1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 60 if (!PageUptodate(page)) { 61 void *kaddr = kmap(page); 62 u64 dsize = i_size_read(inode); 63 64 if (dsize > gfs2_max_stuffed_size(ip)) 65 dsize = gfs2_max_stuffed_size(ip); 66 67 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 68 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 69 kunmap(page); 70 71 SetPageUptodate(page); 72 } 73 74 if (gfs2_is_jdata(ip)) { 75 struct buffer_head *bh; 76 77 if (!page_has_buffers(page)) 78 create_empty_buffers(page, BIT(inode->i_blkbits), 79 BIT(BH_Uptodate)); 80 81 bh = page_buffers(page); 82 if (!buffer_mapped(bh)) 83 map_bh(bh, inode->i_sb, block); 84 85 set_buffer_uptodate(bh); 86 gfs2_trans_add_data(ip->i_gl, bh); 87 } else { 88 set_page_dirty(page); 89 gfs2_ordered_add_inode(ip); 90 } 91 92 return 0; 93 } 94 95 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page) 96 { 97 struct buffer_head *bh, *dibh; 98 struct gfs2_dinode *di; 99 u64 block = 0; 100 int isdir = gfs2_is_dir(ip); 101 int error; 102 103 error = gfs2_meta_inode_buffer(ip, &dibh); 104 if (error) 105 return error; 106 107 if (i_size_read(&ip->i_inode)) { 108 /* Get a free block, fill it with the stuffed data, 109 and write it out to disk */ 110 111 unsigned int n = 1; 112 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 113 if (error) 114 goto out_brelse; 115 if (isdir) { 116 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 117 error = gfs2_dir_get_new_buffer(ip, block, &bh); 118 if (error) 119 goto out_brelse; 120 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 121 dibh, sizeof(struct gfs2_dinode)); 122 brelse(bh); 123 } else { 124 error = gfs2_unstuffer_page(ip, dibh, block, page); 125 if (error) 126 goto out_brelse; 127 } 128 } 129 130 /* Set up the pointer to the new block */ 131 132 gfs2_trans_add_meta(ip->i_gl, dibh); 133 di = (struct gfs2_dinode *)dibh->b_data; 134 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 135 136 if (i_size_read(&ip->i_inode)) { 137 *(__be64 *)(di + 1) = cpu_to_be64(block); 138 gfs2_add_inode_blocks(&ip->i_inode, 1); 139 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 140 } 141 142 ip->i_height = 1; 143 di->di_height = cpu_to_be16(1); 144 145 out_brelse: 146 brelse(dibh); 147 return error; 148 } 149 150 /** 151 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 152 * @ip: The GFS2 inode to unstuff 153 * 154 * This routine unstuffs a dinode and returns it to a "normal" state such 155 * that the height can be grown in the traditional way. 156 * 157 * Returns: errno 158 */ 159 160 int gfs2_unstuff_dinode(struct gfs2_inode *ip) 161 { 162 struct inode *inode = &ip->i_inode; 163 struct page *page; 164 int error; 165 166 down_write(&ip->i_rw_mutex); 167 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 168 error = -ENOMEM; 169 if (!page) 170 goto out; 171 error = __gfs2_unstuff_inode(ip, page); 172 unlock_page(page); 173 put_page(page); 174 out: 175 up_write(&ip->i_rw_mutex); 176 return error; 177 } 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 394 { 395 sector_t factor = 1, block = 0; 396 int hgt; 397 398 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 399 if (hgt < mp->mp_aheight) 400 block += mp->mp_list[hgt] * factor; 401 factor *= sdp->sd_inptrs; 402 } 403 return block; 404 } 405 406 static void release_metapath(struct metapath *mp) 407 { 408 int i; 409 410 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 411 if (mp->mp_bh[i] == NULL) 412 break; 413 brelse(mp->mp_bh[i]); 414 mp->mp_bh[i] = NULL; 415 } 416 } 417 418 /** 419 * gfs2_extent_length - Returns length of an extent of blocks 420 * @bh: The metadata block 421 * @ptr: Current position in @bh 422 * @limit: Max extent length to return 423 * @eob: Set to 1 if we hit "end of block" 424 * 425 * Returns: The length of the extent (minimum of one block) 426 */ 427 428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 429 { 430 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 431 const __be64 *first = ptr; 432 u64 d = be64_to_cpu(*ptr); 433 434 *eob = 0; 435 do { 436 ptr++; 437 if (ptr >= end) 438 break; 439 d++; 440 } while(be64_to_cpu(*ptr) == d); 441 if (ptr >= end) 442 *eob = 1; 443 return ptr - first; 444 } 445 446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 447 448 /* 449 * gfs2_metadata_walker - walk an indirect block 450 * @mp: Metapath to indirect block 451 * @ptrs: Number of pointers to look at 452 * 453 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 454 * indirect block to follow. 455 */ 456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 457 unsigned int ptrs); 458 459 /* 460 * gfs2_walk_metadata - walk a tree of indirect blocks 461 * @inode: The inode 462 * @mp: Starting point of walk 463 * @max_len: Maximum number of blocks to walk 464 * @walker: Called during the walk 465 * 466 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 467 * past the end of metadata, and a negative error code otherwise. 468 */ 469 470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 471 u64 max_len, gfs2_metadata_walker walker) 472 { 473 struct gfs2_inode *ip = GFS2_I(inode); 474 struct gfs2_sbd *sdp = GFS2_SB(inode); 475 u64 factor = 1; 476 unsigned int hgt; 477 int ret; 478 479 /* 480 * The walk starts in the lowest allocated indirect block, which may be 481 * before the position indicated by @mp. Adjust @max_len accordingly 482 * to avoid a short walk. 483 */ 484 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 485 max_len += mp->mp_list[hgt] * factor; 486 mp->mp_list[hgt] = 0; 487 factor *= sdp->sd_inptrs; 488 } 489 490 for (;;) { 491 u16 start = mp->mp_list[hgt]; 492 enum walker_status status; 493 unsigned int ptrs; 494 u64 len; 495 496 /* Walk indirect block. */ 497 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 498 len = ptrs * factor; 499 if (len > max_len) 500 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 501 status = walker(mp, ptrs); 502 switch (status) { 503 case WALK_STOP: 504 return 1; 505 case WALK_FOLLOW: 506 BUG_ON(mp->mp_aheight == mp->mp_fheight); 507 ptrs = mp->mp_list[hgt] - start; 508 len = ptrs * factor; 509 break; 510 case WALK_CONTINUE: 511 break; 512 } 513 if (len >= max_len) 514 break; 515 max_len -= len; 516 if (status == WALK_FOLLOW) 517 goto fill_up_metapath; 518 519 lower_metapath: 520 /* Decrease height of metapath. */ 521 brelse(mp->mp_bh[hgt]); 522 mp->mp_bh[hgt] = NULL; 523 mp->mp_list[hgt] = 0; 524 if (!hgt) 525 break; 526 hgt--; 527 factor *= sdp->sd_inptrs; 528 529 /* Advance in metadata tree. */ 530 (mp->mp_list[hgt])++; 531 if (hgt) { 532 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 533 goto lower_metapath; 534 } else { 535 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 536 break; 537 } 538 539 fill_up_metapath: 540 /* Increase height of metapath. */ 541 ret = fillup_metapath(ip, mp, ip->i_height - 1); 542 if (ret < 0) 543 return ret; 544 hgt += ret; 545 for (; ret; ret--) 546 do_div(factor, sdp->sd_inptrs); 547 mp->mp_aheight = hgt + 1; 548 } 549 return 0; 550 } 551 552 static enum walker_status gfs2_hole_walker(struct metapath *mp, 553 unsigned int ptrs) 554 { 555 const __be64 *start, *ptr, *end; 556 unsigned int hgt; 557 558 hgt = mp->mp_aheight - 1; 559 start = metapointer(hgt, mp); 560 end = start + ptrs; 561 562 for (ptr = start; ptr < end; ptr++) { 563 if (*ptr) { 564 mp->mp_list[hgt] += ptr - start; 565 if (mp->mp_aheight == mp->mp_fheight) 566 return WALK_STOP; 567 return WALK_FOLLOW; 568 } 569 } 570 return WALK_CONTINUE; 571 } 572 573 /** 574 * gfs2_hole_size - figure out the size of a hole 575 * @inode: The inode 576 * @lblock: The logical starting block number 577 * @len: How far to look (in blocks) 578 * @mp: The metapath at lblock 579 * @iomap: The iomap to store the hole size in 580 * 581 * This function modifies @mp. 582 * 583 * Returns: errno on error 584 */ 585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 586 struct metapath *mp, struct iomap *iomap) 587 { 588 struct metapath clone; 589 u64 hole_size; 590 int ret; 591 592 clone_metapath(&clone, mp); 593 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 594 if (ret < 0) 595 goto out; 596 597 if (ret == 1) 598 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 599 else 600 hole_size = len; 601 iomap->length = hole_size << inode->i_blkbits; 602 ret = 0; 603 604 out: 605 release_metapath(&clone); 606 return ret; 607 } 608 609 static inline void gfs2_indirect_init(struct metapath *mp, 610 struct gfs2_glock *gl, unsigned int i, 611 unsigned offset, u64 bn) 612 { 613 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 614 ((i > 1) ? sizeof(struct gfs2_meta_header) : 615 sizeof(struct gfs2_dinode))); 616 BUG_ON(i < 1); 617 BUG_ON(mp->mp_bh[i] != NULL); 618 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 619 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 620 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 621 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 622 ptr += offset; 623 *ptr = cpu_to_be64(bn); 624 } 625 626 enum alloc_state { 627 ALLOC_DATA = 0, 628 ALLOC_GROW_DEPTH = 1, 629 ALLOC_GROW_HEIGHT = 2, 630 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 631 }; 632 633 /** 634 * __gfs2_iomap_alloc - Build a metadata tree of the requested height 635 * @inode: The GFS2 inode 636 * @iomap: The iomap structure 637 * @mp: The metapath, with proper height information calculated 638 * 639 * In this routine we may have to alloc: 640 * i) Indirect blocks to grow the metadata tree height 641 * ii) Indirect blocks to fill in lower part of the metadata tree 642 * iii) Data blocks 643 * 644 * This function is called after __gfs2_iomap_get, which works out the 645 * total number of blocks which we need via gfs2_alloc_size. 646 * 647 * We then do the actual allocation asking for an extent at a time (if 648 * enough contiguous free blocks are available, there will only be one 649 * allocation request per call) and uses the state machine to initialise 650 * the blocks in order. 651 * 652 * Right now, this function will allocate at most one indirect block 653 * worth of data -- with a default block size of 4K, that's slightly 654 * less than 2M. If this limitation is ever removed to allow huge 655 * allocations, we would probably still want to limit the iomap size we 656 * return to avoid stalling other tasks during huge writes; the next 657 * iomap iteration would then find the blocks already allocated. 658 * 659 * Returns: errno on error 660 */ 661 662 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 663 struct metapath *mp) 664 { 665 struct gfs2_inode *ip = GFS2_I(inode); 666 struct gfs2_sbd *sdp = GFS2_SB(inode); 667 struct buffer_head *dibh = mp->mp_bh[0]; 668 u64 bn; 669 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 670 size_t dblks = iomap->length >> inode->i_blkbits; 671 const unsigned end_of_metadata = mp->mp_fheight - 1; 672 int ret; 673 enum alloc_state state; 674 __be64 *ptr; 675 __be64 zero_bn = 0; 676 677 BUG_ON(mp->mp_aheight < 1); 678 BUG_ON(dibh == NULL); 679 BUG_ON(dblks < 1); 680 681 gfs2_trans_add_meta(ip->i_gl, dibh); 682 683 down_write(&ip->i_rw_mutex); 684 685 if (mp->mp_fheight == mp->mp_aheight) { 686 /* Bottom indirect block exists */ 687 state = ALLOC_DATA; 688 } else { 689 /* Need to allocate indirect blocks */ 690 if (mp->mp_fheight == ip->i_height) { 691 /* Writing into existing tree, extend tree down */ 692 iblks = mp->mp_fheight - mp->mp_aheight; 693 state = ALLOC_GROW_DEPTH; 694 } else { 695 /* Building up tree height */ 696 state = ALLOC_GROW_HEIGHT; 697 iblks = mp->mp_fheight - ip->i_height; 698 branch_start = metapath_branch_start(mp); 699 iblks += (mp->mp_fheight - branch_start); 700 } 701 } 702 703 /* start of the second part of the function (state machine) */ 704 705 blks = dblks + iblks; 706 i = mp->mp_aheight; 707 do { 708 n = blks - alloced; 709 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 710 if (ret) 711 goto out; 712 alloced += n; 713 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 714 gfs2_trans_remove_revoke(sdp, bn, n); 715 switch (state) { 716 /* Growing height of tree */ 717 case ALLOC_GROW_HEIGHT: 718 if (i == 1) { 719 ptr = (__be64 *)(dibh->b_data + 720 sizeof(struct gfs2_dinode)); 721 zero_bn = *ptr; 722 } 723 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 724 i++, n--) 725 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 726 if (i - 1 == mp->mp_fheight - ip->i_height) { 727 i--; 728 gfs2_buffer_copy_tail(mp->mp_bh[i], 729 sizeof(struct gfs2_meta_header), 730 dibh, sizeof(struct gfs2_dinode)); 731 gfs2_buffer_clear_tail(dibh, 732 sizeof(struct gfs2_dinode) + 733 sizeof(__be64)); 734 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 735 sizeof(struct gfs2_meta_header)); 736 *ptr = zero_bn; 737 state = ALLOC_GROW_DEPTH; 738 for(i = branch_start; i < mp->mp_fheight; i++) { 739 if (mp->mp_bh[i] == NULL) 740 break; 741 brelse(mp->mp_bh[i]); 742 mp->mp_bh[i] = NULL; 743 } 744 i = branch_start; 745 } 746 if (n == 0) 747 break; 748 fallthrough; /* To branching from existing tree */ 749 case ALLOC_GROW_DEPTH: 750 if (i > 1 && i < mp->mp_fheight) 751 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 752 for (; i < mp->mp_fheight && n > 0; i++, n--) 753 gfs2_indirect_init(mp, ip->i_gl, i, 754 mp->mp_list[i-1], bn++); 755 if (i == mp->mp_fheight) 756 state = ALLOC_DATA; 757 if (n == 0) 758 break; 759 fallthrough; /* To tree complete, adding data blocks */ 760 case ALLOC_DATA: 761 BUG_ON(n > dblks); 762 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 763 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 764 dblks = n; 765 ptr = metapointer(end_of_metadata, mp); 766 iomap->addr = bn << inode->i_blkbits; 767 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 768 while (n-- > 0) 769 *ptr++ = cpu_to_be64(bn++); 770 break; 771 } 772 } while (iomap->addr == IOMAP_NULL_ADDR); 773 774 iomap->type = IOMAP_MAPPED; 775 iomap->length = (u64)dblks << inode->i_blkbits; 776 ip->i_height = mp->mp_fheight; 777 gfs2_add_inode_blocks(&ip->i_inode, alloced); 778 gfs2_dinode_out(ip, dibh->b_data); 779 out: 780 up_write(&ip->i_rw_mutex); 781 return ret; 782 } 783 784 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 785 786 /** 787 * gfs2_alloc_size - Compute the maximum allocation size 788 * @inode: The inode 789 * @mp: The metapath 790 * @size: Requested size in blocks 791 * 792 * Compute the maximum size of the next allocation at @mp. 793 * 794 * Returns: size in blocks 795 */ 796 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 797 { 798 struct gfs2_inode *ip = GFS2_I(inode); 799 struct gfs2_sbd *sdp = GFS2_SB(inode); 800 const __be64 *first, *ptr, *end; 801 802 /* 803 * For writes to stuffed files, this function is called twice via 804 * __gfs2_iomap_get, before and after unstuffing. The size we return the 805 * first time needs to be large enough to get the reservation and 806 * allocation sizes right. The size we return the second time must 807 * be exact or else __gfs2_iomap_alloc won't do the right thing. 808 */ 809 810 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 811 unsigned int maxsize = mp->mp_fheight > 1 ? 812 sdp->sd_inptrs : sdp->sd_diptrs; 813 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 814 if (size > maxsize) 815 size = maxsize; 816 return size; 817 } 818 819 first = metapointer(ip->i_height - 1, mp); 820 end = metaend(ip->i_height - 1, mp); 821 if (end - first > size) 822 end = first + size; 823 for (ptr = first; ptr < end; ptr++) { 824 if (*ptr) 825 break; 826 } 827 return ptr - first; 828 } 829 830 /** 831 * __gfs2_iomap_get - Map blocks from an inode to disk blocks 832 * @inode: The inode 833 * @pos: Starting position in bytes 834 * @length: Length to map, in bytes 835 * @flags: iomap flags 836 * @iomap: The iomap structure 837 * @mp: The metapath 838 * 839 * Returns: errno 840 */ 841 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 842 unsigned flags, struct iomap *iomap, 843 struct metapath *mp) 844 { 845 struct gfs2_inode *ip = GFS2_I(inode); 846 struct gfs2_sbd *sdp = GFS2_SB(inode); 847 loff_t size = i_size_read(inode); 848 __be64 *ptr; 849 sector_t lblock; 850 sector_t lblock_stop; 851 int ret; 852 int eob; 853 u64 len; 854 struct buffer_head *dibh = NULL, *bh; 855 u8 height; 856 857 if (!length) 858 return -EINVAL; 859 860 down_read(&ip->i_rw_mutex); 861 862 ret = gfs2_meta_inode_buffer(ip, &dibh); 863 if (ret) 864 goto unlock; 865 mp->mp_bh[0] = dibh; 866 867 if (gfs2_is_stuffed(ip)) { 868 if (flags & IOMAP_WRITE) { 869 loff_t max_size = gfs2_max_stuffed_size(ip); 870 871 if (pos + length > max_size) 872 goto unstuff; 873 iomap->length = max_size; 874 } else { 875 if (pos >= size) { 876 if (flags & IOMAP_REPORT) { 877 ret = -ENOENT; 878 goto unlock; 879 } else { 880 iomap->offset = pos; 881 iomap->length = length; 882 goto hole_found; 883 } 884 } 885 iomap->length = size; 886 } 887 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 888 sizeof(struct gfs2_dinode); 889 iomap->type = IOMAP_INLINE; 890 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 891 goto out; 892 } 893 894 unstuff: 895 lblock = pos >> inode->i_blkbits; 896 iomap->offset = lblock << inode->i_blkbits; 897 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 898 len = lblock_stop - lblock + 1; 899 iomap->length = len << inode->i_blkbits; 900 901 height = ip->i_height; 902 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 903 height++; 904 find_metapath(sdp, lblock, mp, height); 905 if (height > ip->i_height || gfs2_is_stuffed(ip)) 906 goto do_alloc; 907 908 ret = lookup_metapath(ip, mp); 909 if (ret) 910 goto unlock; 911 912 if (mp->mp_aheight != ip->i_height) 913 goto do_alloc; 914 915 ptr = metapointer(ip->i_height - 1, mp); 916 if (*ptr == 0) 917 goto do_alloc; 918 919 bh = mp->mp_bh[ip->i_height - 1]; 920 len = gfs2_extent_length(bh, ptr, len, &eob); 921 922 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 923 iomap->length = len << inode->i_blkbits; 924 iomap->type = IOMAP_MAPPED; 925 iomap->flags |= IOMAP_F_MERGED; 926 if (eob) 927 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 928 929 out: 930 iomap->bdev = inode->i_sb->s_bdev; 931 unlock: 932 up_read(&ip->i_rw_mutex); 933 return ret; 934 935 do_alloc: 936 if (flags & IOMAP_REPORT) { 937 if (pos >= size) 938 ret = -ENOENT; 939 else if (height == ip->i_height) 940 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 941 else 942 iomap->length = size - iomap->offset; 943 } else if (flags & IOMAP_WRITE) { 944 u64 alloc_size; 945 946 if (flags & IOMAP_DIRECT) 947 goto out; /* (see gfs2_file_direct_write) */ 948 949 len = gfs2_alloc_size(inode, mp, len); 950 alloc_size = len << inode->i_blkbits; 951 if (alloc_size < iomap->length) 952 iomap->length = alloc_size; 953 } else { 954 if (pos < size && height == ip->i_height) 955 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 956 } 957 hole_found: 958 iomap->addr = IOMAP_NULL_ADDR; 959 iomap->type = IOMAP_HOLE; 960 goto out; 961 } 962 963 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 964 unsigned len) 965 { 966 unsigned int blockmask = i_blocksize(inode) - 1; 967 struct gfs2_sbd *sdp = GFS2_SB(inode); 968 unsigned int blocks; 969 970 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 971 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 972 } 973 974 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 975 unsigned copied, struct page *page) 976 { 977 struct gfs2_trans *tr = current->journal_info; 978 struct gfs2_inode *ip = GFS2_I(inode); 979 struct gfs2_sbd *sdp = GFS2_SB(inode); 980 981 if (page && !gfs2_is_stuffed(ip)) 982 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 983 984 if (tr->tr_num_buf_new) 985 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 986 987 gfs2_trans_end(sdp); 988 } 989 990 static const struct iomap_page_ops gfs2_iomap_page_ops = { 991 .page_prepare = gfs2_iomap_page_prepare, 992 .page_done = gfs2_iomap_page_done, 993 }; 994 995 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 996 loff_t length, unsigned flags, 997 struct iomap *iomap, 998 struct metapath *mp) 999 { 1000 struct gfs2_inode *ip = GFS2_I(inode); 1001 struct gfs2_sbd *sdp = GFS2_SB(inode); 1002 bool unstuff; 1003 int ret; 1004 1005 unstuff = gfs2_is_stuffed(ip) && 1006 pos + length > gfs2_max_stuffed_size(ip); 1007 1008 if (unstuff || iomap->type == IOMAP_HOLE) { 1009 unsigned int data_blocks, ind_blocks; 1010 struct gfs2_alloc_parms ap = {}; 1011 unsigned int rblocks; 1012 struct gfs2_trans *tr; 1013 1014 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1015 &ind_blocks); 1016 ap.target = data_blocks + ind_blocks; 1017 ret = gfs2_quota_lock_check(ip, &ap); 1018 if (ret) 1019 return ret; 1020 1021 ret = gfs2_inplace_reserve(ip, &ap); 1022 if (ret) 1023 goto out_qunlock; 1024 1025 rblocks = RES_DINODE + ind_blocks; 1026 if (gfs2_is_jdata(ip)) 1027 rblocks += data_blocks; 1028 if (ind_blocks || data_blocks) 1029 rblocks += RES_STATFS + RES_QUOTA; 1030 if (inode == sdp->sd_rindex) 1031 rblocks += 2 * RES_STATFS; 1032 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1033 1034 ret = gfs2_trans_begin(sdp, rblocks, 1035 iomap->length >> inode->i_blkbits); 1036 if (ret) 1037 goto out_trans_fail; 1038 1039 if (unstuff) { 1040 ret = gfs2_unstuff_dinode(ip); 1041 if (ret) 1042 goto out_trans_end; 1043 release_metapath(mp); 1044 ret = __gfs2_iomap_get(inode, iomap->offset, 1045 iomap->length, flags, iomap, mp); 1046 if (ret) 1047 goto out_trans_end; 1048 } 1049 1050 if (iomap->type == IOMAP_HOLE) { 1051 ret = __gfs2_iomap_alloc(inode, iomap, mp); 1052 if (ret) { 1053 gfs2_trans_end(sdp); 1054 gfs2_inplace_release(ip); 1055 punch_hole(ip, iomap->offset, iomap->length); 1056 goto out_qunlock; 1057 } 1058 } 1059 1060 tr = current->journal_info; 1061 if (tr->tr_num_buf_new) 1062 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1063 1064 gfs2_trans_end(sdp); 1065 } 1066 1067 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1068 iomap->page_ops = &gfs2_iomap_page_ops; 1069 return 0; 1070 1071 out_trans_end: 1072 gfs2_trans_end(sdp); 1073 out_trans_fail: 1074 gfs2_inplace_release(ip); 1075 out_qunlock: 1076 gfs2_quota_unlock(ip); 1077 return ret; 1078 } 1079 1080 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1081 unsigned flags, struct iomap *iomap, 1082 struct iomap *srcmap) 1083 { 1084 struct gfs2_inode *ip = GFS2_I(inode); 1085 struct metapath mp = { .mp_aheight = 1, }; 1086 int ret; 1087 1088 if (gfs2_is_jdata(ip)) 1089 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1090 1091 trace_gfs2_iomap_start(ip, pos, length, flags); 1092 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1093 if (ret) 1094 goto out_unlock; 1095 1096 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1097 case IOMAP_WRITE: 1098 if (flags & IOMAP_DIRECT) { 1099 /* 1100 * Silently fall back to buffered I/O for stuffed files 1101 * or if we've got a hole (see gfs2_file_direct_write). 1102 */ 1103 if (iomap->type != IOMAP_MAPPED) 1104 ret = -ENOTBLK; 1105 goto out_unlock; 1106 } 1107 break; 1108 case IOMAP_ZERO: 1109 if (iomap->type == IOMAP_HOLE) 1110 goto out_unlock; 1111 break; 1112 default: 1113 goto out_unlock; 1114 } 1115 1116 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1117 1118 out_unlock: 1119 release_metapath(&mp); 1120 trace_gfs2_iomap_end(ip, iomap, ret); 1121 return ret; 1122 } 1123 1124 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1125 ssize_t written, unsigned flags, struct iomap *iomap) 1126 { 1127 struct gfs2_inode *ip = GFS2_I(inode); 1128 struct gfs2_sbd *sdp = GFS2_SB(inode); 1129 1130 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1131 case IOMAP_WRITE: 1132 if (flags & IOMAP_DIRECT) 1133 return 0; 1134 break; 1135 case IOMAP_ZERO: 1136 if (iomap->type == IOMAP_HOLE) 1137 return 0; 1138 break; 1139 default: 1140 return 0; 1141 } 1142 1143 if (!gfs2_is_stuffed(ip)) 1144 gfs2_ordered_add_inode(ip); 1145 1146 if (inode == sdp->sd_rindex) 1147 adjust_fs_space(inode); 1148 1149 gfs2_inplace_release(ip); 1150 1151 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1152 gfs2_quota_unlock(ip); 1153 1154 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1155 /* Deallocate blocks that were just allocated. */ 1156 loff_t hstart = round_up(pos + written, i_blocksize(inode)); 1157 loff_t hend = iomap->offset + iomap->length; 1158 1159 if (hstart < hend) { 1160 truncate_pagecache_range(inode, hstart, hend - 1); 1161 punch_hole(ip, hstart, hend - hstart); 1162 } 1163 } 1164 1165 if (unlikely(!written)) 1166 return 0; 1167 1168 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1169 mark_inode_dirty(inode); 1170 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1171 return 0; 1172 } 1173 1174 const struct iomap_ops gfs2_iomap_ops = { 1175 .iomap_begin = gfs2_iomap_begin, 1176 .iomap_end = gfs2_iomap_end, 1177 }; 1178 1179 /** 1180 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1181 * @inode: The inode 1182 * @lblock: The logical block number 1183 * @bh_map: The bh to be mapped 1184 * @create: True if its ok to alloc blocks to satify the request 1185 * 1186 * The size of the requested mapping is defined in bh_map->b_size. 1187 * 1188 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1189 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1190 * bh_map->b_size to indicate the size of the mapping when @lblock and 1191 * successive blocks are mapped, up to the requested size. 1192 * 1193 * Sets buffer_boundary() if a read of metadata will be required 1194 * before the next block can be mapped. Sets buffer_new() if new 1195 * blocks were allocated. 1196 * 1197 * Returns: errno 1198 */ 1199 1200 int gfs2_block_map(struct inode *inode, sector_t lblock, 1201 struct buffer_head *bh_map, int create) 1202 { 1203 struct gfs2_inode *ip = GFS2_I(inode); 1204 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1205 loff_t length = bh_map->b_size; 1206 struct iomap iomap = { }; 1207 int ret; 1208 1209 clear_buffer_mapped(bh_map); 1210 clear_buffer_new(bh_map); 1211 clear_buffer_boundary(bh_map); 1212 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1213 1214 if (!create) 1215 ret = gfs2_iomap_get(inode, pos, length, &iomap); 1216 else 1217 ret = gfs2_iomap_alloc(inode, pos, length, &iomap); 1218 if (ret) 1219 goto out; 1220 1221 if (iomap.length > bh_map->b_size) { 1222 iomap.length = bh_map->b_size; 1223 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1224 } 1225 if (iomap.addr != IOMAP_NULL_ADDR) 1226 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1227 bh_map->b_size = iomap.length; 1228 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1229 set_buffer_boundary(bh_map); 1230 if (iomap.flags & IOMAP_F_NEW) 1231 set_buffer_new(bh_map); 1232 1233 out: 1234 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1235 return ret; 1236 } 1237 1238 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock, 1239 unsigned int *extlen) 1240 { 1241 unsigned int blkbits = inode->i_blkbits; 1242 struct iomap iomap = { }; 1243 unsigned int len; 1244 int ret; 1245 1246 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits, 1247 &iomap); 1248 if (ret) 1249 return ret; 1250 if (iomap.type != IOMAP_MAPPED) 1251 return -EIO; 1252 *dblock = iomap.addr >> blkbits; 1253 len = iomap.length >> blkbits; 1254 if (len < *extlen) 1255 *extlen = len; 1256 return 0; 1257 } 1258 1259 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock, 1260 unsigned int *extlen, bool *new) 1261 { 1262 unsigned int blkbits = inode->i_blkbits; 1263 struct iomap iomap = { }; 1264 unsigned int len; 1265 int ret; 1266 1267 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits, 1268 &iomap); 1269 if (ret) 1270 return ret; 1271 if (iomap.type != IOMAP_MAPPED) 1272 return -EIO; 1273 *dblock = iomap.addr >> blkbits; 1274 len = iomap.length >> blkbits; 1275 if (len < *extlen) 1276 *extlen = len; 1277 *new = iomap.flags & IOMAP_F_NEW; 1278 return 0; 1279 } 1280 1281 /* 1282 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1283 * uses iomap write to perform its actions, which begin their own transactions 1284 * (iomap_begin, page_prepare, etc.) 1285 */ 1286 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1287 unsigned int length) 1288 { 1289 BUG_ON(current->journal_info); 1290 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1291 } 1292 1293 #define GFS2_JTRUNC_REVOKES 8192 1294 1295 /** 1296 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1297 * @inode: The inode being truncated 1298 * @oldsize: The original (larger) size 1299 * @newsize: The new smaller size 1300 * 1301 * With jdata files, we have to journal a revoke for each block which is 1302 * truncated. As a result, we need to split this into separate transactions 1303 * if the number of pages being truncated gets too large. 1304 */ 1305 1306 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1307 { 1308 struct gfs2_sbd *sdp = GFS2_SB(inode); 1309 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1310 u64 chunk; 1311 int error; 1312 1313 while (oldsize != newsize) { 1314 struct gfs2_trans *tr; 1315 unsigned int offs; 1316 1317 chunk = oldsize - newsize; 1318 if (chunk > max_chunk) 1319 chunk = max_chunk; 1320 1321 offs = oldsize & ~PAGE_MASK; 1322 if (offs && chunk > PAGE_SIZE) 1323 chunk = offs + ((chunk - offs) & PAGE_MASK); 1324 1325 truncate_pagecache(inode, oldsize - chunk); 1326 oldsize -= chunk; 1327 1328 tr = current->journal_info; 1329 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1330 continue; 1331 1332 gfs2_trans_end(sdp); 1333 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1334 if (error) 1335 return error; 1336 } 1337 1338 return 0; 1339 } 1340 1341 static int trunc_start(struct inode *inode, u64 newsize) 1342 { 1343 struct gfs2_inode *ip = GFS2_I(inode); 1344 struct gfs2_sbd *sdp = GFS2_SB(inode); 1345 struct buffer_head *dibh = NULL; 1346 int journaled = gfs2_is_jdata(ip); 1347 u64 oldsize = inode->i_size; 1348 int error; 1349 1350 if (!gfs2_is_stuffed(ip)) { 1351 unsigned int blocksize = i_blocksize(inode); 1352 unsigned int offs = newsize & (blocksize - 1); 1353 if (offs) { 1354 error = gfs2_block_zero_range(inode, newsize, 1355 blocksize - offs); 1356 if (error) 1357 return error; 1358 } 1359 } 1360 if (journaled) 1361 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1362 else 1363 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1364 if (error) 1365 return error; 1366 1367 error = gfs2_meta_inode_buffer(ip, &dibh); 1368 if (error) 1369 goto out; 1370 1371 gfs2_trans_add_meta(ip->i_gl, dibh); 1372 1373 if (gfs2_is_stuffed(ip)) 1374 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1375 else 1376 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1377 1378 i_size_write(inode, newsize); 1379 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1380 gfs2_dinode_out(ip, dibh->b_data); 1381 1382 if (journaled) 1383 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1384 else 1385 truncate_pagecache(inode, newsize); 1386 1387 out: 1388 brelse(dibh); 1389 if (current->journal_info) 1390 gfs2_trans_end(sdp); 1391 return error; 1392 } 1393 1394 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 1395 struct iomap *iomap) 1396 { 1397 struct metapath mp = { .mp_aheight = 1, }; 1398 int ret; 1399 1400 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp); 1401 release_metapath(&mp); 1402 return ret; 1403 } 1404 1405 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length, 1406 struct iomap *iomap) 1407 { 1408 struct metapath mp = { .mp_aheight = 1, }; 1409 int ret; 1410 1411 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1412 if (!ret && iomap->type == IOMAP_HOLE) 1413 ret = __gfs2_iomap_alloc(inode, iomap, &mp); 1414 release_metapath(&mp); 1415 return ret; 1416 } 1417 1418 /** 1419 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1420 * @ip: inode 1421 * @rd_gh: holder of resource group glock 1422 * @bh: buffer head to sweep 1423 * @start: starting point in bh 1424 * @end: end point in bh 1425 * @meta: true if bh points to metadata (rather than data) 1426 * @btotal: place to keep count of total blocks freed 1427 * 1428 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1429 * free, and free them all. However, we do it one rgrp at a time. If this 1430 * block has references to multiple rgrps, we break it into individual 1431 * transactions. This allows other processes to use the rgrps while we're 1432 * focused on a single one, for better concurrency / performance. 1433 * At every transaction boundary, we rewrite the inode into the journal. 1434 * That way the bitmaps are kept consistent with the inode and we can recover 1435 * if we're interrupted by power-outages. 1436 * 1437 * Returns: 0, or return code if an error occurred. 1438 * *btotal has the total number of blocks freed 1439 */ 1440 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1441 struct buffer_head *bh, __be64 *start, __be64 *end, 1442 bool meta, u32 *btotal) 1443 { 1444 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1445 struct gfs2_rgrpd *rgd; 1446 struct gfs2_trans *tr; 1447 __be64 *p; 1448 int blks_outside_rgrp; 1449 u64 bn, bstart, isize_blks; 1450 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1451 int ret = 0; 1452 bool buf_in_tr = false; /* buffer was added to transaction */ 1453 1454 more_rgrps: 1455 rgd = NULL; 1456 if (gfs2_holder_initialized(rd_gh)) { 1457 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1458 gfs2_assert_withdraw(sdp, 1459 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1460 } 1461 blks_outside_rgrp = 0; 1462 bstart = 0; 1463 blen = 0; 1464 1465 for (p = start; p < end; p++) { 1466 if (!*p) 1467 continue; 1468 bn = be64_to_cpu(*p); 1469 1470 if (rgd) { 1471 if (!rgrp_contains_block(rgd, bn)) { 1472 blks_outside_rgrp++; 1473 continue; 1474 } 1475 } else { 1476 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1477 if (unlikely(!rgd)) { 1478 ret = -EIO; 1479 goto out; 1480 } 1481 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1482 LM_FLAG_NODE_SCOPE, rd_gh); 1483 if (ret) 1484 goto out; 1485 1486 /* Must be done with the rgrp glock held: */ 1487 if (gfs2_rs_active(&ip->i_res) && 1488 rgd == ip->i_res.rs_rgd) 1489 gfs2_rs_deltree(&ip->i_res); 1490 } 1491 1492 /* The size of our transactions will be unknown until we 1493 actually process all the metadata blocks that relate to 1494 the rgrp. So we estimate. We know it can't be more than 1495 the dinode's i_blocks and we don't want to exceed the 1496 journal flush threshold, sd_log_thresh2. */ 1497 if (current->journal_info == NULL) { 1498 unsigned int jblocks_rqsted, revokes; 1499 1500 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1501 RES_INDIRECT; 1502 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1503 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1504 jblocks_rqsted += 1505 atomic_read(&sdp->sd_log_thresh2); 1506 else 1507 jblocks_rqsted += isize_blks; 1508 revokes = jblocks_rqsted; 1509 if (meta) 1510 revokes += end - start; 1511 else if (ip->i_depth) 1512 revokes += sdp->sd_inptrs; 1513 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1514 if (ret) 1515 goto out_unlock; 1516 down_write(&ip->i_rw_mutex); 1517 } 1518 /* check if we will exceed the transaction blocks requested */ 1519 tr = current->journal_info; 1520 if (tr->tr_num_buf_new + RES_STATFS + 1521 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1522 /* We set blks_outside_rgrp to ensure the loop will 1523 be repeated for the same rgrp, but with a new 1524 transaction. */ 1525 blks_outside_rgrp++; 1526 /* This next part is tricky. If the buffer was added 1527 to the transaction, we've already set some block 1528 pointers to 0, so we better follow through and free 1529 them, or we will introduce corruption (so break). 1530 This may be impossible, or at least rare, but I 1531 decided to cover the case regardless. 1532 1533 If the buffer was not added to the transaction 1534 (this call), doing so would exceed our transaction 1535 size, so we need to end the transaction and start a 1536 new one (so goto). */ 1537 1538 if (buf_in_tr) 1539 break; 1540 goto out_unlock; 1541 } 1542 1543 gfs2_trans_add_meta(ip->i_gl, bh); 1544 buf_in_tr = true; 1545 *p = 0; 1546 if (bstart + blen == bn) { 1547 blen++; 1548 continue; 1549 } 1550 if (bstart) { 1551 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1552 (*btotal) += blen; 1553 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1554 } 1555 bstart = bn; 1556 blen = 1; 1557 } 1558 if (bstart) { 1559 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1560 (*btotal) += blen; 1561 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1562 } 1563 out_unlock: 1564 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1565 outside the rgrp we just processed, 1566 do it all over again. */ 1567 if (current->journal_info) { 1568 struct buffer_head *dibh; 1569 1570 ret = gfs2_meta_inode_buffer(ip, &dibh); 1571 if (ret) 1572 goto out; 1573 1574 /* Every transaction boundary, we rewrite the dinode 1575 to keep its di_blocks current in case of failure. */ 1576 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1577 current_time(&ip->i_inode); 1578 gfs2_trans_add_meta(ip->i_gl, dibh); 1579 gfs2_dinode_out(ip, dibh->b_data); 1580 brelse(dibh); 1581 up_write(&ip->i_rw_mutex); 1582 gfs2_trans_end(sdp); 1583 buf_in_tr = false; 1584 } 1585 gfs2_glock_dq_uninit(rd_gh); 1586 cond_resched(); 1587 goto more_rgrps; 1588 } 1589 out: 1590 return ret; 1591 } 1592 1593 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1594 { 1595 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1596 return false; 1597 return true; 1598 } 1599 1600 /** 1601 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1602 * @sdp: The superblock 1603 * @mp: starting metapath 1604 * @h: desired height to search 1605 * @end_list: See punch_hole(). 1606 * @end_aligned: See punch_hole(). 1607 * 1608 * Assumes the metapath is valid (with buffers) out to height h. 1609 * Returns: true if a non-null pointer was found in the metapath buffer 1610 * false if all remaining pointers are NULL in the buffer 1611 */ 1612 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1613 unsigned int h, 1614 __u16 *end_list, unsigned int end_aligned) 1615 { 1616 struct buffer_head *bh = mp->mp_bh[h]; 1617 __be64 *first, *ptr, *end; 1618 1619 first = metaptr1(h, mp); 1620 ptr = first + mp->mp_list[h]; 1621 end = (__be64 *)(bh->b_data + bh->b_size); 1622 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1623 bool keep_end = h < end_aligned; 1624 end = first + end_list[h] + keep_end; 1625 } 1626 1627 while (ptr < end) { 1628 if (*ptr) { /* if we have a non-null pointer */ 1629 mp->mp_list[h] = ptr - first; 1630 h++; 1631 if (h < GFS2_MAX_META_HEIGHT) 1632 mp->mp_list[h] = 0; 1633 return true; 1634 } 1635 ptr++; 1636 } 1637 return false; 1638 } 1639 1640 enum dealloc_states { 1641 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1642 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1643 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1644 DEALLOC_DONE = 3, /* process complete */ 1645 }; 1646 1647 static inline void 1648 metapointer_range(struct metapath *mp, int height, 1649 __u16 *start_list, unsigned int start_aligned, 1650 __u16 *end_list, unsigned int end_aligned, 1651 __be64 **start, __be64 **end) 1652 { 1653 struct buffer_head *bh = mp->mp_bh[height]; 1654 __be64 *first; 1655 1656 first = metaptr1(height, mp); 1657 *start = first; 1658 if (mp_eq_to_hgt(mp, start_list, height)) { 1659 bool keep_start = height < start_aligned; 1660 *start = first + start_list[height] + keep_start; 1661 } 1662 *end = (__be64 *)(bh->b_data + bh->b_size); 1663 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1664 bool keep_end = height < end_aligned; 1665 *end = first + end_list[height] + keep_end; 1666 } 1667 } 1668 1669 static inline bool walk_done(struct gfs2_sbd *sdp, 1670 struct metapath *mp, int height, 1671 __u16 *end_list, unsigned int end_aligned) 1672 { 1673 __u16 end; 1674 1675 if (end_list) { 1676 bool keep_end = height < end_aligned; 1677 if (!mp_eq_to_hgt(mp, end_list, height)) 1678 return false; 1679 end = end_list[height] + keep_end; 1680 } else 1681 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1682 return mp->mp_list[height] >= end; 1683 } 1684 1685 /** 1686 * punch_hole - deallocate blocks in a file 1687 * @ip: inode to truncate 1688 * @offset: the start of the hole 1689 * @length: the size of the hole (or 0 for truncate) 1690 * 1691 * Punch a hole into a file or truncate a file at a given position. This 1692 * function operates in whole blocks (@offset and @length are rounded 1693 * accordingly); partially filled blocks must be cleared otherwise. 1694 * 1695 * This function works from the bottom up, and from the right to the left. In 1696 * other words, it strips off the highest layer (data) before stripping any of 1697 * the metadata. Doing it this way is best in case the operation is interrupted 1698 * by power failure, etc. The dinode is rewritten in every transaction to 1699 * guarantee integrity. 1700 */ 1701 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1702 { 1703 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1704 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1705 struct metapath mp = {}; 1706 struct buffer_head *dibh, *bh; 1707 struct gfs2_holder rd_gh; 1708 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1709 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1710 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1711 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1712 unsigned int start_aligned, end_aligned; 1713 unsigned int strip_h = ip->i_height - 1; 1714 u32 btotal = 0; 1715 int ret, state; 1716 int mp_h; /* metapath buffers are read in to this height */ 1717 u64 prev_bnr = 0; 1718 __be64 *start, *end; 1719 1720 if (offset >= maxsize) { 1721 /* 1722 * The starting point lies beyond the allocated meta-data; 1723 * there are no blocks do deallocate. 1724 */ 1725 return 0; 1726 } 1727 1728 /* 1729 * The start position of the hole is defined by lblock, start_list, and 1730 * start_aligned. The end position of the hole is defined by lend, 1731 * end_list, and end_aligned. 1732 * 1733 * start_aligned and end_aligned define down to which height the start 1734 * and end positions are aligned to the metadata tree (i.e., the 1735 * position is a multiple of the metadata granularity at the height 1736 * above). This determines at which heights additional meta pointers 1737 * needs to be preserved for the remaining data. 1738 */ 1739 1740 if (length) { 1741 u64 end_offset = offset + length; 1742 u64 lend; 1743 1744 /* 1745 * Clip the end at the maximum file size for the given height: 1746 * that's how far the metadata goes; files bigger than that 1747 * will have additional layers of indirection. 1748 */ 1749 if (end_offset > maxsize) 1750 end_offset = maxsize; 1751 lend = end_offset >> bsize_shift; 1752 1753 if (lblock >= lend) 1754 return 0; 1755 1756 find_metapath(sdp, lend, &mp, ip->i_height); 1757 end_list = __end_list; 1758 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1759 1760 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1761 if (end_list[mp_h]) 1762 break; 1763 } 1764 end_aligned = mp_h; 1765 } 1766 1767 find_metapath(sdp, lblock, &mp, ip->i_height); 1768 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1769 1770 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1771 if (start_list[mp_h]) 1772 break; 1773 } 1774 start_aligned = mp_h; 1775 1776 ret = gfs2_meta_inode_buffer(ip, &dibh); 1777 if (ret) 1778 return ret; 1779 1780 mp.mp_bh[0] = dibh; 1781 ret = lookup_metapath(ip, &mp); 1782 if (ret) 1783 goto out_metapath; 1784 1785 /* issue read-ahead on metadata */ 1786 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1787 metapointer_range(&mp, mp_h, start_list, start_aligned, 1788 end_list, end_aligned, &start, &end); 1789 gfs2_metapath_ra(ip->i_gl, start, end); 1790 } 1791 1792 if (mp.mp_aheight == ip->i_height) 1793 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1794 else 1795 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1796 1797 ret = gfs2_rindex_update(sdp); 1798 if (ret) 1799 goto out_metapath; 1800 1801 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1802 if (ret) 1803 goto out_metapath; 1804 gfs2_holder_mark_uninitialized(&rd_gh); 1805 1806 mp_h = strip_h; 1807 1808 while (state != DEALLOC_DONE) { 1809 switch (state) { 1810 /* Truncate a full metapath at the given strip height. 1811 * Note that strip_h == mp_h in order to be in this state. */ 1812 case DEALLOC_MP_FULL: 1813 bh = mp.mp_bh[mp_h]; 1814 gfs2_assert_withdraw(sdp, bh); 1815 if (gfs2_assert_withdraw(sdp, 1816 prev_bnr != bh->b_blocknr)) { 1817 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1818 "s_h:%u, mp_h:%u\n", 1819 (unsigned long long)ip->i_no_addr, 1820 prev_bnr, ip->i_height, strip_h, mp_h); 1821 } 1822 prev_bnr = bh->b_blocknr; 1823 1824 if (gfs2_metatype_check(sdp, bh, 1825 (mp_h ? GFS2_METATYPE_IN : 1826 GFS2_METATYPE_DI))) { 1827 ret = -EIO; 1828 goto out; 1829 } 1830 1831 /* 1832 * Below, passing end_aligned as 0 gives us the 1833 * metapointer range excluding the end point: the end 1834 * point is the first metapath we must not deallocate! 1835 */ 1836 1837 metapointer_range(&mp, mp_h, start_list, start_aligned, 1838 end_list, 0 /* end_aligned */, 1839 &start, &end); 1840 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1841 start, end, 1842 mp_h != ip->i_height - 1, 1843 &btotal); 1844 1845 /* If we hit an error or just swept dinode buffer, 1846 just exit. */ 1847 if (ret || !mp_h) { 1848 state = DEALLOC_DONE; 1849 break; 1850 } 1851 state = DEALLOC_MP_LOWER; 1852 break; 1853 1854 /* lower the metapath strip height */ 1855 case DEALLOC_MP_LOWER: 1856 /* We're done with the current buffer, so release it, 1857 unless it's the dinode buffer. Then back up to the 1858 previous pointer. */ 1859 if (mp_h) { 1860 brelse(mp.mp_bh[mp_h]); 1861 mp.mp_bh[mp_h] = NULL; 1862 } 1863 /* If we can't get any lower in height, we've stripped 1864 off all we can. Next step is to back up and start 1865 stripping the previous level of metadata. */ 1866 if (mp_h == 0) { 1867 strip_h--; 1868 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1869 mp_h = strip_h; 1870 state = DEALLOC_FILL_MP; 1871 break; 1872 } 1873 mp.mp_list[mp_h] = 0; 1874 mp_h--; /* search one metadata height down */ 1875 mp.mp_list[mp_h]++; 1876 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1877 break; 1878 /* Here we've found a part of the metapath that is not 1879 * allocated. We need to search at that height for the 1880 * next non-null pointer. */ 1881 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1882 state = DEALLOC_FILL_MP; 1883 mp_h++; 1884 } 1885 /* No more non-null pointers at this height. Back up 1886 to the previous height and try again. */ 1887 break; /* loop around in the same state */ 1888 1889 /* Fill the metapath with buffers to the given height. */ 1890 case DEALLOC_FILL_MP: 1891 /* Fill the buffers out to the current height. */ 1892 ret = fillup_metapath(ip, &mp, mp_h); 1893 if (ret < 0) 1894 goto out; 1895 1896 /* On the first pass, issue read-ahead on metadata. */ 1897 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1898 unsigned int height = mp.mp_aheight - 1; 1899 1900 /* No read-ahead for data blocks. */ 1901 if (mp.mp_aheight - 1 == strip_h) 1902 height--; 1903 1904 for (; height >= mp.mp_aheight - ret; height--) { 1905 metapointer_range(&mp, height, 1906 start_list, start_aligned, 1907 end_list, end_aligned, 1908 &start, &end); 1909 gfs2_metapath_ra(ip->i_gl, start, end); 1910 } 1911 } 1912 1913 /* If buffers found for the entire strip height */ 1914 if (mp.mp_aheight - 1 == strip_h) { 1915 state = DEALLOC_MP_FULL; 1916 break; 1917 } 1918 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1919 mp_h = mp.mp_aheight - 1; 1920 1921 /* If we find a non-null block pointer, crawl a bit 1922 higher up in the metapath and try again, otherwise 1923 we need to look lower for a new starting point. */ 1924 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1925 mp_h++; 1926 else 1927 state = DEALLOC_MP_LOWER; 1928 break; 1929 } 1930 } 1931 1932 if (btotal) { 1933 if (current->journal_info == NULL) { 1934 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1935 RES_QUOTA, 0); 1936 if (ret) 1937 goto out; 1938 down_write(&ip->i_rw_mutex); 1939 } 1940 gfs2_statfs_change(sdp, 0, +btotal, 0); 1941 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1942 ip->i_inode.i_gid); 1943 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1944 gfs2_trans_add_meta(ip->i_gl, dibh); 1945 gfs2_dinode_out(ip, dibh->b_data); 1946 up_write(&ip->i_rw_mutex); 1947 gfs2_trans_end(sdp); 1948 } 1949 1950 out: 1951 if (gfs2_holder_initialized(&rd_gh)) 1952 gfs2_glock_dq_uninit(&rd_gh); 1953 if (current->journal_info) { 1954 up_write(&ip->i_rw_mutex); 1955 gfs2_trans_end(sdp); 1956 cond_resched(); 1957 } 1958 gfs2_quota_unhold(ip); 1959 out_metapath: 1960 release_metapath(&mp); 1961 return ret; 1962 } 1963 1964 static int trunc_end(struct gfs2_inode *ip) 1965 { 1966 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1967 struct buffer_head *dibh; 1968 int error; 1969 1970 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1971 if (error) 1972 return error; 1973 1974 down_write(&ip->i_rw_mutex); 1975 1976 error = gfs2_meta_inode_buffer(ip, &dibh); 1977 if (error) 1978 goto out; 1979 1980 if (!i_size_read(&ip->i_inode)) { 1981 ip->i_height = 0; 1982 ip->i_goal = ip->i_no_addr; 1983 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1984 gfs2_ordered_del_inode(ip); 1985 } 1986 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1987 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 1988 1989 gfs2_trans_add_meta(ip->i_gl, dibh); 1990 gfs2_dinode_out(ip, dibh->b_data); 1991 brelse(dibh); 1992 1993 out: 1994 up_write(&ip->i_rw_mutex); 1995 gfs2_trans_end(sdp); 1996 return error; 1997 } 1998 1999 /** 2000 * do_shrink - make a file smaller 2001 * @inode: the inode 2002 * @newsize: the size to make the file 2003 * 2004 * Called with an exclusive lock on @inode. The @size must 2005 * be equal to or smaller than the current inode size. 2006 * 2007 * Returns: errno 2008 */ 2009 2010 static int do_shrink(struct inode *inode, u64 newsize) 2011 { 2012 struct gfs2_inode *ip = GFS2_I(inode); 2013 int error; 2014 2015 error = trunc_start(inode, newsize); 2016 if (error < 0) 2017 return error; 2018 if (gfs2_is_stuffed(ip)) 2019 return 0; 2020 2021 error = punch_hole(ip, newsize, 0); 2022 if (error == 0) 2023 error = trunc_end(ip); 2024 2025 return error; 2026 } 2027 2028 void gfs2_trim_blocks(struct inode *inode) 2029 { 2030 int ret; 2031 2032 ret = do_shrink(inode, inode->i_size); 2033 WARN_ON(ret != 0); 2034 } 2035 2036 /** 2037 * do_grow - Touch and update inode size 2038 * @inode: The inode 2039 * @size: The new size 2040 * 2041 * This function updates the timestamps on the inode and 2042 * may also increase the size of the inode. This function 2043 * must not be called with @size any smaller than the current 2044 * inode size. 2045 * 2046 * Although it is not strictly required to unstuff files here, 2047 * earlier versions of GFS2 have a bug in the stuffed file reading 2048 * code which will result in a buffer overrun if the size is larger 2049 * than the max stuffed file size. In order to prevent this from 2050 * occurring, such files are unstuffed, but in other cases we can 2051 * just update the inode size directly. 2052 * 2053 * Returns: 0 on success, or -ve on error 2054 */ 2055 2056 static int do_grow(struct inode *inode, u64 size) 2057 { 2058 struct gfs2_inode *ip = GFS2_I(inode); 2059 struct gfs2_sbd *sdp = GFS2_SB(inode); 2060 struct gfs2_alloc_parms ap = { .target = 1, }; 2061 struct buffer_head *dibh; 2062 int error; 2063 int unstuff = 0; 2064 2065 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2066 error = gfs2_quota_lock_check(ip, &ap); 2067 if (error) 2068 return error; 2069 2070 error = gfs2_inplace_reserve(ip, &ap); 2071 if (error) 2072 goto do_grow_qunlock; 2073 unstuff = 1; 2074 } 2075 2076 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2077 (unstuff && 2078 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2079 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2080 0 : RES_QUOTA), 0); 2081 if (error) 2082 goto do_grow_release; 2083 2084 if (unstuff) { 2085 error = gfs2_unstuff_dinode(ip); 2086 if (error) 2087 goto do_end_trans; 2088 } 2089 2090 error = gfs2_meta_inode_buffer(ip, &dibh); 2091 if (error) 2092 goto do_end_trans; 2093 2094 truncate_setsize(inode, size); 2095 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2096 gfs2_trans_add_meta(ip->i_gl, dibh); 2097 gfs2_dinode_out(ip, dibh->b_data); 2098 brelse(dibh); 2099 2100 do_end_trans: 2101 gfs2_trans_end(sdp); 2102 do_grow_release: 2103 if (unstuff) { 2104 gfs2_inplace_release(ip); 2105 do_grow_qunlock: 2106 gfs2_quota_unlock(ip); 2107 } 2108 return error; 2109 } 2110 2111 /** 2112 * gfs2_setattr_size - make a file a given size 2113 * @inode: the inode 2114 * @newsize: the size to make the file 2115 * 2116 * The file size can grow, shrink, or stay the same size. This 2117 * is called holding i_rwsem and an exclusive glock on the inode 2118 * in question. 2119 * 2120 * Returns: errno 2121 */ 2122 2123 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2124 { 2125 struct gfs2_inode *ip = GFS2_I(inode); 2126 int ret; 2127 2128 BUG_ON(!S_ISREG(inode->i_mode)); 2129 2130 ret = inode_newsize_ok(inode, newsize); 2131 if (ret) 2132 return ret; 2133 2134 inode_dio_wait(inode); 2135 2136 ret = gfs2_qa_get(ip); 2137 if (ret) 2138 goto out; 2139 2140 if (newsize >= inode->i_size) { 2141 ret = do_grow(inode, newsize); 2142 goto out; 2143 } 2144 2145 ret = do_shrink(inode, newsize); 2146 out: 2147 gfs2_rs_delete(ip); 2148 gfs2_qa_put(ip); 2149 return ret; 2150 } 2151 2152 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2153 { 2154 int error; 2155 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2156 if (!error) 2157 error = trunc_end(ip); 2158 return error; 2159 } 2160 2161 int gfs2_file_dealloc(struct gfs2_inode *ip) 2162 { 2163 return punch_hole(ip, 0, 0); 2164 } 2165 2166 /** 2167 * gfs2_free_journal_extents - Free cached journal bmap info 2168 * @jd: The journal 2169 * 2170 */ 2171 2172 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2173 { 2174 struct gfs2_journal_extent *jext; 2175 2176 while(!list_empty(&jd->extent_list)) { 2177 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2178 list_del(&jext->list); 2179 kfree(jext); 2180 } 2181 } 2182 2183 /** 2184 * gfs2_add_jextent - Add or merge a new extent to extent cache 2185 * @jd: The journal descriptor 2186 * @lblock: The logical block at start of new extent 2187 * @dblock: The physical block at start of new extent 2188 * @blocks: Size of extent in fs blocks 2189 * 2190 * Returns: 0 on success or -ENOMEM 2191 */ 2192 2193 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2194 { 2195 struct gfs2_journal_extent *jext; 2196 2197 if (!list_empty(&jd->extent_list)) { 2198 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2199 if ((jext->dblock + jext->blocks) == dblock) { 2200 jext->blocks += blocks; 2201 return 0; 2202 } 2203 } 2204 2205 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2206 if (jext == NULL) 2207 return -ENOMEM; 2208 jext->dblock = dblock; 2209 jext->lblock = lblock; 2210 jext->blocks = blocks; 2211 list_add_tail(&jext->list, &jd->extent_list); 2212 jd->nr_extents++; 2213 return 0; 2214 } 2215 2216 /** 2217 * gfs2_map_journal_extents - Cache journal bmap info 2218 * @sdp: The super block 2219 * @jd: The journal to map 2220 * 2221 * Create a reusable "extent" mapping from all logical 2222 * blocks to all physical blocks for the given journal. This will save 2223 * us time when writing journal blocks. Most journals will have only one 2224 * extent that maps all their logical blocks. That's because gfs2.mkfs 2225 * arranges the journal blocks sequentially to maximize performance. 2226 * So the extent would map the first block for the entire file length. 2227 * However, gfs2_jadd can happen while file activity is happening, so 2228 * those journals may not be sequential. Less likely is the case where 2229 * the users created their own journals by mounting the metafs and 2230 * laying it out. But it's still possible. These journals might have 2231 * several extents. 2232 * 2233 * Returns: 0 on success, or error on failure 2234 */ 2235 2236 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2237 { 2238 u64 lblock = 0; 2239 u64 lblock_stop; 2240 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2241 struct buffer_head bh; 2242 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2243 u64 size; 2244 int rc; 2245 ktime_t start, end; 2246 2247 start = ktime_get(); 2248 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2249 size = (lblock_stop - lblock) << shift; 2250 jd->nr_extents = 0; 2251 WARN_ON(!list_empty(&jd->extent_list)); 2252 2253 do { 2254 bh.b_state = 0; 2255 bh.b_blocknr = 0; 2256 bh.b_size = size; 2257 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2258 if (rc || !buffer_mapped(&bh)) 2259 goto fail; 2260 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2261 if (rc) 2262 goto fail; 2263 size -= bh.b_size; 2264 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2265 } while(size > 0); 2266 2267 end = ktime_get(); 2268 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2269 jd->nr_extents, ktime_ms_delta(end, start)); 2270 return 0; 2271 2272 fail: 2273 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2274 rc, jd->jd_jid, 2275 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2276 jd->nr_extents); 2277 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2278 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2279 bh.b_state, (unsigned long long)bh.b_size); 2280 gfs2_free_journal_extents(jd); 2281 return rc; 2282 } 2283 2284 /** 2285 * gfs2_write_alloc_required - figure out if a write will require an allocation 2286 * @ip: the file being written to 2287 * @offset: the offset to write to 2288 * @len: the number of bytes being written 2289 * 2290 * Returns: 1 if an alloc is required, 0 otherwise 2291 */ 2292 2293 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2294 unsigned int len) 2295 { 2296 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2297 struct buffer_head bh; 2298 unsigned int shift; 2299 u64 lblock, lblock_stop, size; 2300 u64 end_of_file; 2301 2302 if (!len) 2303 return 0; 2304 2305 if (gfs2_is_stuffed(ip)) { 2306 if (offset + len > gfs2_max_stuffed_size(ip)) 2307 return 1; 2308 return 0; 2309 } 2310 2311 shift = sdp->sd_sb.sb_bsize_shift; 2312 BUG_ON(gfs2_is_dir(ip)); 2313 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2314 lblock = offset >> shift; 2315 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2316 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2317 return 1; 2318 2319 size = (lblock_stop - lblock) << shift; 2320 do { 2321 bh.b_state = 0; 2322 bh.b_size = size; 2323 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2324 if (!buffer_mapped(&bh)) 2325 return 1; 2326 size -= bh.b_size; 2327 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2328 } while(size > 0); 2329 2330 return 0; 2331 } 2332 2333 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2334 { 2335 struct gfs2_inode *ip = GFS2_I(inode); 2336 struct buffer_head *dibh; 2337 int error; 2338 2339 if (offset >= inode->i_size) 2340 return 0; 2341 if (offset + length > inode->i_size) 2342 length = inode->i_size - offset; 2343 2344 error = gfs2_meta_inode_buffer(ip, &dibh); 2345 if (error) 2346 return error; 2347 gfs2_trans_add_meta(ip->i_gl, dibh); 2348 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2349 length); 2350 brelse(dibh); 2351 return 0; 2352 } 2353 2354 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2355 loff_t length) 2356 { 2357 struct gfs2_sbd *sdp = GFS2_SB(inode); 2358 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2359 int error; 2360 2361 while (length) { 2362 struct gfs2_trans *tr; 2363 loff_t chunk; 2364 unsigned int offs; 2365 2366 chunk = length; 2367 if (chunk > max_chunk) 2368 chunk = max_chunk; 2369 2370 offs = offset & ~PAGE_MASK; 2371 if (offs && chunk > PAGE_SIZE) 2372 chunk = offs + ((chunk - offs) & PAGE_MASK); 2373 2374 truncate_pagecache_range(inode, offset, chunk); 2375 offset += chunk; 2376 length -= chunk; 2377 2378 tr = current->journal_info; 2379 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2380 continue; 2381 2382 gfs2_trans_end(sdp); 2383 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2384 if (error) 2385 return error; 2386 } 2387 return 0; 2388 } 2389 2390 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2391 { 2392 struct inode *inode = file_inode(file); 2393 struct gfs2_inode *ip = GFS2_I(inode); 2394 struct gfs2_sbd *sdp = GFS2_SB(inode); 2395 unsigned int blocksize = i_blocksize(inode); 2396 loff_t start, end; 2397 int error; 2398 2399 if (!gfs2_is_stuffed(ip)) { 2400 unsigned int start_off, end_len; 2401 2402 start_off = offset & (blocksize - 1); 2403 end_len = (offset + length) & (blocksize - 1); 2404 if (start_off) { 2405 unsigned int len = length; 2406 if (length > blocksize - start_off) 2407 len = blocksize - start_off; 2408 error = gfs2_block_zero_range(inode, offset, len); 2409 if (error) 2410 goto out; 2411 if (start_off + length < blocksize) 2412 end_len = 0; 2413 } 2414 if (end_len) { 2415 error = gfs2_block_zero_range(inode, 2416 offset + length - end_len, end_len); 2417 if (error) 2418 goto out; 2419 } 2420 } 2421 2422 start = round_down(offset, blocksize); 2423 end = round_up(offset + length, blocksize) - 1; 2424 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2425 if (error) 2426 return error; 2427 2428 if (gfs2_is_jdata(ip)) 2429 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2430 GFS2_JTRUNC_REVOKES); 2431 else 2432 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2433 if (error) 2434 return error; 2435 2436 if (gfs2_is_stuffed(ip)) { 2437 error = stuffed_zero_range(inode, offset, length); 2438 if (error) 2439 goto out; 2440 } 2441 2442 if (gfs2_is_jdata(ip)) { 2443 BUG_ON(!current->journal_info); 2444 gfs2_journaled_truncate_range(inode, offset, length); 2445 } else 2446 truncate_pagecache_range(inode, offset, offset + length - 1); 2447 2448 file_update_time(file); 2449 mark_inode_dirty(inode); 2450 2451 if (current->journal_info) 2452 gfs2_trans_end(sdp); 2453 2454 if (!gfs2_is_stuffed(ip)) 2455 error = punch_hole(ip, offset, length); 2456 2457 out: 2458 if (current->journal_info) 2459 gfs2_trans_end(sdp); 2460 return error; 2461 } 2462 2463 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, 2464 loff_t offset) 2465 { 2466 int ret; 2467 2468 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode)))) 2469 return -EIO; 2470 2471 if (offset >= wpc->iomap.offset && 2472 offset < wpc->iomap.offset + wpc->iomap.length) 2473 return 0; 2474 2475 memset(&wpc->iomap, 0, sizeof(wpc->iomap)); 2476 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap); 2477 return ret; 2478 } 2479 2480 const struct iomap_writeback_ops gfs2_writeback_ops = { 2481 .map_blocks = gfs2_map_blocks, 2482 }; 2483