xref: /openbmc/linux/fs/gfs2/bmap.c (revision 4cff79e9)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/blkdev.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/crc32.h>
16 #include <linux/iomap.h>
17 
18 #include "gfs2.h"
19 #include "incore.h"
20 #include "bmap.h"
21 #include "glock.h"
22 #include "inode.h"
23 #include "meta_io.h"
24 #include "quota.h"
25 #include "rgrp.h"
26 #include "log.h"
27 #include "super.h"
28 #include "trans.h"
29 #include "dir.h"
30 #include "util.h"
31 #include "trace_gfs2.h"
32 
33 /* This doesn't need to be that large as max 64 bit pointers in a 4k
34  * block is 512, so __u16 is fine for that. It saves stack space to
35  * keep it small.
36  */
37 struct metapath {
38 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
39 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
40 	int mp_fheight; /* find_metapath height */
41 	int mp_aheight; /* actual height (lookup height) */
42 };
43 
44 /**
45  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
46  * @ip: the inode
47  * @dibh: the dinode buffer
48  * @block: the block number that was allocated
49  * @page: The (optional) page. This is looked up if @page is NULL
50  *
51  * Returns: errno
52  */
53 
54 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
55 			       u64 block, struct page *page)
56 {
57 	struct inode *inode = &ip->i_inode;
58 	struct buffer_head *bh;
59 	int release = 0;
60 
61 	if (!page || page->index) {
62 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
63 		if (!page)
64 			return -ENOMEM;
65 		release = 1;
66 	}
67 
68 	if (!PageUptodate(page)) {
69 		void *kaddr = kmap(page);
70 		u64 dsize = i_size_read(inode);
71 
72 		if (dsize > gfs2_max_stuffed_size(ip))
73 			dsize = gfs2_max_stuffed_size(ip);
74 
75 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
76 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
77 		kunmap(page);
78 
79 		SetPageUptodate(page);
80 	}
81 
82 	if (!page_has_buffers(page))
83 		create_empty_buffers(page, BIT(inode->i_blkbits),
84 				     BIT(BH_Uptodate));
85 
86 	bh = page_buffers(page);
87 
88 	if (!buffer_mapped(bh))
89 		map_bh(bh, inode->i_sb, block);
90 
91 	set_buffer_uptodate(bh);
92 	if (!gfs2_is_jdata(ip))
93 		mark_buffer_dirty(bh);
94 	if (!gfs2_is_writeback(ip))
95 		gfs2_trans_add_data(ip->i_gl, bh);
96 
97 	if (release) {
98 		unlock_page(page);
99 		put_page(page);
100 	}
101 
102 	return 0;
103 }
104 
105 /**
106  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
107  * @ip: The GFS2 inode to unstuff
108  * @page: The (optional) page. This is looked up if the @page is NULL
109  *
110  * This routine unstuffs a dinode and returns it to a "normal" state such
111  * that the height can be grown in the traditional way.
112  *
113  * Returns: errno
114  */
115 
116 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
117 {
118 	struct buffer_head *bh, *dibh;
119 	struct gfs2_dinode *di;
120 	u64 block = 0;
121 	int isdir = gfs2_is_dir(ip);
122 	int error;
123 
124 	down_write(&ip->i_rw_mutex);
125 
126 	error = gfs2_meta_inode_buffer(ip, &dibh);
127 	if (error)
128 		goto out;
129 
130 	if (i_size_read(&ip->i_inode)) {
131 		/* Get a free block, fill it with the stuffed data,
132 		   and write it out to disk */
133 
134 		unsigned int n = 1;
135 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
136 		if (error)
137 			goto out_brelse;
138 		if (isdir) {
139 			gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1);
140 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
141 			if (error)
142 				goto out_brelse;
143 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
144 					      dibh, sizeof(struct gfs2_dinode));
145 			brelse(bh);
146 		} else {
147 			error = gfs2_unstuffer_page(ip, dibh, block, page);
148 			if (error)
149 				goto out_brelse;
150 		}
151 	}
152 
153 	/*  Set up the pointer to the new block  */
154 
155 	gfs2_trans_add_meta(ip->i_gl, dibh);
156 	di = (struct gfs2_dinode *)dibh->b_data;
157 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
158 
159 	if (i_size_read(&ip->i_inode)) {
160 		*(__be64 *)(di + 1) = cpu_to_be64(block);
161 		gfs2_add_inode_blocks(&ip->i_inode, 1);
162 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
163 	}
164 
165 	ip->i_height = 1;
166 	di->di_height = cpu_to_be16(1);
167 
168 out_brelse:
169 	brelse(dibh);
170 out:
171 	up_write(&ip->i_rw_mutex);
172 	return error;
173 }
174 
175 
176 /**
177  * find_metapath - Find path through the metadata tree
178  * @sdp: The superblock
179  * @mp: The metapath to return the result in
180  * @block: The disk block to look up
181  * @height: The pre-calculated height of the metadata tree
182  *
183  *   This routine returns a struct metapath structure that defines a path
184  *   through the metadata of inode "ip" to get to block "block".
185  *
186  *   Example:
187  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
188  *   filesystem with a blocksize of 4096.
189  *
190  *   find_metapath() would return a struct metapath structure set to:
191  *   mp_offset = 101342453, mp_height = 3, mp_list[0] = 0, mp_list[1] = 48,
192  *   and mp_list[2] = 165.
193  *
194  *   That means that in order to get to the block containing the byte at
195  *   offset 101342453, we would load the indirect block pointed to by pointer
196  *   0 in the dinode.  We would then load the indirect block pointed to by
197  *   pointer 48 in that indirect block.  We would then load the data block
198  *   pointed to by pointer 165 in that indirect block.
199  *
200  *             ----------------------------------------
201  *             | Dinode |                             |
202  *             |        |                            4|
203  *             |        |0 1 2 3 4 5                 9|
204  *             |        |                            6|
205  *             ----------------------------------------
206  *                       |
207  *                       |
208  *                       V
209  *             ----------------------------------------
210  *             | Indirect Block                       |
211  *             |                                     5|
212  *             |            4 4 4 4 4 5 5            1|
213  *             |0           5 6 7 8 9 0 1            2|
214  *             ----------------------------------------
215  *                                |
216  *                                |
217  *                                V
218  *             ----------------------------------------
219  *             | Indirect Block                       |
220  *             |                         1 1 1 1 1   5|
221  *             |                         6 6 6 6 6   1|
222  *             |0                        3 4 5 6 7   2|
223  *             ----------------------------------------
224  *                                           |
225  *                                           |
226  *                                           V
227  *             ----------------------------------------
228  *             | Data block containing offset         |
229  *             |            101342453                 |
230  *             |                                      |
231  *             |                                      |
232  *             ----------------------------------------
233  *
234  */
235 
236 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
237 			  struct metapath *mp, unsigned int height)
238 {
239 	unsigned int i;
240 
241 	mp->mp_fheight = height;
242 	for (i = height; i--;)
243 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
244 }
245 
246 static inline unsigned int metapath_branch_start(const struct metapath *mp)
247 {
248 	if (mp->mp_list[0] == 0)
249 		return 2;
250 	return 1;
251 }
252 
253 /**
254  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
255  * @height: The metadata height (0 = dinode)
256  * @mp: The metapath
257  */
258 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
259 {
260 	struct buffer_head *bh = mp->mp_bh[height];
261 	if (height == 0)
262 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
263 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
264 }
265 
266 /**
267  * metapointer - Return pointer to start of metadata in a buffer
268  * @height: The metadata height (0 = dinode)
269  * @mp: The metapath
270  *
271  * Return a pointer to the block number of the next height of the metadata
272  * tree given a buffer containing the pointer to the current height of the
273  * metadata tree.
274  */
275 
276 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
277 {
278 	__be64 *p = metaptr1(height, mp);
279 	return p + mp->mp_list[height];
280 }
281 
282 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
283 {
284 	const __be64 *t;
285 
286 	for (t = start; t < end; t++) {
287 		struct buffer_head *rabh;
288 
289 		if (!*t)
290 			continue;
291 
292 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
293 		if (trylock_buffer(rabh)) {
294 			if (!buffer_uptodate(rabh)) {
295 				rabh->b_end_io = end_buffer_read_sync;
296 				submit_bh(REQ_OP_READ,
297 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
298 					  rabh);
299 				continue;
300 			}
301 			unlock_buffer(rabh);
302 		}
303 		brelse(rabh);
304 	}
305 }
306 
307 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
308 			     unsigned int x, unsigned int h)
309 {
310 	for (; x < h; x++) {
311 		__be64 *ptr = metapointer(x, mp);
312 		u64 dblock = be64_to_cpu(*ptr);
313 		int ret;
314 
315 		if (!dblock)
316 			break;
317 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
318 		if (ret)
319 			return ret;
320 	}
321 	mp->mp_aheight = x + 1;
322 	return 0;
323 }
324 
325 /**
326  * lookup_metapath - Walk the metadata tree to a specific point
327  * @ip: The inode
328  * @mp: The metapath
329  *
330  * Assumes that the inode's buffer has already been looked up and
331  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
332  * by find_metapath().
333  *
334  * If this function encounters part of the tree which has not been
335  * allocated, it returns the current height of the tree at the point
336  * at which it found the unallocated block. Blocks which are found are
337  * added to the mp->mp_bh[] list.
338  *
339  * Returns: error
340  */
341 
342 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
343 {
344 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
345 }
346 
347 /**
348  * fillup_metapath - fill up buffers for the metadata path to a specific height
349  * @ip: The inode
350  * @mp: The metapath
351  * @h: The height to which it should be mapped
352  *
353  * Similar to lookup_metapath, but does lookups for a range of heights
354  *
355  * Returns: error or the number of buffers filled
356  */
357 
358 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
359 {
360 	unsigned int x = 0;
361 	int ret;
362 
363 	if (h) {
364 		/* find the first buffer we need to look up. */
365 		for (x = h - 1; x > 0; x--) {
366 			if (mp->mp_bh[x])
367 				break;
368 		}
369 	}
370 	ret = __fillup_metapath(ip, mp, x, h);
371 	if (ret)
372 		return ret;
373 	return mp->mp_aheight - x - 1;
374 }
375 
376 static inline void release_metapath(struct metapath *mp)
377 {
378 	int i;
379 
380 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
381 		if (mp->mp_bh[i] == NULL)
382 			break;
383 		brelse(mp->mp_bh[i]);
384 	}
385 }
386 
387 /**
388  * gfs2_extent_length - Returns length of an extent of blocks
389  * @start: Start of the buffer
390  * @len: Length of the buffer in bytes
391  * @ptr: Current position in the buffer
392  * @limit: Max extent length to return (0 = unlimited)
393  * @eob: Set to 1 if we hit "end of block"
394  *
395  * If the first block is zero (unallocated) it will return the number of
396  * unallocated blocks in the extent, otherwise it will return the number
397  * of contiguous blocks in the extent.
398  *
399  * Returns: The length of the extent (minimum of one block)
400  */
401 
402 static inline unsigned int gfs2_extent_length(void *start, unsigned int len, __be64 *ptr, size_t limit, int *eob)
403 {
404 	const __be64 *end = (start + len);
405 	const __be64 *first = ptr;
406 	u64 d = be64_to_cpu(*ptr);
407 
408 	*eob = 0;
409 	do {
410 		ptr++;
411 		if (ptr >= end)
412 			break;
413 		if (limit && --limit == 0)
414 			break;
415 		if (d)
416 			d++;
417 	} while(be64_to_cpu(*ptr) == d);
418 	if (ptr >= end)
419 		*eob = 1;
420 	return (ptr - first);
421 }
422 
423 static inline void bmap_lock(struct gfs2_inode *ip, int create)
424 {
425 	if (create)
426 		down_write(&ip->i_rw_mutex);
427 	else
428 		down_read(&ip->i_rw_mutex);
429 }
430 
431 static inline void bmap_unlock(struct gfs2_inode *ip, int create)
432 {
433 	if (create)
434 		up_write(&ip->i_rw_mutex);
435 	else
436 		up_read(&ip->i_rw_mutex);
437 }
438 
439 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
440 					 struct gfs2_glock *gl, unsigned int i,
441 					 unsigned offset, u64 bn)
442 {
443 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
444 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
445 				 sizeof(struct gfs2_dinode)));
446 	BUG_ON(i < 1);
447 	BUG_ON(mp->mp_bh[i] != NULL);
448 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
449 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
450 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
451 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
452 	ptr += offset;
453 	*ptr = cpu_to_be64(bn);
454 	return ptr;
455 }
456 
457 enum alloc_state {
458 	ALLOC_DATA = 0,
459 	ALLOC_GROW_DEPTH = 1,
460 	ALLOC_GROW_HEIGHT = 2,
461 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
462 };
463 
464 /**
465  * gfs2_bmap_alloc - Build a metadata tree of the requested height
466  * @inode: The GFS2 inode
467  * @lblock: The logical starting block of the extent
468  * @bh_map: This is used to return the mapping details
469  * @zero_new: True if newly allocated blocks should be zeroed
470  * @mp: The metapath, with proper height information calculated
471  * @maxlen: The max number of data blocks to alloc
472  * @dblock: Pointer to return the resulting new block
473  * @dblks: Pointer to return the number of blocks allocated
474  *
475  * In this routine we may have to alloc:
476  *   i) Indirect blocks to grow the metadata tree height
477  *  ii) Indirect blocks to fill in lower part of the metadata tree
478  * iii) Data blocks
479  *
480  * The function is in two parts. The first part works out the total
481  * number of blocks which we need. The second part does the actual
482  * allocation asking for an extent at a time (if enough contiguous free
483  * blocks are available, there will only be one request per bmap call)
484  * and uses the state machine to initialise the blocks in order.
485  *
486  * Returns: errno on error
487  */
488 
489 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
490 			    unsigned flags, struct metapath *mp)
491 {
492 	struct gfs2_inode *ip = GFS2_I(inode);
493 	struct gfs2_sbd *sdp = GFS2_SB(inode);
494 	struct buffer_head *dibh = mp->mp_bh[0];
495 	u64 bn;
496 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
497 	unsigned dblks = 0;
498 	unsigned ptrs_per_blk;
499 	const unsigned end_of_metadata = mp->mp_fheight - 1;
500 	enum alloc_state state;
501 	__be64 *ptr;
502 	__be64 zero_bn = 0;
503 	size_t maxlen = iomap->length >> inode->i_blkbits;
504 
505 	BUG_ON(mp->mp_aheight < 1);
506 	BUG_ON(dibh == NULL);
507 
508 	gfs2_trans_add_meta(ip->i_gl, dibh);
509 
510 	if (mp->mp_fheight == mp->mp_aheight) {
511 		struct buffer_head *bh;
512 		int eob;
513 
514 		/* Bottom indirect block exists, find unalloced extent size */
515 		ptr = metapointer(end_of_metadata, mp);
516 		bh = mp->mp_bh[end_of_metadata];
517 		dblks = gfs2_extent_length(bh->b_data, bh->b_size, ptr,
518 					   maxlen, &eob);
519 		BUG_ON(dblks < 1);
520 		state = ALLOC_DATA;
521 	} else {
522 		/* Need to allocate indirect blocks */
523 		ptrs_per_blk = mp->mp_fheight > 1 ? sdp->sd_inptrs :
524 			sdp->sd_diptrs;
525 		dblks = min(maxlen, (size_t)(ptrs_per_blk -
526 					     mp->mp_list[end_of_metadata]));
527 		if (mp->mp_fheight == ip->i_height) {
528 			/* Writing into existing tree, extend tree down */
529 			iblks = mp->mp_fheight - mp->mp_aheight;
530 			state = ALLOC_GROW_DEPTH;
531 		} else {
532 			/* Building up tree height */
533 			state = ALLOC_GROW_HEIGHT;
534 			iblks = mp->mp_fheight - ip->i_height;
535 			branch_start = metapath_branch_start(mp);
536 			iblks += (mp->mp_fheight - branch_start);
537 		}
538 	}
539 
540 	/* start of the second part of the function (state machine) */
541 
542 	blks = dblks + iblks;
543 	i = mp->mp_aheight;
544 	do {
545 		int error;
546 		n = blks - alloced;
547 		error = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
548 		if (error)
549 			return error;
550 		alloced += n;
551 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
552 			gfs2_trans_add_unrevoke(sdp, bn, n);
553 		switch (state) {
554 		/* Growing height of tree */
555 		case ALLOC_GROW_HEIGHT:
556 			if (i == 1) {
557 				ptr = (__be64 *)(dibh->b_data +
558 						 sizeof(struct gfs2_dinode));
559 				zero_bn = *ptr;
560 			}
561 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
562 			     i++, n--)
563 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
564 			if (i - 1 == mp->mp_fheight - ip->i_height) {
565 				i--;
566 				gfs2_buffer_copy_tail(mp->mp_bh[i],
567 						sizeof(struct gfs2_meta_header),
568 						dibh, sizeof(struct gfs2_dinode));
569 				gfs2_buffer_clear_tail(dibh,
570 						sizeof(struct gfs2_dinode) +
571 						sizeof(__be64));
572 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
573 					sizeof(struct gfs2_meta_header));
574 				*ptr = zero_bn;
575 				state = ALLOC_GROW_DEPTH;
576 				for(i = branch_start; i < mp->mp_fheight; i++) {
577 					if (mp->mp_bh[i] == NULL)
578 						break;
579 					brelse(mp->mp_bh[i]);
580 					mp->mp_bh[i] = NULL;
581 				}
582 				i = branch_start;
583 			}
584 			if (n == 0)
585 				break;
586 		/* Branching from existing tree */
587 		case ALLOC_GROW_DEPTH:
588 			if (i > 1 && i < mp->mp_fheight)
589 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
590 			for (; i < mp->mp_fheight && n > 0; i++, n--)
591 				gfs2_indirect_init(mp, ip->i_gl, i,
592 						   mp->mp_list[i-1], bn++);
593 			if (i == mp->mp_fheight)
594 				state = ALLOC_DATA;
595 			if (n == 0)
596 				break;
597 		/* Tree complete, adding data blocks */
598 		case ALLOC_DATA:
599 			BUG_ON(n > dblks);
600 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
601 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
602 			dblks = n;
603 			ptr = metapointer(end_of_metadata, mp);
604 			iomap->addr = bn << inode->i_blkbits;
605 			iomap->flags |= IOMAP_F_NEW;
606 			while (n-- > 0)
607 				*ptr++ = cpu_to_be64(bn++);
608 			break;
609 		}
610 	} while (iomap->addr == IOMAP_NULL_ADDR);
611 
612 	iomap->length = (u64)dblks << inode->i_blkbits;
613 	ip->i_height = mp->mp_fheight;
614 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
615 	gfs2_dinode_out(ip, mp->mp_bh[0]->b_data);
616 	return 0;
617 }
618 
619 /**
620  * hole_size - figure out the size of a hole
621  * @inode: The inode
622  * @lblock: The logical starting block number
623  * @mp: The metapath
624  *
625  * Returns: The hole size in bytes
626  *
627  */
628 static u64 hole_size(struct inode *inode, sector_t lblock, struct metapath *mp)
629 {
630 	struct gfs2_inode *ip = GFS2_I(inode);
631 	struct gfs2_sbd *sdp = GFS2_SB(inode);
632 	struct metapath mp_eof;
633 	u64 factor = 1;
634 	int hgt;
635 	u64 holesz = 0;
636 	const __be64 *first, *end, *ptr;
637 	const struct buffer_head *bh;
638 	u64 lblock_stop = (i_size_read(inode) - 1) >> inode->i_blkbits;
639 	int zeroptrs;
640 	bool done = false;
641 
642 	/* Get another metapath, to the very last byte */
643 	find_metapath(sdp, lblock_stop, &mp_eof, ip->i_height);
644 	for (hgt = ip->i_height - 1; hgt >= 0 && !done; hgt--) {
645 		bh = mp->mp_bh[hgt];
646 		if (bh) {
647 			zeroptrs = 0;
648 			first = metapointer(hgt, mp);
649 			end = (const __be64 *)(bh->b_data + bh->b_size);
650 
651 			for (ptr = first; ptr < end; ptr++) {
652 				if (*ptr) {
653 					done = true;
654 					break;
655 				} else {
656 					zeroptrs++;
657 				}
658 			}
659 		} else {
660 			zeroptrs = sdp->sd_inptrs;
661 		}
662 		if (factor * zeroptrs >= lblock_stop - lblock + 1) {
663 			holesz = lblock_stop - lblock + 1;
664 			break;
665 		}
666 		holesz += factor * zeroptrs;
667 
668 		factor *= sdp->sd_inptrs;
669 		if (hgt && (mp->mp_list[hgt - 1] < mp_eof.mp_list[hgt - 1]))
670 			(mp->mp_list[hgt - 1])++;
671 	}
672 	return holesz << inode->i_blkbits;
673 }
674 
675 static void gfs2_stuffed_iomap(struct inode *inode, struct iomap *iomap)
676 {
677 	struct gfs2_inode *ip = GFS2_I(inode);
678 
679 	iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
680 		      sizeof(struct gfs2_dinode);
681 	iomap->offset = 0;
682 	iomap->length = i_size_read(inode);
683 	iomap->type = IOMAP_MAPPED;
684 	iomap->flags = IOMAP_F_DATA_INLINE;
685 }
686 
687 /**
688  * gfs2_iomap_begin - Map blocks from an inode to disk blocks
689  * @inode: The inode
690  * @pos: Starting position in bytes
691  * @length: Length to map, in bytes
692  * @flags: iomap flags
693  * @iomap: The iomap structure
694  *
695  * Returns: errno
696  */
697 int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
698 		     unsigned flags, struct iomap *iomap)
699 {
700 	struct gfs2_inode *ip = GFS2_I(inode);
701 	struct gfs2_sbd *sdp = GFS2_SB(inode);
702 	struct metapath mp = { .mp_aheight = 1, };
703 	unsigned int factor = sdp->sd_sb.sb_bsize;
704 	const u64 *arr = sdp->sd_heightsize;
705 	__be64 *ptr;
706 	sector_t lblock;
707 	sector_t lend;
708 	int ret = 0;
709 	int eob;
710 	unsigned int len;
711 	struct buffer_head *bh;
712 	u8 height;
713 
714 	trace_gfs2_iomap_start(ip, pos, length, flags);
715 	if (!length) {
716 		ret = -EINVAL;
717 		goto out;
718 	}
719 
720 	if (gfs2_is_stuffed(ip)) {
721 		if (flags & IOMAP_REPORT) {
722 			gfs2_stuffed_iomap(inode, iomap);
723 			if (pos >= iomap->length)
724 				ret = -ENOENT;
725 			goto out;
726 		}
727 		BUG_ON(!(flags & IOMAP_WRITE));
728 	}
729 
730 	lblock = pos >> inode->i_blkbits;
731 	lend = (pos + length + sdp->sd_sb.sb_bsize - 1) >> inode->i_blkbits;
732 
733 	iomap->offset = lblock << inode->i_blkbits;
734 	iomap->addr = IOMAP_NULL_ADDR;
735 	iomap->type = IOMAP_HOLE;
736 	iomap->length = (u64)(lend - lblock) << inode->i_blkbits;
737 	iomap->flags = IOMAP_F_MERGED;
738 	bmap_lock(ip, flags & IOMAP_WRITE);
739 
740 	/*
741 	 * Directory data blocks have a struct gfs2_meta_header header, so the
742 	 * remaining size is smaller than the filesystem block size.  Logical
743 	 * block numbers for directories are in units of this remaining size!
744 	 */
745 	if (gfs2_is_dir(ip)) {
746 		factor = sdp->sd_jbsize;
747 		arr = sdp->sd_jheightsize;
748 	}
749 
750 	ret = gfs2_meta_inode_buffer(ip, &mp.mp_bh[0]);
751 	if (ret)
752 		goto out_release;
753 
754 	height = ip->i_height;
755 	while ((lblock + 1) * factor > arr[height])
756 		height++;
757 	find_metapath(sdp, lblock, &mp, height);
758 	if (height > ip->i_height || gfs2_is_stuffed(ip))
759 		goto do_alloc;
760 
761 	ret = lookup_metapath(ip, &mp);
762 	if (ret)
763 		goto out_release;
764 
765 	if (mp.mp_aheight != ip->i_height)
766 		goto do_alloc;
767 
768 	ptr = metapointer(ip->i_height - 1, &mp);
769 	if (*ptr == 0)
770 		goto do_alloc;
771 
772 	iomap->type = IOMAP_MAPPED;
773 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
774 
775 	bh = mp.mp_bh[ip->i_height - 1];
776 	len = gfs2_extent_length(bh->b_data, bh->b_size, ptr, lend - lblock, &eob);
777 	if (eob)
778 		iomap->flags |= IOMAP_F_BOUNDARY;
779 	iomap->length = (u64)len << inode->i_blkbits;
780 
781 out_release:
782 	release_metapath(&mp);
783 	bmap_unlock(ip, flags & IOMAP_WRITE);
784 out:
785 	trace_gfs2_iomap_end(ip, iomap, ret);
786 	return ret;
787 
788 do_alloc:
789 	if (flags & IOMAP_WRITE) {
790 		ret = gfs2_iomap_alloc(inode, iomap, flags, &mp);
791 	} else if (flags & IOMAP_REPORT) {
792 		loff_t size = i_size_read(inode);
793 		if (pos >= size)
794 			ret = -ENOENT;
795 		else if (height <= ip->i_height)
796 			iomap->length = hole_size(inode, lblock, &mp);
797 		else
798 			iomap->length = size - pos;
799 	}
800 	goto out_release;
801 }
802 
803 /**
804  * gfs2_block_map - Map one or more blocks of an inode to a disk block
805  * @inode: The inode
806  * @lblock: The logical block number
807  * @bh_map: The bh to be mapped
808  * @create: True if its ok to alloc blocks to satify the request
809  *
810  * The size of the requested mapping is defined in bh_map->b_size.
811  *
812  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
813  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
814  * bh_map->b_size to indicate the size of the mapping when @lblock and
815  * successive blocks are mapped, up to the requested size.
816  *
817  * Sets buffer_boundary() if a read of metadata will be required
818  * before the next block can be mapped. Sets buffer_new() if new
819  * blocks were allocated.
820  *
821  * Returns: errno
822  */
823 
824 int gfs2_block_map(struct inode *inode, sector_t lblock,
825 		   struct buffer_head *bh_map, int create)
826 {
827 	struct gfs2_inode *ip = GFS2_I(inode);
828 	struct iomap iomap;
829 	int ret, flags = 0;
830 
831 	clear_buffer_mapped(bh_map);
832 	clear_buffer_new(bh_map);
833 	clear_buffer_boundary(bh_map);
834 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
835 
836 	if (create)
837 		flags |= IOMAP_WRITE;
838 	ret = gfs2_iomap_begin(inode, (loff_t)lblock << inode->i_blkbits,
839 			       bh_map->b_size, flags, &iomap);
840 	if (ret) {
841 		if (!create && ret == -ENOENT) {
842 			/* Return unmapped buffer beyond the end of file.  */
843 			ret = 0;
844 		}
845 		goto out;
846 	}
847 
848 	if (iomap.length > bh_map->b_size) {
849 		iomap.length = bh_map->b_size;
850 		iomap.flags &= ~IOMAP_F_BOUNDARY;
851 	}
852 	if (iomap.addr != IOMAP_NULL_ADDR)
853 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
854 	bh_map->b_size = iomap.length;
855 	if (iomap.flags & IOMAP_F_BOUNDARY)
856 		set_buffer_boundary(bh_map);
857 	if (iomap.flags & IOMAP_F_NEW)
858 		set_buffer_new(bh_map);
859 
860 out:
861 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
862 	return ret;
863 }
864 
865 /*
866  * Deprecated: do not use in new code
867  */
868 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
869 {
870 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
871 	int ret;
872 	int create = *new;
873 
874 	BUG_ON(!extlen);
875 	BUG_ON(!dblock);
876 	BUG_ON(!new);
877 
878 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
879 	ret = gfs2_block_map(inode, lblock, &bh, create);
880 	*extlen = bh.b_size >> inode->i_blkbits;
881 	*dblock = bh.b_blocknr;
882 	if (buffer_new(&bh))
883 		*new = 1;
884 	else
885 		*new = 0;
886 	return ret;
887 }
888 
889 /**
890  * gfs2_block_zero_range - Deal with zeroing out data
891  *
892  * This is partly borrowed from ext3.
893  */
894 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
895 				 unsigned int length)
896 {
897 	struct address_space *mapping = inode->i_mapping;
898 	struct gfs2_inode *ip = GFS2_I(inode);
899 	unsigned long index = from >> PAGE_SHIFT;
900 	unsigned offset = from & (PAGE_SIZE-1);
901 	unsigned blocksize, iblock, pos;
902 	struct buffer_head *bh;
903 	struct page *page;
904 	int err;
905 
906 	page = find_or_create_page(mapping, index, GFP_NOFS);
907 	if (!page)
908 		return 0;
909 
910 	blocksize = inode->i_sb->s_blocksize;
911 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
912 
913 	if (!page_has_buffers(page))
914 		create_empty_buffers(page, blocksize, 0);
915 
916 	/* Find the buffer that contains "offset" */
917 	bh = page_buffers(page);
918 	pos = blocksize;
919 	while (offset >= pos) {
920 		bh = bh->b_this_page;
921 		iblock++;
922 		pos += blocksize;
923 	}
924 
925 	err = 0;
926 
927 	if (!buffer_mapped(bh)) {
928 		gfs2_block_map(inode, iblock, bh, 0);
929 		/* unmapped? It's a hole - nothing to do */
930 		if (!buffer_mapped(bh))
931 			goto unlock;
932 	}
933 
934 	/* Ok, it's mapped. Make sure it's up-to-date */
935 	if (PageUptodate(page))
936 		set_buffer_uptodate(bh);
937 
938 	if (!buffer_uptodate(bh)) {
939 		err = -EIO;
940 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
941 		wait_on_buffer(bh);
942 		/* Uhhuh. Read error. Complain and punt. */
943 		if (!buffer_uptodate(bh))
944 			goto unlock;
945 		err = 0;
946 	}
947 
948 	if (!gfs2_is_writeback(ip))
949 		gfs2_trans_add_data(ip->i_gl, bh);
950 
951 	zero_user(page, offset, length);
952 	mark_buffer_dirty(bh);
953 unlock:
954 	unlock_page(page);
955 	put_page(page);
956 	return err;
957 }
958 
959 #define GFS2_JTRUNC_REVOKES 8192
960 
961 /**
962  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
963  * @inode: The inode being truncated
964  * @oldsize: The original (larger) size
965  * @newsize: The new smaller size
966  *
967  * With jdata files, we have to journal a revoke for each block which is
968  * truncated. As a result, we need to split this into separate transactions
969  * if the number of pages being truncated gets too large.
970  */
971 
972 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
973 {
974 	struct gfs2_sbd *sdp = GFS2_SB(inode);
975 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
976 	u64 chunk;
977 	int error;
978 
979 	while (oldsize != newsize) {
980 		struct gfs2_trans *tr;
981 		unsigned int offs;
982 
983 		chunk = oldsize - newsize;
984 		if (chunk > max_chunk)
985 			chunk = max_chunk;
986 
987 		offs = oldsize & ~PAGE_MASK;
988 		if (offs && chunk > PAGE_SIZE)
989 			chunk = offs + ((chunk - offs) & PAGE_MASK);
990 
991 		truncate_pagecache(inode, oldsize - chunk);
992 		oldsize -= chunk;
993 
994 		tr = current->journal_info;
995 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
996 			continue;
997 
998 		gfs2_trans_end(sdp);
999 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1000 		if (error)
1001 			return error;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static int trunc_start(struct inode *inode, u64 newsize)
1008 {
1009 	struct gfs2_inode *ip = GFS2_I(inode);
1010 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1011 	struct buffer_head *dibh = NULL;
1012 	int journaled = gfs2_is_jdata(ip);
1013 	u64 oldsize = inode->i_size;
1014 	int error;
1015 
1016 	if (journaled)
1017 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1018 	else
1019 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1020 	if (error)
1021 		return error;
1022 
1023 	error = gfs2_meta_inode_buffer(ip, &dibh);
1024 	if (error)
1025 		goto out;
1026 
1027 	gfs2_trans_add_meta(ip->i_gl, dibh);
1028 
1029 	if (gfs2_is_stuffed(ip)) {
1030 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1031 	} else {
1032 		unsigned int blocksize = i_blocksize(inode);
1033 		unsigned int offs = newsize & (blocksize - 1);
1034 		if (offs) {
1035 			error = gfs2_block_zero_range(inode, newsize,
1036 						      blocksize - offs);
1037 			if (error)
1038 				goto out;
1039 		}
1040 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1041 	}
1042 
1043 	i_size_write(inode, newsize);
1044 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1045 	gfs2_dinode_out(ip, dibh->b_data);
1046 
1047 	if (journaled)
1048 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1049 	else
1050 		truncate_pagecache(inode, newsize);
1051 
1052 out:
1053 	brelse(dibh);
1054 	if (current->journal_info)
1055 		gfs2_trans_end(sdp);
1056 	return error;
1057 }
1058 
1059 /**
1060  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1061  * @ip: inode
1062  * @rg_gh: holder of resource group glock
1063  * @bh: buffer head to sweep
1064  * @start: starting point in bh
1065  * @end: end point in bh
1066  * @meta: true if bh points to metadata (rather than data)
1067  * @btotal: place to keep count of total blocks freed
1068  *
1069  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1070  * free, and free them all. However, we do it one rgrp at a time. If this
1071  * block has references to multiple rgrps, we break it into individual
1072  * transactions. This allows other processes to use the rgrps while we're
1073  * focused on a single one, for better concurrency / performance.
1074  * At every transaction boundary, we rewrite the inode into the journal.
1075  * That way the bitmaps are kept consistent with the inode and we can recover
1076  * if we're interrupted by power-outages.
1077  *
1078  * Returns: 0, or return code if an error occurred.
1079  *          *btotal has the total number of blocks freed
1080  */
1081 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1082 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1083 			      bool meta, u32 *btotal)
1084 {
1085 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1086 	struct gfs2_rgrpd *rgd;
1087 	struct gfs2_trans *tr;
1088 	__be64 *p;
1089 	int blks_outside_rgrp;
1090 	u64 bn, bstart, isize_blks;
1091 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1092 	int ret = 0;
1093 	bool buf_in_tr = false; /* buffer was added to transaction */
1094 
1095 more_rgrps:
1096 	rgd = NULL;
1097 	if (gfs2_holder_initialized(rd_gh)) {
1098 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1099 		gfs2_assert_withdraw(sdp,
1100 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1101 	}
1102 	blks_outside_rgrp = 0;
1103 	bstart = 0;
1104 	blen = 0;
1105 
1106 	for (p = start; p < end; p++) {
1107 		if (!*p)
1108 			continue;
1109 		bn = be64_to_cpu(*p);
1110 
1111 		if (rgd) {
1112 			if (!rgrp_contains_block(rgd, bn)) {
1113 				blks_outside_rgrp++;
1114 				continue;
1115 			}
1116 		} else {
1117 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1118 			if (unlikely(!rgd)) {
1119 				ret = -EIO;
1120 				goto out;
1121 			}
1122 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1123 						 0, rd_gh);
1124 			if (ret)
1125 				goto out;
1126 
1127 			/* Must be done with the rgrp glock held: */
1128 			if (gfs2_rs_active(&ip->i_res) &&
1129 			    rgd == ip->i_res.rs_rbm.rgd)
1130 				gfs2_rs_deltree(&ip->i_res);
1131 		}
1132 
1133 		/* The size of our transactions will be unknown until we
1134 		   actually process all the metadata blocks that relate to
1135 		   the rgrp. So we estimate. We know it can't be more than
1136 		   the dinode's i_blocks and we don't want to exceed the
1137 		   journal flush threshold, sd_log_thresh2. */
1138 		if (current->journal_info == NULL) {
1139 			unsigned int jblocks_rqsted, revokes;
1140 
1141 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1142 				RES_INDIRECT;
1143 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1144 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1145 				jblocks_rqsted +=
1146 					atomic_read(&sdp->sd_log_thresh2);
1147 			else
1148 				jblocks_rqsted += isize_blks;
1149 			revokes = jblocks_rqsted;
1150 			if (meta)
1151 				revokes += end - start;
1152 			else if (ip->i_depth)
1153 				revokes += sdp->sd_inptrs;
1154 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1155 			if (ret)
1156 				goto out_unlock;
1157 			down_write(&ip->i_rw_mutex);
1158 		}
1159 		/* check if we will exceed the transaction blocks requested */
1160 		tr = current->journal_info;
1161 		if (tr->tr_num_buf_new + RES_STATFS +
1162 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1163 			/* We set blks_outside_rgrp to ensure the loop will
1164 			   be repeated for the same rgrp, but with a new
1165 			   transaction. */
1166 			blks_outside_rgrp++;
1167 			/* This next part is tricky. If the buffer was added
1168 			   to the transaction, we've already set some block
1169 			   pointers to 0, so we better follow through and free
1170 			   them, or we will introduce corruption (so break).
1171 			   This may be impossible, or at least rare, but I
1172 			   decided to cover the case regardless.
1173 
1174 			   If the buffer was not added to the transaction
1175 			   (this call), doing so would exceed our transaction
1176 			   size, so we need to end the transaction and start a
1177 			   new one (so goto). */
1178 
1179 			if (buf_in_tr)
1180 				break;
1181 			goto out_unlock;
1182 		}
1183 
1184 		gfs2_trans_add_meta(ip->i_gl, bh);
1185 		buf_in_tr = true;
1186 		*p = 0;
1187 		if (bstart + blen == bn) {
1188 			blen++;
1189 			continue;
1190 		}
1191 		if (bstart) {
1192 			__gfs2_free_blocks(ip, bstart, (u32)blen, meta);
1193 			(*btotal) += blen;
1194 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1195 		}
1196 		bstart = bn;
1197 		blen = 1;
1198 	}
1199 	if (bstart) {
1200 		__gfs2_free_blocks(ip, bstart, (u32)blen, meta);
1201 		(*btotal) += blen;
1202 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1203 	}
1204 out_unlock:
1205 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1206 					    outside the rgrp we just processed,
1207 					    do it all over again. */
1208 		if (current->journal_info) {
1209 			struct buffer_head *dibh;
1210 
1211 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1212 			if (ret)
1213 				goto out;
1214 
1215 			/* Every transaction boundary, we rewrite the dinode
1216 			   to keep its di_blocks current in case of failure. */
1217 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1218 				current_time(&ip->i_inode);
1219 			gfs2_trans_add_meta(ip->i_gl, dibh);
1220 			gfs2_dinode_out(ip, dibh->b_data);
1221 			brelse(dibh);
1222 			up_write(&ip->i_rw_mutex);
1223 			gfs2_trans_end(sdp);
1224 		}
1225 		gfs2_glock_dq_uninit(rd_gh);
1226 		cond_resched();
1227 		goto more_rgrps;
1228 	}
1229 out:
1230 	return ret;
1231 }
1232 
1233 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1234 {
1235 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1236 		return false;
1237 	return true;
1238 }
1239 
1240 /**
1241  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1242  * @mp: starting metapath
1243  * @h: desired height to search
1244  *
1245  * Assumes the metapath is valid (with buffers) out to height h.
1246  * Returns: true if a non-null pointer was found in the metapath buffer
1247  *          false if all remaining pointers are NULL in the buffer
1248  */
1249 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1250 			     unsigned int h,
1251 			     __u16 *end_list, unsigned int end_aligned)
1252 {
1253 	struct buffer_head *bh = mp->mp_bh[h];
1254 	__be64 *first, *ptr, *end;
1255 
1256 	first = metaptr1(h, mp);
1257 	ptr = first + mp->mp_list[h];
1258 	end = (__be64 *)(bh->b_data + bh->b_size);
1259 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1260 		bool keep_end = h < end_aligned;
1261 		end = first + end_list[h] + keep_end;
1262 	}
1263 
1264 	while (ptr < end) {
1265 		if (*ptr) { /* if we have a non-null pointer */
1266 			mp->mp_list[h] = ptr - first;
1267 			h++;
1268 			if (h < GFS2_MAX_META_HEIGHT)
1269 				mp->mp_list[h] = 0;
1270 			return true;
1271 		}
1272 		ptr++;
1273 	}
1274 	return false;
1275 }
1276 
1277 enum dealloc_states {
1278 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1279 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1280 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1281 	DEALLOC_DONE = 3,       /* process complete */
1282 };
1283 
1284 static inline void
1285 metapointer_range(struct metapath *mp, int height,
1286 		  __u16 *start_list, unsigned int start_aligned,
1287 		  __u16 *end_list, unsigned int end_aligned,
1288 		  __be64 **start, __be64 **end)
1289 {
1290 	struct buffer_head *bh = mp->mp_bh[height];
1291 	__be64 *first;
1292 
1293 	first = metaptr1(height, mp);
1294 	*start = first;
1295 	if (mp_eq_to_hgt(mp, start_list, height)) {
1296 		bool keep_start = height < start_aligned;
1297 		*start = first + start_list[height] + keep_start;
1298 	}
1299 	*end = (__be64 *)(bh->b_data + bh->b_size);
1300 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1301 		bool keep_end = height < end_aligned;
1302 		*end = first + end_list[height] + keep_end;
1303 	}
1304 }
1305 
1306 static inline bool walk_done(struct gfs2_sbd *sdp,
1307 			     struct metapath *mp, int height,
1308 			     __u16 *end_list, unsigned int end_aligned)
1309 {
1310 	__u16 end;
1311 
1312 	if (end_list) {
1313 		bool keep_end = height < end_aligned;
1314 		if (!mp_eq_to_hgt(mp, end_list, height))
1315 			return false;
1316 		end = end_list[height] + keep_end;
1317 	} else
1318 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1319 	return mp->mp_list[height] >= end;
1320 }
1321 
1322 /**
1323  * punch_hole - deallocate blocks in a file
1324  * @ip: inode to truncate
1325  * @offset: the start of the hole
1326  * @length: the size of the hole (or 0 for truncate)
1327  *
1328  * Punch a hole into a file or truncate a file at a given position.  This
1329  * function operates in whole blocks (@offset and @length are rounded
1330  * accordingly); partially filled blocks must be cleared otherwise.
1331  *
1332  * This function works from the bottom up, and from the right to the left. In
1333  * other words, it strips off the highest layer (data) before stripping any of
1334  * the metadata. Doing it this way is best in case the operation is interrupted
1335  * by power failure, etc.  The dinode is rewritten in every transaction to
1336  * guarantee integrity.
1337  */
1338 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1339 {
1340 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1341 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1342 	struct metapath mp = {};
1343 	struct buffer_head *dibh, *bh;
1344 	struct gfs2_holder rd_gh;
1345 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1346 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1347 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1348 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1349 	unsigned int start_aligned, uninitialized_var(end_aligned);
1350 	unsigned int strip_h = ip->i_height - 1;
1351 	u32 btotal = 0;
1352 	int ret, state;
1353 	int mp_h; /* metapath buffers are read in to this height */
1354 	u64 prev_bnr = 0;
1355 	__be64 *start, *end;
1356 
1357 	if (offset >= maxsize) {
1358 		/*
1359 		 * The starting point lies beyond the allocated meta-data;
1360 		 * there are no blocks do deallocate.
1361 		 */
1362 		return 0;
1363 	}
1364 
1365 	/*
1366 	 * The start position of the hole is defined by lblock, start_list, and
1367 	 * start_aligned.  The end position of the hole is defined by lend,
1368 	 * end_list, and end_aligned.
1369 	 *
1370 	 * start_aligned and end_aligned define down to which height the start
1371 	 * and end positions are aligned to the metadata tree (i.e., the
1372 	 * position is a multiple of the metadata granularity at the height
1373 	 * above).  This determines at which heights additional meta pointers
1374 	 * needs to be preserved for the remaining data.
1375 	 */
1376 
1377 	if (length) {
1378 		u64 end_offset = offset + length;
1379 		u64 lend;
1380 
1381 		/*
1382 		 * Clip the end at the maximum file size for the given height:
1383 		 * that's how far the metadata goes; files bigger than that
1384 		 * will have additional layers of indirection.
1385 		 */
1386 		if (end_offset > maxsize)
1387 			end_offset = maxsize;
1388 		lend = end_offset >> bsize_shift;
1389 
1390 		if (lblock >= lend)
1391 			return 0;
1392 
1393 		find_metapath(sdp, lend, &mp, ip->i_height);
1394 		end_list = __end_list;
1395 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1396 
1397 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1398 			if (end_list[mp_h])
1399 				break;
1400 		}
1401 		end_aligned = mp_h;
1402 	}
1403 
1404 	find_metapath(sdp, lblock, &mp, ip->i_height);
1405 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1406 
1407 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1408 		if (start_list[mp_h])
1409 			break;
1410 	}
1411 	start_aligned = mp_h;
1412 
1413 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1414 	if (ret)
1415 		return ret;
1416 
1417 	mp.mp_bh[0] = dibh;
1418 	ret = lookup_metapath(ip, &mp);
1419 	if (ret)
1420 		goto out_metapath;
1421 
1422 	/* issue read-ahead on metadata */
1423 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1424 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1425 				  end_list, end_aligned, &start, &end);
1426 		gfs2_metapath_ra(ip->i_gl, start, end);
1427 	}
1428 
1429 	if (mp.mp_aheight == ip->i_height)
1430 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1431 	else
1432 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1433 
1434 	ret = gfs2_rindex_update(sdp);
1435 	if (ret)
1436 		goto out_metapath;
1437 
1438 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1439 	if (ret)
1440 		goto out_metapath;
1441 	gfs2_holder_mark_uninitialized(&rd_gh);
1442 
1443 	mp_h = strip_h;
1444 
1445 	while (state != DEALLOC_DONE) {
1446 		switch (state) {
1447 		/* Truncate a full metapath at the given strip height.
1448 		 * Note that strip_h == mp_h in order to be in this state. */
1449 		case DEALLOC_MP_FULL:
1450 			bh = mp.mp_bh[mp_h];
1451 			gfs2_assert_withdraw(sdp, bh);
1452 			if (gfs2_assert_withdraw(sdp,
1453 						 prev_bnr != bh->b_blocknr)) {
1454 				printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, "
1455 				       "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n",
1456 				       sdp->sd_fsname,
1457 				       (unsigned long long)ip->i_no_addr,
1458 				       prev_bnr, ip->i_height, strip_h, mp_h);
1459 			}
1460 			prev_bnr = bh->b_blocknr;
1461 
1462 			if (gfs2_metatype_check(sdp, bh,
1463 						(mp_h ? GFS2_METATYPE_IN :
1464 							GFS2_METATYPE_DI))) {
1465 				ret = -EIO;
1466 				goto out;
1467 			}
1468 
1469 			/*
1470 			 * Below, passing end_aligned as 0 gives us the
1471 			 * metapointer range excluding the end point: the end
1472 			 * point is the first metapath we must not deallocate!
1473 			 */
1474 
1475 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1476 					  end_list, 0 /* end_aligned */,
1477 					  &start, &end);
1478 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1479 						 start, end,
1480 						 mp_h != ip->i_height - 1,
1481 						 &btotal);
1482 
1483 			/* If we hit an error or just swept dinode buffer,
1484 			   just exit. */
1485 			if (ret || !mp_h) {
1486 				state = DEALLOC_DONE;
1487 				break;
1488 			}
1489 			state = DEALLOC_MP_LOWER;
1490 			break;
1491 
1492 		/* lower the metapath strip height */
1493 		case DEALLOC_MP_LOWER:
1494 			/* We're done with the current buffer, so release it,
1495 			   unless it's the dinode buffer. Then back up to the
1496 			   previous pointer. */
1497 			if (mp_h) {
1498 				brelse(mp.mp_bh[mp_h]);
1499 				mp.mp_bh[mp_h] = NULL;
1500 			}
1501 			/* If we can't get any lower in height, we've stripped
1502 			   off all we can. Next step is to back up and start
1503 			   stripping the previous level of metadata. */
1504 			if (mp_h == 0) {
1505 				strip_h--;
1506 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1507 				mp_h = strip_h;
1508 				state = DEALLOC_FILL_MP;
1509 				break;
1510 			}
1511 			mp.mp_list[mp_h] = 0;
1512 			mp_h--; /* search one metadata height down */
1513 			mp.mp_list[mp_h]++;
1514 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1515 				break;
1516 			/* Here we've found a part of the metapath that is not
1517 			 * allocated. We need to search at that height for the
1518 			 * next non-null pointer. */
1519 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1520 				state = DEALLOC_FILL_MP;
1521 				mp_h++;
1522 			}
1523 			/* No more non-null pointers at this height. Back up
1524 			   to the previous height and try again. */
1525 			break; /* loop around in the same state */
1526 
1527 		/* Fill the metapath with buffers to the given height. */
1528 		case DEALLOC_FILL_MP:
1529 			/* Fill the buffers out to the current height. */
1530 			ret = fillup_metapath(ip, &mp, mp_h);
1531 			if (ret < 0)
1532 				goto out;
1533 
1534 			/* issue read-ahead on metadata */
1535 			if (mp.mp_aheight > 1) {
1536 				for (; ret > 1; ret--) {
1537 					metapointer_range(&mp, mp.mp_aheight - ret,
1538 							  start_list, start_aligned,
1539 							  end_list, end_aligned,
1540 							  &start, &end);
1541 					gfs2_metapath_ra(ip->i_gl, start, end);
1542 				}
1543 			}
1544 
1545 			/* If buffers found for the entire strip height */
1546 			if (mp.mp_aheight - 1 == strip_h) {
1547 				state = DEALLOC_MP_FULL;
1548 				break;
1549 			}
1550 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1551 				mp_h = mp.mp_aheight - 1;
1552 
1553 			/* If we find a non-null block pointer, crawl a bit
1554 			   higher up in the metapath and try again, otherwise
1555 			   we need to look lower for a new starting point. */
1556 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1557 				mp_h++;
1558 			else
1559 				state = DEALLOC_MP_LOWER;
1560 			break;
1561 		}
1562 	}
1563 
1564 	if (btotal) {
1565 		if (current->journal_info == NULL) {
1566 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1567 					       RES_QUOTA, 0);
1568 			if (ret)
1569 				goto out;
1570 			down_write(&ip->i_rw_mutex);
1571 		}
1572 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1573 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1574 				  ip->i_inode.i_gid);
1575 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1576 		gfs2_trans_add_meta(ip->i_gl, dibh);
1577 		gfs2_dinode_out(ip, dibh->b_data);
1578 		up_write(&ip->i_rw_mutex);
1579 		gfs2_trans_end(sdp);
1580 	}
1581 
1582 out:
1583 	if (gfs2_holder_initialized(&rd_gh))
1584 		gfs2_glock_dq_uninit(&rd_gh);
1585 	if (current->journal_info) {
1586 		up_write(&ip->i_rw_mutex);
1587 		gfs2_trans_end(sdp);
1588 		cond_resched();
1589 	}
1590 	gfs2_quota_unhold(ip);
1591 out_metapath:
1592 	release_metapath(&mp);
1593 	return ret;
1594 }
1595 
1596 static int trunc_end(struct gfs2_inode *ip)
1597 {
1598 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1599 	struct buffer_head *dibh;
1600 	int error;
1601 
1602 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1603 	if (error)
1604 		return error;
1605 
1606 	down_write(&ip->i_rw_mutex);
1607 
1608 	error = gfs2_meta_inode_buffer(ip, &dibh);
1609 	if (error)
1610 		goto out;
1611 
1612 	if (!i_size_read(&ip->i_inode)) {
1613 		ip->i_height = 0;
1614 		ip->i_goal = ip->i_no_addr;
1615 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1616 		gfs2_ordered_del_inode(ip);
1617 	}
1618 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1619 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1620 
1621 	gfs2_trans_add_meta(ip->i_gl, dibh);
1622 	gfs2_dinode_out(ip, dibh->b_data);
1623 	brelse(dibh);
1624 
1625 out:
1626 	up_write(&ip->i_rw_mutex);
1627 	gfs2_trans_end(sdp);
1628 	return error;
1629 }
1630 
1631 /**
1632  * do_shrink - make a file smaller
1633  * @inode: the inode
1634  * @newsize: the size to make the file
1635  *
1636  * Called with an exclusive lock on @inode. The @size must
1637  * be equal to or smaller than the current inode size.
1638  *
1639  * Returns: errno
1640  */
1641 
1642 static int do_shrink(struct inode *inode, u64 newsize)
1643 {
1644 	struct gfs2_inode *ip = GFS2_I(inode);
1645 	int error;
1646 
1647 	error = trunc_start(inode, newsize);
1648 	if (error < 0)
1649 		return error;
1650 	if (gfs2_is_stuffed(ip))
1651 		return 0;
1652 
1653 	error = punch_hole(ip, newsize, 0);
1654 	if (error == 0)
1655 		error = trunc_end(ip);
1656 
1657 	return error;
1658 }
1659 
1660 void gfs2_trim_blocks(struct inode *inode)
1661 {
1662 	int ret;
1663 
1664 	ret = do_shrink(inode, inode->i_size);
1665 	WARN_ON(ret != 0);
1666 }
1667 
1668 /**
1669  * do_grow - Touch and update inode size
1670  * @inode: The inode
1671  * @size: The new size
1672  *
1673  * This function updates the timestamps on the inode and
1674  * may also increase the size of the inode. This function
1675  * must not be called with @size any smaller than the current
1676  * inode size.
1677  *
1678  * Although it is not strictly required to unstuff files here,
1679  * earlier versions of GFS2 have a bug in the stuffed file reading
1680  * code which will result in a buffer overrun if the size is larger
1681  * than the max stuffed file size. In order to prevent this from
1682  * occurring, such files are unstuffed, but in other cases we can
1683  * just update the inode size directly.
1684  *
1685  * Returns: 0 on success, or -ve on error
1686  */
1687 
1688 static int do_grow(struct inode *inode, u64 size)
1689 {
1690 	struct gfs2_inode *ip = GFS2_I(inode);
1691 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1692 	struct gfs2_alloc_parms ap = { .target = 1, };
1693 	struct buffer_head *dibh;
1694 	int error;
1695 	int unstuff = 0;
1696 
1697 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
1698 		error = gfs2_quota_lock_check(ip, &ap);
1699 		if (error)
1700 			return error;
1701 
1702 		error = gfs2_inplace_reserve(ip, &ap);
1703 		if (error)
1704 			goto do_grow_qunlock;
1705 		unstuff = 1;
1706 	}
1707 
1708 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
1709 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
1710 				  0 : RES_QUOTA), 0);
1711 	if (error)
1712 		goto do_grow_release;
1713 
1714 	if (unstuff) {
1715 		error = gfs2_unstuff_dinode(ip, NULL);
1716 		if (error)
1717 			goto do_end_trans;
1718 	}
1719 
1720 	error = gfs2_meta_inode_buffer(ip, &dibh);
1721 	if (error)
1722 		goto do_end_trans;
1723 
1724 	i_size_write(inode, size);
1725 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1726 	gfs2_trans_add_meta(ip->i_gl, dibh);
1727 	gfs2_dinode_out(ip, dibh->b_data);
1728 	brelse(dibh);
1729 
1730 do_end_trans:
1731 	gfs2_trans_end(sdp);
1732 do_grow_release:
1733 	if (unstuff) {
1734 		gfs2_inplace_release(ip);
1735 do_grow_qunlock:
1736 		gfs2_quota_unlock(ip);
1737 	}
1738 	return error;
1739 }
1740 
1741 /**
1742  * gfs2_setattr_size - make a file a given size
1743  * @inode: the inode
1744  * @newsize: the size to make the file
1745  *
1746  * The file size can grow, shrink, or stay the same size. This
1747  * is called holding i_rwsem and an exclusive glock on the inode
1748  * in question.
1749  *
1750  * Returns: errno
1751  */
1752 
1753 int gfs2_setattr_size(struct inode *inode, u64 newsize)
1754 {
1755 	struct gfs2_inode *ip = GFS2_I(inode);
1756 	int ret;
1757 
1758 	BUG_ON(!S_ISREG(inode->i_mode));
1759 
1760 	ret = inode_newsize_ok(inode, newsize);
1761 	if (ret)
1762 		return ret;
1763 
1764 	inode_dio_wait(inode);
1765 
1766 	ret = gfs2_rsqa_alloc(ip);
1767 	if (ret)
1768 		goto out;
1769 
1770 	if (newsize >= inode->i_size) {
1771 		ret = do_grow(inode, newsize);
1772 		goto out;
1773 	}
1774 
1775 	ret = do_shrink(inode, newsize);
1776 out:
1777 	gfs2_rsqa_delete(ip, NULL);
1778 	return ret;
1779 }
1780 
1781 int gfs2_truncatei_resume(struct gfs2_inode *ip)
1782 {
1783 	int error;
1784 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
1785 	if (!error)
1786 		error = trunc_end(ip);
1787 	return error;
1788 }
1789 
1790 int gfs2_file_dealloc(struct gfs2_inode *ip)
1791 {
1792 	return punch_hole(ip, 0, 0);
1793 }
1794 
1795 /**
1796  * gfs2_free_journal_extents - Free cached journal bmap info
1797  * @jd: The journal
1798  *
1799  */
1800 
1801 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
1802 {
1803 	struct gfs2_journal_extent *jext;
1804 
1805 	while(!list_empty(&jd->extent_list)) {
1806 		jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
1807 		list_del(&jext->list);
1808 		kfree(jext);
1809 	}
1810 }
1811 
1812 /**
1813  * gfs2_add_jextent - Add or merge a new extent to extent cache
1814  * @jd: The journal descriptor
1815  * @lblock: The logical block at start of new extent
1816  * @dblock: The physical block at start of new extent
1817  * @blocks: Size of extent in fs blocks
1818  *
1819  * Returns: 0 on success or -ENOMEM
1820  */
1821 
1822 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
1823 {
1824 	struct gfs2_journal_extent *jext;
1825 
1826 	if (!list_empty(&jd->extent_list)) {
1827 		jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
1828 		if ((jext->dblock + jext->blocks) == dblock) {
1829 			jext->blocks += blocks;
1830 			return 0;
1831 		}
1832 	}
1833 
1834 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
1835 	if (jext == NULL)
1836 		return -ENOMEM;
1837 	jext->dblock = dblock;
1838 	jext->lblock = lblock;
1839 	jext->blocks = blocks;
1840 	list_add_tail(&jext->list, &jd->extent_list);
1841 	jd->nr_extents++;
1842 	return 0;
1843 }
1844 
1845 /**
1846  * gfs2_map_journal_extents - Cache journal bmap info
1847  * @sdp: The super block
1848  * @jd: The journal to map
1849  *
1850  * Create a reusable "extent" mapping from all logical
1851  * blocks to all physical blocks for the given journal.  This will save
1852  * us time when writing journal blocks.  Most journals will have only one
1853  * extent that maps all their logical blocks.  That's because gfs2.mkfs
1854  * arranges the journal blocks sequentially to maximize performance.
1855  * So the extent would map the first block for the entire file length.
1856  * However, gfs2_jadd can happen while file activity is happening, so
1857  * those journals may not be sequential.  Less likely is the case where
1858  * the users created their own journals by mounting the metafs and
1859  * laying it out.  But it's still possible.  These journals might have
1860  * several extents.
1861  *
1862  * Returns: 0 on success, or error on failure
1863  */
1864 
1865 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
1866 {
1867 	u64 lblock = 0;
1868 	u64 lblock_stop;
1869 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
1870 	struct buffer_head bh;
1871 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
1872 	u64 size;
1873 	int rc;
1874 
1875 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
1876 	size = (lblock_stop - lblock) << shift;
1877 	jd->nr_extents = 0;
1878 	WARN_ON(!list_empty(&jd->extent_list));
1879 
1880 	do {
1881 		bh.b_state = 0;
1882 		bh.b_blocknr = 0;
1883 		bh.b_size = size;
1884 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
1885 		if (rc || !buffer_mapped(&bh))
1886 			goto fail;
1887 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
1888 		if (rc)
1889 			goto fail;
1890 		size -= bh.b_size;
1891 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
1892 	} while(size > 0);
1893 
1894 	fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid,
1895 		jd->nr_extents);
1896 	return 0;
1897 
1898 fail:
1899 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
1900 		rc, jd->jd_jid,
1901 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
1902 		jd->nr_extents);
1903 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
1904 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
1905 		bh.b_state, (unsigned long long)bh.b_size);
1906 	gfs2_free_journal_extents(jd);
1907 	return rc;
1908 }
1909 
1910 /**
1911  * gfs2_write_alloc_required - figure out if a write will require an allocation
1912  * @ip: the file being written to
1913  * @offset: the offset to write to
1914  * @len: the number of bytes being written
1915  *
1916  * Returns: 1 if an alloc is required, 0 otherwise
1917  */
1918 
1919 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
1920 			      unsigned int len)
1921 {
1922 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1923 	struct buffer_head bh;
1924 	unsigned int shift;
1925 	u64 lblock, lblock_stop, size;
1926 	u64 end_of_file;
1927 
1928 	if (!len)
1929 		return 0;
1930 
1931 	if (gfs2_is_stuffed(ip)) {
1932 		if (offset + len > gfs2_max_stuffed_size(ip))
1933 			return 1;
1934 		return 0;
1935 	}
1936 
1937 	shift = sdp->sd_sb.sb_bsize_shift;
1938 	BUG_ON(gfs2_is_dir(ip));
1939 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
1940 	lblock = offset >> shift;
1941 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
1942 	if (lblock_stop > end_of_file)
1943 		return 1;
1944 
1945 	size = (lblock_stop - lblock) << shift;
1946 	do {
1947 		bh.b_state = 0;
1948 		bh.b_size = size;
1949 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
1950 		if (!buffer_mapped(&bh))
1951 			return 1;
1952 		size -= bh.b_size;
1953 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
1954 	} while(size > 0);
1955 
1956 	return 0;
1957 }
1958 
1959 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
1960 {
1961 	struct gfs2_inode *ip = GFS2_I(inode);
1962 	struct buffer_head *dibh;
1963 	int error;
1964 
1965 	if (offset >= inode->i_size)
1966 		return 0;
1967 	if (offset + length > inode->i_size)
1968 		length = inode->i_size - offset;
1969 
1970 	error = gfs2_meta_inode_buffer(ip, &dibh);
1971 	if (error)
1972 		return error;
1973 	gfs2_trans_add_meta(ip->i_gl, dibh);
1974 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
1975 	       length);
1976 	brelse(dibh);
1977 	return 0;
1978 }
1979 
1980 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
1981 					 loff_t length)
1982 {
1983 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1984 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1985 	int error;
1986 
1987 	while (length) {
1988 		struct gfs2_trans *tr;
1989 		loff_t chunk;
1990 		unsigned int offs;
1991 
1992 		chunk = length;
1993 		if (chunk > max_chunk)
1994 			chunk = max_chunk;
1995 
1996 		offs = offset & ~PAGE_MASK;
1997 		if (offs && chunk > PAGE_SIZE)
1998 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1999 
2000 		truncate_pagecache_range(inode, offset, chunk);
2001 		offset += chunk;
2002 		length -= chunk;
2003 
2004 		tr = current->journal_info;
2005 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2006 			continue;
2007 
2008 		gfs2_trans_end(sdp);
2009 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2010 		if (error)
2011 			return error;
2012 	}
2013 	return 0;
2014 }
2015 
2016 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2017 {
2018 	struct inode *inode = file_inode(file);
2019 	struct gfs2_inode *ip = GFS2_I(inode);
2020 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2021 	int error;
2022 
2023 	if (gfs2_is_jdata(ip))
2024 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2025 					 GFS2_JTRUNC_REVOKES);
2026 	else
2027 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2028 	if (error)
2029 		return error;
2030 
2031 	if (gfs2_is_stuffed(ip)) {
2032 		error = stuffed_zero_range(inode, offset, length);
2033 		if (error)
2034 			goto out;
2035 	} else {
2036 		unsigned int start_off, end_off, blocksize;
2037 
2038 		blocksize = i_blocksize(inode);
2039 		start_off = offset & (blocksize - 1);
2040 		end_off = (offset + length) & (blocksize - 1);
2041 		if (start_off) {
2042 			unsigned int len = length;
2043 			if (length > blocksize - start_off)
2044 				len = blocksize - start_off;
2045 			error = gfs2_block_zero_range(inode, offset, len);
2046 			if (error)
2047 				goto out;
2048 			if (start_off + length < blocksize)
2049 				end_off = 0;
2050 		}
2051 		if (end_off) {
2052 			error = gfs2_block_zero_range(inode,
2053 				offset + length - end_off, end_off);
2054 			if (error)
2055 				goto out;
2056 		}
2057 	}
2058 
2059 	if (gfs2_is_jdata(ip)) {
2060 		BUG_ON(!current->journal_info);
2061 		gfs2_journaled_truncate_range(inode, offset, length);
2062 	} else
2063 		truncate_pagecache_range(inode, offset, offset + length - 1);
2064 
2065 	file_update_time(file);
2066 	mark_inode_dirty(inode);
2067 
2068 	if (current->journal_info)
2069 		gfs2_trans_end(sdp);
2070 
2071 	if (!gfs2_is_stuffed(ip))
2072 		error = punch_hole(ip, offset, length);
2073 
2074 out:
2075 	if (current->journal_info)
2076 		gfs2_trans_end(sdp);
2077 	return error;
2078 }
2079