap->type == IOMAP_HOLE) { 1072 struct gfs2_trans *tr; 1073 1074 ret = gfs2_trans_begin(sdp, rblocks, 1075 iomap->length >> inode->i_blkbits); 1076 if (ret) 1077 goto out_trans_fail; 1078 1079 if (unstuff) { 1080 ret = gfs2_unstuff_dinode(ip, NULL); 1081 if (ret) 1082 goto out_trans_end; 1083 release_metapath(mp); 1084 ret = gfs2_iomap_get(inode, iomap->offset, 1085 iomap->length, flags, iomap, mp); 1086 if (ret) 1087 goto out_trans_end; 1088 } 1089 1090 if (iomap->type == IOMAP_HOLE) { 1091 ret = gfs2_iomap_alloc(inode, iomap, flags, mp); 1092 if (ret) { 1093 gfs2_trans_end(sdp); 1094 gfs2_inplace_release(ip); 1095 punch_hole(ip, iomap->offset, iomap->length); 1096 goto out_qunlock; 1097 } 1098 } 1099 1100 tr = current->journal_info; 1101 if (tr->tr_num_buf_new) 1102 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1103 else 1104 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[0]); 1105 1106 gfs2_trans_end(sdp); 1107 } 1108 1109 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1110 iomap->page_ops = &gfs2_iomap_page_ops; 1111 return 0; 1112 1113 out_trans_end: 1114 gfs2_trans_end(sdp); 1115 out_trans_fail: 1116 if (alloc_required) 1117 gfs2_inplace_release(ip); 1118 out_qunlock: 1119 if (alloc_required) 1120 gfs2_quota_unlock(ip); 1121 out_unlock: 1122 gfs2_write_unlock(inode); 1123 return ret; 1124 } 1125 1126 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1127 unsigned flags, struct iomap *iomap) 1128 { 1129 struct gfs2_inode *ip = GFS2_I(inode); 1130 struct metapath mp = { .mp_aheight = 1, }; 1131 int ret; 1132 1133 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1134 1135 trace_gfs2_iomap_start(ip, pos, length, flags); 1136 if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) { 1137 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1138 } else { 1139 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1140 1141 /* 1142 * Silently fall back to buffered I/O for stuffed files or if 1143 * we've hot a hole (see gfs2_file_direct_write). 1144 */ 1145 if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) && 1146 iomap->type != IOMAP_MAPPED) 1147 ret = -ENOTBLK; 1148 } 1149 release_metapath(&mp); 1150 trace_gfs2_iomap_end(ip, iomap, ret); 1151 return ret; 1152 } 1153 1154 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1155 ssize_t written, unsigned flags, struct iomap *iomap) 1156 { 1157 struct gfs2_inode *ip = GFS2_I(inode); 1158 struct gfs2_sbd *sdp = GFS2_SB(inode); 1159 1160 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE) 1161 goto out; 1162 1163 if (!gfs2_is_stuffed(ip)) 1164 gfs2_ordered_add_inode(ip); 1165 1166 if (inode == sdp->sd_rindex) 1167 adjust_fs_space(inode); 1168 1169 gfs2_inplace_release(ip); 1170 1171 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1172 /* Deallocate blocks that were just allocated. */ 1173 loff_t blockmask = i_blocksize(inode) - 1; 1174 loff_t end = (pos + length) & ~blockmask; 1175 1176 pos = (pos + written + blockmask) & ~blockmask; 1177 if (pos < end) { 1178 truncate_pagecache_range(inode, pos, end - 1); 1179 punch_hole(ip, pos, end - pos); 1180 } 1181 } 1182 1183 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1184 gfs2_quota_unlock(ip); 1185 gfs2_write_unlock(inode); 1186 1187 out: 1188 return 0; 1189 } 1190 1191 const struct iomap_ops gfs2_iomap_ops = { 1192 .iomap_begin = gfs2_iomap_begin, 1193 .iomap_end = gfs2_iomap_end, 1194 }; 1195 1196 /** 1197 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1198 * @inode: The inode 1199 * @lblock: The logical block number 1200 * @bh_map: The bh to be mapped 1201 * @create: True if its ok to alloc blocks to satify the request 1202 * 1203 * The size of the requested mapping is defined in bh_map->b_size. 1204 * 1205 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1206 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1207 * bh_map->b_size to indicate the size of the mapping when @lblock and 1208 * successive blocks are mapped, up to the requested size. 1209 * 1210 * Sets buffer_boundary() if a read of metadata will be required 1211 * before the next block can be mapped. Sets buffer_new() if new 1212 * blocks were allocated. 1213 * 1214 * Returns: errno 1215 */ 1216 1217 int gfs2_block_map(struct inode *inode, sector_t lblock, 1218 struct buffer_head *bh_map, int create) 1219 { 1220 struct gfs2_inode *ip = GFS2_I(inode); 1221 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1222 loff_t length = bh_map->b_size; 1223 struct metapath mp = { .mp_aheight = 1, }; 1224 struct iomap iomap = { }; 1225 int ret; 1226 1227 clear_buffer_mapped(bh_map); 1228 clear_buffer_new(bh_map); 1229 clear_buffer_boundary(bh_map); 1230 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1231 1232 if (create) { 1233 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1234 if (!ret && iomap.type == IOMAP_HOLE) 1235 ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp); 1236 release_metapath(&mp); 1237 } else { 1238 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1239 release_metapath(&mp); 1240 } 1241 if (ret) 1242 goto out; 1243 1244 if (iomap.length > bh_map->b_size) { 1245 iomap.length = bh_map->b_size; 1246 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1247 } 1248 if (iomap.addr != IOMAP_NULL_ADDR) 1249 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1250 bh_map->b_size = iomap.length; 1251 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1252 set_buffer_boundary(bh_map); 1253 if (iomap.flags & IOMAP_F_NEW) 1254 set_buffer_new(bh_map); 1255 1256 out: 1257 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1258 return ret; 1259 } 1260 1261 /* 1262 * Deprecated: do not use in new code 1263 */ 1264 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1265 { 1266 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1267 int ret; 1268 int create = *new; 1269 1270 BUG_ON(!extlen); 1271 BUG_ON(!dblock); 1272 BUG_ON(!new); 1273 1274 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1275 ret = gfs2_block_map(inode, lblock, &bh, create); 1276 *extlen = bh.b_size >> inode->i_blkbits; 1277 *dblock = bh.b_blocknr; 1278 if (buffer_new(&bh)) 1279 *new = 1; 1280 else 1281 *new = 0; 1282 return ret; 1283 } 1284 1285 /** 1286 * gfs2_block_zero_range - Deal with zeroing out data 1287 * 1288 * This is partly borrowed from ext3. 1289 */ 1290 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1291 unsigned int length) 1292 { 1293 struct address_space *mapping = inode->i_mapping; 1294 struct gfs2_inode *ip = GFS2_I(inode); 1295 unsigned long index = from >> PAGE_SHIFT; 1296 unsigned offset = from & (PAGE_SIZE-1); 1297 unsigned blocksize, iblock, pos; 1298 struct buffer_head *bh; 1299 struct page *page; 1300 int err; 1301 1302 page = find_or_create_page(mapping, index, GFP_NOFS); 1303 if (!page) 1304 return 0; 1305 1306 blocksize = inode->i_sb->s_blocksize; 1307 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 1308 1309 if (!page_has_buffers(page)) 1310 create_empty_buffers(page, blocksize, 0); 1311 1312 /* Find the buffer that contains "offset" */ 1313 bh = page_buffers(page); 1314 pos = blocksize; 1315 while (offset >= pos) { 1316 bh = bh->b_this_page; 1317 iblock++; 1318 pos += blocksize; 1319 } 1320 1321 err = 0; 1322 1323 if (!buffer_mapped(bh)) { 1324 gfs2_block_map(inode, iblock, bh, 0); 1325 /* unmapped? It's a hole - nothing to do */ 1326 if (!buffer_mapped(bh)) 1327 goto unlock; 1328 } 1329 1330 /* Ok, it's mapped. Make sure it's up-to-date */ 1331 if (PageUptodate(page)) 1332 set_buffer_uptodate(bh); 1333 1334 if (!buffer_uptodate(bh)) { 1335 err = -EIO; 1336 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1337 wait_on_buffer(bh); 1338 /* Uhhuh. Read error. Complain and punt. */ 1339 if (!buffer_uptodate(bh)) 1340 goto unlock; 1341 err = 0; 1342 } 1343 1344 if (gfs2_is_jdata(ip)) 1345 gfs2_trans_add_data(ip->i_gl, bh); 1346 else 1347 gfs2_ordered_add_inode(ip); 1348 1349 zero_user(page, offset, length); 1350 mark_buffer_dirty(bh); 1351 unlock: 1352 unlock_page(page); 1353 put_page(page); 1354 return err; 1355 } 1356 1357 #define GFS2_JTRUNC_REVOKES 8192 1358 1359 /** 1360 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1361 * @inode: The inode being truncated 1362 * @oldsize: The original (larger) size 1363 * @newsize: The new smaller size 1364 * 1365 * With jdata files, we have to journal a revoke for each block which is 1366 * truncated. As a result, we need to split this into separate transactions 1367 * if the number of pages being truncated gets too large. 1368 */ 1369 1370 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1371 { 1372 struct gfs2_sbd *sdp = GFS2_SB(inode); 1373 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1374 u64 chunk; 1375 int error; 1376 1377 while (oldsize != newsize) { 1378 struct gfs2_trans *tr; 1379 unsigned int offs; 1380 1381 chunk = oldsize - newsize; 1382 if (chunk > max_chunk) 1383 chunk = max_chunk; 1384 1385 offs = oldsize & ~PAGE_MASK; 1386 if (offs && chunk > PAGE_SIZE) 1387 chunk = offs + ((chunk - offs) & PAGE_MASK); 1388 1389 truncate_pagecache(inode, oldsize - chunk); 1390 oldsize -= chunk; 1391 1392 tr = current->journal_info; 1393 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1394 continue; 1395 1396 gfs2_trans_end(sdp); 1397 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1398 if (error) 1399 return error; 1400 } 1401 1402 return 0; 1403 } 1404 1405 static int trunc_start(struct inode *inode, u64 newsize) 1406 { 1407 struct gfs2_inode *ip = GFS2_I(inode); 1408 struct gfs2_sbd *sdp = GFS2_SB(inode); 1409 struct buffer_head *dibh = NULL; 1410 int journaled = gfs2_is_jdata(ip); 1411 u64 oldsize = inode->i_size; 1412 int error; 1413 1414 if (journaled) 1415 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1416 else 1417 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1418 if (error) 1419 return error; 1420 1421 error = gfs2_meta_inode_buffer(ip, &dibh); 1422 if (error) 1423 goto out; 1424 1425 gfs2_trans_add_meta(ip->i_gl, dibh); 1426 1427 if (gfs2_is_stuffed(ip)) { 1428 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1429 } else { 1430 unsigned int blocksize = i_blocksize(inode); 1431 unsigned int offs = newsize & (blocksize - 1); 1432 if (offs) { 1433 error = gfs2_block_zero_range(inode, newsize, 1434 blocksize - offs); 1435 if (error) 1436 goto out; 1437 } 1438 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1439 } 1440 1441 i_size_write(inode, newsize); 1442 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1443 gfs2_dinode_out(ip, dibh->b_data); 1444 1445 if (journaled) 1446 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1447 else 1448 truncate_pagecache(inode, newsize); 1449 1450 out: 1451 brelse(dibh); 1452 if (current->journal_info) 1453 gfs2_trans_end(sdp); 1454 return error; 1455 } 1456 1457 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1458 struct iomap *iomap) 1459 { 1460 struct metapath mp = { .mp_aheight = 1, }; 1461 int ret; 1462 1463 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1464 if (!ret && iomap->type == IOMAP_HOLE) 1465 ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp); 1466 release_metapath(&mp); 1467 return ret; 1468 } 1469 1470 /** 1471 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1472 * @ip: inode 1473 * @rg_gh: holder of resource group glock 1474 * @bh: buffer head to sweep 1475 * @start: starting point in bh 1476 * @end: end point in bh 1477 * @meta: true if bh points to metadata (rather than data) 1478 * @btotal: place to keep count of total blocks freed 1479 * 1480 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1481 * free, and free them all. However, we do it one rgrp at a time. If this 1482 * block has references to multiple rgrps, we break it into individual 1483 * transactions. This allows other processes to use the rgrps while we're 1484 * focused on a single one, for better concurrency / performance. 1485 * At every transaction boundary, we rewrite the inode into the journal. 1486 * That way the bitmaps are kept consistent with the inode and we can recover 1487 * if we're interrupted by power-outages. 1488 * 1489 * Returns: 0, or return code if an error occurred. 1490 * *btotal has the total number of blocks freed 1491 */ 1492 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1493 struct buffer_head *bh, __be64 *start, __be64 *end, 1494 bool meta, u32 *btotal) 1495 { 1496 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1497 struct gfs2_rgrpd *rgd; 1498 struct gfs2_trans *tr; 1499 __be64 *p; 1500 int blks_outside_rgrp; 1501 u64 bn, bstart, isize_blks; 1502 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1503 int ret = 0; 1504 bool buf_in_tr = false; /* buffer was added to transaction */ 1505 1506 more_rgrps: 1507 rgd = NULL; 1508 if (gfs2_holder_initialized(rd_gh)) { 1509 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1510 gfs2_assert_withdraw(sdp, 1511 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1512 } 1513 blks_outside_rgrp = 0; 1514 bstart = 0; 1515 blen = 0; 1516 1517 for (p = start; p < end; p++) { 1518 if (!*p) 1519 continue; 1520 bn = be64_to_cpu(*p); 1521 1522 if (rgd) { 1523 if (!rgrp_contains_block(rgd, bn)) { 1524 blks_outside_rgrp++; 1525 continue; 1526 } 1527 } else { 1528 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1529 if (unlikely(!rgd)) { 1530 ret = -EIO; 1531 goto out; 1532 } 1533 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1534 0, rd_gh); 1535 if (ret) 1536 goto out; 1537 1538 /* Must be done with the rgrp glock held: */ 1539 if (gfs2_rs_active(&ip->i_res) && 1540 rgd == ip->i_res.rs_rbm.rgd) 1541 gfs2_rs_deltree(&ip->i_res); 1542 } 1543 1544 /* The size of our transactions will be unknown until we 1545 actually process all the metadata blocks that relate to 1546 the rgrp. So we estimate. We know it can't be more than 1547 the dinode's i_blocks and we don't want to exceed the 1548 journal flush threshold, sd_log_thresh2. */ 1549 if (current->journal_info == NULL) { 1550 unsigned int jblocks_rqsted, revokes; 1551 1552 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1553 RES_INDIRECT; 1554 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1555 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1556 jblocks_rqsted += 1557 atomic_read(&sdp->sd_log_thresh2); 1558 else 1559 jblocks_rqsted += isize_blks; 1560 revokes = jblocks_rqsted; 1561 if (meta) 1562 revokes += end - start; 1563 else if (ip->i_depth) 1564 revokes += sdp->sd_inptrs; 1565 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1566 if (ret) 1567 goto out_unlock; 1568 down_write(&ip->i_rw_mutex); 1569 } 1570 /* check if we will exceed the transaction blocks requested */ 1571 tr = current->journal_info; 1572 if (tr->tr_num_buf_new + RES_STATFS + 1573 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1574 /* We set blks_outside_rgrp to ensure the loop will 1575 be repeated for the same rgrp, but with a new 1576 transaction. */ 1577 blks_outside_rgrp++; 1578 /* This next part is tricky. If the buffer was added 1579 to the transaction, we've already set some block 1580 pointers to 0, so we better follow through and free 1581 them, or we will introduce corruption (so break). 1582 This may be impossible, or at least rare, but I 1583 decided to cover the case regardless. 1584 1585 If the buffer was not added to the transaction 1586 (this call), doing so would exceed our transaction 1587 size, so we need to end the transaction and start a 1588 new one (so goto). */ 1589 1590 if (buf_in_tr) 1591 break; 1592 goto out_unlock; 1593 } 1594 1595 gfs2_trans_add_meta(ip->i_gl, bh); 1596 buf_in_tr = true; 1597 *p = 0; 1598 if (bstart + blen == bn) { 1599 blen++; 1600 continue; 1601 } 1602 if (bstart) { 1603 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1604 (*btotal) += blen; 1605 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1606 } 1607 bstart = bn; 1608 blen = 1; 1609 } 1610 if (bstart) { 1611 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1612 (*btotal) += blen; 1613 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1614 } 1615 out_unlock: 1616 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1617 outside the rgrp we just processed, 1618 do it all over again. */ 1619 if (current->journal_info) { 1620 struct buffer_head *dibh; 1621 1622 ret = gfs2_meta_inode_buffer(ip, &dibh); 1623 if (ret) 1624 goto out; 1625 1626 /* Every transaction boundary, we rewrite the dinode 1627 to keep its di_blocks current in case of failure. */ 1628 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1629 current_time(&ip->i_inode); 1630 gfs2_trans_add_meta(ip->i_gl, dibh); 1631 gfs2_dinode_out(ip, dibh->b_data); 1632 brelse(dibh); 1633 up_write(&ip->i_rw_mutex); 1634 gfs2_trans_end(sdp); 1635 } 1636 gfs2_glock_dq_uninit(rd_gh); 1637 cond_resched(); 1638 goto more_rgrps; 1639 } 1640 out: 1641 return ret; 1642 } 1643 1644 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1645 { 1646 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1647 return false; 1648 return true; 1649 } 1650 1651 /** 1652 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1653 * @mp: starting metapath 1654 * @h: desired height to search 1655 * 1656 * Assumes the metapath is valid (with buffers) out to height h. 1657 * Returns: true if a non-null pointer was found in the metapath buffer 1658 * false if all remaining pointers are NULL in the buffer 1659 */ 1660 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1661 unsigned int h, 1662 __u16 *end_list, unsigned int end_aligned) 1663 { 1664 struct buffer_head *bh = mp->mp_bh[h]; 1665 __be64 *first, *ptr, *end; 1666 1667 first = metaptr1(h, mp); 1668 ptr = first + mp->mp_list[h]; 1669 end = (__be64 *)(bh->b_data + bh->b_size); 1670 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1671 bool keep_end = h < end_aligned; 1672 end = first + end_list[h] + keep_end; 1673 } 1674 1675 while (ptr < end) { 1676 if (*ptr) { /* if we have a non-null pointer */ 1677 mp->mp_list[h] = ptr - first; 1678 h++; 1679 if (h < GFS2_MAX_META_HEIGHT) 1680 mp->mp_list[h] = 0; 1681 return true; 1682 } 1683 ptr++; 1684 } 1685 return false; 1686 } 1687 1688 enum dealloc_states { 1689 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1690 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1691 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1692 DEALLOC_DONE = 3, /* process complete */ 1693 }; 1694 1695 static inline void 1696 metapointer_range(struct metapath *mp, int height, 1697 __u16 *start_list, unsigned int start_aligned, 1698 __u16 *end_list, unsigned int end_aligned, 1699 __be64 **start, __be64 **end) 1700 { 1701 struct buffer_head *bh = mp->mp_bh[height]; 1702 __be64 *first; 1703 1704 first = metaptr1(height, mp); 1705 *start = first; 1706 if (mp_eq_to_hgt(mp, start_list, height)) { 1707 bool keep_start = height < start_aligned; 1708 *start = first + start_list[height] + keep_start; 1709 } 1710 *end = (__be64 *)(bh->b_data + bh->b_size); 1711 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1712 bool keep_end = height < end_aligned; 1713 *end = first + end_list[height] + keep_end; 1714 } 1715 } 1716 1717 static inline bool walk_done(struct gfs2_sbd *sdp, 1718 struct metapath *mp, int height, 1719 __u16 *end_list, unsigned int end_aligned) 1720 { 1721 __u16 end; 1722 1723 if (end_list) { 1724 bool keep_end = height < end_aligned; 1725 if (!mp_eq_to_hgt(mp, end_list, height)) 1726 return false; 1727 end = end_list[height] + keep_end; 1728 } else 1729 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1730 return mp->mp_list[height] >= end; 1731 } 1732 1733 /** 1734 * punch_hole - deallocate blocks in a file 1735 * @ip: inode to truncate 1736 * @offset: the start of the hole 1737 * @length: the size of the hole (or 0 for truncate) 1738 * 1739 * Punch a hole into a file or truncate a file at a given position. This 1740 * function operates in whole blocks (@offset and @length are rounded 1741 * accordingly); partially filled blocks must be cleared otherwise. 1742 * 1743 * This function works from the bottom up, and from the right to the left. In 1744 * other words, it strips off the highest layer (data) before stripping any of 1745 * the metadata. Doing it this way is best in case the operation is interrupted 1746 * by power failure, etc. The dinode is rewritten in every transaction to 1747 * guarantee integrity. 1748 */ 1749 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1750 { 1751 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1752 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1753 struct metapath mp = {}; 1754 struct buffer_head *dibh, *bh; 1755 struct gfs2_holder rd_gh; 1756 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1757 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1758 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1759 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1760 unsigned int start_aligned, uninitialized_var(end_aligned); 1761 unsigned int strip_h = ip->i_height - 1; 1762 u32 btotal = 0; 1763 int ret, state; 1764 int mp_h; /* metapath buffers are read in to this height */ 1765 u64 prev_bnr = 0; 1766 __be64 *start, *end; 1767 1768 if (offset >= maxsize) { 1769 /* 1770 * The starting point lies beyond the allocated meta-data; 1771 * there are no blocks do deallocate. 1772 */ 1773 return 0; 1774 } 1775 1776 /* 1777 * The start position of the hole is defined by lblock, start_list, and 1778 * start_aligned. The end position of the hole is defined by lend, 1779 * end_list, and end_aligned. 1780 * 1781 * start_aligned and end_aligned define down to which height the start 1782 * and end positions are aligned to the metadata tree (i.e., the 1783 * position is a multiple of the metadata granularity at the height 1784 * above). This determines at which heights additional meta pointers 1785 * needs to be preserved for the remaining data. 1786 */ 1787 1788 if (length) { 1789 u64 end_offset = offset + length; 1790 u64 lend; 1791 1792 /* 1793 * Clip the end at the maximum file size for the given height: 1794 * that's how far the metadata goes; files bigger than that 1795 * will have additional layers of indirection. 1796 */ 1797 if (end_offset > maxsize) 1798 end_offset = maxsize; 1799 lend = end_offset >> bsize_shift; 1800 1801 if (lblock >= lend) 1802 return 0; 1803 1804 find_metapath(sdp, lend, &mp, ip->i_height); 1805 end_list = __end_list; 1806 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1807 1808 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1809 if (end_list[mp_h]) 1810 break; 1811 } 1812 end_aligned = mp_h; 1813 } 1814 1815 find_metapath(sdp, lblock, &mp, ip->i_height); 1816 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1817 1818 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1819 if (start_list[mp_h]) 1820 break; 1821 } 1822 start_aligned = mp_h; 1823 1824 ret = gfs2_meta_inode_buffer(ip, &dibh); 1825 if (ret) 1826 return ret; 1827 1828 mp.mp_bh[0] = dibh; 1829 ret = lookup_metapath(ip, &mp); 1830 if (ret) 1831 goto out_metapath; 1832 1833 /* issue read-ahead on metadata */ 1834 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1835 metapointer_range(&mp, mp_h, start_list, start_aligned, 1836 end_list, end_aligned, &start, &end); 1837 gfs2_metapath_ra(ip->i_gl, start, end); 1838 } 1839 1840 if (mp.mp_aheight == ip->i_height) 1841 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1842 else 1843 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1844 1845 ret = gfs2_rindex_update(sdp); 1846 if (ret) 1847 goto out_metapath; 1848 1849 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1850 if (ret) 1851 goto out_metapath; 1852 gfs2_holder_mark_uninitialized(&rd_gh); 1853 1854 mp_h = strip_h; 1855 1856 while (state != DEALLOC_DONE) { 1857 switch (state) { 1858 /* Truncate a full metapath at the given strip height. 1859 * Note that strip_h == mp_h in order to be in this state. */ 1860 case DEALLOC_MP_FULL: 1861 bh = mp.mp_bh[mp_h]; 1862 gfs2_assert_withdraw(sdp, bh); 1863 if (gfs2_assert_withdraw(sdp, 1864 prev_bnr != bh->b_blocknr)) { 1865 printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, " 1866 "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n", 1867 sdp->sd_fsname, 1868 (unsigned long long)ip->i_no_addr, 1869 prev_bnr, ip->i_height, strip_h, mp_h); 1870 } 1871 prev_bnr = bh->b_blocknr; 1872 1873 if (gfs2_metatype_check(sdp, bh, 1874 (mp_h ? GFS2_METATYPE_IN : 1875 GFS2_METATYPE_DI))) { 1876 ret = -EIO; 1877 goto out; 1878 } 1879 1880 /* 1881 * Below, passing end_aligned as 0 gives us the 1882 * metapointer range excluding the end point: the end 1883 * point is the first metapath we must not deallocate! 1884 */ 1885 1886 metapointer_range(&mp, mp_h, start_list, start_aligned, 1887 end_list, 0 /* end_aligned */, 1888 &start, &end); 1889 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1890 start, end, 1891 mp_h != ip->i_height - 1, 1892 &btotal); 1893 1894 /* If we hit an error or just swept dinode buffer, 1895 just exit. */ 1896 if (ret || !mp_h) { 1897 state = DEALLOC_DONE; 1898 break; 1899 } 1900 state = DEALLOC_MP_LOWER; 1901 break; 1902 1903 /* lower the metapath strip height */ 1904 case DEALLOC_MP_LOWER: 1905 /* We're done with the current buffer, so release it, 1906 unless it's the dinode buffer. Then back up to the 1907 previous pointer. */ 1908 if (mp_h) { 1909 brelse(mp.mp_bh[mp_h]); 1910 mp.mp_bh[mp_h] = NULL; 1911 } 1912 /* If we can't get any lower in height, we've stripped 1913 off all we can. Next step is to back up and start 1914 stripping the previous level of metadata. */ 1915 if (mp_h == 0) { 1916 strip_h--; 1917 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1918 mp_h = strip_h; 1919 state = DEALLOC_FILL_MP; 1920 break; 1921 } 1922 mp.mp_list[mp_h] = 0; 1923 mp_h--; /* search one metadata height down */ 1924 mp.mp_list[mp_h]++; 1925 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1926 break; 1927 /* Here we've found a part of the metapath that is not 1928 * allocated. We need to search at that height for the 1929 * next non-null pointer. */ 1930 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1931 state = DEALLOC_FILL_MP; 1932 mp_h++; 1933 } 1934 /* No more non-null pointers at this height. Back up 1935 to the previous height and try again. */ 1936 break; /* loop around in the same state */ 1937 1938 /* Fill the metapath with buffers to the given height. */ 1939 case DEALLOC_FILL_MP: 1940 /* Fill the buffers out to the current height. */ 1941 ret = fillup_metapath(ip, &mp, mp_h); 1942 if (ret < 0) 1943 goto out; 1944 1945 /* On the first pass, issue read-ahead on metadata. */ 1946 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1947 unsigned int height = mp.mp_aheight - 1; 1948 1949 /* No read-ahead for data blocks. */ 1950 if (mp.mp_aheight - 1 == strip_h) 1951 height--; 1952 1953 for (; height >= mp.mp_aheight - ret; height--) { 1954 metapointer_range(&mp, height, 1955 start_list, start_aligned, 1956 end_list, end_aligned, 1957 &start, &end); 1958 gfs2_metapath_ra(ip->i_gl, start, end); 1959 } 1960 } 1961 1962 /* If buffers found for the entire strip height */ 1963 if (mp.mp_aheight - 1 == strip_h) { 1964 state = DEALLOC_MP_FULL; 1965 break; 1966 } 1967 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1968 mp_h = mp.mp_aheight - 1; 1969 1970 /* If we find a non-null block pointer, crawl a bit 1971 higher up in the metapath and try again, otherwise 1972 we need to look lower for a new starting point. */ 1973 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1974 mp_h++; 1975 else 1976 state = DEALLOC_MP_LOWER; 1977 break; 1978 } 1979 } 1980 1981 if (btotal) { 1982 if (current->journal_info == NULL) { 1983 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1984 RES_QUOTA, 0); 1985 if (ret) 1986 goto out; 1987 down_write(&ip->i_rw_mutex); 1988 } 1989 gfs2_statfs_change(sdp, 0, +btotal, 0); 1990 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1991 ip->i_inode.i_gid); 1992 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1993 gfs2_trans_add_meta(ip->i_gl, dibh); 1994 gfs2_dinode_out(ip, dibh->b_data); 1995 up_write(&ip->i_rw_mutex); 1996 gfs2_trans_end(sdp); 1997 } 1998 1999 out: 2000 if (gfs2_holder_initialized(&rd_gh)) 2001 gfs2_glock_dq_uninit(&rd_gh); 2002 if (current->journal_info) { 2003 up_write(&ip->i_rw_mutex); 2004 gfs2_trans_end(sdp); 2005 cond_resched(); 2006 } 2007 gfs2_quota_unhold(ip); 2008 out_metapath: 2009 release_metapath(&mp); 2010 return ret; 2011 } 2012 2013 static int trunc_end(struct gfs2_inode *ip) 2014 { 2015 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2016 struct buffer_head *dibh; 2017 int error; 2018 2019 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2020 if (error) 2021 return error; 2022 2023 down_write(&ip->i_rw_mutex); 2024 2025 error = gfs2_meta_inode_buffer(ip, &dibh); 2026 if (error) 2027 goto out; 2028 2029 if (!i_size_read(&ip->i_inode)) { 2030 ip->i_height = 0; 2031 ip->i_goal = ip->i_no_addr; 2032 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2033 gfs2_ordered_del_inode(ip); 2034 } 2035 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2036 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2037 2038 gfs2_trans_add_meta(ip->i_gl, dibh); 2039 gfs2_dinode_out(ip, dibh->b_data); 2040 brelse(dibh); 2041 2042 out: 2043 up_write(&ip->i_rw_mutex); 2044 gfs2_trans_end(sdp); 2045 return error; 2046 } 2047 2048 /** 2049 * do_shrink - make a file smaller 2050 * @inode: the inode 2051 * @newsize: the size to make the file 2052 * 2053 * Called with an exclusive lock on @inode. The @size must 2054 * be equal to or smaller than the current inode size. 2055 * 2056 * Returns: errno 2057 */ 2058 2059 static int do_shrink(struct inode *inode, u64 newsize) 2060 { 2061 struct gfs2_inode *ip = GFS2_I(inode); 2062 int error; 2063 2064 error = trunc_start(inode, newsize); 2065 if (error < 0) 2066 return error; 2067 if (gfs2_is_stuffed(ip)) 2068 return 0; 2069 2070 error = punch_hole(ip, newsize, 0); 2071 if (error == 0) 2072 error = trunc_end(ip); 2073 2074 return error; 2075 } 2076 2077 void gfs2_trim_blocks(struct inode *inode) 2078 { 2079 int ret; 2080 2081 ret = do_shrink(inode, inode->i_size); 2082 WARN_ON(ret != 0); 2083 } 2084 2085 /** 2086 * do_grow - Touch and update inode size 2087 * @inode: The inode 2088 * @size: The new size 2089 * 2090 * This function updates the timestamps on the inode and 2091 * may also increase the size of the inode. This function 2092 * must not be called with @size any smaller than the current 2093 * inode size. 2094 * 2095 * Although it is not strictly required to unstuff files here, 2096 * earlier versions of GFS2 have a bug in the stuffed file reading 2097 * code which will result in a buffer overrun if the size is larger 2098 * than the max stuffed file size. In order to prevent this from 2099 * occurring, such files are unstuffed, but in other cases we can 2100 * just update the inode size directly. 2101 * 2102 * Returns: 0 on success, or -ve on error 2103 */ 2104 2105 static int do_grow(struct inode *inode, u64 size) 2106 { 2107 struct gfs2_inode *ip = GFS2_I(inode); 2108 struct gfs2_sbd *sdp = GFS2_SB(inode); 2109 struct gfs2_alloc_parms ap = { .target = 1, }; 2110 struct buffer_head *dibh; 2111 int error; 2112 int unstuff = 0; 2113 2114 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2115 error = gfs2_quota_lock_check(ip, &ap); 2116 if (error) 2117 return error; 2118 2119 error = gfs2_inplace_reserve(ip, &ap); 2120 if (error) 2121 goto do_grow_qunlock; 2122 unstuff = 1; 2123 } 2124 2125 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2126 (unstuff && 2127 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2128 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2129 0 : RES_QUOTA), 0); 2130 if (error) 2131 goto do_grow_release; 2132 2133 if (unstuff) { 2134 error = gfs2_unstuff_dinode(ip, NULL); 2135 if (error) 2136 goto do_end_trans; 2137 } 2138 2139 error = gfs2_meta_inode_buffer(ip, &dibh); 2140 if (error) 2141 goto do_end_trans; 2142 2143 i_size_write(inode, size); 2144 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2145 gfs2_trans_add_meta(ip->i_gl, dibh); 2146 gfs2_dinode_out(ip, dibh->b_data); 2147 brelse(dibh); 2148 2149 do_end_trans: 2150 gfs2_trans_end(sdp); 2151 do_grow_release: 2152 if (unstuff) { 2153 gfs2_inplace_release(ip); 2154 do_grow_qunlock: 2155 gfs2_quota_unlock(ip); 2156 } 2157 return error; 2158 } 2159 2160 /** 2161 * gfs2_setattr_size - make a file a given size 2162 * @inode: the inode 2163 * @newsize: the size to make the file 2164 * 2165 * The file size can grow, shrink, or stay the same size. This 2166 * is called holding i_rwsem and an exclusive glock on the inode 2167 * in question. 2168 * 2169 * Returns: errno 2170 */ 2171 2172 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2173 { 2174 struct gfs2_inode *ip = GFS2_I(inode); 2175 int ret; 2176 2177 BUG_ON(!S_ISREG(inode->i_mode)); 2178 2179 ret = inode_newsize_ok(inode, newsize); 2180 if (ret) 2181 return ret; 2182 2183 inode_dio_wait(inode); 2184 2185 ret = gfs2_rsqa_alloc(ip); 2186 if (ret) 2187 goto out; 2188 2189 if (newsize >= inode->i_size) { 2190 ret = do_grow(inode, newsize); 2191 goto out; 2192 } 2193 2194 ret = do_shrink(inode, newsize); 2195 out: 2196 gfs2_rsqa_delete(ip, NULL); 2197 return ret; 2198 } 2199 2200 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2201 { 2202 int error; 2203 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2204 if (!error) 2205 error = trunc_end(ip); 2206 return error; 2207 } 2208 2209 int gfs2_file_dealloc(struct gfs2_inode *ip) 2210 { 2211 return punch_hole(ip, 0, 0); 2212 } 2213 2214 /** 2215 * gfs2_free_journal_extents - Free cached journal bmap info 2216 * @jd: The journal 2217 * 2218 */ 2219 2220 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2221 { 2222 struct gfs2_journal_extent *jext; 2223 2224 while(!list_empty(&jd->extent_list)) { 2225 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 2226 list_del(&jext->list); 2227 kfree(jext); 2228 } 2229 } 2230 2231 /** 2232 * gfs2_add_jextent - Add or merge a new extent to extent cache 2233 * @jd: The journal descriptor 2234 * @lblock: The logical block at start of new extent 2235 * @dblock: The physical block at start of new extent 2236 * @blocks: Size of extent in fs blocks 2237 * 2238 * Returns: 0 on success or -ENOMEM 2239 */ 2240 2241 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2242 { 2243 struct gfs2_journal_extent *jext; 2244 2245 if (!list_empty(&jd->extent_list)) { 2246 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 2247 if ((jext->dblock + jext->blocks) == dblock) { 2248 jext->blocks += blocks; 2249 return 0; 2250 } 2251 } 2252 2253 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2254 if (jext == NULL) 2255 return -ENOMEM; 2256 jext->dblock = dblock; 2257 jext->lblock = lblock; 2258 jext->blocks = blocks; 2259 list_add_tail(&jext->list, &jd->extent_list); 2260 jd->nr_extents++; 2261 return 0; 2262 } 2263 2264 /** 2265 * gfs2_map_journal_extents - Cache journal bmap info 2266 * @sdp: The super block 2267 * @jd: The journal to map 2268 * 2269 * Create a reusable "extent" mapping from all logical 2270 * blocks to all physical blocks for the given journal. This will save 2271 * us time when writing journal blocks. Most journals will have only one 2272 * extent that maps all their logical blocks. That's because gfs2.mkfs 2273 * arranges the journal blocks sequentially to maximize performance. 2274 * So the extent would map the first block for the entire file length. 2275 * However, gfs2_jadd can happen while file activity is happening, so 2276 * those journals may not be sequential. Less likely is the case where 2277 * the users created their own journals by mounting the metafs and 2278 * laying it out. But it's still possible. These journals might have 2279 * several extents. 2280 * 2281 * Returns: 0 on success, or error on failure 2282 */ 2283 2284 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2285 { 2286 u64 lblock = 0; 2287 u64 lblock_stop; 2288 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2289 struct buffer_head bh; 2290 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2291 u64 size; 2292 int rc; 2293 ktime_t start, end; 2294 2295 start = ktime_get(); 2296 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2297 size = (lblock_stop - lblock) << shift; 2298 jd->nr_extents = 0; 2299 WARN_ON(!list_empty(&jd->extent_list)); 2300 2301 do { 2302 bh.b_state = 0; 2303 bh.b_blocknr = 0; 2304 bh.b_size = size; 2305 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2306 if (rc || !buffer_mapped(&bh)) 2307 goto fail; 2308 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2309 if (rc) 2310 goto fail; 2311 size -= bh.b_size; 2312 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2313 } while(size > 0); 2314 2315 end = ktime_get(); 2316 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2317 jd->nr_extents, ktime_ms_delta(end, start)); 2318 return 0; 2319 2320 fail: 2321 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2322 rc, jd->jd_jid, 2323 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2324 jd->nr_extents); 2325 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2326 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2327 bh.b_state, (unsigned long long)bh.b_size); 2328 gfs2_free_journal_extents(jd); 2329 return rc; 2330 } 2331 2332 /** 2333 * gfs2_write_alloc_required - figure out if a write will require an allocation 2334 * @ip: the file being written to 2335 * @offset: the offset to write to 2336 * @len: the number of bytes being written 2337 * 2338 * Returns: 1 if an alloc is required, 0 otherwise 2339 */ 2340 2341 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2342 unsigned int len) 2343 { 2344 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2345 struct buffer_head bh; 2346 unsigned int shift; 2347 u64 lblock, lblock_stop, size; 2348 u64 end_of_file; 2349 2350 if (!len) 2351 return 0; 2352 2353 if (gfs2_is_stuffed(ip)) { 2354 if (offset + len > gfs2_max_stuffed_size(ip)) 2355 return 1; 2356 return 0; 2357 } 2358 2359 shift = sdp->sd_sb.sb_bsize_shift; 2360 BUG_ON(gfs2_is_dir(ip)); 2361 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2362 lblock = offset >> shift; 2363 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2364 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2365 return 1; 2366 2367 size = (lblock_stop - lblock) << shift; 2368 do { 2369 bh.b_state = 0; 2370 bh.b_size = size; 2371 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2372 if (!buffer_mapped(&bh)) 2373 return 1; 2374 size -= bh.b_size; 2375 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2376 } while(size > 0); 2377 2378 return 0; 2379 } 2380 2381 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2382 { 2383 struct gfs2_inode *ip = GFS2_I(inode); 2384 struct buffer_head *dibh; 2385 int error; 2386 2387 if (offset >= inode->i_size) 2388 return 0; 2389 if (offset + length > inode->i_size) 2390 length = inode->i_size - offset; 2391 2392 error = gfs2_meta_inode_buffer(ip, &dibh); 2393 if (error) 2394 return error; 2395 gfs2_trans_add_meta(ip->i_gl, dibh); 2396 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2397 length); 2398 brelse(dibh); 2399 return 0; 2400 } 2401 2402 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2403 loff_t length) 2404 { 2405 struct gfs2_sbd *sdp = GFS2_SB(inode); 2406 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2407 int error; 2408 2409 while (length) { 2410 struct gfs2_trans *tr; 2411 loff_t chunk; 2412 unsigned int offs; 2413 2414 chunk = length; 2415 if (chunk > max_chunk) 2416 chunk = max_chunk; 2417 2418 offs = offset & ~PAGE_MASK; 2419 if (offs && chunk > PAGE_SIZE) 2420 chunk = offs + ((chunk - offs) & PAGE_MASK); 2421 2422 truncate_pagecache_range(inode, offset, chunk); 2423 offset += chunk; 2424 length -= chunk; 2425 2426 tr = current->journal_info; 2427 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2428 continue; 2429 2430 gfs2_trans_end(sdp); 2431 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2432 if (error) 2433 return error; 2434 } 2435 return 0; 2436 } 2437 2438 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2439 { 2440 struct inode *inode = file_inode(file); 2441 struct gfs2_inode *ip = GFS2_I(inode); 2442 struct gfs2_sbd *sdp = GFS2_SB(inode); 2443 int error; 2444 2445 if (gfs2_is_jdata(ip)) 2446 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2447 GFS2_JTRUNC_REVOKES); 2448 else 2449 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2450 if (error) 2451 return error; 2452 2453 if (gfs2_is_stuffed(ip)) { 2454 error = stuffed_zero_range(inode, offset, length); 2455 if (error) 2456 goto out; 2457 } else { 2458 unsigned int start_off, end_len, blocksize; 2459 2460 blocksize = i_blocksize(inode); 2461 start_off = offset & (blocksize - 1); 2462 end_len = (offset + length) & (blocksize - 1); 2463 if (start_off) { 2464 unsigned int len = length; 2465 if (length > blocksize - start_off) 2466 len = blocksize - start_off; 2467 error = gfs2_block_zero_range(inode, offset, len); 2468 if (error) 2469 goto out; 2470 if (start_off + length < blocksize) 2471 end_len = 0; 2472 } 2473 if (end_len) { 2474 error = gfs2_block_zero_range(inode, 2475 offset + length - end_len, end_len); 2476 if (error) 2477 goto out; 2478 } 2479 } 2480 2481 if (gfs2_is_jdata(ip)) { 2482 BUG_ON(!current->journal_info); 2483 gfs2_journaled_truncate_range(inode, offset, length); 2484 } else 2485 truncate_pagecache_range(inode, offset, offset + length - 1); 2486 2487 file_update_time(file); 2488 mark_inode_dirty(inode); 2489 2490 if (current->journal_info) 2491 gfs2_trans_end(sdp); 2492 2493 if (!gfs2_is_stuffed(ip)) 2494 error = punch_hole(ip, offset, length); 2495 2496 out: 2497 if (current->journal_info) 2498 gfs2_trans_end(sdp); 2499 return error; 2500 } 2501