1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/blkdev.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/crc32.h> 16 #include <linux/iomap.h> 17 18 #include "gfs2.h" 19 #include "incore.h" 20 #include "bmap.h" 21 #include "glock.h" 22 #include "inode.h" 23 #include "meta_io.h" 24 #include "quota.h" 25 #include "rgrp.h" 26 #include "log.h" 27 #include "super.h" 28 #include "trans.h" 29 #include "dir.h" 30 #include "util.h" 31 #include "aops.h" 32 #include "trace_gfs2.h" 33 34 /* This doesn't need to be that large as max 64 bit pointers in a 4k 35 * block is 512, so __u16 is fine for that. It saves stack space to 36 * keep it small. 37 */ 38 struct metapath { 39 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 40 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 41 int mp_fheight; /* find_metapath height */ 42 int mp_aheight; /* actual height (lookup height) */ 43 }; 44 45 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 46 47 /** 48 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 49 * @ip: the inode 50 * @dibh: the dinode buffer 51 * @block: the block number that was allocated 52 * @page: The (optional) page. This is looked up if @page is NULL 53 * 54 * Returns: errno 55 */ 56 57 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 58 u64 block, struct page *page) 59 { 60 struct inode *inode = &ip->i_inode; 61 struct buffer_head *bh; 62 int release = 0; 63 64 if (!page || page->index) { 65 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 66 if (!page) 67 return -ENOMEM; 68 release = 1; 69 } 70 71 if (!PageUptodate(page)) { 72 void *kaddr = kmap(page); 73 u64 dsize = i_size_read(inode); 74 75 if (dsize > gfs2_max_stuffed_size(ip)) 76 dsize = gfs2_max_stuffed_size(ip); 77 78 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 79 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 80 kunmap(page); 81 82 SetPageUptodate(page); 83 } 84 85 if (!page_has_buffers(page)) 86 create_empty_buffers(page, BIT(inode->i_blkbits), 87 BIT(BH_Uptodate)); 88 89 bh = page_buffers(page); 90 91 if (!buffer_mapped(bh)) 92 map_bh(bh, inode->i_sb, block); 93 94 set_buffer_uptodate(bh); 95 if (gfs2_is_jdata(ip)) 96 gfs2_trans_add_data(ip->i_gl, bh); 97 else { 98 mark_buffer_dirty(bh); 99 gfs2_ordered_add_inode(ip); 100 } 101 102 if (release) { 103 unlock_page(page); 104 put_page(page); 105 } 106 107 return 0; 108 } 109 110 /** 111 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 112 * @ip: The GFS2 inode to unstuff 113 * @page: The (optional) page. This is looked up if the @page is NULL 114 * 115 * This routine unstuffs a dinode and returns it to a "normal" state such 116 * that the height can be grown in the traditional way. 117 * 118 * Returns: errno 119 */ 120 121 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 122 { 123 struct buffer_head *bh, *dibh; 124 struct gfs2_dinode *di; 125 u64 block = 0; 126 int isdir = gfs2_is_dir(ip); 127 int error; 128 129 down_write(&ip->i_rw_mutex); 130 131 error = gfs2_meta_inode_buffer(ip, &dibh); 132 if (error) 133 goto out; 134 135 if (i_size_read(&ip->i_inode)) { 136 /* Get a free block, fill it with the stuffed data, 137 and write it out to disk */ 138 139 unsigned int n = 1; 140 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 141 if (error) 142 goto out_brelse; 143 if (isdir) { 144 gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1); 145 error = gfs2_dir_get_new_buffer(ip, block, &bh); 146 if (error) 147 goto out_brelse; 148 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 149 dibh, sizeof(struct gfs2_dinode)); 150 brelse(bh); 151 } else { 152 error = gfs2_unstuffer_page(ip, dibh, block, page); 153 if (error) 154 goto out_brelse; 155 } 156 } 157 158 /* Set up the pointer to the new block */ 159 160 gfs2_trans_add_meta(ip->i_gl, dibh); 161 di = (struct gfs2_dinode *)dibh->b_data; 162 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 163 164 if (i_size_read(&ip->i_inode)) { 165 *(__be64 *)(di + 1) = cpu_to_be64(block); 166 gfs2_add_inode_blocks(&ip->i_inode, 1); 167 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 168 } 169 170 ip->i_height = 1; 171 di->di_height = cpu_to_be16(1); 172 173 out_brelse: 174 brelse(dibh); 175 out: 176 up_write(&ip->i_rw_mutex); 177 return error; 178 } 179 180 181 /** 182 * find_metapath - Find path through the metadata tree 183 * @sdp: The superblock 184 * @block: The disk block to look up 185 * @mp: The metapath to return the result in 186 * @height: The pre-calculated height of the metadata tree 187 * 188 * This routine returns a struct metapath structure that defines a path 189 * through the metadata of inode "ip" to get to block "block". 190 * 191 * Example: 192 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 193 * filesystem with a blocksize of 4096. 194 * 195 * find_metapath() would return a struct metapath structure set to: 196 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 197 * 198 * That means that in order to get to the block containing the byte at 199 * offset 101342453, we would load the indirect block pointed to by pointer 200 * 0 in the dinode. We would then load the indirect block pointed to by 201 * pointer 48 in that indirect block. We would then load the data block 202 * pointed to by pointer 165 in that indirect block. 203 * 204 * ---------------------------------------- 205 * | Dinode | | 206 * | | 4| 207 * | |0 1 2 3 4 5 9| 208 * | | 6| 209 * ---------------------------------------- 210 * | 211 * | 212 * V 213 * ---------------------------------------- 214 * | Indirect Block | 215 * | 5| 216 * | 4 4 4 4 4 5 5 1| 217 * |0 5 6 7 8 9 0 1 2| 218 * ---------------------------------------- 219 * | 220 * | 221 * V 222 * ---------------------------------------- 223 * | Indirect Block | 224 * | 1 1 1 1 1 5| 225 * | 6 6 6 6 6 1| 226 * |0 3 4 5 6 7 2| 227 * ---------------------------------------- 228 * | 229 * | 230 * V 231 * ---------------------------------------- 232 * | Data block containing offset | 233 * | 101342453 | 234 * | | 235 * | | 236 * ---------------------------------------- 237 * 238 */ 239 240 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 241 struct metapath *mp, unsigned int height) 242 { 243 unsigned int i; 244 245 mp->mp_fheight = height; 246 for (i = height; i--;) 247 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 248 } 249 250 static inline unsigned int metapath_branch_start(const struct metapath *mp) 251 { 252 if (mp->mp_list[0] == 0) 253 return 2; 254 return 1; 255 } 256 257 /** 258 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 259 * @height: The metadata height (0 = dinode) 260 * @mp: The metapath 261 */ 262 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 263 { 264 struct buffer_head *bh = mp->mp_bh[height]; 265 if (height == 0) 266 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 267 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 268 } 269 270 /** 271 * metapointer - Return pointer to start of metadata in a buffer 272 * @height: The metadata height (0 = dinode) 273 * @mp: The metapath 274 * 275 * Return a pointer to the block number of the next height of the metadata 276 * tree given a buffer containing the pointer to the current height of the 277 * metadata tree. 278 */ 279 280 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 281 { 282 __be64 *p = metaptr1(height, mp); 283 return p + mp->mp_list[height]; 284 } 285 286 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 287 { 288 const struct buffer_head *bh = mp->mp_bh[height]; 289 return (const __be64 *)(bh->b_data + bh->b_size); 290 } 291 292 static void clone_metapath(struct metapath *clone, struct metapath *mp) 293 { 294 unsigned int hgt; 295 296 *clone = *mp; 297 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 298 get_bh(clone->mp_bh[hgt]); 299 } 300 301 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 302 { 303 const __be64 *t; 304 305 for (t = start; t < end; t++) { 306 struct buffer_head *rabh; 307 308 if (!*t) 309 continue; 310 311 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 312 if (trylock_buffer(rabh)) { 313 if (!buffer_uptodate(rabh)) { 314 rabh->b_end_io = end_buffer_read_sync; 315 submit_bh(REQ_OP_READ, 316 REQ_RAHEAD | REQ_META | REQ_PRIO, 317 rabh); 318 continue; 319 } 320 unlock_buffer(rabh); 321 } 322 brelse(rabh); 323 } 324 } 325 326 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 327 unsigned int x, unsigned int h) 328 { 329 for (; x < h; x++) { 330 __be64 *ptr = metapointer(x, mp); 331 u64 dblock = be64_to_cpu(*ptr); 332 int ret; 333 334 if (!dblock) 335 break; 336 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 337 if (ret) 338 return ret; 339 } 340 mp->mp_aheight = x + 1; 341 return 0; 342 } 343 344 /** 345 * lookup_metapath - Walk the metadata tree to a specific point 346 * @ip: The inode 347 * @mp: The metapath 348 * 349 * Assumes that the inode's buffer has already been looked up and 350 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 351 * by find_metapath(). 352 * 353 * If this function encounters part of the tree which has not been 354 * allocated, it returns the current height of the tree at the point 355 * at which it found the unallocated block. Blocks which are found are 356 * added to the mp->mp_bh[] list. 357 * 358 * Returns: error 359 */ 360 361 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 362 { 363 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 364 } 365 366 /** 367 * fillup_metapath - fill up buffers for the metadata path to a specific height 368 * @ip: The inode 369 * @mp: The metapath 370 * @h: The height to which it should be mapped 371 * 372 * Similar to lookup_metapath, but does lookups for a range of heights 373 * 374 * Returns: error or the number of buffers filled 375 */ 376 377 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 378 { 379 unsigned int x = 0; 380 int ret; 381 382 if (h) { 383 /* find the first buffer we need to look up. */ 384 for (x = h - 1; x > 0; x--) { 385 if (mp->mp_bh[x]) 386 break; 387 } 388 } 389 ret = __fillup_metapath(ip, mp, x, h); 390 if (ret) 391 return ret; 392 return mp->mp_aheight - x - 1; 393 } 394 395 static void release_metapath(struct metapath *mp) 396 { 397 int i; 398 399 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 400 if (mp->mp_bh[i] == NULL) 401 break; 402 brelse(mp->mp_bh[i]); 403 mp->mp_bh[i] = NULL; 404 } 405 } 406 407 /** 408 * gfs2_extent_length - Returns length of an extent of blocks 409 * @bh: The metadata block 410 * @ptr: Current position in @bh 411 * @limit: Max extent length to return 412 * @eob: Set to 1 if we hit "end of block" 413 * 414 * Returns: The length of the extent (minimum of one block) 415 */ 416 417 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 418 { 419 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 420 const __be64 *first = ptr; 421 u64 d = be64_to_cpu(*ptr); 422 423 *eob = 0; 424 do { 425 ptr++; 426 if (ptr >= end) 427 break; 428 d++; 429 } while(be64_to_cpu(*ptr) == d); 430 if (ptr >= end) 431 *eob = 1; 432 return ptr - first; 433 } 434 435 typedef const __be64 *(*gfs2_metadata_walker)( 436 struct metapath *mp, 437 const __be64 *start, const __be64 *end, 438 u64 factor, void *data); 439 440 #define WALK_STOP ((__be64 *)0) 441 #define WALK_NEXT ((__be64 *)1) 442 443 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock, 444 u64 len, struct metapath *mp, gfs2_metadata_walker walker, 445 void *data) 446 { 447 struct metapath clone; 448 struct gfs2_inode *ip = GFS2_I(inode); 449 struct gfs2_sbd *sdp = GFS2_SB(inode); 450 const __be64 *start, *end, *ptr; 451 u64 factor = 1; 452 unsigned int hgt; 453 int ret = 0; 454 455 for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--) 456 factor *= sdp->sd_inptrs; 457 458 for (;;) { 459 u64 step; 460 461 /* Walk indirect block. */ 462 start = metapointer(hgt, mp); 463 end = metaend(hgt, mp); 464 465 step = (end - start) * factor; 466 if (step > len) 467 end = start + DIV_ROUND_UP_ULL(len, factor); 468 469 ptr = walker(mp, start, end, factor, data); 470 if (ptr == WALK_STOP) 471 break; 472 if (step >= len) 473 break; 474 len -= step; 475 if (ptr != WALK_NEXT) { 476 BUG_ON(!*ptr); 477 mp->mp_list[hgt] += ptr - start; 478 goto fill_up_metapath; 479 } 480 481 lower_metapath: 482 /* Decrease height of metapath. */ 483 if (mp != &clone) { 484 clone_metapath(&clone, mp); 485 mp = &clone; 486 } 487 brelse(mp->mp_bh[hgt]); 488 mp->mp_bh[hgt] = NULL; 489 if (!hgt) 490 break; 491 hgt--; 492 factor *= sdp->sd_inptrs; 493 494 /* Advance in metadata tree. */ 495 (mp->mp_list[hgt])++; 496 start = metapointer(hgt, mp); 497 end = metaend(hgt, mp); 498 if (start >= end) { 499 mp->mp_list[hgt] = 0; 500 if (!hgt) 501 break; 502 goto lower_metapath; 503 } 504 505 fill_up_metapath: 506 /* Increase height of metapath. */ 507 if (mp != &clone) { 508 clone_metapath(&clone, mp); 509 mp = &clone; 510 } 511 ret = fillup_metapath(ip, mp, ip->i_height - 1); 512 if (ret < 0) 513 break; 514 hgt += ret; 515 for (; ret; ret--) 516 do_div(factor, sdp->sd_inptrs); 517 mp->mp_aheight = hgt + 1; 518 } 519 if (mp == &clone) 520 release_metapath(mp); 521 return ret; 522 } 523 524 struct gfs2_hole_walker_args { 525 u64 blocks; 526 }; 527 528 static const __be64 *gfs2_hole_walker(struct metapath *mp, 529 const __be64 *start, const __be64 *end, 530 u64 factor, void *data) 531 { 532 struct gfs2_hole_walker_args *args = data; 533 const __be64 *ptr; 534 535 for (ptr = start; ptr < end; ptr++) { 536 if (*ptr) { 537 args->blocks += (ptr - start) * factor; 538 if (mp->mp_aheight == mp->mp_fheight) 539 return WALK_STOP; 540 return ptr; /* increase height */ 541 } 542 } 543 args->blocks += (end - start) * factor; 544 return WALK_NEXT; 545 } 546 547 /** 548 * gfs2_hole_size - figure out the size of a hole 549 * @inode: The inode 550 * @lblock: The logical starting block number 551 * @len: How far to look (in blocks) 552 * @mp: The metapath at lblock 553 * @iomap: The iomap to store the hole size in 554 * 555 * This function modifies @mp. 556 * 557 * Returns: errno on error 558 */ 559 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 560 struct metapath *mp, struct iomap *iomap) 561 { 562 struct gfs2_hole_walker_args args = { }; 563 int ret = 0; 564 565 ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args); 566 if (!ret) 567 iomap->length = args.blocks << inode->i_blkbits; 568 return ret; 569 } 570 571 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 572 struct gfs2_glock *gl, unsigned int i, 573 unsigned offset, u64 bn) 574 { 575 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 576 ((i > 1) ? sizeof(struct gfs2_meta_header) : 577 sizeof(struct gfs2_dinode))); 578 BUG_ON(i < 1); 579 BUG_ON(mp->mp_bh[i] != NULL); 580 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 581 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 582 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 583 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 584 ptr += offset; 585 *ptr = cpu_to_be64(bn); 586 return ptr; 587 } 588 589 enum alloc_state { 590 ALLOC_DATA = 0, 591 ALLOC_GROW_DEPTH = 1, 592 ALLOC_GROW_HEIGHT = 2, 593 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 594 }; 595 596 /** 597 * gfs2_iomap_alloc - Build a metadata tree of the requested height 598 * @inode: The GFS2 inode 599 * @iomap: The iomap structure 600 * @flags: iomap flags 601 * @mp: The metapath, with proper height information calculated 602 * 603 * In this routine we may have to alloc: 604 * i) Indirect blocks to grow the metadata tree height 605 * ii) Indirect blocks to fill in lower part of the metadata tree 606 * iii) Data blocks 607 * 608 * This function is called after gfs2_iomap_get, which works out the 609 * total number of blocks which we need via gfs2_alloc_size. 610 * 611 * We then do the actual allocation asking for an extent at a time (if 612 * enough contiguous free blocks are available, there will only be one 613 * allocation request per call) and uses the state machine to initialise 614 * the blocks in order. 615 * 616 * Right now, this function will allocate at most one indirect block 617 * worth of data -- with a default block size of 4K, that's slightly 618 * less than 2M. If this limitation is ever removed to allow huge 619 * allocations, we would probably still want to limit the iomap size we 620 * return to avoid stalling other tasks during huge writes; the next 621 * iomap iteration would then find the blocks already allocated. 622 * 623 * Returns: errno on error 624 */ 625 626 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 627 unsigned flags, struct metapath *mp) 628 { 629 struct gfs2_inode *ip = GFS2_I(inode); 630 struct gfs2_sbd *sdp = GFS2_SB(inode); 631 struct buffer_head *dibh = mp->mp_bh[0]; 632 u64 bn; 633 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 634 size_t dblks = iomap->length >> inode->i_blkbits; 635 const unsigned end_of_metadata = mp->mp_fheight - 1; 636 int ret; 637 enum alloc_state state; 638 __be64 *ptr; 639 __be64 zero_bn = 0; 640 641 BUG_ON(mp->mp_aheight < 1); 642 BUG_ON(dibh == NULL); 643 BUG_ON(dblks < 1); 644 645 gfs2_trans_add_meta(ip->i_gl, dibh); 646 647 down_write(&ip->i_rw_mutex); 648 649 if (mp->mp_fheight == mp->mp_aheight) { 650 /* Bottom indirect block exists */ 651 state = ALLOC_DATA; 652 } else { 653 /* Need to allocate indirect blocks */ 654 if (mp->mp_fheight == ip->i_height) { 655 /* Writing into existing tree, extend tree down */ 656 iblks = mp->mp_fheight - mp->mp_aheight; 657 state = ALLOC_GROW_DEPTH; 658 } else { 659 /* Building up tree height */ 660 state = ALLOC_GROW_HEIGHT; 661 iblks = mp->mp_fheight - ip->i_height; 662 branch_start = metapath_branch_start(mp); 663 iblks += (mp->mp_fheight - branch_start); 664 } 665 } 666 667 /* start of the second part of the function (state machine) */ 668 669 blks = dblks + iblks; 670 i = mp->mp_aheight; 671 do { 672 n = blks - alloced; 673 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 674 if (ret) 675 goto out; 676 alloced += n; 677 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 678 gfs2_trans_add_unrevoke(sdp, bn, n); 679 switch (state) { 680 /* Growing height of tree */ 681 case ALLOC_GROW_HEIGHT: 682 if (i == 1) { 683 ptr = (__be64 *)(dibh->b_data + 684 sizeof(struct gfs2_dinode)); 685 zero_bn = *ptr; 686 } 687 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 688 i++, n--) 689 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 690 if (i - 1 == mp->mp_fheight - ip->i_height) { 691 i--; 692 gfs2_buffer_copy_tail(mp->mp_bh[i], 693 sizeof(struct gfs2_meta_header), 694 dibh, sizeof(struct gfs2_dinode)); 695 gfs2_buffer_clear_tail(dibh, 696 sizeof(struct gfs2_dinode) + 697 sizeof(__be64)); 698 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 699 sizeof(struct gfs2_meta_header)); 700 *ptr = zero_bn; 701 state = ALLOC_GROW_DEPTH; 702 for(i = branch_start; i < mp->mp_fheight; i++) { 703 if (mp->mp_bh[i] == NULL) 704 break; 705 brelse(mp->mp_bh[i]); 706 mp->mp_bh[i] = NULL; 707 } 708 i = branch_start; 709 } 710 if (n == 0) 711 break; 712 /* Branching from existing tree */ 713 case ALLOC_GROW_DEPTH: 714 if (i > 1 && i < mp->mp_fheight) 715 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 716 for (; i < mp->mp_fheight && n > 0; i++, n--) 717 gfs2_indirect_init(mp, ip->i_gl, i, 718 mp->mp_list[i-1], bn++); 719 if (i == mp->mp_fheight) 720 state = ALLOC_DATA; 721 if (n == 0) 722 break; 723 /* Tree complete, adding data blocks */ 724 case ALLOC_DATA: 725 BUG_ON(n > dblks); 726 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 727 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 728 dblks = n; 729 ptr = metapointer(end_of_metadata, mp); 730 iomap->addr = bn << inode->i_blkbits; 731 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 732 while (n-- > 0) 733 *ptr++ = cpu_to_be64(bn++); 734 break; 735 } 736 } while (iomap->addr == IOMAP_NULL_ADDR); 737 738 iomap->type = IOMAP_MAPPED; 739 iomap->length = (u64)dblks << inode->i_blkbits; 740 ip->i_height = mp->mp_fheight; 741 gfs2_add_inode_blocks(&ip->i_inode, alloced); 742 gfs2_dinode_out(ip, dibh->b_data); 743 out: 744 up_write(&ip->i_rw_mutex); 745 return ret; 746 } 747 748 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 749 750 /** 751 * gfs2_alloc_size - Compute the maximum allocation size 752 * @inode: The inode 753 * @mp: The metapath 754 * @size: Requested size in blocks 755 * 756 * Compute the maximum size of the next allocation at @mp. 757 * 758 * Returns: size in blocks 759 */ 760 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 761 { 762 struct gfs2_inode *ip = GFS2_I(inode); 763 struct gfs2_sbd *sdp = GFS2_SB(inode); 764 const __be64 *first, *ptr, *end; 765 766 /* 767 * For writes to stuffed files, this function is called twice via 768 * gfs2_iomap_get, before and after unstuffing. The size we return the 769 * first time needs to be large enough to get the reservation and 770 * allocation sizes right. The size we return the second time must 771 * be exact or else gfs2_iomap_alloc won't do the right thing. 772 */ 773 774 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 775 unsigned int maxsize = mp->mp_fheight > 1 ? 776 sdp->sd_inptrs : sdp->sd_diptrs; 777 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 778 if (size > maxsize) 779 size = maxsize; 780 return size; 781 } 782 783 first = metapointer(ip->i_height - 1, mp); 784 end = metaend(ip->i_height - 1, mp); 785 if (end - first > size) 786 end = first + size; 787 for (ptr = first; ptr < end; ptr++) { 788 if (*ptr) 789 break; 790 } 791 return ptr - first; 792 } 793 794 /** 795 * gfs2_iomap_get - Map blocks from an inode to disk blocks 796 * @inode: The inode 797 * @pos: Starting position in bytes 798 * @length: Length to map, in bytes 799 * @flags: iomap flags 800 * @iomap: The iomap structure 801 * @mp: The metapath 802 * 803 * Returns: errno 804 */ 805 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 806 unsigned flags, struct iomap *iomap, 807 struct metapath *mp) 808 { 809 struct gfs2_inode *ip = GFS2_I(inode); 810 struct gfs2_sbd *sdp = GFS2_SB(inode); 811 loff_t size = i_size_read(inode); 812 __be64 *ptr; 813 sector_t lblock; 814 sector_t lblock_stop; 815 int ret; 816 int eob; 817 u64 len; 818 struct buffer_head *dibh = NULL, *bh; 819 u8 height; 820 821 if (!length) 822 return -EINVAL; 823 824 down_read(&ip->i_rw_mutex); 825 826 ret = gfs2_meta_inode_buffer(ip, &dibh); 827 if (ret) 828 goto unlock; 829 mp->mp_bh[0] = dibh; 830 831 if (gfs2_is_stuffed(ip)) { 832 if (flags & IOMAP_WRITE) { 833 loff_t max_size = gfs2_max_stuffed_size(ip); 834 835 if (pos + length > max_size) 836 goto unstuff; 837 iomap->length = max_size; 838 } else { 839 if (pos >= size) { 840 if (flags & IOMAP_REPORT) { 841 ret = -ENOENT; 842 goto unlock; 843 } else { 844 /* report a hole */ 845 iomap->offset = pos; 846 iomap->length = length; 847 goto do_alloc; 848 } 849 } 850 iomap->length = size; 851 } 852 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 853 sizeof(struct gfs2_dinode); 854 iomap->type = IOMAP_INLINE; 855 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 856 goto out; 857 } 858 859 unstuff: 860 lblock = pos >> inode->i_blkbits; 861 iomap->offset = lblock << inode->i_blkbits; 862 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 863 len = lblock_stop - lblock + 1; 864 iomap->length = len << inode->i_blkbits; 865 866 height = ip->i_height; 867 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 868 height++; 869 find_metapath(sdp, lblock, mp, height); 870 if (height > ip->i_height || gfs2_is_stuffed(ip)) 871 goto do_alloc; 872 873 ret = lookup_metapath(ip, mp); 874 if (ret) 875 goto unlock; 876 877 if (mp->mp_aheight != ip->i_height) 878 goto do_alloc; 879 880 ptr = metapointer(ip->i_height - 1, mp); 881 if (*ptr == 0) 882 goto do_alloc; 883 884 bh = mp->mp_bh[ip->i_height - 1]; 885 len = gfs2_extent_length(bh, ptr, len, &eob); 886 887 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 888 iomap->length = len << inode->i_blkbits; 889 iomap->type = IOMAP_MAPPED; 890 iomap->flags |= IOMAP_F_MERGED; 891 if (eob) 892 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 893 894 out: 895 iomap->bdev = inode->i_sb->s_bdev; 896 unlock: 897 up_read(&ip->i_rw_mutex); 898 return ret; 899 900 do_alloc: 901 iomap->addr = IOMAP_NULL_ADDR; 902 iomap->type = IOMAP_HOLE; 903 if (flags & IOMAP_REPORT) { 904 if (pos >= size) 905 ret = -ENOENT; 906 else if (height == ip->i_height) 907 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 908 else 909 iomap->length = size - pos; 910 } else if (flags & IOMAP_WRITE) { 911 u64 alloc_size; 912 913 if (flags & IOMAP_DIRECT) 914 goto out; /* (see gfs2_file_direct_write) */ 915 916 len = gfs2_alloc_size(inode, mp, len); 917 alloc_size = len << inode->i_blkbits; 918 if (alloc_size < iomap->length) 919 iomap->length = alloc_size; 920 } else { 921 if (pos < size && height == ip->i_height) 922 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 923 } 924 goto out; 925 } 926 927 static int gfs2_write_lock(struct inode *inode) 928 { 929 struct gfs2_inode *ip = GFS2_I(inode); 930 struct gfs2_sbd *sdp = GFS2_SB(inode); 931 int error; 932 933 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 934 error = gfs2_glock_nq(&ip->i_gh); 935 if (error) 936 goto out_uninit; 937 if (&ip->i_inode == sdp->sd_rindex) { 938 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 939 940 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 941 GL_NOCACHE, &m_ip->i_gh); 942 if (error) 943 goto out_unlock; 944 } 945 return 0; 946 947 out_unlock: 948 gfs2_glock_dq(&ip->i_gh); 949 out_uninit: 950 gfs2_holder_uninit(&ip->i_gh); 951 return error; 952 } 953 954 static void gfs2_write_unlock(struct inode *inode) 955 { 956 struct gfs2_inode *ip = GFS2_I(inode); 957 struct gfs2_sbd *sdp = GFS2_SB(inode); 958 959 if (&ip->i_inode == sdp->sd_rindex) { 960 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 961 962 gfs2_glock_dq_uninit(&m_ip->i_gh); 963 } 964 gfs2_glock_dq_uninit(&ip->i_gh); 965 } 966 967 static void gfs2_iomap_journaled_page_done(struct inode *inode, loff_t pos, 968 unsigned copied, struct page *page, 969 struct iomap *iomap) 970 { 971 struct gfs2_inode *ip = GFS2_I(inode); 972 973 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 974 } 975 976 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 977 loff_t length, unsigned flags, 978 struct iomap *iomap, 979 struct metapath *mp) 980 { 981 struct gfs2_inode *ip = GFS2_I(inode); 982 struct gfs2_sbd *sdp = GFS2_SB(inode); 983 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 984 bool unstuff, alloc_required; 985 int ret; 986 987 ret = gfs2_write_lock(inode); 988 if (ret) 989 return ret; 990 991 unstuff = gfs2_is_stuffed(ip) && 992 pos + length > gfs2_max_stuffed_size(ip); 993 994 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp); 995 if (ret) 996 goto out_unlock; 997 998 alloc_required = unstuff || iomap->type == IOMAP_HOLE; 999 1000 if (alloc_required || gfs2_is_jdata(ip)) 1001 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1002 &ind_blocks); 1003 1004 if (alloc_required) { 1005 struct gfs2_alloc_parms ap = { 1006 .target = data_blocks + ind_blocks 1007 }; 1008 1009 ret = gfs2_quota_lock_check(ip, &ap); 1010 if (ret) 1011 goto out_unlock; 1012 1013 ret = gfs2_inplace_reserve(ip, &ap); 1014 if (ret) 1015 goto out_qunlock; 1016 } 1017 1018 rblocks = RES_DINODE + ind_blocks; 1019 if (gfs2_is_jdata(ip)) 1020 rblocks += data_blocks; 1021 if (ind_blocks || data_blocks) 1022 rblocks += RES_STATFS + RES_QUOTA; 1023 if (inode == sdp->sd_rindex) 1024 rblocks += 2 * RES_STATFS; 1025 if (alloc_required) 1026 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1027 1028 ret = gfs2_trans_begin(sdp, rblocks, iomap->length >> inode->i_blkbits); 1029 if (ret) 1030 goto out_trans_fail; 1031 1032 if (unstuff) { 1033 ret = gfs2_unstuff_dinode(ip, NULL); 1034 if (ret) 1035 goto out_trans_end; 1036 release_metapath(mp); 1037 ret = gfs2_iomap_get(inode, iomap->offset, iomap->length, 1038 flags, iomap, mp); 1039 if (ret) 1040 goto out_trans_end; 1041 } 1042 1043 if (iomap->type == IOMAP_HOLE) { 1044 ret = gfs2_iomap_alloc(inode, iomap, flags, mp); 1045 if (ret) { 1046 gfs2_trans_end(sdp); 1047 gfs2_inplace_release(ip); 1048 punch_hole(ip, iomap->offset, iomap->length); 1049 goto out_qunlock; 1050 } 1051 } 1052 if (!gfs2_is_stuffed(ip) && gfs2_is_jdata(ip)) 1053 iomap->page_done = gfs2_iomap_journaled_page_done; 1054 return 0; 1055 1056 out_trans_end: 1057 gfs2_trans_end(sdp); 1058 out_trans_fail: 1059 if (alloc_required) 1060 gfs2_inplace_release(ip); 1061 out_qunlock: 1062 if (alloc_required) 1063 gfs2_quota_unlock(ip); 1064 out_unlock: 1065 gfs2_write_unlock(inode); 1066 return ret; 1067 } 1068 1069 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1070 unsigned flags, struct iomap *iomap) 1071 { 1072 struct gfs2_inode *ip = GFS2_I(inode); 1073 struct metapath mp = { .mp_aheight = 1, }; 1074 int ret; 1075 1076 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1077 1078 trace_gfs2_iomap_start(ip, pos, length, flags); 1079 if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) { 1080 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1081 } else { 1082 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1083 1084 /* 1085 * Silently fall back to buffered I/O for stuffed files or if 1086 * we've hot a hole (see gfs2_file_direct_write). 1087 */ 1088 if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) && 1089 iomap->type != IOMAP_MAPPED) 1090 ret = -ENOTBLK; 1091 } 1092 if (!ret) { 1093 get_bh(mp.mp_bh[0]); 1094 iomap->private = mp.mp_bh[0]; 1095 } 1096 release_metapath(&mp); 1097 trace_gfs2_iomap_end(ip, iomap, ret); 1098 return ret; 1099 } 1100 1101 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1102 ssize_t written, unsigned flags, struct iomap *iomap) 1103 { 1104 struct gfs2_inode *ip = GFS2_I(inode); 1105 struct gfs2_sbd *sdp = GFS2_SB(inode); 1106 struct gfs2_trans *tr = current->journal_info; 1107 struct buffer_head *dibh = iomap->private; 1108 1109 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE) 1110 goto out; 1111 1112 if (iomap->type != IOMAP_INLINE) { 1113 gfs2_ordered_add_inode(ip); 1114 1115 if (tr->tr_num_buf_new) 1116 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1117 else 1118 gfs2_trans_add_meta(ip->i_gl, dibh); 1119 } 1120 1121 if (inode == sdp->sd_rindex) { 1122 adjust_fs_space(inode); 1123 sdp->sd_rindex_uptodate = 0; 1124 } 1125 1126 gfs2_trans_end(sdp); 1127 gfs2_inplace_release(ip); 1128 1129 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1130 /* Deallocate blocks that were just allocated. */ 1131 loff_t blockmask = i_blocksize(inode) - 1; 1132 loff_t end = (pos + length) & ~blockmask; 1133 1134 pos = (pos + written + blockmask) & ~blockmask; 1135 if (pos < end) { 1136 truncate_pagecache_range(inode, pos, end - 1); 1137 punch_hole(ip, pos, end - pos); 1138 } 1139 } 1140 1141 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1142 gfs2_quota_unlock(ip); 1143 gfs2_write_unlock(inode); 1144 1145 out: 1146 if (dibh) 1147 brelse(dibh); 1148 return 0; 1149 } 1150 1151 const struct iomap_ops gfs2_iomap_ops = { 1152 .iomap_begin = gfs2_iomap_begin, 1153 .iomap_end = gfs2_iomap_end, 1154 }; 1155 1156 /** 1157 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1158 * @inode: The inode 1159 * @lblock: The logical block number 1160 * @bh_map: The bh to be mapped 1161 * @create: True if its ok to alloc blocks to satify the request 1162 * 1163 * The size of the requested mapping is defined in bh_map->b_size. 1164 * 1165 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1166 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1167 * bh_map->b_size to indicate the size of the mapping when @lblock and 1168 * successive blocks are mapped, up to the requested size. 1169 * 1170 * Sets buffer_boundary() if a read of metadata will be required 1171 * before the next block can be mapped. Sets buffer_new() if new 1172 * blocks were allocated. 1173 * 1174 * Returns: errno 1175 */ 1176 1177 int gfs2_block_map(struct inode *inode, sector_t lblock, 1178 struct buffer_head *bh_map, int create) 1179 { 1180 struct gfs2_inode *ip = GFS2_I(inode); 1181 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1182 loff_t length = bh_map->b_size; 1183 struct metapath mp = { .mp_aheight = 1, }; 1184 struct iomap iomap = { }; 1185 int ret; 1186 1187 clear_buffer_mapped(bh_map); 1188 clear_buffer_new(bh_map); 1189 clear_buffer_boundary(bh_map); 1190 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1191 1192 if (create) { 1193 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1194 if (!ret && iomap.type == IOMAP_HOLE) 1195 ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp); 1196 release_metapath(&mp); 1197 } else { 1198 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1199 release_metapath(&mp); 1200 } 1201 if (ret) 1202 goto out; 1203 1204 if (iomap.length > bh_map->b_size) { 1205 iomap.length = bh_map->b_size; 1206 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1207 } 1208 if (iomap.addr != IOMAP_NULL_ADDR) 1209 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1210 bh_map->b_size = iomap.length; 1211 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1212 set_buffer_boundary(bh_map); 1213 if (iomap.flags & IOMAP_F_NEW) 1214 set_buffer_new(bh_map); 1215 1216 out: 1217 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1218 return ret; 1219 } 1220 1221 /* 1222 * Deprecated: do not use in new code 1223 */ 1224 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1225 { 1226 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1227 int ret; 1228 int create = *new; 1229 1230 BUG_ON(!extlen); 1231 BUG_ON(!dblock); 1232 BUG_ON(!new); 1233 1234 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1235 ret = gfs2_block_map(inode, lblock, &bh, create); 1236 *extlen = bh.b_size >> inode->i_blkbits; 1237 *dblock = bh.b_blocknr; 1238 if (buffer_new(&bh)) 1239 *new = 1; 1240 else 1241 *new = 0; 1242 return ret; 1243 } 1244 1245 /** 1246 * gfs2_block_zero_range - Deal with zeroing out data 1247 * 1248 * This is partly borrowed from ext3. 1249 */ 1250 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1251 unsigned int length) 1252 { 1253 struct address_space *mapping = inode->i_mapping; 1254 struct gfs2_inode *ip = GFS2_I(inode); 1255 unsigned long index = from >> PAGE_SHIFT; 1256 unsigned offset = from & (PAGE_SIZE-1); 1257 unsigned blocksize, iblock, pos; 1258 struct buffer_head *bh; 1259 struct page *page; 1260 int err; 1261 1262 page = find_or_create_page(mapping, index, GFP_NOFS); 1263 if (!page) 1264 return 0; 1265 1266 blocksize = inode->i_sb->s_blocksize; 1267 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 1268 1269 if (!page_has_buffers(page)) 1270 create_empty_buffers(page, blocksize, 0); 1271 1272 /* Find the buffer that contains "offset" */ 1273 bh = page_buffers(page); 1274 pos = blocksize; 1275 while (offset >= pos) { 1276 bh = bh->b_this_page; 1277 iblock++; 1278 pos += blocksize; 1279 } 1280 1281 err = 0; 1282 1283 if (!buffer_mapped(bh)) { 1284 gfs2_block_map(inode, iblock, bh, 0); 1285 /* unmapped? It's a hole - nothing to do */ 1286 if (!buffer_mapped(bh)) 1287 goto unlock; 1288 } 1289 1290 /* Ok, it's mapped. Make sure it's up-to-date */ 1291 if (PageUptodate(page)) 1292 set_buffer_uptodate(bh); 1293 1294 if (!buffer_uptodate(bh)) { 1295 err = -EIO; 1296 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1297 wait_on_buffer(bh); 1298 /* Uhhuh. Read error. Complain and punt. */ 1299 if (!buffer_uptodate(bh)) 1300 goto unlock; 1301 err = 0; 1302 } 1303 1304 if (gfs2_is_jdata(ip)) 1305 gfs2_trans_add_data(ip->i_gl, bh); 1306 else 1307 gfs2_ordered_add_inode(ip); 1308 1309 zero_user(page, offset, length); 1310 mark_buffer_dirty(bh); 1311 unlock: 1312 unlock_page(page); 1313 put_page(page); 1314 return err; 1315 } 1316 1317 #define GFS2_JTRUNC_REVOKES 8192 1318 1319 /** 1320 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1321 * @inode: The inode being truncated 1322 * @oldsize: The original (larger) size 1323 * @newsize: The new smaller size 1324 * 1325 * With jdata files, we have to journal a revoke for each block which is 1326 * truncated. As a result, we need to split this into separate transactions 1327 * if the number of pages being truncated gets too large. 1328 */ 1329 1330 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1331 { 1332 struct gfs2_sbd *sdp = GFS2_SB(inode); 1333 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1334 u64 chunk; 1335 int error; 1336 1337 while (oldsize != newsize) { 1338 struct gfs2_trans *tr; 1339 unsigned int offs; 1340 1341 chunk = oldsize - newsize; 1342 if (chunk > max_chunk) 1343 chunk = max_chunk; 1344 1345 offs = oldsize & ~PAGE_MASK; 1346 if (offs && chunk > PAGE_SIZE) 1347 chunk = offs + ((chunk - offs) & PAGE_MASK); 1348 1349 truncate_pagecache(inode, oldsize - chunk); 1350 oldsize -= chunk; 1351 1352 tr = current->journal_info; 1353 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1354 continue; 1355 1356 gfs2_trans_end(sdp); 1357 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1358 if (error) 1359 return error; 1360 } 1361 1362 return 0; 1363 } 1364 1365 static int trunc_start(struct inode *inode, u64 newsize) 1366 { 1367 struct gfs2_inode *ip = GFS2_I(inode); 1368 struct gfs2_sbd *sdp = GFS2_SB(inode); 1369 struct buffer_head *dibh = NULL; 1370 int journaled = gfs2_is_jdata(ip); 1371 u64 oldsize = inode->i_size; 1372 int error; 1373 1374 if (journaled) 1375 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1376 else 1377 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1378 if (error) 1379 return error; 1380 1381 error = gfs2_meta_inode_buffer(ip, &dibh); 1382 if (error) 1383 goto out; 1384 1385 gfs2_trans_add_meta(ip->i_gl, dibh); 1386 1387 if (gfs2_is_stuffed(ip)) { 1388 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1389 } else { 1390 unsigned int blocksize = i_blocksize(inode); 1391 unsigned int offs = newsize & (blocksize - 1); 1392 if (offs) { 1393 error = gfs2_block_zero_range(inode, newsize, 1394 blocksize - offs); 1395 if (error) 1396 goto out; 1397 } 1398 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1399 } 1400 1401 i_size_write(inode, newsize); 1402 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1403 gfs2_dinode_out(ip, dibh->b_data); 1404 1405 if (journaled) 1406 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1407 else 1408 truncate_pagecache(inode, newsize); 1409 1410 out: 1411 brelse(dibh); 1412 if (current->journal_info) 1413 gfs2_trans_end(sdp); 1414 return error; 1415 } 1416 1417 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1418 struct iomap *iomap) 1419 { 1420 struct metapath mp = { .mp_aheight = 1, }; 1421 int ret; 1422 1423 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1424 if (!ret && iomap->type == IOMAP_HOLE) 1425 ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp); 1426 release_metapath(&mp); 1427 return ret; 1428 } 1429 1430 /** 1431 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1432 * @ip: inode 1433 * @rg_gh: holder of resource group glock 1434 * @bh: buffer head to sweep 1435 * @start: starting point in bh 1436 * @end: end point in bh 1437 * @meta: true if bh points to metadata (rather than data) 1438 * @btotal: place to keep count of total blocks freed 1439 * 1440 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1441 * free, and free them all. However, we do it one rgrp at a time. If this 1442 * block has references to multiple rgrps, we break it into individual 1443 * transactions. This allows other processes to use the rgrps while we're 1444 * focused on a single one, for better concurrency / performance. 1445 * At every transaction boundary, we rewrite the inode into the journal. 1446 * That way the bitmaps are kept consistent with the inode and we can recover 1447 * if we're interrupted by power-outages. 1448 * 1449 * Returns: 0, or return code if an error occurred. 1450 * *btotal has the total number of blocks freed 1451 */ 1452 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1453 struct buffer_head *bh, __be64 *start, __be64 *end, 1454 bool meta, u32 *btotal) 1455 { 1456 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1457 struct gfs2_rgrpd *rgd; 1458 struct gfs2_trans *tr; 1459 __be64 *p; 1460 int blks_outside_rgrp; 1461 u64 bn, bstart, isize_blks; 1462 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1463 int ret = 0; 1464 bool buf_in_tr = false; /* buffer was added to transaction */ 1465 1466 more_rgrps: 1467 rgd = NULL; 1468 if (gfs2_holder_initialized(rd_gh)) { 1469 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1470 gfs2_assert_withdraw(sdp, 1471 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1472 } 1473 blks_outside_rgrp = 0; 1474 bstart = 0; 1475 blen = 0; 1476 1477 for (p = start; p < end; p++) { 1478 if (!*p) 1479 continue; 1480 bn = be64_to_cpu(*p); 1481 1482 if (rgd) { 1483 if (!rgrp_contains_block(rgd, bn)) { 1484 blks_outside_rgrp++; 1485 continue; 1486 } 1487 } else { 1488 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1489 if (unlikely(!rgd)) { 1490 ret = -EIO; 1491 goto out; 1492 } 1493 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1494 0, rd_gh); 1495 if (ret) 1496 goto out; 1497 1498 /* Must be done with the rgrp glock held: */ 1499 if (gfs2_rs_active(&ip->i_res) && 1500 rgd == ip->i_res.rs_rbm.rgd) 1501 gfs2_rs_deltree(&ip->i_res); 1502 } 1503 1504 /* The size of our transactions will be unknown until we 1505 actually process all the metadata blocks that relate to 1506 the rgrp. So we estimate. We know it can't be more than 1507 the dinode's i_blocks and we don't want to exceed the 1508 journal flush threshold, sd_log_thresh2. */ 1509 if (current->journal_info == NULL) { 1510 unsigned int jblocks_rqsted, revokes; 1511 1512 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1513 RES_INDIRECT; 1514 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1515 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1516 jblocks_rqsted += 1517 atomic_read(&sdp->sd_log_thresh2); 1518 else 1519 jblocks_rqsted += isize_blks; 1520 revokes = jblocks_rqsted; 1521 if (meta) 1522 revokes += end - start; 1523 else if (ip->i_depth) 1524 revokes += sdp->sd_inptrs; 1525 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1526 if (ret) 1527 goto out_unlock; 1528 down_write(&ip->i_rw_mutex); 1529 } 1530 /* check if we will exceed the transaction blocks requested */ 1531 tr = current->journal_info; 1532 if (tr->tr_num_buf_new + RES_STATFS + 1533 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1534 /* We set blks_outside_rgrp to ensure the loop will 1535 be repeated for the same rgrp, but with a new 1536 transaction. */ 1537 blks_outside_rgrp++; 1538 /* This next part is tricky. If the buffer was added 1539 to the transaction, we've already set some block 1540 pointers to 0, so we better follow through and free 1541 them, or we will introduce corruption (so break). 1542 This may be impossible, or at least rare, but I 1543 decided to cover the case regardless. 1544 1545 If the buffer was not added to the transaction 1546 (this call), doing so would exceed our transaction 1547 size, so we need to end the transaction and start a 1548 new one (so goto). */ 1549 1550 if (buf_in_tr) 1551 break; 1552 goto out_unlock; 1553 } 1554 1555 gfs2_trans_add_meta(ip->i_gl, bh); 1556 buf_in_tr = true; 1557 *p = 0; 1558 if (bstart + blen == bn) { 1559 blen++; 1560 continue; 1561 } 1562 if (bstart) { 1563 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1564 (*btotal) += blen; 1565 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1566 } 1567 bstart = bn; 1568 blen = 1; 1569 } 1570 if (bstart) { 1571 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1572 (*btotal) += blen; 1573 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1574 } 1575 out_unlock: 1576 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1577 outside the rgrp we just processed, 1578 do it all over again. */ 1579 if (current->journal_info) { 1580 struct buffer_head *dibh; 1581 1582 ret = gfs2_meta_inode_buffer(ip, &dibh); 1583 if (ret) 1584 goto out; 1585 1586 /* Every transaction boundary, we rewrite the dinode 1587 to keep its di_blocks current in case of failure. */ 1588 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1589 current_time(&ip->i_inode); 1590 gfs2_trans_add_meta(ip->i_gl, dibh); 1591 gfs2_dinode_out(ip, dibh->b_data); 1592 brelse(dibh); 1593 up_write(&ip->i_rw_mutex); 1594 gfs2_trans_end(sdp); 1595 } 1596 gfs2_glock_dq_uninit(rd_gh); 1597 cond_resched(); 1598 goto more_rgrps; 1599 } 1600 out: 1601 return ret; 1602 } 1603 1604 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1605 { 1606 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1607 return false; 1608 return true; 1609 } 1610 1611 /** 1612 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1613 * @mp: starting metapath 1614 * @h: desired height to search 1615 * 1616 * Assumes the metapath is valid (with buffers) out to height h. 1617 * Returns: true if a non-null pointer was found in the metapath buffer 1618 * false if all remaining pointers are NULL in the buffer 1619 */ 1620 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1621 unsigned int h, 1622 __u16 *end_list, unsigned int end_aligned) 1623 { 1624 struct buffer_head *bh = mp->mp_bh[h]; 1625 __be64 *first, *ptr, *end; 1626 1627 first = metaptr1(h, mp); 1628 ptr = first + mp->mp_list[h]; 1629 end = (__be64 *)(bh->b_data + bh->b_size); 1630 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1631 bool keep_end = h < end_aligned; 1632 end = first + end_list[h] + keep_end; 1633 } 1634 1635 while (ptr < end) { 1636 if (*ptr) { /* if we have a non-null pointer */ 1637 mp->mp_list[h] = ptr - first; 1638 h++; 1639 if (h < GFS2_MAX_META_HEIGHT) 1640 mp->mp_list[h] = 0; 1641 return true; 1642 } 1643 ptr++; 1644 } 1645 return false; 1646 } 1647 1648 enum dealloc_states { 1649 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1650 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1651 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1652 DEALLOC_DONE = 3, /* process complete */ 1653 }; 1654 1655 static inline void 1656 metapointer_range(struct metapath *mp, int height, 1657 __u16 *start_list, unsigned int start_aligned, 1658 __u16 *end_list, unsigned int end_aligned, 1659 __be64 **start, __be64 **end) 1660 { 1661 struct buffer_head *bh = mp->mp_bh[height]; 1662 __be64 *first; 1663 1664 first = metaptr1(height, mp); 1665 *start = first; 1666 if (mp_eq_to_hgt(mp, start_list, height)) { 1667 bool keep_start = height < start_aligned; 1668 *start = first + start_list[height] + keep_start; 1669 } 1670 *end = (__be64 *)(bh->b_data + bh->b_size); 1671 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1672 bool keep_end = height < end_aligned; 1673 *end = first + end_list[height] + keep_end; 1674 } 1675 } 1676 1677 static inline bool walk_done(struct gfs2_sbd *sdp, 1678 struct metapath *mp, int height, 1679 __u16 *end_list, unsigned int end_aligned) 1680 { 1681 __u16 end; 1682 1683 if (end_list) { 1684 bool keep_end = height < end_aligned; 1685 if (!mp_eq_to_hgt(mp, end_list, height)) 1686 return false; 1687 end = end_list[height] + keep_end; 1688 } else 1689 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1690 return mp->mp_list[height] >= end; 1691 } 1692 1693 /** 1694 * punch_hole - deallocate blocks in a file 1695 * @ip: inode to truncate 1696 * @offset: the start of the hole 1697 * @length: the size of the hole (or 0 for truncate) 1698 * 1699 * Punch a hole into a file or truncate a file at a given position. This 1700 * function operates in whole blocks (@offset and @length are rounded 1701 * accordingly); partially filled blocks must be cleared otherwise. 1702 * 1703 * This function works from the bottom up, and from the right to the left. In 1704 * other words, it strips off the highest layer (data) before stripping any of 1705 * the metadata. Doing it this way is best in case the operation is interrupted 1706 * by power failure, etc. The dinode is rewritten in every transaction to 1707 * guarantee integrity. 1708 */ 1709 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1710 { 1711 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1712 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1713 struct metapath mp = {}; 1714 struct buffer_head *dibh, *bh; 1715 struct gfs2_holder rd_gh; 1716 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1717 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1718 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1719 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1720 unsigned int start_aligned, uninitialized_var(end_aligned); 1721 unsigned int strip_h = ip->i_height - 1; 1722 u32 btotal = 0; 1723 int ret, state; 1724 int mp_h; /* metapath buffers are read in to this height */ 1725 u64 prev_bnr = 0; 1726 __be64 *start, *end; 1727 1728 if (offset >= maxsize) { 1729 /* 1730 * The starting point lies beyond the allocated meta-data; 1731 * there are no blocks do deallocate. 1732 */ 1733 return 0; 1734 } 1735 1736 /* 1737 * The start position of the hole is defined by lblock, start_list, and 1738 * start_aligned. The end position of the hole is defined by lend, 1739 * end_list, and end_aligned. 1740 * 1741 * start_aligned and end_aligned define down to which height the start 1742 * and end positions are aligned to the metadata tree (i.e., the 1743 * position is a multiple of the metadata granularity at the height 1744 * above). This determines at which heights additional meta pointers 1745 * needs to be preserved for the remaining data. 1746 */ 1747 1748 if (length) { 1749 u64 end_offset = offset + length; 1750 u64 lend; 1751 1752 /* 1753 * Clip the end at the maximum file size for the given height: 1754 * that's how far the metadata goes; files bigger than that 1755 * will have additional layers of indirection. 1756 */ 1757 if (end_offset > maxsize) 1758 end_offset = maxsize; 1759 lend = end_offset >> bsize_shift; 1760 1761 if (lblock >= lend) 1762 return 0; 1763 1764 find_metapath(sdp, lend, &mp, ip->i_height); 1765 end_list = __end_list; 1766 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1767 1768 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1769 if (end_list[mp_h]) 1770 break; 1771 } 1772 end_aligned = mp_h; 1773 } 1774 1775 find_metapath(sdp, lblock, &mp, ip->i_height); 1776 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1777 1778 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1779 if (start_list[mp_h]) 1780 break; 1781 } 1782 start_aligned = mp_h; 1783 1784 ret = gfs2_meta_inode_buffer(ip, &dibh); 1785 if (ret) 1786 return ret; 1787 1788 mp.mp_bh[0] = dibh; 1789 ret = lookup_metapath(ip, &mp); 1790 if (ret) 1791 goto out_metapath; 1792 1793 /* issue read-ahead on metadata */ 1794 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1795 metapointer_range(&mp, mp_h, start_list, start_aligned, 1796 end_list, end_aligned, &start, &end); 1797 gfs2_metapath_ra(ip->i_gl, start, end); 1798 } 1799 1800 if (mp.mp_aheight == ip->i_height) 1801 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1802 else 1803 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1804 1805 ret = gfs2_rindex_update(sdp); 1806 if (ret) 1807 goto out_metapath; 1808 1809 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1810 if (ret) 1811 goto out_metapath; 1812 gfs2_holder_mark_uninitialized(&rd_gh); 1813 1814 mp_h = strip_h; 1815 1816 while (state != DEALLOC_DONE) { 1817 switch (state) { 1818 /* Truncate a full metapath at the given strip height. 1819 * Note that strip_h == mp_h in order to be in this state. */ 1820 case DEALLOC_MP_FULL: 1821 bh = mp.mp_bh[mp_h]; 1822 gfs2_assert_withdraw(sdp, bh); 1823 if (gfs2_assert_withdraw(sdp, 1824 prev_bnr != bh->b_blocknr)) { 1825 printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, " 1826 "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n", 1827 sdp->sd_fsname, 1828 (unsigned long long)ip->i_no_addr, 1829 prev_bnr, ip->i_height, strip_h, mp_h); 1830 } 1831 prev_bnr = bh->b_blocknr; 1832 1833 if (gfs2_metatype_check(sdp, bh, 1834 (mp_h ? GFS2_METATYPE_IN : 1835 GFS2_METATYPE_DI))) { 1836 ret = -EIO; 1837 goto out; 1838 } 1839 1840 /* 1841 * Below, passing end_aligned as 0 gives us the 1842 * metapointer range excluding the end point: the end 1843 * point is the first metapath we must not deallocate! 1844 */ 1845 1846 metapointer_range(&mp, mp_h, start_list, start_aligned, 1847 end_list, 0 /* end_aligned */, 1848 &start, &end); 1849 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1850 start, end, 1851 mp_h != ip->i_height - 1, 1852 &btotal); 1853 1854 /* If we hit an error or just swept dinode buffer, 1855 just exit. */ 1856 if (ret || !mp_h) { 1857 state = DEALLOC_DONE; 1858 break; 1859 } 1860 state = DEALLOC_MP_LOWER; 1861 break; 1862 1863 /* lower the metapath strip height */ 1864 case DEALLOC_MP_LOWER: 1865 /* We're done with the current buffer, so release it, 1866 unless it's the dinode buffer. Then back up to the 1867 previous pointer. */ 1868 if (mp_h) { 1869 brelse(mp.mp_bh[mp_h]); 1870 mp.mp_bh[mp_h] = NULL; 1871 } 1872 /* If we can't get any lower in height, we've stripped 1873 off all we can. Next step is to back up and start 1874 stripping the previous level of metadata. */ 1875 if (mp_h == 0) { 1876 strip_h--; 1877 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1878 mp_h = strip_h; 1879 state = DEALLOC_FILL_MP; 1880 break; 1881 } 1882 mp.mp_list[mp_h] = 0; 1883 mp_h--; /* search one metadata height down */ 1884 mp.mp_list[mp_h]++; 1885 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1886 break; 1887 /* Here we've found a part of the metapath that is not 1888 * allocated. We need to search at that height for the 1889 * next non-null pointer. */ 1890 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1891 state = DEALLOC_FILL_MP; 1892 mp_h++; 1893 } 1894 /* No more non-null pointers at this height. Back up 1895 to the previous height and try again. */ 1896 break; /* loop around in the same state */ 1897 1898 /* Fill the metapath with buffers to the given height. */ 1899 case DEALLOC_FILL_MP: 1900 /* Fill the buffers out to the current height. */ 1901 ret = fillup_metapath(ip, &mp, mp_h); 1902 if (ret < 0) 1903 goto out; 1904 1905 /* On the first pass, issue read-ahead on metadata. */ 1906 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1907 unsigned int height = mp.mp_aheight - 1; 1908 1909 /* No read-ahead for data blocks. */ 1910 if (mp.mp_aheight - 1 == strip_h) 1911 height--; 1912 1913 for (; height >= mp.mp_aheight - ret; height--) { 1914 metapointer_range(&mp, height, 1915 start_list, start_aligned, 1916 end_list, end_aligned, 1917 &start, &end); 1918 gfs2_metapath_ra(ip->i_gl, start, end); 1919 } 1920 } 1921 1922 /* If buffers found for the entire strip height */ 1923 if (mp.mp_aheight - 1 == strip_h) { 1924 state = DEALLOC_MP_FULL; 1925 break; 1926 } 1927 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1928 mp_h = mp.mp_aheight - 1; 1929 1930 /* If we find a non-null block pointer, crawl a bit 1931 higher up in the metapath and try again, otherwise 1932 we need to look lower for a new starting point. */ 1933 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1934 mp_h++; 1935 else 1936 state = DEALLOC_MP_LOWER; 1937 break; 1938 } 1939 } 1940 1941 if (btotal) { 1942 if (current->journal_info == NULL) { 1943 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1944 RES_QUOTA, 0); 1945 if (ret) 1946 goto out; 1947 down_write(&ip->i_rw_mutex); 1948 } 1949 gfs2_statfs_change(sdp, 0, +btotal, 0); 1950 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1951 ip->i_inode.i_gid); 1952 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1953 gfs2_trans_add_meta(ip->i_gl, dibh); 1954 gfs2_dinode_out(ip, dibh->b_data); 1955 up_write(&ip->i_rw_mutex); 1956 gfs2_trans_end(sdp); 1957 } 1958 1959 out: 1960 if (gfs2_holder_initialized(&rd_gh)) 1961 gfs2_glock_dq_uninit(&rd_gh); 1962 if (current->journal_info) { 1963 up_write(&ip->i_rw_mutex); 1964 gfs2_trans_end(sdp); 1965 cond_resched(); 1966 } 1967 gfs2_quota_unhold(ip); 1968 out_metapath: 1969 release_metapath(&mp); 1970 return ret; 1971 } 1972 1973 static int trunc_end(struct gfs2_inode *ip) 1974 { 1975 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1976 struct buffer_head *dibh; 1977 int error; 1978 1979 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1980 if (error) 1981 return error; 1982 1983 down_write(&ip->i_rw_mutex); 1984 1985 error = gfs2_meta_inode_buffer(ip, &dibh); 1986 if (error) 1987 goto out; 1988 1989 if (!i_size_read(&ip->i_inode)) { 1990 ip->i_height = 0; 1991 ip->i_goal = ip->i_no_addr; 1992 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1993 gfs2_ordered_del_inode(ip); 1994 } 1995 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1996 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 1997 1998 gfs2_trans_add_meta(ip->i_gl, dibh); 1999 gfs2_dinode_out(ip, dibh->b_data); 2000 brelse(dibh); 2001 2002 out: 2003 up_write(&ip->i_rw_mutex); 2004 gfs2_trans_end(sdp); 2005 return error; 2006 } 2007 2008 /** 2009 * do_shrink - make a file smaller 2010 * @inode: the inode 2011 * @newsize: the size to make the file 2012 * 2013 * Called with an exclusive lock on @inode. The @size must 2014 * be equal to or smaller than the current inode size. 2015 * 2016 * Returns: errno 2017 */ 2018 2019 static int do_shrink(struct inode *inode, u64 newsize) 2020 { 2021 struct gfs2_inode *ip = GFS2_I(inode); 2022 int error; 2023 2024 error = trunc_start(inode, newsize); 2025 if (error < 0) 2026 return error; 2027 if (gfs2_is_stuffed(ip)) 2028 return 0; 2029 2030 error = punch_hole(ip, newsize, 0); 2031 if (error == 0) 2032 error = trunc_end(ip); 2033 2034 return error; 2035 } 2036 2037 void gfs2_trim_blocks(struct inode *inode) 2038 { 2039 int ret; 2040 2041 ret = do_shrink(inode, inode->i_size); 2042 WARN_ON(ret != 0); 2043 } 2044 2045 /** 2046 * do_grow - Touch and update inode size 2047 * @inode: The inode 2048 * @size: The new size 2049 * 2050 * This function updates the timestamps on the inode and 2051 * may also increase the size of the inode. This function 2052 * must not be called with @size any smaller than the current 2053 * inode size. 2054 * 2055 * Although it is not strictly required to unstuff files here, 2056 * earlier versions of GFS2 have a bug in the stuffed file reading 2057 * code which will result in a buffer overrun if the size is larger 2058 * than the max stuffed file size. In order to prevent this from 2059 * occurring, such files are unstuffed, but in other cases we can 2060 * just update the inode size directly. 2061 * 2062 * Returns: 0 on success, or -ve on error 2063 */ 2064 2065 static int do_grow(struct inode *inode, u64 size) 2066 { 2067 struct gfs2_inode *ip = GFS2_I(inode); 2068 struct gfs2_sbd *sdp = GFS2_SB(inode); 2069 struct gfs2_alloc_parms ap = { .target = 1, }; 2070 struct buffer_head *dibh; 2071 int error; 2072 int unstuff = 0; 2073 2074 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2075 error = gfs2_quota_lock_check(ip, &ap); 2076 if (error) 2077 return error; 2078 2079 error = gfs2_inplace_reserve(ip, &ap); 2080 if (error) 2081 goto do_grow_qunlock; 2082 unstuff = 1; 2083 } 2084 2085 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2086 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2087 0 : RES_QUOTA), 0); 2088 if (error) 2089 goto do_grow_release; 2090 2091 if (unstuff) { 2092 error = gfs2_unstuff_dinode(ip, NULL); 2093 if (error) 2094 goto do_end_trans; 2095 } 2096 2097 error = gfs2_meta_inode_buffer(ip, &dibh); 2098 if (error) 2099 goto do_end_trans; 2100 2101 i_size_write(inode, size); 2102 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2103 gfs2_trans_add_meta(ip->i_gl, dibh); 2104 gfs2_dinode_out(ip, dibh->b_data); 2105 brelse(dibh); 2106 2107 do_end_trans: 2108 gfs2_trans_end(sdp); 2109 do_grow_release: 2110 if (unstuff) { 2111 gfs2_inplace_release(ip); 2112 do_grow_qunlock: 2113 gfs2_quota_unlock(ip); 2114 } 2115 return error; 2116 } 2117 2118 /** 2119 * gfs2_setattr_size - make a file a given size 2120 * @inode: the inode 2121 * @newsize: the size to make the file 2122 * 2123 * The file size can grow, shrink, or stay the same size. This 2124 * is called holding i_rwsem and an exclusive glock on the inode 2125 * in question. 2126 * 2127 * Returns: errno 2128 */ 2129 2130 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2131 { 2132 struct gfs2_inode *ip = GFS2_I(inode); 2133 int ret; 2134 2135 BUG_ON(!S_ISREG(inode->i_mode)); 2136 2137 ret = inode_newsize_ok(inode, newsize); 2138 if (ret) 2139 return ret; 2140 2141 inode_dio_wait(inode); 2142 2143 ret = gfs2_rsqa_alloc(ip); 2144 if (ret) 2145 goto out; 2146 2147 if (newsize >= inode->i_size) { 2148 ret = do_grow(inode, newsize); 2149 goto out; 2150 } 2151 2152 ret = do_shrink(inode, newsize); 2153 out: 2154 gfs2_rsqa_delete(ip, NULL); 2155 return ret; 2156 } 2157 2158 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2159 { 2160 int error; 2161 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2162 if (!error) 2163 error = trunc_end(ip); 2164 return error; 2165 } 2166 2167 int gfs2_file_dealloc(struct gfs2_inode *ip) 2168 { 2169 return punch_hole(ip, 0, 0); 2170 } 2171 2172 /** 2173 * gfs2_free_journal_extents - Free cached journal bmap info 2174 * @jd: The journal 2175 * 2176 */ 2177 2178 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2179 { 2180 struct gfs2_journal_extent *jext; 2181 2182 while(!list_empty(&jd->extent_list)) { 2183 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 2184 list_del(&jext->list); 2185 kfree(jext); 2186 } 2187 } 2188 2189 /** 2190 * gfs2_add_jextent - Add or merge a new extent to extent cache 2191 * @jd: The journal descriptor 2192 * @lblock: The logical block at start of new extent 2193 * @dblock: The physical block at start of new extent 2194 * @blocks: Size of extent in fs blocks 2195 * 2196 * Returns: 0 on success or -ENOMEM 2197 */ 2198 2199 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2200 { 2201 struct gfs2_journal_extent *jext; 2202 2203 if (!list_empty(&jd->extent_list)) { 2204 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 2205 if ((jext->dblock + jext->blocks) == dblock) { 2206 jext->blocks += blocks; 2207 return 0; 2208 } 2209 } 2210 2211 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2212 if (jext == NULL) 2213 return -ENOMEM; 2214 jext->dblock = dblock; 2215 jext->lblock = lblock; 2216 jext->blocks = blocks; 2217 list_add_tail(&jext->list, &jd->extent_list); 2218 jd->nr_extents++; 2219 return 0; 2220 } 2221 2222 /** 2223 * gfs2_map_journal_extents - Cache journal bmap info 2224 * @sdp: The super block 2225 * @jd: The journal to map 2226 * 2227 * Create a reusable "extent" mapping from all logical 2228 * blocks to all physical blocks for the given journal. This will save 2229 * us time when writing journal blocks. Most journals will have only one 2230 * extent that maps all their logical blocks. That's because gfs2.mkfs 2231 * arranges the journal blocks sequentially to maximize performance. 2232 * So the extent would map the first block for the entire file length. 2233 * However, gfs2_jadd can happen while file activity is happening, so 2234 * those journals may not be sequential. Less likely is the case where 2235 * the users created their own journals by mounting the metafs and 2236 * laying it out. But it's still possible. These journals might have 2237 * several extents. 2238 * 2239 * Returns: 0 on success, or error on failure 2240 */ 2241 2242 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2243 { 2244 u64 lblock = 0; 2245 u64 lblock_stop; 2246 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2247 struct buffer_head bh; 2248 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2249 u64 size; 2250 int rc; 2251 2252 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2253 size = (lblock_stop - lblock) << shift; 2254 jd->nr_extents = 0; 2255 WARN_ON(!list_empty(&jd->extent_list)); 2256 2257 do { 2258 bh.b_state = 0; 2259 bh.b_blocknr = 0; 2260 bh.b_size = size; 2261 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2262 if (rc || !buffer_mapped(&bh)) 2263 goto fail; 2264 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2265 if (rc) 2266 goto fail; 2267 size -= bh.b_size; 2268 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2269 } while(size > 0); 2270 2271 fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid, 2272 jd->nr_extents); 2273 return 0; 2274 2275 fail: 2276 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2277 rc, jd->jd_jid, 2278 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2279 jd->nr_extents); 2280 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2281 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2282 bh.b_state, (unsigned long long)bh.b_size); 2283 gfs2_free_journal_extents(jd); 2284 return rc; 2285 } 2286 2287 /** 2288 * gfs2_write_alloc_required - figure out if a write will require an allocation 2289 * @ip: the file being written to 2290 * @offset: the offset to write to 2291 * @len: the number of bytes being written 2292 * 2293 * Returns: 1 if an alloc is required, 0 otherwise 2294 */ 2295 2296 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2297 unsigned int len) 2298 { 2299 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2300 struct buffer_head bh; 2301 unsigned int shift; 2302 u64 lblock, lblock_stop, size; 2303 u64 end_of_file; 2304 2305 if (!len) 2306 return 0; 2307 2308 if (gfs2_is_stuffed(ip)) { 2309 if (offset + len > gfs2_max_stuffed_size(ip)) 2310 return 1; 2311 return 0; 2312 } 2313 2314 shift = sdp->sd_sb.sb_bsize_shift; 2315 BUG_ON(gfs2_is_dir(ip)); 2316 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2317 lblock = offset >> shift; 2318 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2319 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2320 return 1; 2321 2322 size = (lblock_stop - lblock) << shift; 2323 do { 2324 bh.b_state = 0; 2325 bh.b_size = size; 2326 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2327 if (!buffer_mapped(&bh)) 2328 return 1; 2329 size -= bh.b_size; 2330 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2331 } while(size > 0); 2332 2333 return 0; 2334 } 2335 2336 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2337 { 2338 struct gfs2_inode *ip = GFS2_I(inode); 2339 struct buffer_head *dibh; 2340 int error; 2341 2342 if (offset >= inode->i_size) 2343 return 0; 2344 if (offset + length > inode->i_size) 2345 length = inode->i_size - offset; 2346 2347 error = gfs2_meta_inode_buffer(ip, &dibh); 2348 if (error) 2349 return error; 2350 gfs2_trans_add_meta(ip->i_gl, dibh); 2351 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2352 length); 2353 brelse(dibh); 2354 return 0; 2355 } 2356 2357 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2358 loff_t length) 2359 { 2360 struct gfs2_sbd *sdp = GFS2_SB(inode); 2361 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2362 int error; 2363 2364 while (length) { 2365 struct gfs2_trans *tr; 2366 loff_t chunk; 2367 unsigned int offs; 2368 2369 chunk = length; 2370 if (chunk > max_chunk) 2371 chunk = max_chunk; 2372 2373 offs = offset & ~PAGE_MASK; 2374 if (offs && chunk > PAGE_SIZE) 2375 chunk = offs + ((chunk - offs) & PAGE_MASK); 2376 2377 truncate_pagecache_range(inode, offset, chunk); 2378 offset += chunk; 2379 length -= chunk; 2380 2381 tr = current->journal_info; 2382 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2383 continue; 2384 2385 gfs2_trans_end(sdp); 2386 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2387 if (error) 2388 return error; 2389 } 2390 return 0; 2391 } 2392 2393 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2394 { 2395 struct inode *inode = file_inode(file); 2396 struct gfs2_inode *ip = GFS2_I(inode); 2397 struct gfs2_sbd *sdp = GFS2_SB(inode); 2398 int error; 2399 2400 if (gfs2_is_jdata(ip)) 2401 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2402 GFS2_JTRUNC_REVOKES); 2403 else 2404 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2405 if (error) 2406 return error; 2407 2408 if (gfs2_is_stuffed(ip)) { 2409 error = stuffed_zero_range(inode, offset, length); 2410 if (error) 2411 goto out; 2412 } else { 2413 unsigned int start_off, end_len, blocksize; 2414 2415 blocksize = i_blocksize(inode); 2416 start_off = offset & (blocksize - 1); 2417 end_len = (offset + length) & (blocksize - 1); 2418 if (start_off) { 2419 unsigned int len = length; 2420 if (length > blocksize - start_off) 2421 len = blocksize - start_off; 2422 error = gfs2_block_zero_range(inode, offset, len); 2423 if (error) 2424 goto out; 2425 if (start_off + length < blocksize) 2426 end_len = 0; 2427 } 2428 if (end_len) { 2429 error = gfs2_block_zero_range(inode, 2430 offset + length - end_len, end_len); 2431 if (error) 2432 goto out; 2433 } 2434 } 2435 2436 if (gfs2_is_jdata(ip)) { 2437 BUG_ON(!current->journal_info); 2438 gfs2_journaled_truncate_range(inode, offset, length); 2439 } else 2440 truncate_pagecache_range(inode, offset, offset + length - 1); 2441 2442 file_update_time(file); 2443 mark_inode_dirty(inode); 2444 2445 if (current->journal_info) 2446 gfs2_trans_end(sdp); 2447 2448 if (!gfs2_is_stuffed(ip)) 2449 error = punch_hole(ip, offset, length); 2450 2451 out: 2452 if (current->journal_info) 2453 gfs2_trans_end(sdp); 2454 return error; 2455 } 2456