1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 struct buffer_head *bh; 60 int release = 0; 61 62 if (!page || page->index) { 63 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 64 if (!page) 65 return -ENOMEM; 66 release = 1; 67 } 68 69 if (!PageUptodate(page)) { 70 void *kaddr = kmap(page); 71 u64 dsize = i_size_read(inode); 72 73 if (dsize > gfs2_max_stuffed_size(ip)) 74 dsize = gfs2_max_stuffed_size(ip); 75 76 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 77 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 78 kunmap(page); 79 80 SetPageUptodate(page); 81 } 82 83 if (!page_has_buffers(page)) 84 create_empty_buffers(page, BIT(inode->i_blkbits), 85 BIT(BH_Uptodate)); 86 87 bh = page_buffers(page); 88 89 if (!buffer_mapped(bh)) 90 map_bh(bh, inode->i_sb, block); 91 92 set_buffer_uptodate(bh); 93 if (gfs2_is_jdata(ip)) 94 gfs2_trans_add_data(ip->i_gl, bh); 95 else { 96 mark_buffer_dirty(bh); 97 gfs2_ordered_add_inode(ip); 98 } 99 100 if (release) { 101 unlock_page(page); 102 put_page(page); 103 } 104 105 return 0; 106 } 107 108 /** 109 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 110 * @ip: The GFS2 inode to unstuff 111 * @page: The (optional) page. This is looked up if the @page is NULL 112 * 113 * This routine unstuffs a dinode and returns it to a "normal" state such 114 * that the height can be grown in the traditional way. 115 * 116 * Returns: errno 117 */ 118 119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 120 { 121 struct buffer_head *bh, *dibh; 122 struct gfs2_dinode *di; 123 u64 block = 0; 124 int isdir = gfs2_is_dir(ip); 125 int error; 126 127 down_write(&ip->i_rw_mutex); 128 129 error = gfs2_meta_inode_buffer(ip, &dibh); 130 if (error) 131 goto out; 132 133 if (i_size_read(&ip->i_inode)) { 134 /* Get a free block, fill it with the stuffed data, 135 and write it out to disk */ 136 137 unsigned int n = 1; 138 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 139 if (error) 140 goto out_brelse; 141 if (isdir) { 142 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 143 error = gfs2_dir_get_new_buffer(ip, block, &bh); 144 if (error) 145 goto out_brelse; 146 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 147 dibh, sizeof(struct gfs2_dinode)); 148 brelse(bh); 149 } else { 150 error = gfs2_unstuffer_page(ip, dibh, block, page); 151 if (error) 152 goto out_brelse; 153 } 154 } 155 156 /* Set up the pointer to the new block */ 157 158 gfs2_trans_add_meta(ip->i_gl, dibh); 159 di = (struct gfs2_dinode *)dibh->b_data; 160 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 161 162 if (i_size_read(&ip->i_inode)) { 163 *(__be64 *)(di + 1) = cpu_to_be64(block); 164 gfs2_add_inode_blocks(&ip->i_inode, 1); 165 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 166 } 167 168 ip->i_height = 1; 169 di->di_height = cpu_to_be16(1); 170 171 out_brelse: 172 brelse(dibh); 173 out: 174 up_write(&ip->i_rw_mutex); 175 return error; 176 } 177 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 394 { 395 sector_t factor = 1, block = 0; 396 int hgt; 397 398 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 399 if (hgt < mp->mp_aheight) 400 block += mp->mp_list[hgt] * factor; 401 factor *= sdp->sd_inptrs; 402 } 403 return block; 404 } 405 406 static void release_metapath(struct metapath *mp) 407 { 408 int i; 409 410 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 411 if (mp->mp_bh[i] == NULL) 412 break; 413 brelse(mp->mp_bh[i]); 414 mp->mp_bh[i] = NULL; 415 } 416 } 417 418 /** 419 * gfs2_extent_length - Returns length of an extent of blocks 420 * @bh: The metadata block 421 * @ptr: Current position in @bh 422 * @limit: Max extent length to return 423 * @eob: Set to 1 if we hit "end of block" 424 * 425 * Returns: The length of the extent (minimum of one block) 426 */ 427 428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 429 { 430 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 431 const __be64 *first = ptr; 432 u64 d = be64_to_cpu(*ptr); 433 434 *eob = 0; 435 do { 436 ptr++; 437 if (ptr >= end) 438 break; 439 d++; 440 } while(be64_to_cpu(*ptr) == d); 441 if (ptr >= end) 442 *eob = 1; 443 return ptr - first; 444 } 445 446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 447 448 /* 449 * gfs2_metadata_walker - walk an indirect block 450 * @mp: Metapath to indirect block 451 * @ptrs: Number of pointers to look at 452 * 453 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 454 * indirect block to follow. 455 */ 456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 457 unsigned int ptrs); 458 459 /* 460 * gfs2_walk_metadata - walk a tree of indirect blocks 461 * @inode: The inode 462 * @mp: Starting point of walk 463 * @max_len: Maximum number of blocks to walk 464 * @walker: Called during the walk 465 * 466 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 467 * past the end of metadata, and a negative error code otherwise. 468 */ 469 470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 471 u64 max_len, gfs2_metadata_walker walker) 472 { 473 struct gfs2_inode *ip = GFS2_I(inode); 474 struct gfs2_sbd *sdp = GFS2_SB(inode); 475 u64 factor = 1; 476 unsigned int hgt; 477 int ret; 478 479 /* 480 * The walk starts in the lowest allocated indirect block, which may be 481 * before the position indicated by @mp. Adjust @max_len accordingly 482 * to avoid a short walk. 483 */ 484 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 485 max_len += mp->mp_list[hgt] * factor; 486 mp->mp_list[hgt] = 0; 487 factor *= sdp->sd_inptrs; 488 } 489 490 for (;;) { 491 u16 start = mp->mp_list[hgt]; 492 enum walker_status status; 493 unsigned int ptrs; 494 u64 len; 495 496 /* Walk indirect block. */ 497 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 498 len = ptrs * factor; 499 if (len > max_len) 500 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 501 status = walker(mp, ptrs); 502 switch (status) { 503 case WALK_STOP: 504 return 1; 505 case WALK_FOLLOW: 506 BUG_ON(mp->mp_aheight == mp->mp_fheight); 507 ptrs = mp->mp_list[hgt] - start; 508 len = ptrs * factor; 509 break; 510 case WALK_CONTINUE: 511 break; 512 } 513 if (len >= max_len) 514 break; 515 max_len -= len; 516 if (status == WALK_FOLLOW) 517 goto fill_up_metapath; 518 519 lower_metapath: 520 /* Decrease height of metapath. */ 521 brelse(mp->mp_bh[hgt]); 522 mp->mp_bh[hgt] = NULL; 523 mp->mp_list[hgt] = 0; 524 if (!hgt) 525 break; 526 hgt--; 527 factor *= sdp->sd_inptrs; 528 529 /* Advance in metadata tree. */ 530 (mp->mp_list[hgt])++; 531 if (hgt) { 532 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 533 goto lower_metapath; 534 } else { 535 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 536 break; 537 } 538 539 fill_up_metapath: 540 /* Increase height of metapath. */ 541 ret = fillup_metapath(ip, mp, ip->i_height - 1); 542 if (ret < 0) 543 return ret; 544 hgt += ret; 545 for (; ret; ret--) 546 do_div(factor, sdp->sd_inptrs); 547 mp->mp_aheight = hgt + 1; 548 } 549 return 0; 550 } 551 552 static enum walker_status gfs2_hole_walker(struct metapath *mp, 553 unsigned int ptrs) 554 { 555 const __be64 *start, *ptr, *end; 556 unsigned int hgt; 557 558 hgt = mp->mp_aheight - 1; 559 start = metapointer(hgt, mp); 560 end = start + ptrs; 561 562 for (ptr = start; ptr < end; ptr++) { 563 if (*ptr) { 564 mp->mp_list[hgt] += ptr - start; 565 if (mp->mp_aheight == mp->mp_fheight) 566 return WALK_STOP; 567 return WALK_FOLLOW; 568 } 569 } 570 return WALK_CONTINUE; 571 } 572 573 /** 574 * gfs2_hole_size - figure out the size of a hole 575 * @inode: The inode 576 * @lblock: The logical starting block number 577 * @len: How far to look (in blocks) 578 * @mp: The metapath at lblock 579 * @iomap: The iomap to store the hole size in 580 * 581 * This function modifies @mp. 582 * 583 * Returns: errno on error 584 */ 585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 586 struct metapath *mp, struct iomap *iomap) 587 { 588 struct metapath clone; 589 u64 hole_size; 590 int ret; 591 592 clone_metapath(&clone, mp); 593 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 594 if (ret < 0) 595 goto out; 596 597 if (ret == 1) 598 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 599 else 600 hole_size = len; 601 iomap->length = hole_size << inode->i_blkbits; 602 ret = 0; 603 604 out: 605 release_metapath(&clone); 606 return ret; 607 } 608 609 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 610 struct gfs2_glock *gl, unsigned int i, 611 unsigned offset, u64 bn) 612 { 613 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 614 ((i > 1) ? sizeof(struct gfs2_meta_header) : 615 sizeof(struct gfs2_dinode))); 616 BUG_ON(i < 1); 617 BUG_ON(mp->mp_bh[i] != NULL); 618 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 619 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 620 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 621 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 622 ptr += offset; 623 *ptr = cpu_to_be64(bn); 624 return ptr; 625 } 626 627 enum alloc_state { 628 ALLOC_DATA = 0, 629 ALLOC_GROW_DEPTH = 1, 630 ALLOC_GROW_HEIGHT = 2, 631 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 632 }; 633 634 /** 635 * gfs2_iomap_alloc - Build a metadata tree of the requested height 636 * @inode: The GFS2 inode 637 * @iomap: The iomap structure 638 * @mp: The metapath, with proper height information calculated 639 * 640 * In this routine we may have to alloc: 641 * i) Indirect blocks to grow the metadata tree height 642 * ii) Indirect blocks to fill in lower part of the metadata tree 643 * iii) Data blocks 644 * 645 * This function is called after gfs2_iomap_get, which works out the 646 * total number of blocks which we need via gfs2_alloc_size. 647 * 648 * We then do the actual allocation asking for an extent at a time (if 649 * enough contiguous free blocks are available, there will only be one 650 * allocation request per call) and uses the state machine to initialise 651 * the blocks in order. 652 * 653 * Right now, this function will allocate at most one indirect block 654 * worth of data -- with a default block size of 4K, that's slightly 655 * less than 2M. If this limitation is ever removed to allow huge 656 * allocations, we would probably still want to limit the iomap size we 657 * return to avoid stalling other tasks during huge writes; the next 658 * iomap iteration would then find the blocks already allocated. 659 * 660 * Returns: errno on error 661 */ 662 663 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 664 struct metapath *mp) 665 { 666 struct gfs2_inode *ip = GFS2_I(inode); 667 struct gfs2_sbd *sdp = GFS2_SB(inode); 668 struct buffer_head *dibh = mp->mp_bh[0]; 669 u64 bn; 670 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 671 size_t dblks = iomap->length >> inode->i_blkbits; 672 const unsigned end_of_metadata = mp->mp_fheight - 1; 673 int ret; 674 enum alloc_state state; 675 __be64 *ptr; 676 __be64 zero_bn = 0; 677 678 BUG_ON(mp->mp_aheight < 1); 679 BUG_ON(dibh == NULL); 680 BUG_ON(dblks < 1); 681 682 gfs2_trans_add_meta(ip->i_gl, dibh); 683 684 down_write(&ip->i_rw_mutex); 685 686 if (mp->mp_fheight == mp->mp_aheight) { 687 /* Bottom indirect block exists */ 688 state = ALLOC_DATA; 689 } else { 690 /* Need to allocate indirect blocks */ 691 if (mp->mp_fheight == ip->i_height) { 692 /* Writing into existing tree, extend tree down */ 693 iblks = mp->mp_fheight - mp->mp_aheight; 694 state = ALLOC_GROW_DEPTH; 695 } else { 696 /* Building up tree height */ 697 state = ALLOC_GROW_HEIGHT; 698 iblks = mp->mp_fheight - ip->i_height; 699 branch_start = metapath_branch_start(mp); 700 iblks += (mp->mp_fheight - branch_start); 701 } 702 } 703 704 /* start of the second part of the function (state machine) */ 705 706 blks = dblks + iblks; 707 i = mp->mp_aheight; 708 do { 709 n = blks - alloced; 710 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 711 if (ret) 712 goto out; 713 alloced += n; 714 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 715 gfs2_trans_remove_revoke(sdp, bn, n); 716 switch (state) { 717 /* Growing height of tree */ 718 case ALLOC_GROW_HEIGHT: 719 if (i == 1) { 720 ptr = (__be64 *)(dibh->b_data + 721 sizeof(struct gfs2_dinode)); 722 zero_bn = *ptr; 723 } 724 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 725 i++, n--) 726 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 727 if (i - 1 == mp->mp_fheight - ip->i_height) { 728 i--; 729 gfs2_buffer_copy_tail(mp->mp_bh[i], 730 sizeof(struct gfs2_meta_header), 731 dibh, sizeof(struct gfs2_dinode)); 732 gfs2_buffer_clear_tail(dibh, 733 sizeof(struct gfs2_dinode) + 734 sizeof(__be64)); 735 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 736 sizeof(struct gfs2_meta_header)); 737 *ptr = zero_bn; 738 state = ALLOC_GROW_DEPTH; 739 for(i = branch_start; i < mp->mp_fheight; i++) { 740 if (mp->mp_bh[i] == NULL) 741 break; 742 brelse(mp->mp_bh[i]); 743 mp->mp_bh[i] = NULL; 744 } 745 i = branch_start; 746 } 747 if (n == 0) 748 break; 749 /* fall through - To branching from existing tree */ 750 case ALLOC_GROW_DEPTH: 751 if (i > 1 && i < mp->mp_fheight) 752 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 753 for (; i < mp->mp_fheight && n > 0; i++, n--) 754 gfs2_indirect_init(mp, ip->i_gl, i, 755 mp->mp_list[i-1], bn++); 756 if (i == mp->mp_fheight) 757 state = ALLOC_DATA; 758 if (n == 0) 759 break; 760 /* fall through - To tree complete, adding data blocks */ 761 case ALLOC_DATA: 762 BUG_ON(n > dblks); 763 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 764 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 765 dblks = n; 766 ptr = metapointer(end_of_metadata, mp); 767 iomap->addr = bn << inode->i_blkbits; 768 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 769 while (n-- > 0) 770 *ptr++ = cpu_to_be64(bn++); 771 break; 772 } 773 } while (iomap->addr == IOMAP_NULL_ADDR); 774 775 iomap->type = IOMAP_MAPPED; 776 iomap->length = (u64)dblks << inode->i_blkbits; 777 ip->i_height = mp->mp_fheight; 778 gfs2_add_inode_blocks(&ip->i_inode, alloced); 779 gfs2_dinode_out(ip, dibh->b_data); 780 out: 781 up_write(&ip->i_rw_mutex); 782 return ret; 783 } 784 785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 786 787 /** 788 * gfs2_alloc_size - Compute the maximum allocation size 789 * @inode: The inode 790 * @mp: The metapath 791 * @size: Requested size in blocks 792 * 793 * Compute the maximum size of the next allocation at @mp. 794 * 795 * Returns: size in blocks 796 */ 797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 798 { 799 struct gfs2_inode *ip = GFS2_I(inode); 800 struct gfs2_sbd *sdp = GFS2_SB(inode); 801 const __be64 *first, *ptr, *end; 802 803 /* 804 * For writes to stuffed files, this function is called twice via 805 * gfs2_iomap_get, before and after unstuffing. The size we return the 806 * first time needs to be large enough to get the reservation and 807 * allocation sizes right. The size we return the second time must 808 * be exact or else gfs2_iomap_alloc won't do the right thing. 809 */ 810 811 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 812 unsigned int maxsize = mp->mp_fheight > 1 ? 813 sdp->sd_inptrs : sdp->sd_diptrs; 814 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 815 if (size > maxsize) 816 size = maxsize; 817 return size; 818 } 819 820 first = metapointer(ip->i_height - 1, mp); 821 end = metaend(ip->i_height - 1, mp); 822 if (end - first > size) 823 end = first + size; 824 for (ptr = first; ptr < end; ptr++) { 825 if (*ptr) 826 break; 827 } 828 return ptr - first; 829 } 830 831 /** 832 * gfs2_iomap_get - Map blocks from an inode to disk blocks 833 * @inode: The inode 834 * @pos: Starting position in bytes 835 * @length: Length to map, in bytes 836 * @flags: iomap flags 837 * @iomap: The iomap structure 838 * @mp: The metapath 839 * 840 * Returns: errno 841 */ 842 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 843 unsigned flags, struct iomap *iomap, 844 struct metapath *mp) 845 { 846 struct gfs2_inode *ip = GFS2_I(inode); 847 struct gfs2_sbd *sdp = GFS2_SB(inode); 848 loff_t size = i_size_read(inode); 849 __be64 *ptr; 850 sector_t lblock; 851 sector_t lblock_stop; 852 int ret; 853 int eob; 854 u64 len; 855 struct buffer_head *dibh = NULL, *bh; 856 u8 height; 857 858 if (!length) 859 return -EINVAL; 860 861 down_read(&ip->i_rw_mutex); 862 863 ret = gfs2_meta_inode_buffer(ip, &dibh); 864 if (ret) 865 goto unlock; 866 mp->mp_bh[0] = dibh; 867 868 if (gfs2_is_stuffed(ip)) { 869 if (flags & IOMAP_WRITE) { 870 loff_t max_size = gfs2_max_stuffed_size(ip); 871 872 if (pos + length > max_size) 873 goto unstuff; 874 iomap->length = max_size; 875 } else { 876 if (pos >= size) { 877 if (flags & IOMAP_REPORT) { 878 ret = -ENOENT; 879 goto unlock; 880 } else { 881 iomap->offset = pos; 882 iomap->length = length; 883 goto hole_found; 884 } 885 } 886 iomap->length = size; 887 } 888 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 889 sizeof(struct gfs2_dinode); 890 iomap->type = IOMAP_INLINE; 891 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 892 goto out; 893 } 894 895 unstuff: 896 lblock = pos >> inode->i_blkbits; 897 iomap->offset = lblock << inode->i_blkbits; 898 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 899 len = lblock_stop - lblock + 1; 900 iomap->length = len << inode->i_blkbits; 901 902 height = ip->i_height; 903 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 904 height++; 905 find_metapath(sdp, lblock, mp, height); 906 if (height > ip->i_height || gfs2_is_stuffed(ip)) 907 goto do_alloc; 908 909 ret = lookup_metapath(ip, mp); 910 if (ret) 911 goto unlock; 912 913 if (mp->mp_aheight != ip->i_height) 914 goto do_alloc; 915 916 ptr = metapointer(ip->i_height - 1, mp); 917 if (*ptr == 0) 918 goto do_alloc; 919 920 bh = mp->mp_bh[ip->i_height - 1]; 921 len = gfs2_extent_length(bh, ptr, len, &eob); 922 923 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 924 iomap->length = len << inode->i_blkbits; 925 iomap->type = IOMAP_MAPPED; 926 iomap->flags |= IOMAP_F_MERGED; 927 if (eob) 928 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 929 930 out: 931 iomap->bdev = inode->i_sb->s_bdev; 932 unlock: 933 up_read(&ip->i_rw_mutex); 934 return ret; 935 936 do_alloc: 937 if (flags & IOMAP_REPORT) { 938 if (pos >= size) 939 ret = -ENOENT; 940 else if (height == ip->i_height) 941 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 942 else 943 iomap->length = size - pos; 944 } else if (flags & IOMAP_WRITE) { 945 u64 alloc_size; 946 947 if (flags & IOMAP_DIRECT) 948 goto out; /* (see gfs2_file_direct_write) */ 949 950 len = gfs2_alloc_size(inode, mp, len); 951 alloc_size = len << inode->i_blkbits; 952 if (alloc_size < iomap->length) 953 iomap->length = alloc_size; 954 } else { 955 if (pos < size && height == ip->i_height) 956 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 957 } 958 hole_found: 959 iomap->addr = IOMAP_NULL_ADDR; 960 iomap->type = IOMAP_HOLE; 961 goto out; 962 } 963 964 /** 965 * gfs2_lblk_to_dblk - convert logical block to disk block 966 * @inode: the inode of the file we're mapping 967 * @lblock: the block relative to the start of the file 968 * @dblock: the returned dblock, if no error 969 * 970 * This function maps a single block from a file logical block (relative to 971 * the start of the file) to a file system absolute block using iomap. 972 * 973 * Returns: the absolute file system block, or an error 974 */ 975 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock) 976 { 977 struct iomap iomap = { }; 978 struct metapath mp = { .mp_aheight = 1, }; 979 loff_t pos = (loff_t)lblock << inode->i_blkbits; 980 int ret; 981 982 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp); 983 release_metapath(&mp); 984 if (ret == 0) 985 *dblock = iomap.addr >> inode->i_blkbits; 986 987 return ret; 988 } 989 990 static int gfs2_write_lock(struct inode *inode) 991 { 992 struct gfs2_inode *ip = GFS2_I(inode); 993 struct gfs2_sbd *sdp = GFS2_SB(inode); 994 int error; 995 996 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 997 error = gfs2_glock_nq(&ip->i_gh); 998 if (error) 999 goto out_uninit; 1000 if (&ip->i_inode == sdp->sd_rindex) { 1001 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1002 1003 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 1004 GL_NOCACHE, &m_ip->i_gh); 1005 if (error) 1006 goto out_unlock; 1007 } 1008 return 0; 1009 1010 out_unlock: 1011 gfs2_glock_dq(&ip->i_gh); 1012 out_uninit: 1013 gfs2_holder_uninit(&ip->i_gh); 1014 return error; 1015 } 1016 1017 static void gfs2_write_unlock(struct inode *inode) 1018 { 1019 struct gfs2_inode *ip = GFS2_I(inode); 1020 struct gfs2_sbd *sdp = GFS2_SB(inode); 1021 1022 if (&ip->i_inode == sdp->sd_rindex) { 1023 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1024 1025 gfs2_glock_dq_uninit(&m_ip->i_gh); 1026 } 1027 gfs2_glock_dq_uninit(&ip->i_gh); 1028 } 1029 1030 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 1031 unsigned len, struct iomap *iomap) 1032 { 1033 unsigned int blockmask = i_blocksize(inode) - 1; 1034 struct gfs2_sbd *sdp = GFS2_SB(inode); 1035 unsigned int blocks; 1036 1037 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 1038 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 1039 } 1040 1041 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1042 unsigned copied, struct page *page, 1043 struct iomap *iomap) 1044 { 1045 struct gfs2_trans *tr = current->journal_info; 1046 struct gfs2_inode *ip = GFS2_I(inode); 1047 struct gfs2_sbd *sdp = GFS2_SB(inode); 1048 1049 if (page && !gfs2_is_stuffed(ip)) 1050 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1051 1052 if (tr->tr_num_buf_new) 1053 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1054 1055 gfs2_trans_end(sdp); 1056 } 1057 1058 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1059 .page_prepare = gfs2_iomap_page_prepare, 1060 .page_done = gfs2_iomap_page_done, 1061 }; 1062 1063 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1064 loff_t length, unsigned flags, 1065 struct iomap *iomap, 1066 struct metapath *mp) 1067 { 1068 struct gfs2_inode *ip = GFS2_I(inode); 1069 struct gfs2_sbd *sdp = GFS2_SB(inode); 1070 bool unstuff; 1071 int ret; 1072 1073 unstuff = gfs2_is_stuffed(ip) && 1074 pos + length > gfs2_max_stuffed_size(ip); 1075 1076 if (unstuff || iomap->type == IOMAP_HOLE) { 1077 unsigned int data_blocks, ind_blocks; 1078 struct gfs2_alloc_parms ap = {}; 1079 unsigned int rblocks; 1080 struct gfs2_trans *tr; 1081 1082 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1083 &ind_blocks); 1084 ap.target = data_blocks + ind_blocks; 1085 ret = gfs2_quota_lock_check(ip, &ap); 1086 if (ret) 1087 return ret; 1088 1089 ret = gfs2_inplace_reserve(ip, &ap); 1090 if (ret) 1091 goto out_qunlock; 1092 1093 rblocks = RES_DINODE + ind_blocks; 1094 if (gfs2_is_jdata(ip)) 1095 rblocks += data_blocks; 1096 if (ind_blocks || data_blocks) 1097 rblocks += RES_STATFS + RES_QUOTA; 1098 if (inode == sdp->sd_rindex) 1099 rblocks += 2 * RES_STATFS; 1100 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1101 1102 ret = gfs2_trans_begin(sdp, rblocks, 1103 iomap->length >> inode->i_blkbits); 1104 if (ret) 1105 goto out_trans_fail; 1106 1107 if (unstuff) { 1108 ret = gfs2_unstuff_dinode(ip, NULL); 1109 if (ret) 1110 goto out_trans_end; 1111 release_metapath(mp); 1112 ret = gfs2_iomap_get(inode, iomap->offset, 1113 iomap->length, flags, iomap, mp); 1114 if (ret) 1115 goto out_trans_end; 1116 } 1117 1118 if (iomap->type == IOMAP_HOLE) { 1119 ret = gfs2_iomap_alloc(inode, iomap, mp); 1120 if (ret) { 1121 gfs2_trans_end(sdp); 1122 gfs2_inplace_release(ip); 1123 punch_hole(ip, iomap->offset, iomap->length); 1124 goto out_qunlock; 1125 } 1126 } 1127 1128 tr = current->journal_info; 1129 if (tr->tr_num_buf_new) 1130 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1131 1132 gfs2_trans_end(sdp); 1133 } 1134 1135 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1136 iomap->page_ops = &gfs2_iomap_page_ops; 1137 return 0; 1138 1139 out_trans_end: 1140 gfs2_trans_end(sdp); 1141 out_trans_fail: 1142 gfs2_inplace_release(ip); 1143 out_qunlock: 1144 gfs2_quota_unlock(ip); 1145 return ret; 1146 } 1147 1148 static inline bool gfs2_iomap_need_write_lock(unsigned flags) 1149 { 1150 return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT); 1151 } 1152 1153 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1154 unsigned flags, struct iomap *iomap, 1155 struct iomap *srcmap) 1156 { 1157 struct gfs2_inode *ip = GFS2_I(inode); 1158 struct metapath mp = { .mp_aheight = 1, }; 1159 int ret; 1160 1161 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1162 1163 trace_gfs2_iomap_start(ip, pos, length, flags); 1164 if (gfs2_iomap_need_write_lock(flags)) { 1165 ret = gfs2_write_lock(inode); 1166 if (ret) 1167 goto out; 1168 } 1169 1170 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1171 if (ret) 1172 goto out_unlock; 1173 1174 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1175 case IOMAP_WRITE: 1176 if (flags & IOMAP_DIRECT) { 1177 /* 1178 * Silently fall back to buffered I/O for stuffed files 1179 * or if we've got a hole (see gfs2_file_direct_write). 1180 */ 1181 if (iomap->type != IOMAP_MAPPED) 1182 ret = -ENOTBLK; 1183 goto out_unlock; 1184 } 1185 break; 1186 case IOMAP_ZERO: 1187 if (iomap->type == IOMAP_HOLE) 1188 goto out_unlock; 1189 break; 1190 default: 1191 goto out_unlock; 1192 } 1193 1194 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1195 1196 out_unlock: 1197 if (ret && gfs2_iomap_need_write_lock(flags)) 1198 gfs2_write_unlock(inode); 1199 release_metapath(&mp); 1200 out: 1201 trace_gfs2_iomap_end(ip, iomap, ret); 1202 return ret; 1203 } 1204 1205 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1206 ssize_t written, unsigned flags, struct iomap *iomap) 1207 { 1208 struct gfs2_inode *ip = GFS2_I(inode); 1209 struct gfs2_sbd *sdp = GFS2_SB(inode); 1210 1211 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1212 case IOMAP_WRITE: 1213 if (flags & IOMAP_DIRECT) 1214 return 0; 1215 break; 1216 case IOMAP_ZERO: 1217 if (iomap->type == IOMAP_HOLE) 1218 return 0; 1219 break; 1220 default: 1221 return 0; 1222 } 1223 1224 if (!gfs2_is_stuffed(ip)) 1225 gfs2_ordered_add_inode(ip); 1226 1227 if (inode == sdp->sd_rindex) 1228 adjust_fs_space(inode); 1229 1230 gfs2_inplace_release(ip); 1231 1232 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1233 /* Deallocate blocks that were just allocated. */ 1234 loff_t blockmask = i_blocksize(inode) - 1; 1235 loff_t end = (pos + length) & ~blockmask; 1236 1237 pos = (pos + written + blockmask) & ~blockmask; 1238 if (pos < end) { 1239 truncate_pagecache_range(inode, pos, end - 1); 1240 punch_hole(ip, pos, end - pos); 1241 } 1242 } 1243 1244 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1245 gfs2_quota_unlock(ip); 1246 1247 if (unlikely(!written)) 1248 goto out_unlock; 1249 1250 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1251 mark_inode_dirty(inode); 1252 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1253 1254 out_unlock: 1255 if (gfs2_iomap_need_write_lock(flags)) 1256 gfs2_write_unlock(inode); 1257 return 0; 1258 } 1259 1260 const struct iomap_ops gfs2_iomap_ops = { 1261 .iomap_begin = gfs2_iomap_begin, 1262 .iomap_end = gfs2_iomap_end, 1263 }; 1264 1265 /** 1266 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1267 * @inode: The inode 1268 * @lblock: The logical block number 1269 * @bh_map: The bh to be mapped 1270 * @create: True if its ok to alloc blocks to satify the request 1271 * 1272 * The size of the requested mapping is defined in bh_map->b_size. 1273 * 1274 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1275 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1276 * bh_map->b_size to indicate the size of the mapping when @lblock and 1277 * successive blocks are mapped, up to the requested size. 1278 * 1279 * Sets buffer_boundary() if a read of metadata will be required 1280 * before the next block can be mapped. Sets buffer_new() if new 1281 * blocks were allocated. 1282 * 1283 * Returns: errno 1284 */ 1285 1286 int gfs2_block_map(struct inode *inode, sector_t lblock, 1287 struct buffer_head *bh_map, int create) 1288 { 1289 struct gfs2_inode *ip = GFS2_I(inode); 1290 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1291 loff_t length = bh_map->b_size; 1292 struct metapath mp = { .mp_aheight = 1, }; 1293 struct iomap iomap = { }; 1294 int ret; 1295 1296 clear_buffer_mapped(bh_map); 1297 clear_buffer_new(bh_map); 1298 clear_buffer_boundary(bh_map); 1299 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1300 1301 if (create) { 1302 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1303 if (!ret && iomap.type == IOMAP_HOLE) 1304 ret = gfs2_iomap_alloc(inode, &iomap, &mp); 1305 release_metapath(&mp); 1306 } else { 1307 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1308 release_metapath(&mp); 1309 } 1310 if (ret) 1311 goto out; 1312 1313 if (iomap.length > bh_map->b_size) { 1314 iomap.length = bh_map->b_size; 1315 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1316 } 1317 if (iomap.addr != IOMAP_NULL_ADDR) 1318 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1319 bh_map->b_size = iomap.length; 1320 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1321 set_buffer_boundary(bh_map); 1322 if (iomap.flags & IOMAP_F_NEW) 1323 set_buffer_new(bh_map); 1324 1325 out: 1326 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1327 return ret; 1328 } 1329 1330 /* 1331 * Deprecated: do not use in new code 1332 */ 1333 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1334 { 1335 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1336 int ret; 1337 int create = *new; 1338 1339 BUG_ON(!extlen); 1340 BUG_ON(!dblock); 1341 BUG_ON(!new); 1342 1343 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1344 ret = gfs2_block_map(inode, lblock, &bh, create); 1345 *extlen = bh.b_size >> inode->i_blkbits; 1346 *dblock = bh.b_blocknr; 1347 if (buffer_new(&bh)) 1348 *new = 1; 1349 else 1350 *new = 0; 1351 return ret; 1352 } 1353 1354 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1355 unsigned int length) 1356 { 1357 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1358 } 1359 1360 #define GFS2_JTRUNC_REVOKES 8192 1361 1362 /** 1363 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1364 * @inode: The inode being truncated 1365 * @oldsize: The original (larger) size 1366 * @newsize: The new smaller size 1367 * 1368 * With jdata files, we have to journal a revoke for each block which is 1369 * truncated. As a result, we need to split this into separate transactions 1370 * if the number of pages being truncated gets too large. 1371 */ 1372 1373 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1374 { 1375 struct gfs2_sbd *sdp = GFS2_SB(inode); 1376 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1377 u64 chunk; 1378 int error; 1379 1380 while (oldsize != newsize) { 1381 struct gfs2_trans *tr; 1382 unsigned int offs; 1383 1384 chunk = oldsize - newsize; 1385 if (chunk > max_chunk) 1386 chunk = max_chunk; 1387 1388 offs = oldsize & ~PAGE_MASK; 1389 if (offs && chunk > PAGE_SIZE) 1390 chunk = offs + ((chunk - offs) & PAGE_MASK); 1391 1392 truncate_pagecache(inode, oldsize - chunk); 1393 oldsize -= chunk; 1394 1395 tr = current->journal_info; 1396 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1397 continue; 1398 1399 gfs2_trans_end(sdp); 1400 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1401 if (error) 1402 return error; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static int trunc_start(struct inode *inode, u64 newsize) 1409 { 1410 struct gfs2_inode *ip = GFS2_I(inode); 1411 struct gfs2_sbd *sdp = GFS2_SB(inode); 1412 struct buffer_head *dibh = NULL; 1413 int journaled = gfs2_is_jdata(ip); 1414 u64 oldsize = inode->i_size; 1415 int error; 1416 1417 if (journaled) 1418 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1419 else 1420 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1421 if (error) 1422 return error; 1423 1424 error = gfs2_meta_inode_buffer(ip, &dibh); 1425 if (error) 1426 goto out; 1427 1428 gfs2_trans_add_meta(ip->i_gl, dibh); 1429 1430 if (gfs2_is_stuffed(ip)) { 1431 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1432 } else { 1433 unsigned int blocksize = i_blocksize(inode); 1434 unsigned int offs = newsize & (blocksize - 1); 1435 if (offs) { 1436 error = gfs2_block_zero_range(inode, newsize, 1437 blocksize - offs); 1438 if (error) 1439 goto out; 1440 } 1441 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1442 } 1443 1444 i_size_write(inode, newsize); 1445 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1446 gfs2_dinode_out(ip, dibh->b_data); 1447 1448 if (journaled) 1449 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1450 else 1451 truncate_pagecache(inode, newsize); 1452 1453 out: 1454 brelse(dibh); 1455 if (current->journal_info) 1456 gfs2_trans_end(sdp); 1457 return error; 1458 } 1459 1460 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1461 struct iomap *iomap) 1462 { 1463 struct metapath mp = { .mp_aheight = 1, }; 1464 int ret; 1465 1466 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1467 if (!ret && iomap->type == IOMAP_HOLE) 1468 ret = gfs2_iomap_alloc(inode, iomap, &mp); 1469 release_metapath(&mp); 1470 return ret; 1471 } 1472 1473 /** 1474 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1475 * @ip: inode 1476 * @rg_gh: holder of resource group glock 1477 * @bh: buffer head to sweep 1478 * @start: starting point in bh 1479 * @end: end point in bh 1480 * @meta: true if bh points to metadata (rather than data) 1481 * @btotal: place to keep count of total blocks freed 1482 * 1483 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1484 * free, and free them all. However, we do it one rgrp at a time. If this 1485 * block has references to multiple rgrps, we break it into individual 1486 * transactions. This allows other processes to use the rgrps while we're 1487 * focused on a single one, for better concurrency / performance. 1488 * At every transaction boundary, we rewrite the inode into the journal. 1489 * That way the bitmaps are kept consistent with the inode and we can recover 1490 * if we're interrupted by power-outages. 1491 * 1492 * Returns: 0, or return code if an error occurred. 1493 * *btotal has the total number of blocks freed 1494 */ 1495 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1496 struct buffer_head *bh, __be64 *start, __be64 *end, 1497 bool meta, u32 *btotal) 1498 { 1499 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1500 struct gfs2_rgrpd *rgd; 1501 struct gfs2_trans *tr; 1502 __be64 *p; 1503 int blks_outside_rgrp; 1504 u64 bn, bstart, isize_blks; 1505 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1506 int ret = 0; 1507 bool buf_in_tr = false; /* buffer was added to transaction */ 1508 1509 more_rgrps: 1510 rgd = NULL; 1511 if (gfs2_holder_initialized(rd_gh)) { 1512 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1513 gfs2_assert_withdraw(sdp, 1514 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1515 } 1516 blks_outside_rgrp = 0; 1517 bstart = 0; 1518 blen = 0; 1519 1520 for (p = start; p < end; p++) { 1521 if (!*p) 1522 continue; 1523 bn = be64_to_cpu(*p); 1524 1525 if (rgd) { 1526 if (!rgrp_contains_block(rgd, bn)) { 1527 blks_outside_rgrp++; 1528 continue; 1529 } 1530 } else { 1531 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1532 if (unlikely(!rgd)) { 1533 ret = -EIO; 1534 goto out; 1535 } 1536 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1537 0, rd_gh); 1538 if (ret) 1539 goto out; 1540 1541 /* Must be done with the rgrp glock held: */ 1542 if (gfs2_rs_active(&ip->i_res) && 1543 rgd == ip->i_res.rs_rbm.rgd) 1544 gfs2_rs_deltree(&ip->i_res); 1545 } 1546 1547 /* The size of our transactions will be unknown until we 1548 actually process all the metadata blocks that relate to 1549 the rgrp. So we estimate. We know it can't be more than 1550 the dinode's i_blocks and we don't want to exceed the 1551 journal flush threshold, sd_log_thresh2. */ 1552 if (current->journal_info == NULL) { 1553 unsigned int jblocks_rqsted, revokes; 1554 1555 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1556 RES_INDIRECT; 1557 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1558 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1559 jblocks_rqsted += 1560 atomic_read(&sdp->sd_log_thresh2); 1561 else 1562 jblocks_rqsted += isize_blks; 1563 revokes = jblocks_rqsted; 1564 if (meta) 1565 revokes += end - start; 1566 else if (ip->i_depth) 1567 revokes += sdp->sd_inptrs; 1568 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1569 if (ret) 1570 goto out_unlock; 1571 down_write(&ip->i_rw_mutex); 1572 } 1573 /* check if we will exceed the transaction blocks requested */ 1574 tr = current->journal_info; 1575 if (tr->tr_num_buf_new + RES_STATFS + 1576 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1577 /* We set blks_outside_rgrp to ensure the loop will 1578 be repeated for the same rgrp, but with a new 1579 transaction. */ 1580 blks_outside_rgrp++; 1581 /* This next part is tricky. If the buffer was added 1582 to the transaction, we've already set some block 1583 pointers to 0, so we better follow through and free 1584 them, or we will introduce corruption (so break). 1585 This may be impossible, or at least rare, but I 1586 decided to cover the case regardless. 1587 1588 If the buffer was not added to the transaction 1589 (this call), doing so would exceed our transaction 1590 size, so we need to end the transaction and start a 1591 new one (so goto). */ 1592 1593 if (buf_in_tr) 1594 break; 1595 goto out_unlock; 1596 } 1597 1598 gfs2_trans_add_meta(ip->i_gl, bh); 1599 buf_in_tr = true; 1600 *p = 0; 1601 if (bstart + blen == bn) { 1602 blen++; 1603 continue; 1604 } 1605 if (bstart) { 1606 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1607 (*btotal) += blen; 1608 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1609 } 1610 bstart = bn; 1611 blen = 1; 1612 } 1613 if (bstart) { 1614 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1615 (*btotal) += blen; 1616 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1617 } 1618 out_unlock: 1619 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1620 outside the rgrp we just processed, 1621 do it all over again. */ 1622 if (current->journal_info) { 1623 struct buffer_head *dibh; 1624 1625 ret = gfs2_meta_inode_buffer(ip, &dibh); 1626 if (ret) 1627 goto out; 1628 1629 /* Every transaction boundary, we rewrite the dinode 1630 to keep its di_blocks current in case of failure. */ 1631 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1632 current_time(&ip->i_inode); 1633 gfs2_trans_add_meta(ip->i_gl, dibh); 1634 gfs2_dinode_out(ip, dibh->b_data); 1635 brelse(dibh); 1636 up_write(&ip->i_rw_mutex); 1637 gfs2_trans_end(sdp); 1638 buf_in_tr = false; 1639 } 1640 gfs2_glock_dq_uninit(rd_gh); 1641 cond_resched(); 1642 goto more_rgrps; 1643 } 1644 out: 1645 return ret; 1646 } 1647 1648 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1649 { 1650 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1651 return false; 1652 return true; 1653 } 1654 1655 /** 1656 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1657 * @mp: starting metapath 1658 * @h: desired height to search 1659 * 1660 * Assumes the metapath is valid (with buffers) out to height h. 1661 * Returns: true if a non-null pointer was found in the metapath buffer 1662 * false if all remaining pointers are NULL in the buffer 1663 */ 1664 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1665 unsigned int h, 1666 __u16 *end_list, unsigned int end_aligned) 1667 { 1668 struct buffer_head *bh = mp->mp_bh[h]; 1669 __be64 *first, *ptr, *end; 1670 1671 first = metaptr1(h, mp); 1672 ptr = first + mp->mp_list[h]; 1673 end = (__be64 *)(bh->b_data + bh->b_size); 1674 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1675 bool keep_end = h < end_aligned; 1676 end = first + end_list[h] + keep_end; 1677 } 1678 1679 while (ptr < end) { 1680 if (*ptr) { /* if we have a non-null pointer */ 1681 mp->mp_list[h] = ptr - first; 1682 h++; 1683 if (h < GFS2_MAX_META_HEIGHT) 1684 mp->mp_list[h] = 0; 1685 return true; 1686 } 1687 ptr++; 1688 } 1689 return false; 1690 } 1691 1692 enum dealloc_states { 1693 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1694 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1695 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1696 DEALLOC_DONE = 3, /* process complete */ 1697 }; 1698 1699 static inline void 1700 metapointer_range(struct metapath *mp, int height, 1701 __u16 *start_list, unsigned int start_aligned, 1702 __u16 *end_list, unsigned int end_aligned, 1703 __be64 **start, __be64 **end) 1704 { 1705 struct buffer_head *bh = mp->mp_bh[height]; 1706 __be64 *first; 1707 1708 first = metaptr1(height, mp); 1709 *start = first; 1710 if (mp_eq_to_hgt(mp, start_list, height)) { 1711 bool keep_start = height < start_aligned; 1712 *start = first + start_list[height] + keep_start; 1713 } 1714 *end = (__be64 *)(bh->b_data + bh->b_size); 1715 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1716 bool keep_end = height < end_aligned; 1717 *end = first + end_list[height] + keep_end; 1718 } 1719 } 1720 1721 static inline bool walk_done(struct gfs2_sbd *sdp, 1722 struct metapath *mp, int height, 1723 __u16 *end_list, unsigned int end_aligned) 1724 { 1725 __u16 end; 1726 1727 if (end_list) { 1728 bool keep_end = height < end_aligned; 1729 if (!mp_eq_to_hgt(mp, end_list, height)) 1730 return false; 1731 end = end_list[height] + keep_end; 1732 } else 1733 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1734 return mp->mp_list[height] >= end; 1735 } 1736 1737 /** 1738 * punch_hole - deallocate blocks in a file 1739 * @ip: inode to truncate 1740 * @offset: the start of the hole 1741 * @length: the size of the hole (or 0 for truncate) 1742 * 1743 * Punch a hole into a file or truncate a file at a given position. This 1744 * function operates in whole blocks (@offset and @length are rounded 1745 * accordingly); partially filled blocks must be cleared otherwise. 1746 * 1747 * This function works from the bottom up, and from the right to the left. In 1748 * other words, it strips off the highest layer (data) before stripping any of 1749 * the metadata. Doing it this way is best in case the operation is interrupted 1750 * by power failure, etc. The dinode is rewritten in every transaction to 1751 * guarantee integrity. 1752 */ 1753 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1754 { 1755 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1756 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1757 struct metapath mp = {}; 1758 struct buffer_head *dibh, *bh; 1759 struct gfs2_holder rd_gh; 1760 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1761 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1762 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1763 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1764 unsigned int start_aligned, end_aligned; 1765 unsigned int strip_h = ip->i_height - 1; 1766 u32 btotal = 0; 1767 int ret, state; 1768 int mp_h; /* metapath buffers are read in to this height */ 1769 u64 prev_bnr = 0; 1770 __be64 *start, *end; 1771 1772 if (offset >= maxsize) { 1773 /* 1774 * The starting point lies beyond the allocated meta-data; 1775 * there are no blocks do deallocate. 1776 */ 1777 return 0; 1778 } 1779 1780 /* 1781 * The start position of the hole is defined by lblock, start_list, and 1782 * start_aligned. The end position of the hole is defined by lend, 1783 * end_list, and end_aligned. 1784 * 1785 * start_aligned and end_aligned define down to which height the start 1786 * and end positions are aligned to the metadata tree (i.e., the 1787 * position is a multiple of the metadata granularity at the height 1788 * above). This determines at which heights additional meta pointers 1789 * needs to be preserved for the remaining data. 1790 */ 1791 1792 if (length) { 1793 u64 end_offset = offset + length; 1794 u64 lend; 1795 1796 /* 1797 * Clip the end at the maximum file size for the given height: 1798 * that's how far the metadata goes; files bigger than that 1799 * will have additional layers of indirection. 1800 */ 1801 if (end_offset > maxsize) 1802 end_offset = maxsize; 1803 lend = end_offset >> bsize_shift; 1804 1805 if (lblock >= lend) 1806 return 0; 1807 1808 find_metapath(sdp, lend, &mp, ip->i_height); 1809 end_list = __end_list; 1810 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1811 1812 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1813 if (end_list[mp_h]) 1814 break; 1815 } 1816 end_aligned = mp_h; 1817 } 1818 1819 find_metapath(sdp, lblock, &mp, ip->i_height); 1820 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1821 1822 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1823 if (start_list[mp_h]) 1824 break; 1825 } 1826 start_aligned = mp_h; 1827 1828 ret = gfs2_meta_inode_buffer(ip, &dibh); 1829 if (ret) 1830 return ret; 1831 1832 mp.mp_bh[0] = dibh; 1833 ret = lookup_metapath(ip, &mp); 1834 if (ret) 1835 goto out_metapath; 1836 1837 /* issue read-ahead on metadata */ 1838 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1839 metapointer_range(&mp, mp_h, start_list, start_aligned, 1840 end_list, end_aligned, &start, &end); 1841 gfs2_metapath_ra(ip->i_gl, start, end); 1842 } 1843 1844 if (mp.mp_aheight == ip->i_height) 1845 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1846 else 1847 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1848 1849 ret = gfs2_rindex_update(sdp); 1850 if (ret) 1851 goto out_metapath; 1852 1853 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1854 if (ret) 1855 goto out_metapath; 1856 gfs2_holder_mark_uninitialized(&rd_gh); 1857 1858 mp_h = strip_h; 1859 1860 while (state != DEALLOC_DONE) { 1861 switch (state) { 1862 /* Truncate a full metapath at the given strip height. 1863 * Note that strip_h == mp_h in order to be in this state. */ 1864 case DEALLOC_MP_FULL: 1865 bh = mp.mp_bh[mp_h]; 1866 gfs2_assert_withdraw(sdp, bh); 1867 if (gfs2_assert_withdraw(sdp, 1868 prev_bnr != bh->b_blocknr)) { 1869 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1870 "s_h:%u, mp_h:%u\n", 1871 (unsigned long long)ip->i_no_addr, 1872 prev_bnr, ip->i_height, strip_h, mp_h); 1873 } 1874 prev_bnr = bh->b_blocknr; 1875 1876 if (gfs2_metatype_check(sdp, bh, 1877 (mp_h ? GFS2_METATYPE_IN : 1878 GFS2_METATYPE_DI))) { 1879 ret = -EIO; 1880 goto out; 1881 } 1882 1883 /* 1884 * Below, passing end_aligned as 0 gives us the 1885 * metapointer range excluding the end point: the end 1886 * point is the first metapath we must not deallocate! 1887 */ 1888 1889 metapointer_range(&mp, mp_h, start_list, start_aligned, 1890 end_list, 0 /* end_aligned */, 1891 &start, &end); 1892 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1893 start, end, 1894 mp_h != ip->i_height - 1, 1895 &btotal); 1896 1897 /* If we hit an error or just swept dinode buffer, 1898 just exit. */ 1899 if (ret || !mp_h) { 1900 state = DEALLOC_DONE; 1901 break; 1902 } 1903 state = DEALLOC_MP_LOWER; 1904 break; 1905 1906 /* lower the metapath strip height */ 1907 case DEALLOC_MP_LOWER: 1908 /* We're done with the current buffer, so release it, 1909 unless it's the dinode buffer. Then back up to the 1910 previous pointer. */ 1911 if (mp_h) { 1912 brelse(mp.mp_bh[mp_h]); 1913 mp.mp_bh[mp_h] = NULL; 1914 } 1915 /* If we can't get any lower in height, we've stripped 1916 off all we can. Next step is to back up and start 1917 stripping the previous level of metadata. */ 1918 if (mp_h == 0) { 1919 strip_h--; 1920 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1921 mp_h = strip_h; 1922 state = DEALLOC_FILL_MP; 1923 break; 1924 } 1925 mp.mp_list[mp_h] = 0; 1926 mp_h--; /* search one metadata height down */ 1927 mp.mp_list[mp_h]++; 1928 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1929 break; 1930 /* Here we've found a part of the metapath that is not 1931 * allocated. We need to search at that height for the 1932 * next non-null pointer. */ 1933 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1934 state = DEALLOC_FILL_MP; 1935 mp_h++; 1936 } 1937 /* No more non-null pointers at this height. Back up 1938 to the previous height and try again. */ 1939 break; /* loop around in the same state */ 1940 1941 /* Fill the metapath with buffers to the given height. */ 1942 case DEALLOC_FILL_MP: 1943 /* Fill the buffers out to the current height. */ 1944 ret = fillup_metapath(ip, &mp, mp_h); 1945 if (ret < 0) 1946 goto out; 1947 1948 /* On the first pass, issue read-ahead on metadata. */ 1949 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1950 unsigned int height = mp.mp_aheight - 1; 1951 1952 /* No read-ahead for data blocks. */ 1953 if (mp.mp_aheight - 1 == strip_h) 1954 height--; 1955 1956 for (; height >= mp.mp_aheight - ret; height--) { 1957 metapointer_range(&mp, height, 1958 start_list, start_aligned, 1959 end_list, end_aligned, 1960 &start, &end); 1961 gfs2_metapath_ra(ip->i_gl, start, end); 1962 } 1963 } 1964 1965 /* If buffers found for the entire strip height */ 1966 if (mp.mp_aheight - 1 == strip_h) { 1967 state = DEALLOC_MP_FULL; 1968 break; 1969 } 1970 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1971 mp_h = mp.mp_aheight - 1; 1972 1973 /* If we find a non-null block pointer, crawl a bit 1974 higher up in the metapath and try again, otherwise 1975 we need to look lower for a new starting point. */ 1976 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1977 mp_h++; 1978 else 1979 state = DEALLOC_MP_LOWER; 1980 break; 1981 } 1982 } 1983 1984 if (btotal) { 1985 if (current->journal_info == NULL) { 1986 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1987 RES_QUOTA, 0); 1988 if (ret) 1989 goto out; 1990 down_write(&ip->i_rw_mutex); 1991 } 1992 gfs2_statfs_change(sdp, 0, +btotal, 0); 1993 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1994 ip->i_inode.i_gid); 1995 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1996 gfs2_trans_add_meta(ip->i_gl, dibh); 1997 gfs2_dinode_out(ip, dibh->b_data); 1998 up_write(&ip->i_rw_mutex); 1999 gfs2_trans_end(sdp); 2000 } 2001 2002 out: 2003 if (gfs2_holder_initialized(&rd_gh)) 2004 gfs2_glock_dq_uninit(&rd_gh); 2005 if (current->journal_info) { 2006 up_write(&ip->i_rw_mutex); 2007 gfs2_trans_end(sdp); 2008 cond_resched(); 2009 } 2010 gfs2_quota_unhold(ip); 2011 out_metapath: 2012 release_metapath(&mp); 2013 return ret; 2014 } 2015 2016 static int trunc_end(struct gfs2_inode *ip) 2017 { 2018 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2019 struct buffer_head *dibh; 2020 int error; 2021 2022 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2023 if (error) 2024 return error; 2025 2026 down_write(&ip->i_rw_mutex); 2027 2028 error = gfs2_meta_inode_buffer(ip, &dibh); 2029 if (error) 2030 goto out; 2031 2032 if (!i_size_read(&ip->i_inode)) { 2033 ip->i_height = 0; 2034 ip->i_goal = ip->i_no_addr; 2035 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2036 gfs2_ordered_del_inode(ip); 2037 } 2038 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2039 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2040 2041 gfs2_trans_add_meta(ip->i_gl, dibh); 2042 gfs2_dinode_out(ip, dibh->b_data); 2043 brelse(dibh); 2044 2045 out: 2046 up_write(&ip->i_rw_mutex); 2047 gfs2_trans_end(sdp); 2048 return error; 2049 } 2050 2051 /** 2052 * do_shrink - make a file smaller 2053 * @inode: the inode 2054 * @newsize: the size to make the file 2055 * 2056 * Called with an exclusive lock on @inode. The @size must 2057 * be equal to or smaller than the current inode size. 2058 * 2059 * Returns: errno 2060 */ 2061 2062 static int do_shrink(struct inode *inode, u64 newsize) 2063 { 2064 struct gfs2_inode *ip = GFS2_I(inode); 2065 int error; 2066 2067 error = trunc_start(inode, newsize); 2068 if (error < 0) 2069 return error; 2070 if (gfs2_is_stuffed(ip)) 2071 return 0; 2072 2073 error = punch_hole(ip, newsize, 0); 2074 if (error == 0) 2075 error = trunc_end(ip); 2076 2077 return error; 2078 } 2079 2080 void gfs2_trim_blocks(struct inode *inode) 2081 { 2082 int ret; 2083 2084 ret = do_shrink(inode, inode->i_size); 2085 WARN_ON(ret != 0); 2086 } 2087 2088 /** 2089 * do_grow - Touch and update inode size 2090 * @inode: The inode 2091 * @size: The new size 2092 * 2093 * This function updates the timestamps on the inode and 2094 * may also increase the size of the inode. This function 2095 * must not be called with @size any smaller than the current 2096 * inode size. 2097 * 2098 * Although it is not strictly required to unstuff files here, 2099 * earlier versions of GFS2 have a bug in the stuffed file reading 2100 * code which will result in a buffer overrun if the size is larger 2101 * than the max stuffed file size. In order to prevent this from 2102 * occurring, such files are unstuffed, but in other cases we can 2103 * just update the inode size directly. 2104 * 2105 * Returns: 0 on success, or -ve on error 2106 */ 2107 2108 static int do_grow(struct inode *inode, u64 size) 2109 { 2110 struct gfs2_inode *ip = GFS2_I(inode); 2111 struct gfs2_sbd *sdp = GFS2_SB(inode); 2112 struct gfs2_alloc_parms ap = { .target = 1, }; 2113 struct buffer_head *dibh; 2114 int error; 2115 int unstuff = 0; 2116 2117 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2118 error = gfs2_quota_lock_check(ip, &ap); 2119 if (error) 2120 return error; 2121 2122 error = gfs2_inplace_reserve(ip, &ap); 2123 if (error) 2124 goto do_grow_qunlock; 2125 unstuff = 1; 2126 } 2127 2128 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2129 (unstuff && 2130 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2131 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2132 0 : RES_QUOTA), 0); 2133 if (error) 2134 goto do_grow_release; 2135 2136 if (unstuff) { 2137 error = gfs2_unstuff_dinode(ip, NULL); 2138 if (error) 2139 goto do_end_trans; 2140 } 2141 2142 error = gfs2_meta_inode_buffer(ip, &dibh); 2143 if (error) 2144 goto do_end_trans; 2145 2146 truncate_setsize(inode, size); 2147 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2148 gfs2_trans_add_meta(ip->i_gl, dibh); 2149 gfs2_dinode_out(ip, dibh->b_data); 2150 brelse(dibh); 2151 2152 do_end_trans: 2153 gfs2_trans_end(sdp); 2154 do_grow_release: 2155 if (unstuff) { 2156 gfs2_inplace_release(ip); 2157 do_grow_qunlock: 2158 gfs2_quota_unlock(ip); 2159 } 2160 return error; 2161 } 2162 2163 /** 2164 * gfs2_setattr_size - make a file a given size 2165 * @inode: the inode 2166 * @newsize: the size to make the file 2167 * 2168 * The file size can grow, shrink, or stay the same size. This 2169 * is called holding i_rwsem and an exclusive glock on the inode 2170 * in question. 2171 * 2172 * Returns: errno 2173 */ 2174 2175 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2176 { 2177 struct gfs2_inode *ip = GFS2_I(inode); 2178 int ret; 2179 2180 BUG_ON(!S_ISREG(inode->i_mode)); 2181 2182 ret = inode_newsize_ok(inode, newsize); 2183 if (ret) 2184 return ret; 2185 2186 inode_dio_wait(inode); 2187 2188 ret = gfs2_qa_get(ip); 2189 if (ret) 2190 goto out; 2191 2192 if (newsize >= inode->i_size) { 2193 ret = do_grow(inode, newsize); 2194 goto out; 2195 } 2196 2197 ret = do_shrink(inode, newsize); 2198 out: 2199 gfs2_rs_delete(ip, NULL); 2200 gfs2_qa_put(ip); 2201 return ret; 2202 } 2203 2204 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2205 { 2206 int error; 2207 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2208 if (!error) 2209 error = trunc_end(ip); 2210 return error; 2211 } 2212 2213 int gfs2_file_dealloc(struct gfs2_inode *ip) 2214 { 2215 return punch_hole(ip, 0, 0); 2216 } 2217 2218 /** 2219 * gfs2_free_journal_extents - Free cached journal bmap info 2220 * @jd: The journal 2221 * 2222 */ 2223 2224 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2225 { 2226 struct gfs2_journal_extent *jext; 2227 2228 while(!list_empty(&jd->extent_list)) { 2229 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2230 list_del(&jext->list); 2231 kfree(jext); 2232 } 2233 } 2234 2235 /** 2236 * gfs2_add_jextent - Add or merge a new extent to extent cache 2237 * @jd: The journal descriptor 2238 * @lblock: The logical block at start of new extent 2239 * @dblock: The physical block at start of new extent 2240 * @blocks: Size of extent in fs blocks 2241 * 2242 * Returns: 0 on success or -ENOMEM 2243 */ 2244 2245 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2246 { 2247 struct gfs2_journal_extent *jext; 2248 2249 if (!list_empty(&jd->extent_list)) { 2250 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2251 if ((jext->dblock + jext->blocks) == dblock) { 2252 jext->blocks += blocks; 2253 return 0; 2254 } 2255 } 2256 2257 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2258 if (jext == NULL) 2259 return -ENOMEM; 2260 jext->dblock = dblock; 2261 jext->lblock = lblock; 2262 jext->blocks = blocks; 2263 list_add_tail(&jext->list, &jd->extent_list); 2264 jd->nr_extents++; 2265 return 0; 2266 } 2267 2268 /** 2269 * gfs2_map_journal_extents - Cache journal bmap info 2270 * @sdp: The super block 2271 * @jd: The journal to map 2272 * 2273 * Create a reusable "extent" mapping from all logical 2274 * blocks to all physical blocks for the given journal. This will save 2275 * us time when writing journal blocks. Most journals will have only one 2276 * extent that maps all their logical blocks. That's because gfs2.mkfs 2277 * arranges the journal blocks sequentially to maximize performance. 2278 * So the extent would map the first block for the entire file length. 2279 * However, gfs2_jadd can happen while file activity is happening, so 2280 * those journals may not be sequential. Less likely is the case where 2281 * the users created their own journals by mounting the metafs and 2282 * laying it out. But it's still possible. These journals might have 2283 * several extents. 2284 * 2285 * Returns: 0 on success, or error on failure 2286 */ 2287 2288 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2289 { 2290 u64 lblock = 0; 2291 u64 lblock_stop; 2292 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2293 struct buffer_head bh; 2294 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2295 u64 size; 2296 int rc; 2297 ktime_t start, end; 2298 2299 start = ktime_get(); 2300 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2301 size = (lblock_stop - lblock) << shift; 2302 jd->nr_extents = 0; 2303 WARN_ON(!list_empty(&jd->extent_list)); 2304 2305 do { 2306 bh.b_state = 0; 2307 bh.b_blocknr = 0; 2308 bh.b_size = size; 2309 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2310 if (rc || !buffer_mapped(&bh)) 2311 goto fail; 2312 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2313 if (rc) 2314 goto fail; 2315 size -= bh.b_size; 2316 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2317 } while(size > 0); 2318 2319 end = ktime_get(); 2320 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2321 jd->nr_extents, ktime_ms_delta(end, start)); 2322 return 0; 2323 2324 fail: 2325 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2326 rc, jd->jd_jid, 2327 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2328 jd->nr_extents); 2329 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2330 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2331 bh.b_state, (unsigned long long)bh.b_size); 2332 gfs2_free_journal_extents(jd); 2333 return rc; 2334 } 2335 2336 /** 2337 * gfs2_write_alloc_required - figure out if a write will require an allocation 2338 * @ip: the file being written to 2339 * @offset: the offset to write to 2340 * @len: the number of bytes being written 2341 * 2342 * Returns: 1 if an alloc is required, 0 otherwise 2343 */ 2344 2345 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2346 unsigned int len) 2347 { 2348 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2349 struct buffer_head bh; 2350 unsigned int shift; 2351 u64 lblock, lblock_stop, size; 2352 u64 end_of_file; 2353 2354 if (!len) 2355 return 0; 2356 2357 if (gfs2_is_stuffed(ip)) { 2358 if (offset + len > gfs2_max_stuffed_size(ip)) 2359 return 1; 2360 return 0; 2361 } 2362 2363 shift = sdp->sd_sb.sb_bsize_shift; 2364 BUG_ON(gfs2_is_dir(ip)); 2365 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2366 lblock = offset >> shift; 2367 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2368 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2369 return 1; 2370 2371 size = (lblock_stop - lblock) << shift; 2372 do { 2373 bh.b_state = 0; 2374 bh.b_size = size; 2375 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2376 if (!buffer_mapped(&bh)) 2377 return 1; 2378 size -= bh.b_size; 2379 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2380 } while(size > 0); 2381 2382 return 0; 2383 } 2384 2385 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2386 { 2387 struct gfs2_inode *ip = GFS2_I(inode); 2388 struct buffer_head *dibh; 2389 int error; 2390 2391 if (offset >= inode->i_size) 2392 return 0; 2393 if (offset + length > inode->i_size) 2394 length = inode->i_size - offset; 2395 2396 error = gfs2_meta_inode_buffer(ip, &dibh); 2397 if (error) 2398 return error; 2399 gfs2_trans_add_meta(ip->i_gl, dibh); 2400 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2401 length); 2402 brelse(dibh); 2403 return 0; 2404 } 2405 2406 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2407 loff_t length) 2408 { 2409 struct gfs2_sbd *sdp = GFS2_SB(inode); 2410 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2411 int error; 2412 2413 while (length) { 2414 struct gfs2_trans *tr; 2415 loff_t chunk; 2416 unsigned int offs; 2417 2418 chunk = length; 2419 if (chunk > max_chunk) 2420 chunk = max_chunk; 2421 2422 offs = offset & ~PAGE_MASK; 2423 if (offs && chunk > PAGE_SIZE) 2424 chunk = offs + ((chunk - offs) & PAGE_MASK); 2425 2426 truncate_pagecache_range(inode, offset, chunk); 2427 offset += chunk; 2428 length -= chunk; 2429 2430 tr = current->journal_info; 2431 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2432 continue; 2433 2434 gfs2_trans_end(sdp); 2435 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2436 if (error) 2437 return error; 2438 } 2439 return 0; 2440 } 2441 2442 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2443 { 2444 struct inode *inode = file_inode(file); 2445 struct gfs2_inode *ip = GFS2_I(inode); 2446 struct gfs2_sbd *sdp = GFS2_SB(inode); 2447 unsigned int blocksize = i_blocksize(inode); 2448 loff_t start, end; 2449 int error; 2450 2451 start = round_down(offset, blocksize); 2452 end = round_up(offset + length, blocksize) - 1; 2453 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2454 if (error) 2455 return error; 2456 2457 if (gfs2_is_jdata(ip)) 2458 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2459 GFS2_JTRUNC_REVOKES); 2460 else 2461 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2462 if (error) 2463 return error; 2464 2465 if (gfs2_is_stuffed(ip)) { 2466 error = stuffed_zero_range(inode, offset, length); 2467 if (error) 2468 goto out; 2469 } else { 2470 unsigned int start_off, end_len; 2471 2472 start_off = offset & (blocksize - 1); 2473 end_len = (offset + length) & (blocksize - 1); 2474 if (start_off) { 2475 unsigned int len = length; 2476 if (length > blocksize - start_off) 2477 len = blocksize - start_off; 2478 error = gfs2_block_zero_range(inode, offset, len); 2479 if (error) 2480 goto out; 2481 if (start_off + length < blocksize) 2482 end_len = 0; 2483 } 2484 if (end_len) { 2485 error = gfs2_block_zero_range(inode, 2486 offset + length - end_len, end_len); 2487 if (error) 2488 goto out; 2489 } 2490 } 2491 2492 if (gfs2_is_jdata(ip)) { 2493 BUG_ON(!current->journal_info); 2494 gfs2_journaled_truncate_range(inode, offset, length); 2495 } else 2496 truncate_pagecache_range(inode, offset, offset + length - 1); 2497 2498 file_update_time(file); 2499 mark_inode_dirty(inode); 2500 2501 if (current->journal_info) 2502 gfs2_trans_end(sdp); 2503 2504 if (!gfs2_is_stuffed(ip)) 2505 error = punch_hole(ip, offset, length); 2506 2507 out: 2508 if (current->journal_info) 2509 gfs2_trans_end(sdp); 2510 return error; 2511 } 2512