1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/blkdev.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/crc32.h> 16 #include <linux/iomap.h> 17 18 #include "gfs2.h" 19 #include "incore.h" 20 #include "bmap.h" 21 #include "glock.h" 22 #include "inode.h" 23 #include "meta_io.h" 24 #include "quota.h" 25 #include "rgrp.h" 26 #include "log.h" 27 #include "super.h" 28 #include "trans.h" 29 #include "dir.h" 30 #include "util.h" 31 #include "trace_gfs2.h" 32 33 /* This doesn't need to be that large as max 64 bit pointers in a 4k 34 * block is 512, so __u16 is fine for that. It saves stack space to 35 * keep it small. 36 */ 37 struct metapath { 38 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 39 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 40 int mp_fheight; /* find_metapath height */ 41 int mp_aheight; /* actual height (lookup height) */ 42 }; 43 44 /** 45 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 46 * @ip: the inode 47 * @dibh: the dinode buffer 48 * @block: the block number that was allocated 49 * @page: The (optional) page. This is looked up if @page is NULL 50 * 51 * Returns: errno 52 */ 53 54 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 55 u64 block, struct page *page) 56 { 57 struct inode *inode = &ip->i_inode; 58 struct buffer_head *bh; 59 int release = 0; 60 61 if (!page || page->index) { 62 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 63 if (!page) 64 return -ENOMEM; 65 release = 1; 66 } 67 68 if (!PageUptodate(page)) { 69 void *kaddr = kmap(page); 70 u64 dsize = i_size_read(inode); 71 72 if (dsize > gfs2_max_stuffed_size(ip)) 73 dsize = gfs2_max_stuffed_size(ip); 74 75 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 76 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 77 kunmap(page); 78 79 SetPageUptodate(page); 80 } 81 82 if (!page_has_buffers(page)) 83 create_empty_buffers(page, BIT(inode->i_blkbits), 84 BIT(BH_Uptodate)); 85 86 bh = page_buffers(page); 87 88 if (!buffer_mapped(bh)) 89 map_bh(bh, inode->i_sb, block); 90 91 set_buffer_uptodate(bh); 92 if (!gfs2_is_jdata(ip)) 93 mark_buffer_dirty(bh); 94 if (!gfs2_is_writeback(ip)) 95 gfs2_trans_add_data(ip->i_gl, bh); 96 97 if (release) { 98 unlock_page(page); 99 put_page(page); 100 } 101 102 return 0; 103 } 104 105 /** 106 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 107 * @ip: The GFS2 inode to unstuff 108 * @page: The (optional) page. This is looked up if the @page is NULL 109 * 110 * This routine unstuffs a dinode and returns it to a "normal" state such 111 * that the height can be grown in the traditional way. 112 * 113 * Returns: errno 114 */ 115 116 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 117 { 118 struct buffer_head *bh, *dibh; 119 struct gfs2_dinode *di; 120 u64 block = 0; 121 int isdir = gfs2_is_dir(ip); 122 int error; 123 124 down_write(&ip->i_rw_mutex); 125 126 error = gfs2_meta_inode_buffer(ip, &dibh); 127 if (error) 128 goto out; 129 130 if (i_size_read(&ip->i_inode)) { 131 /* Get a free block, fill it with the stuffed data, 132 and write it out to disk */ 133 134 unsigned int n = 1; 135 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 136 if (error) 137 goto out_brelse; 138 if (isdir) { 139 gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1); 140 error = gfs2_dir_get_new_buffer(ip, block, &bh); 141 if (error) 142 goto out_brelse; 143 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 144 dibh, sizeof(struct gfs2_dinode)); 145 brelse(bh); 146 } else { 147 error = gfs2_unstuffer_page(ip, dibh, block, page); 148 if (error) 149 goto out_brelse; 150 } 151 } 152 153 /* Set up the pointer to the new block */ 154 155 gfs2_trans_add_meta(ip->i_gl, dibh); 156 di = (struct gfs2_dinode *)dibh->b_data; 157 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 158 159 if (i_size_read(&ip->i_inode)) { 160 *(__be64 *)(di + 1) = cpu_to_be64(block); 161 gfs2_add_inode_blocks(&ip->i_inode, 1); 162 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 163 } 164 165 ip->i_height = 1; 166 di->di_height = cpu_to_be16(1); 167 168 out_brelse: 169 brelse(dibh); 170 out: 171 up_write(&ip->i_rw_mutex); 172 return error; 173 } 174 175 176 /** 177 * find_metapath - Find path through the metadata tree 178 * @sdp: The superblock 179 * @mp: The metapath to return the result in 180 * @block: The disk block to look up 181 * @height: The pre-calculated height of the metadata tree 182 * 183 * This routine returns a struct metapath structure that defines a path 184 * through the metadata of inode "ip" to get to block "block". 185 * 186 * Example: 187 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 188 * filesystem with a blocksize of 4096. 189 * 190 * find_metapath() would return a struct metapath structure set to: 191 * mp_offset = 101342453, mp_height = 3, mp_list[0] = 0, mp_list[1] = 48, 192 * and mp_list[2] = 165. 193 * 194 * That means that in order to get to the block containing the byte at 195 * offset 101342453, we would load the indirect block pointed to by pointer 196 * 0 in the dinode. We would then load the indirect block pointed to by 197 * pointer 48 in that indirect block. We would then load the data block 198 * pointed to by pointer 165 in that indirect block. 199 * 200 * ---------------------------------------- 201 * | Dinode | | 202 * | | 4| 203 * | |0 1 2 3 4 5 9| 204 * | | 6| 205 * ---------------------------------------- 206 * | 207 * | 208 * V 209 * ---------------------------------------- 210 * | Indirect Block | 211 * | 5| 212 * | 4 4 4 4 4 5 5 1| 213 * |0 5 6 7 8 9 0 1 2| 214 * ---------------------------------------- 215 * | 216 * | 217 * V 218 * ---------------------------------------- 219 * | Indirect Block | 220 * | 1 1 1 1 1 5| 221 * | 6 6 6 6 6 1| 222 * |0 3 4 5 6 7 2| 223 * ---------------------------------------- 224 * | 225 * | 226 * V 227 * ---------------------------------------- 228 * | Data block containing offset | 229 * | 101342453 | 230 * | | 231 * | | 232 * ---------------------------------------- 233 * 234 */ 235 236 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 237 struct metapath *mp, unsigned int height) 238 { 239 unsigned int i; 240 241 mp->mp_fheight = height; 242 for (i = height; i--;) 243 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 244 } 245 246 static inline unsigned int metapath_branch_start(const struct metapath *mp) 247 { 248 if (mp->mp_list[0] == 0) 249 return 2; 250 return 1; 251 } 252 253 /** 254 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 255 * @height: The metadata height (0 = dinode) 256 * @mp: The metapath 257 */ 258 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 259 { 260 struct buffer_head *bh = mp->mp_bh[height]; 261 if (height == 0) 262 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 263 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 264 } 265 266 /** 267 * metapointer - Return pointer to start of metadata in a buffer 268 * @height: The metadata height (0 = dinode) 269 * @mp: The metapath 270 * 271 * Return a pointer to the block number of the next height of the metadata 272 * tree given a buffer containing the pointer to the current height of the 273 * metadata tree. 274 */ 275 276 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 277 { 278 __be64 *p = metaptr1(height, mp); 279 return p + mp->mp_list[height]; 280 } 281 282 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 283 { 284 const __be64 *t; 285 286 for (t = start; t < end; t++) { 287 struct buffer_head *rabh; 288 289 if (!*t) 290 continue; 291 292 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 293 if (trylock_buffer(rabh)) { 294 if (!buffer_uptodate(rabh)) { 295 rabh->b_end_io = end_buffer_read_sync; 296 submit_bh(REQ_OP_READ, 297 REQ_RAHEAD | REQ_META | REQ_PRIO, 298 rabh); 299 continue; 300 } 301 unlock_buffer(rabh); 302 } 303 brelse(rabh); 304 } 305 } 306 307 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 308 unsigned int x, unsigned int h) 309 { 310 for (; x < h; x++) { 311 __be64 *ptr = metapointer(x, mp); 312 u64 dblock = be64_to_cpu(*ptr); 313 int ret; 314 315 if (!dblock) 316 break; 317 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 318 if (ret) 319 return ret; 320 } 321 mp->mp_aheight = x + 1; 322 return 0; 323 } 324 325 /** 326 * lookup_metapath - Walk the metadata tree to a specific point 327 * @ip: The inode 328 * @mp: The metapath 329 * 330 * Assumes that the inode's buffer has already been looked up and 331 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 332 * by find_metapath(). 333 * 334 * If this function encounters part of the tree which has not been 335 * allocated, it returns the current height of the tree at the point 336 * at which it found the unallocated block. Blocks which are found are 337 * added to the mp->mp_bh[] list. 338 * 339 * Returns: error 340 */ 341 342 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 343 { 344 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 345 } 346 347 /** 348 * fillup_metapath - fill up buffers for the metadata path to a specific height 349 * @ip: The inode 350 * @mp: The metapath 351 * @h: The height to which it should be mapped 352 * 353 * Similar to lookup_metapath, but does lookups for a range of heights 354 * 355 * Returns: error or the number of buffers filled 356 */ 357 358 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 359 { 360 unsigned int x = 0; 361 int ret; 362 363 if (h) { 364 /* find the first buffer we need to look up. */ 365 for (x = h - 1; x > 0; x--) { 366 if (mp->mp_bh[x]) 367 break; 368 } 369 } 370 ret = __fillup_metapath(ip, mp, x, h); 371 if (ret) 372 return ret; 373 return mp->mp_aheight - x - 1; 374 } 375 376 static inline void release_metapath(struct metapath *mp) 377 { 378 int i; 379 380 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 381 if (mp->mp_bh[i] == NULL) 382 break; 383 brelse(mp->mp_bh[i]); 384 } 385 } 386 387 /** 388 * gfs2_extent_length - Returns length of an extent of blocks 389 * @start: Start of the buffer 390 * @len: Length of the buffer in bytes 391 * @ptr: Current position in the buffer 392 * @limit: Max extent length to return (0 = unlimited) 393 * @eob: Set to 1 if we hit "end of block" 394 * 395 * If the first block is zero (unallocated) it will return the number of 396 * unallocated blocks in the extent, otherwise it will return the number 397 * of contiguous blocks in the extent. 398 * 399 * Returns: The length of the extent (minimum of one block) 400 */ 401 402 static inline unsigned int gfs2_extent_length(void *start, unsigned int len, __be64 *ptr, size_t limit, int *eob) 403 { 404 const __be64 *end = (start + len); 405 const __be64 *first = ptr; 406 u64 d = be64_to_cpu(*ptr); 407 408 *eob = 0; 409 do { 410 ptr++; 411 if (ptr >= end) 412 break; 413 if (limit && --limit == 0) 414 break; 415 if (d) 416 d++; 417 } while(be64_to_cpu(*ptr) == d); 418 if (ptr >= end) 419 *eob = 1; 420 return (ptr - first); 421 } 422 423 static inline void bmap_lock(struct gfs2_inode *ip, int create) 424 { 425 if (create) 426 down_write(&ip->i_rw_mutex); 427 else 428 down_read(&ip->i_rw_mutex); 429 } 430 431 static inline void bmap_unlock(struct gfs2_inode *ip, int create) 432 { 433 if (create) 434 up_write(&ip->i_rw_mutex); 435 else 436 up_read(&ip->i_rw_mutex); 437 } 438 439 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 440 struct gfs2_glock *gl, unsigned int i, 441 unsigned offset, u64 bn) 442 { 443 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 444 ((i > 1) ? sizeof(struct gfs2_meta_header) : 445 sizeof(struct gfs2_dinode))); 446 BUG_ON(i < 1); 447 BUG_ON(mp->mp_bh[i] != NULL); 448 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 449 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 450 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 451 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 452 ptr += offset; 453 *ptr = cpu_to_be64(bn); 454 return ptr; 455 } 456 457 enum alloc_state { 458 ALLOC_DATA = 0, 459 ALLOC_GROW_DEPTH = 1, 460 ALLOC_GROW_HEIGHT = 2, 461 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 462 }; 463 464 /** 465 * gfs2_bmap_alloc - Build a metadata tree of the requested height 466 * @inode: The GFS2 inode 467 * @lblock: The logical starting block of the extent 468 * @bh_map: This is used to return the mapping details 469 * @zero_new: True if newly allocated blocks should be zeroed 470 * @mp: The metapath, with proper height information calculated 471 * @maxlen: The max number of data blocks to alloc 472 * @dblock: Pointer to return the resulting new block 473 * @dblks: Pointer to return the number of blocks allocated 474 * 475 * In this routine we may have to alloc: 476 * i) Indirect blocks to grow the metadata tree height 477 * ii) Indirect blocks to fill in lower part of the metadata tree 478 * iii) Data blocks 479 * 480 * The function is in two parts. The first part works out the total 481 * number of blocks which we need. The second part does the actual 482 * allocation asking for an extent at a time (if enough contiguous free 483 * blocks are available, there will only be one request per bmap call) 484 * and uses the state machine to initialise the blocks in order. 485 * 486 * Returns: errno on error 487 */ 488 489 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 490 unsigned flags, struct metapath *mp) 491 { 492 struct gfs2_inode *ip = GFS2_I(inode); 493 struct gfs2_sbd *sdp = GFS2_SB(inode); 494 struct super_block *sb = sdp->sd_vfs; 495 struct buffer_head *dibh = mp->mp_bh[0]; 496 u64 bn; 497 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 498 unsigned dblks = 0; 499 unsigned ptrs_per_blk; 500 const unsigned end_of_metadata = mp->mp_fheight - 1; 501 int ret; 502 enum alloc_state state; 503 __be64 *ptr; 504 __be64 zero_bn = 0; 505 size_t maxlen = iomap->length >> inode->i_blkbits; 506 507 BUG_ON(mp->mp_aheight < 1); 508 BUG_ON(dibh == NULL); 509 510 gfs2_trans_add_meta(ip->i_gl, dibh); 511 512 if (mp->mp_fheight == mp->mp_aheight) { 513 struct buffer_head *bh; 514 int eob; 515 516 /* Bottom indirect block exists, find unalloced extent size */ 517 ptr = metapointer(end_of_metadata, mp); 518 bh = mp->mp_bh[end_of_metadata]; 519 dblks = gfs2_extent_length(bh->b_data, bh->b_size, ptr, 520 maxlen, &eob); 521 BUG_ON(dblks < 1); 522 state = ALLOC_DATA; 523 } else { 524 /* Need to allocate indirect blocks */ 525 ptrs_per_blk = mp->mp_fheight > 1 ? sdp->sd_inptrs : 526 sdp->sd_diptrs; 527 dblks = min(maxlen, (size_t)(ptrs_per_blk - 528 mp->mp_list[end_of_metadata])); 529 if (mp->mp_fheight == ip->i_height) { 530 /* Writing into existing tree, extend tree down */ 531 iblks = mp->mp_fheight - mp->mp_aheight; 532 state = ALLOC_GROW_DEPTH; 533 } else { 534 /* Building up tree height */ 535 state = ALLOC_GROW_HEIGHT; 536 iblks = mp->mp_fheight - ip->i_height; 537 branch_start = metapath_branch_start(mp); 538 iblks += (mp->mp_fheight - branch_start); 539 } 540 } 541 542 /* start of the second part of the function (state machine) */ 543 544 blks = dblks + iblks; 545 i = mp->mp_aheight; 546 do { 547 int error; 548 n = blks - alloced; 549 error = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 550 if (error) 551 return error; 552 alloced += n; 553 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 554 gfs2_trans_add_unrevoke(sdp, bn, n); 555 switch (state) { 556 /* Growing height of tree */ 557 case ALLOC_GROW_HEIGHT: 558 if (i == 1) { 559 ptr = (__be64 *)(dibh->b_data + 560 sizeof(struct gfs2_dinode)); 561 zero_bn = *ptr; 562 } 563 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 564 i++, n--) 565 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 566 if (i - 1 == mp->mp_fheight - ip->i_height) { 567 i--; 568 gfs2_buffer_copy_tail(mp->mp_bh[i], 569 sizeof(struct gfs2_meta_header), 570 dibh, sizeof(struct gfs2_dinode)); 571 gfs2_buffer_clear_tail(dibh, 572 sizeof(struct gfs2_dinode) + 573 sizeof(__be64)); 574 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 575 sizeof(struct gfs2_meta_header)); 576 *ptr = zero_bn; 577 state = ALLOC_GROW_DEPTH; 578 for(i = branch_start; i < mp->mp_fheight; i++) { 579 if (mp->mp_bh[i] == NULL) 580 break; 581 brelse(mp->mp_bh[i]); 582 mp->mp_bh[i] = NULL; 583 } 584 i = branch_start; 585 } 586 if (n == 0) 587 break; 588 /* Branching from existing tree */ 589 case ALLOC_GROW_DEPTH: 590 if (i > 1 && i < mp->mp_fheight) 591 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 592 for (; i < mp->mp_fheight && n > 0; i++, n--) 593 gfs2_indirect_init(mp, ip->i_gl, i, 594 mp->mp_list[i-1], bn++); 595 if (i == mp->mp_fheight) 596 state = ALLOC_DATA; 597 if (n == 0) 598 break; 599 /* Tree complete, adding data blocks */ 600 case ALLOC_DATA: 601 BUG_ON(n > dblks); 602 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 603 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 604 dblks = n; 605 ptr = metapointer(end_of_metadata, mp); 606 iomap->addr = bn << inode->i_blkbits; 607 iomap->flags |= IOMAP_F_NEW; 608 while (n-- > 0) 609 *ptr++ = cpu_to_be64(bn++); 610 if (flags & IOMAP_ZERO) { 611 ret = sb_issue_zeroout(sb, iomap->addr >> inode->i_blkbits, 612 dblks, GFP_NOFS); 613 if (ret) { 614 fs_err(sdp, 615 "Failed to zero data buffers\n"); 616 flags &= ~IOMAP_ZERO; 617 } 618 } 619 break; 620 } 621 } while (iomap->addr == IOMAP_NULL_ADDR); 622 623 iomap->length = (u64)dblks << inode->i_blkbits; 624 ip->i_height = mp->mp_fheight; 625 gfs2_add_inode_blocks(&ip->i_inode, alloced); 626 gfs2_dinode_out(ip, mp->mp_bh[0]->b_data); 627 return 0; 628 } 629 630 /** 631 * hole_size - figure out the size of a hole 632 * @inode: The inode 633 * @lblock: The logical starting block number 634 * @mp: The metapath 635 * 636 * Returns: The hole size in bytes 637 * 638 */ 639 static u64 hole_size(struct inode *inode, sector_t lblock, struct metapath *mp) 640 { 641 struct gfs2_inode *ip = GFS2_I(inode); 642 struct gfs2_sbd *sdp = GFS2_SB(inode); 643 struct metapath mp_eof; 644 u64 factor = 1; 645 int hgt; 646 u64 holesz = 0; 647 const __be64 *first, *end, *ptr; 648 const struct buffer_head *bh; 649 u64 lblock_stop = (i_size_read(inode) - 1) >> inode->i_blkbits; 650 int zeroptrs; 651 bool done = false; 652 653 /* Get another metapath, to the very last byte */ 654 find_metapath(sdp, lblock_stop, &mp_eof, ip->i_height); 655 for (hgt = ip->i_height - 1; hgt >= 0 && !done; hgt--) { 656 bh = mp->mp_bh[hgt]; 657 if (bh) { 658 zeroptrs = 0; 659 first = metapointer(hgt, mp); 660 end = (const __be64 *)(bh->b_data + bh->b_size); 661 662 for (ptr = first; ptr < end; ptr++) { 663 if (*ptr) { 664 done = true; 665 break; 666 } else { 667 zeroptrs++; 668 } 669 } 670 } else { 671 zeroptrs = sdp->sd_inptrs; 672 } 673 if (factor * zeroptrs >= lblock_stop - lblock + 1) { 674 holesz = lblock_stop - lblock + 1; 675 break; 676 } 677 holesz += factor * zeroptrs; 678 679 factor *= sdp->sd_inptrs; 680 if (hgt && (mp->mp_list[hgt - 1] < mp_eof.mp_list[hgt - 1])) 681 (mp->mp_list[hgt - 1])++; 682 } 683 return holesz << inode->i_blkbits; 684 } 685 686 static void gfs2_stuffed_iomap(struct inode *inode, struct iomap *iomap) 687 { 688 struct gfs2_inode *ip = GFS2_I(inode); 689 690 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 691 sizeof(struct gfs2_dinode); 692 iomap->offset = 0; 693 iomap->length = i_size_read(inode); 694 iomap->type = IOMAP_MAPPED; 695 iomap->flags = IOMAP_F_DATA_INLINE; 696 } 697 698 /** 699 * gfs2_iomap_begin - Map blocks from an inode to disk blocks 700 * @inode: The inode 701 * @pos: Starting position in bytes 702 * @length: Length to map, in bytes 703 * @flags: iomap flags 704 * @iomap: The iomap structure 705 * 706 * Returns: errno 707 */ 708 int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 709 unsigned flags, struct iomap *iomap) 710 { 711 struct gfs2_inode *ip = GFS2_I(inode); 712 struct gfs2_sbd *sdp = GFS2_SB(inode); 713 struct metapath mp = { .mp_aheight = 1, }; 714 unsigned int factor = sdp->sd_sb.sb_bsize; 715 const u64 *arr = sdp->sd_heightsize; 716 __be64 *ptr; 717 sector_t lblock; 718 sector_t lend; 719 int ret; 720 int eob; 721 unsigned int len; 722 struct buffer_head *bh; 723 u8 height; 724 725 trace_gfs2_iomap_start(ip, pos, length, flags); 726 if (!length) { 727 ret = -EINVAL; 728 goto out; 729 } 730 731 if ((flags & IOMAP_REPORT) && gfs2_is_stuffed(ip)) { 732 gfs2_stuffed_iomap(inode, iomap); 733 if (pos >= iomap->length) 734 return -ENOENT; 735 ret = 0; 736 goto out; 737 } 738 739 lblock = pos >> inode->i_blkbits; 740 lend = (pos + length + sdp->sd_sb.sb_bsize - 1) >> inode->i_blkbits; 741 742 iomap->offset = lblock << inode->i_blkbits; 743 iomap->addr = IOMAP_NULL_ADDR; 744 iomap->type = IOMAP_HOLE; 745 iomap->length = (u64)(lend - lblock) << inode->i_blkbits; 746 iomap->flags = IOMAP_F_MERGED; 747 bmap_lock(ip, 0); 748 749 /* 750 * Directory data blocks have a struct gfs2_meta_header header, so the 751 * remaining size is smaller than the filesystem block size. Logical 752 * block numbers for directories are in units of this remaining size! 753 */ 754 if (gfs2_is_dir(ip)) { 755 factor = sdp->sd_jbsize; 756 arr = sdp->sd_jheightsize; 757 } 758 759 ret = gfs2_meta_inode_buffer(ip, &mp.mp_bh[0]); 760 if (ret) 761 goto out_release; 762 763 height = ip->i_height; 764 while ((lblock + 1) * factor > arr[height]) 765 height++; 766 find_metapath(sdp, lblock, &mp, height); 767 if (height > ip->i_height || gfs2_is_stuffed(ip)) 768 goto do_alloc; 769 770 ret = lookup_metapath(ip, &mp); 771 if (ret) 772 goto out_release; 773 774 if (mp.mp_aheight != ip->i_height) 775 goto do_alloc; 776 777 ptr = metapointer(ip->i_height - 1, &mp); 778 if (*ptr == 0) 779 goto do_alloc; 780 781 iomap->type = IOMAP_MAPPED; 782 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 783 784 bh = mp.mp_bh[ip->i_height - 1]; 785 len = gfs2_extent_length(bh->b_data, bh->b_size, ptr, lend - lblock, &eob); 786 if (eob) 787 iomap->flags |= IOMAP_F_BOUNDARY; 788 iomap->length = (u64)len << inode->i_blkbits; 789 790 ret = 0; 791 792 out_release: 793 release_metapath(&mp); 794 bmap_unlock(ip, 0); 795 out: 796 trace_gfs2_iomap_end(ip, iomap, ret); 797 return ret; 798 799 do_alloc: 800 if (!(flags & IOMAP_WRITE)) { 801 if (pos >= i_size_read(inode)) { 802 ret = -ENOENT; 803 goto out_release; 804 } 805 ret = 0; 806 iomap->length = hole_size(inode, lblock, &mp); 807 goto out_release; 808 } 809 810 ret = gfs2_iomap_alloc(inode, iomap, flags, &mp); 811 goto out_release; 812 } 813 814 /** 815 * gfs2_block_map - Map a block from an inode to a disk block 816 * @inode: The inode 817 * @lblock: The logical block number 818 * @bh_map: The bh to be mapped 819 * @create: True if its ok to alloc blocks to satify the request 820 * 821 * Sets buffer_mapped() if successful, sets buffer_boundary() if a 822 * read of metadata will be required before the next block can be 823 * mapped. Sets buffer_new() if new blocks were allocated. 824 * 825 * Returns: errno 826 */ 827 828 int gfs2_block_map(struct inode *inode, sector_t lblock, 829 struct buffer_head *bh_map, int create) 830 { 831 struct gfs2_inode *ip = GFS2_I(inode); 832 struct iomap iomap; 833 int ret, flags = 0; 834 835 clear_buffer_mapped(bh_map); 836 clear_buffer_new(bh_map); 837 clear_buffer_boundary(bh_map); 838 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 839 840 if (create) 841 flags |= IOMAP_WRITE; 842 if (buffer_zeronew(bh_map)) 843 flags |= IOMAP_ZERO; 844 ret = gfs2_iomap_begin(inode, (loff_t)lblock << inode->i_blkbits, 845 bh_map->b_size, flags, &iomap); 846 if (ret) { 847 if (!create && ret == -ENOENT) { 848 /* Return unmapped buffer beyond the end of file. */ 849 ret = 0; 850 } 851 goto out; 852 } 853 854 if (iomap.length > bh_map->b_size) { 855 iomap.length = bh_map->b_size; 856 iomap.flags &= ~IOMAP_F_BOUNDARY; 857 } 858 if (iomap.addr != IOMAP_NULL_ADDR) 859 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 860 bh_map->b_size = iomap.length; 861 if (iomap.flags & IOMAP_F_BOUNDARY) 862 set_buffer_boundary(bh_map); 863 if (iomap.flags & IOMAP_F_NEW) 864 set_buffer_new(bh_map); 865 866 out: 867 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 868 return ret; 869 } 870 871 /* 872 * Deprecated: do not use in new code 873 */ 874 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 875 { 876 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 877 int ret; 878 int create = *new; 879 880 BUG_ON(!extlen); 881 BUG_ON(!dblock); 882 BUG_ON(!new); 883 884 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 885 ret = gfs2_block_map(inode, lblock, &bh, create); 886 *extlen = bh.b_size >> inode->i_blkbits; 887 *dblock = bh.b_blocknr; 888 if (buffer_new(&bh)) 889 *new = 1; 890 else 891 *new = 0; 892 return ret; 893 } 894 895 /** 896 * gfs2_block_zero_range - Deal with zeroing out data 897 * 898 * This is partly borrowed from ext3. 899 */ 900 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 901 unsigned int length) 902 { 903 struct address_space *mapping = inode->i_mapping; 904 struct gfs2_inode *ip = GFS2_I(inode); 905 unsigned long index = from >> PAGE_SHIFT; 906 unsigned offset = from & (PAGE_SIZE-1); 907 unsigned blocksize, iblock, pos; 908 struct buffer_head *bh; 909 struct page *page; 910 int err; 911 912 page = find_or_create_page(mapping, index, GFP_NOFS); 913 if (!page) 914 return 0; 915 916 blocksize = inode->i_sb->s_blocksize; 917 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 918 919 if (!page_has_buffers(page)) 920 create_empty_buffers(page, blocksize, 0); 921 922 /* Find the buffer that contains "offset" */ 923 bh = page_buffers(page); 924 pos = blocksize; 925 while (offset >= pos) { 926 bh = bh->b_this_page; 927 iblock++; 928 pos += blocksize; 929 } 930 931 err = 0; 932 933 if (!buffer_mapped(bh)) { 934 gfs2_block_map(inode, iblock, bh, 0); 935 /* unmapped? It's a hole - nothing to do */ 936 if (!buffer_mapped(bh)) 937 goto unlock; 938 } 939 940 /* Ok, it's mapped. Make sure it's up-to-date */ 941 if (PageUptodate(page)) 942 set_buffer_uptodate(bh); 943 944 if (!buffer_uptodate(bh)) { 945 err = -EIO; 946 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 947 wait_on_buffer(bh); 948 /* Uhhuh. Read error. Complain and punt. */ 949 if (!buffer_uptodate(bh)) 950 goto unlock; 951 err = 0; 952 } 953 954 if (!gfs2_is_writeback(ip)) 955 gfs2_trans_add_data(ip->i_gl, bh); 956 957 zero_user(page, offset, length); 958 mark_buffer_dirty(bh); 959 unlock: 960 unlock_page(page); 961 put_page(page); 962 return err; 963 } 964 965 #define GFS2_JTRUNC_REVOKES 8192 966 967 /** 968 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 969 * @inode: The inode being truncated 970 * @oldsize: The original (larger) size 971 * @newsize: The new smaller size 972 * 973 * With jdata files, we have to journal a revoke for each block which is 974 * truncated. As a result, we need to split this into separate transactions 975 * if the number of pages being truncated gets too large. 976 */ 977 978 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 979 { 980 struct gfs2_sbd *sdp = GFS2_SB(inode); 981 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 982 u64 chunk; 983 int error; 984 985 while (oldsize != newsize) { 986 struct gfs2_trans *tr; 987 unsigned int offs; 988 989 chunk = oldsize - newsize; 990 if (chunk > max_chunk) 991 chunk = max_chunk; 992 993 offs = oldsize & ~PAGE_MASK; 994 if (offs && chunk > PAGE_SIZE) 995 chunk = offs + ((chunk - offs) & PAGE_MASK); 996 997 truncate_pagecache(inode, oldsize - chunk); 998 oldsize -= chunk; 999 1000 tr = current->journal_info; 1001 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1002 continue; 1003 1004 gfs2_trans_end(sdp); 1005 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1006 if (error) 1007 return error; 1008 } 1009 1010 return 0; 1011 } 1012 1013 static int trunc_start(struct inode *inode, u64 newsize) 1014 { 1015 struct gfs2_inode *ip = GFS2_I(inode); 1016 struct gfs2_sbd *sdp = GFS2_SB(inode); 1017 struct buffer_head *dibh = NULL; 1018 int journaled = gfs2_is_jdata(ip); 1019 u64 oldsize = inode->i_size; 1020 int error; 1021 1022 if (journaled) 1023 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1024 else 1025 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1026 if (error) 1027 return error; 1028 1029 error = gfs2_meta_inode_buffer(ip, &dibh); 1030 if (error) 1031 goto out; 1032 1033 gfs2_trans_add_meta(ip->i_gl, dibh); 1034 1035 if (gfs2_is_stuffed(ip)) { 1036 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1037 } else { 1038 unsigned int blocksize = i_blocksize(inode); 1039 unsigned int offs = newsize & (blocksize - 1); 1040 if (offs) { 1041 error = gfs2_block_zero_range(inode, newsize, 1042 blocksize - offs); 1043 if (error) 1044 goto out; 1045 } 1046 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1047 } 1048 1049 i_size_write(inode, newsize); 1050 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1051 gfs2_dinode_out(ip, dibh->b_data); 1052 1053 if (journaled) 1054 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1055 else 1056 truncate_pagecache(inode, newsize); 1057 1058 out: 1059 brelse(dibh); 1060 if (current->journal_info) 1061 gfs2_trans_end(sdp); 1062 return error; 1063 } 1064 1065 /** 1066 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1067 * @ip: inode 1068 * @rg_gh: holder of resource group glock 1069 * @bh: buffer head to sweep 1070 * @start: starting point in bh 1071 * @end: end point in bh 1072 * @meta: true if bh points to metadata (rather than data) 1073 * @btotal: place to keep count of total blocks freed 1074 * 1075 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1076 * free, and free them all. However, we do it one rgrp at a time. If this 1077 * block has references to multiple rgrps, we break it into individual 1078 * transactions. This allows other processes to use the rgrps while we're 1079 * focused on a single one, for better concurrency / performance. 1080 * At every transaction boundary, we rewrite the inode into the journal. 1081 * That way the bitmaps are kept consistent with the inode and we can recover 1082 * if we're interrupted by power-outages. 1083 * 1084 * Returns: 0, or return code if an error occurred. 1085 * *btotal has the total number of blocks freed 1086 */ 1087 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1088 struct buffer_head *bh, __be64 *start, __be64 *end, 1089 bool meta, u32 *btotal) 1090 { 1091 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1092 struct gfs2_rgrpd *rgd; 1093 struct gfs2_trans *tr; 1094 __be64 *p; 1095 int blks_outside_rgrp; 1096 u64 bn, bstart, isize_blks; 1097 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1098 int ret = 0; 1099 bool buf_in_tr = false; /* buffer was added to transaction */ 1100 1101 more_rgrps: 1102 rgd = NULL; 1103 if (gfs2_holder_initialized(rd_gh)) { 1104 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1105 gfs2_assert_withdraw(sdp, 1106 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1107 } 1108 blks_outside_rgrp = 0; 1109 bstart = 0; 1110 blen = 0; 1111 1112 for (p = start; p < end; p++) { 1113 if (!*p) 1114 continue; 1115 bn = be64_to_cpu(*p); 1116 1117 if (rgd) { 1118 if (!rgrp_contains_block(rgd, bn)) { 1119 blks_outside_rgrp++; 1120 continue; 1121 } 1122 } else { 1123 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1124 if (unlikely(!rgd)) { 1125 ret = -EIO; 1126 goto out; 1127 } 1128 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1129 0, rd_gh); 1130 if (ret) 1131 goto out; 1132 1133 /* Must be done with the rgrp glock held: */ 1134 if (gfs2_rs_active(&ip->i_res) && 1135 rgd == ip->i_res.rs_rbm.rgd) 1136 gfs2_rs_deltree(&ip->i_res); 1137 } 1138 1139 /* The size of our transactions will be unknown until we 1140 actually process all the metadata blocks that relate to 1141 the rgrp. So we estimate. We know it can't be more than 1142 the dinode's i_blocks and we don't want to exceed the 1143 journal flush threshold, sd_log_thresh2. */ 1144 if (current->journal_info == NULL) { 1145 unsigned int jblocks_rqsted, revokes; 1146 1147 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1148 RES_INDIRECT; 1149 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1150 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1151 jblocks_rqsted += 1152 atomic_read(&sdp->sd_log_thresh2); 1153 else 1154 jblocks_rqsted += isize_blks; 1155 revokes = jblocks_rqsted; 1156 if (meta) 1157 revokes += end - start; 1158 else if (ip->i_depth) 1159 revokes += sdp->sd_inptrs; 1160 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1161 if (ret) 1162 goto out_unlock; 1163 down_write(&ip->i_rw_mutex); 1164 } 1165 /* check if we will exceed the transaction blocks requested */ 1166 tr = current->journal_info; 1167 if (tr->tr_num_buf_new + RES_STATFS + 1168 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1169 /* We set blks_outside_rgrp to ensure the loop will 1170 be repeated for the same rgrp, but with a new 1171 transaction. */ 1172 blks_outside_rgrp++; 1173 /* This next part is tricky. If the buffer was added 1174 to the transaction, we've already set some block 1175 pointers to 0, so we better follow through and free 1176 them, or we will introduce corruption (so break). 1177 This may be impossible, or at least rare, but I 1178 decided to cover the case regardless. 1179 1180 If the buffer was not added to the transaction 1181 (this call), doing so would exceed our transaction 1182 size, so we need to end the transaction and start a 1183 new one (so goto). */ 1184 1185 if (buf_in_tr) 1186 break; 1187 goto out_unlock; 1188 } 1189 1190 gfs2_trans_add_meta(ip->i_gl, bh); 1191 buf_in_tr = true; 1192 *p = 0; 1193 if (bstart + blen == bn) { 1194 blen++; 1195 continue; 1196 } 1197 if (bstart) { 1198 __gfs2_free_blocks(ip, bstart, (u32)blen, meta); 1199 (*btotal) += blen; 1200 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1201 } 1202 bstart = bn; 1203 blen = 1; 1204 } 1205 if (bstart) { 1206 __gfs2_free_blocks(ip, bstart, (u32)blen, meta); 1207 (*btotal) += blen; 1208 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1209 } 1210 out_unlock: 1211 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1212 outside the rgrp we just processed, 1213 do it all over again. */ 1214 if (current->journal_info) { 1215 struct buffer_head *dibh; 1216 1217 ret = gfs2_meta_inode_buffer(ip, &dibh); 1218 if (ret) 1219 goto out; 1220 1221 /* Every transaction boundary, we rewrite the dinode 1222 to keep its di_blocks current in case of failure. */ 1223 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1224 current_time(&ip->i_inode); 1225 gfs2_trans_add_meta(ip->i_gl, dibh); 1226 gfs2_dinode_out(ip, dibh->b_data); 1227 brelse(dibh); 1228 up_write(&ip->i_rw_mutex); 1229 gfs2_trans_end(sdp); 1230 } 1231 gfs2_glock_dq_uninit(rd_gh); 1232 cond_resched(); 1233 goto more_rgrps; 1234 } 1235 out: 1236 return ret; 1237 } 1238 1239 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1240 { 1241 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1242 return false; 1243 return true; 1244 } 1245 1246 /** 1247 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1248 * @mp: starting metapath 1249 * @h: desired height to search 1250 * 1251 * Assumes the metapath is valid (with buffers) out to height h. 1252 * Returns: true if a non-null pointer was found in the metapath buffer 1253 * false if all remaining pointers are NULL in the buffer 1254 */ 1255 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1256 unsigned int h, 1257 __u16 *end_list, unsigned int end_aligned) 1258 { 1259 struct buffer_head *bh = mp->mp_bh[h]; 1260 __be64 *first, *ptr, *end; 1261 1262 first = metaptr1(h, mp); 1263 ptr = first + mp->mp_list[h]; 1264 end = (__be64 *)(bh->b_data + bh->b_size); 1265 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1266 bool keep_end = h < end_aligned; 1267 end = first + end_list[h] + keep_end; 1268 } 1269 1270 while (ptr < end) { 1271 if (*ptr) { /* if we have a non-null pointer */ 1272 mp->mp_list[h] = ptr - first; 1273 h++; 1274 if (h < GFS2_MAX_META_HEIGHT) 1275 mp->mp_list[h] = 0; 1276 return true; 1277 } 1278 ptr++; 1279 } 1280 return false; 1281 } 1282 1283 enum dealloc_states { 1284 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1285 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1286 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1287 DEALLOC_DONE = 3, /* process complete */ 1288 }; 1289 1290 static inline void 1291 metapointer_range(struct metapath *mp, int height, 1292 __u16 *start_list, unsigned int start_aligned, 1293 __u16 *end_list, unsigned int end_aligned, 1294 __be64 **start, __be64 **end) 1295 { 1296 struct buffer_head *bh = mp->mp_bh[height]; 1297 __be64 *first; 1298 1299 first = metaptr1(height, mp); 1300 *start = first; 1301 if (mp_eq_to_hgt(mp, start_list, height)) { 1302 bool keep_start = height < start_aligned; 1303 *start = first + start_list[height] + keep_start; 1304 } 1305 *end = (__be64 *)(bh->b_data + bh->b_size); 1306 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1307 bool keep_end = height < end_aligned; 1308 *end = first + end_list[height] + keep_end; 1309 } 1310 } 1311 1312 static inline bool walk_done(struct gfs2_sbd *sdp, 1313 struct metapath *mp, int height, 1314 __u16 *end_list, unsigned int end_aligned) 1315 { 1316 __u16 end; 1317 1318 if (end_list) { 1319 bool keep_end = height < end_aligned; 1320 if (!mp_eq_to_hgt(mp, end_list, height)) 1321 return false; 1322 end = end_list[height] + keep_end; 1323 } else 1324 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1325 return mp->mp_list[height] >= end; 1326 } 1327 1328 /** 1329 * punch_hole - deallocate blocks in a file 1330 * @ip: inode to truncate 1331 * @offset: the start of the hole 1332 * @length: the size of the hole (or 0 for truncate) 1333 * 1334 * Punch a hole into a file or truncate a file at a given position. This 1335 * function operates in whole blocks (@offset and @length are rounded 1336 * accordingly); partially filled blocks must be cleared otherwise. 1337 * 1338 * This function works from the bottom up, and from the right to the left. In 1339 * other words, it strips off the highest layer (data) before stripping any of 1340 * the metadata. Doing it this way is best in case the operation is interrupted 1341 * by power failure, etc. The dinode is rewritten in every transaction to 1342 * guarantee integrity. 1343 */ 1344 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1345 { 1346 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1347 struct metapath mp = {}; 1348 struct buffer_head *dibh, *bh; 1349 struct gfs2_holder rd_gh; 1350 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1351 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1352 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1353 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1354 unsigned int start_aligned, uninitialized_var(end_aligned); 1355 unsigned int strip_h = ip->i_height - 1; 1356 u32 btotal = 0; 1357 int ret, state; 1358 int mp_h; /* metapath buffers are read in to this height */ 1359 u64 prev_bnr = 0; 1360 __be64 *start, *end; 1361 1362 /* 1363 * The start position of the hole is defined by lblock, start_list, and 1364 * start_aligned. The end position of the hole is defined by lend, 1365 * end_list, and end_aligned. 1366 * 1367 * start_aligned and end_aligned define down to which height the start 1368 * and end positions are aligned to the metadata tree (i.e., the 1369 * position is a multiple of the metadata granularity at the height 1370 * above). This determines at which heights additional meta pointers 1371 * needs to be preserved for the remaining data. 1372 */ 1373 1374 if (length) { 1375 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1376 u64 end_offset = offset + length; 1377 u64 lend; 1378 1379 /* 1380 * Clip the end at the maximum file size for the given height: 1381 * that's how far the metadata goes; files bigger than that 1382 * will have additional layers of indirection. 1383 */ 1384 if (end_offset > maxsize) 1385 end_offset = maxsize; 1386 lend = end_offset >> bsize_shift; 1387 1388 if (lblock >= lend) 1389 return 0; 1390 1391 find_metapath(sdp, lend, &mp, ip->i_height); 1392 end_list = __end_list; 1393 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1394 1395 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1396 if (end_list[mp_h]) 1397 break; 1398 } 1399 end_aligned = mp_h; 1400 } 1401 1402 find_metapath(sdp, lblock, &mp, ip->i_height); 1403 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1404 1405 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1406 if (start_list[mp_h]) 1407 break; 1408 } 1409 start_aligned = mp_h; 1410 1411 ret = gfs2_meta_inode_buffer(ip, &dibh); 1412 if (ret) 1413 return ret; 1414 1415 mp.mp_bh[0] = dibh; 1416 ret = lookup_metapath(ip, &mp); 1417 if (ret) 1418 goto out_metapath; 1419 1420 /* issue read-ahead on metadata */ 1421 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1422 metapointer_range(&mp, mp_h, start_list, start_aligned, 1423 end_list, end_aligned, &start, &end); 1424 gfs2_metapath_ra(ip->i_gl, start, end); 1425 } 1426 1427 if (mp.mp_aheight == ip->i_height) 1428 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1429 else 1430 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1431 1432 ret = gfs2_rindex_update(sdp); 1433 if (ret) 1434 goto out_metapath; 1435 1436 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1437 if (ret) 1438 goto out_metapath; 1439 gfs2_holder_mark_uninitialized(&rd_gh); 1440 1441 mp_h = strip_h; 1442 1443 while (state != DEALLOC_DONE) { 1444 switch (state) { 1445 /* Truncate a full metapath at the given strip height. 1446 * Note that strip_h == mp_h in order to be in this state. */ 1447 case DEALLOC_MP_FULL: 1448 bh = mp.mp_bh[mp_h]; 1449 gfs2_assert_withdraw(sdp, bh); 1450 if (gfs2_assert_withdraw(sdp, 1451 prev_bnr != bh->b_blocknr)) { 1452 printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, " 1453 "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n", 1454 sdp->sd_fsname, 1455 (unsigned long long)ip->i_no_addr, 1456 prev_bnr, ip->i_height, strip_h, mp_h); 1457 } 1458 prev_bnr = bh->b_blocknr; 1459 1460 if (gfs2_metatype_check(sdp, bh, 1461 (mp_h ? GFS2_METATYPE_IN : 1462 GFS2_METATYPE_DI))) { 1463 ret = -EIO; 1464 goto out; 1465 } 1466 1467 /* 1468 * Below, passing end_aligned as 0 gives us the 1469 * metapointer range excluding the end point: the end 1470 * point is the first metapath we must not deallocate! 1471 */ 1472 1473 metapointer_range(&mp, mp_h, start_list, start_aligned, 1474 end_list, 0 /* end_aligned */, 1475 &start, &end); 1476 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1477 start, end, 1478 mp_h != ip->i_height - 1, 1479 &btotal); 1480 1481 /* If we hit an error or just swept dinode buffer, 1482 just exit. */ 1483 if (ret || !mp_h) { 1484 state = DEALLOC_DONE; 1485 break; 1486 } 1487 state = DEALLOC_MP_LOWER; 1488 break; 1489 1490 /* lower the metapath strip height */ 1491 case DEALLOC_MP_LOWER: 1492 /* We're done with the current buffer, so release it, 1493 unless it's the dinode buffer. Then back up to the 1494 previous pointer. */ 1495 if (mp_h) { 1496 brelse(mp.mp_bh[mp_h]); 1497 mp.mp_bh[mp_h] = NULL; 1498 } 1499 /* If we can't get any lower in height, we've stripped 1500 off all we can. Next step is to back up and start 1501 stripping the previous level of metadata. */ 1502 if (mp_h == 0) { 1503 strip_h--; 1504 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1505 mp_h = strip_h; 1506 state = DEALLOC_FILL_MP; 1507 break; 1508 } 1509 mp.mp_list[mp_h] = 0; 1510 mp_h--; /* search one metadata height down */ 1511 mp.mp_list[mp_h]++; 1512 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1513 break; 1514 /* Here we've found a part of the metapath that is not 1515 * allocated. We need to search at that height for the 1516 * next non-null pointer. */ 1517 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1518 state = DEALLOC_FILL_MP; 1519 mp_h++; 1520 } 1521 /* No more non-null pointers at this height. Back up 1522 to the previous height and try again. */ 1523 break; /* loop around in the same state */ 1524 1525 /* Fill the metapath with buffers to the given height. */ 1526 case DEALLOC_FILL_MP: 1527 /* Fill the buffers out to the current height. */ 1528 ret = fillup_metapath(ip, &mp, mp_h); 1529 if (ret < 0) 1530 goto out; 1531 1532 /* issue read-ahead on metadata */ 1533 if (mp.mp_aheight > 1) { 1534 for (; ret > 1; ret--) { 1535 metapointer_range(&mp, mp.mp_aheight - ret, 1536 start_list, start_aligned, 1537 end_list, end_aligned, 1538 &start, &end); 1539 gfs2_metapath_ra(ip->i_gl, start, end); 1540 } 1541 } 1542 1543 /* If buffers found for the entire strip height */ 1544 if (mp.mp_aheight - 1 == strip_h) { 1545 state = DEALLOC_MP_FULL; 1546 break; 1547 } 1548 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1549 mp_h = mp.mp_aheight - 1; 1550 1551 /* If we find a non-null block pointer, crawl a bit 1552 higher up in the metapath and try again, otherwise 1553 we need to look lower for a new starting point. */ 1554 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1555 mp_h++; 1556 else 1557 state = DEALLOC_MP_LOWER; 1558 break; 1559 } 1560 } 1561 1562 if (btotal) { 1563 if (current->journal_info == NULL) { 1564 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1565 RES_QUOTA, 0); 1566 if (ret) 1567 goto out; 1568 down_write(&ip->i_rw_mutex); 1569 } 1570 gfs2_statfs_change(sdp, 0, +btotal, 0); 1571 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1572 ip->i_inode.i_gid); 1573 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1574 gfs2_trans_add_meta(ip->i_gl, dibh); 1575 gfs2_dinode_out(ip, dibh->b_data); 1576 up_write(&ip->i_rw_mutex); 1577 gfs2_trans_end(sdp); 1578 } 1579 1580 out: 1581 if (gfs2_holder_initialized(&rd_gh)) 1582 gfs2_glock_dq_uninit(&rd_gh); 1583 if (current->journal_info) { 1584 up_write(&ip->i_rw_mutex); 1585 gfs2_trans_end(sdp); 1586 cond_resched(); 1587 } 1588 gfs2_quota_unhold(ip); 1589 out_metapath: 1590 release_metapath(&mp); 1591 return ret; 1592 } 1593 1594 static int trunc_end(struct gfs2_inode *ip) 1595 { 1596 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1597 struct buffer_head *dibh; 1598 int error; 1599 1600 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1601 if (error) 1602 return error; 1603 1604 down_write(&ip->i_rw_mutex); 1605 1606 error = gfs2_meta_inode_buffer(ip, &dibh); 1607 if (error) 1608 goto out; 1609 1610 if (!i_size_read(&ip->i_inode)) { 1611 ip->i_height = 0; 1612 ip->i_goal = ip->i_no_addr; 1613 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1614 gfs2_ordered_del_inode(ip); 1615 } 1616 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1617 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 1618 1619 gfs2_trans_add_meta(ip->i_gl, dibh); 1620 gfs2_dinode_out(ip, dibh->b_data); 1621 brelse(dibh); 1622 1623 out: 1624 up_write(&ip->i_rw_mutex); 1625 gfs2_trans_end(sdp); 1626 return error; 1627 } 1628 1629 /** 1630 * do_shrink - make a file smaller 1631 * @inode: the inode 1632 * @newsize: the size to make the file 1633 * 1634 * Called with an exclusive lock on @inode. The @size must 1635 * be equal to or smaller than the current inode size. 1636 * 1637 * Returns: errno 1638 */ 1639 1640 static int do_shrink(struct inode *inode, u64 newsize) 1641 { 1642 struct gfs2_inode *ip = GFS2_I(inode); 1643 int error; 1644 1645 error = trunc_start(inode, newsize); 1646 if (error < 0) 1647 return error; 1648 if (gfs2_is_stuffed(ip)) 1649 return 0; 1650 1651 error = punch_hole(ip, newsize, 0); 1652 if (error == 0) 1653 error = trunc_end(ip); 1654 1655 return error; 1656 } 1657 1658 void gfs2_trim_blocks(struct inode *inode) 1659 { 1660 int ret; 1661 1662 ret = do_shrink(inode, inode->i_size); 1663 WARN_ON(ret != 0); 1664 } 1665 1666 /** 1667 * do_grow - Touch and update inode size 1668 * @inode: The inode 1669 * @size: The new size 1670 * 1671 * This function updates the timestamps on the inode and 1672 * may also increase the size of the inode. This function 1673 * must not be called with @size any smaller than the current 1674 * inode size. 1675 * 1676 * Although it is not strictly required to unstuff files here, 1677 * earlier versions of GFS2 have a bug in the stuffed file reading 1678 * code which will result in a buffer overrun if the size is larger 1679 * than the max stuffed file size. In order to prevent this from 1680 * occurring, such files are unstuffed, but in other cases we can 1681 * just update the inode size directly. 1682 * 1683 * Returns: 0 on success, or -ve on error 1684 */ 1685 1686 static int do_grow(struct inode *inode, u64 size) 1687 { 1688 struct gfs2_inode *ip = GFS2_I(inode); 1689 struct gfs2_sbd *sdp = GFS2_SB(inode); 1690 struct gfs2_alloc_parms ap = { .target = 1, }; 1691 struct buffer_head *dibh; 1692 int error; 1693 int unstuff = 0; 1694 1695 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 1696 error = gfs2_quota_lock_check(ip, &ap); 1697 if (error) 1698 return error; 1699 1700 error = gfs2_inplace_reserve(ip, &ap); 1701 if (error) 1702 goto do_grow_qunlock; 1703 unstuff = 1; 1704 } 1705 1706 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 1707 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 1708 0 : RES_QUOTA), 0); 1709 if (error) 1710 goto do_grow_release; 1711 1712 if (unstuff) { 1713 error = gfs2_unstuff_dinode(ip, NULL); 1714 if (error) 1715 goto do_end_trans; 1716 } 1717 1718 error = gfs2_meta_inode_buffer(ip, &dibh); 1719 if (error) 1720 goto do_end_trans; 1721 1722 i_size_write(inode, size); 1723 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1724 gfs2_trans_add_meta(ip->i_gl, dibh); 1725 gfs2_dinode_out(ip, dibh->b_data); 1726 brelse(dibh); 1727 1728 do_end_trans: 1729 gfs2_trans_end(sdp); 1730 do_grow_release: 1731 if (unstuff) { 1732 gfs2_inplace_release(ip); 1733 do_grow_qunlock: 1734 gfs2_quota_unlock(ip); 1735 } 1736 return error; 1737 } 1738 1739 /** 1740 * gfs2_setattr_size - make a file a given size 1741 * @inode: the inode 1742 * @newsize: the size to make the file 1743 * 1744 * The file size can grow, shrink, or stay the same size. This 1745 * is called holding i_mutex and an exclusive glock on the inode 1746 * in question. 1747 * 1748 * Returns: errno 1749 */ 1750 1751 int gfs2_setattr_size(struct inode *inode, u64 newsize) 1752 { 1753 struct gfs2_inode *ip = GFS2_I(inode); 1754 int ret; 1755 1756 BUG_ON(!S_ISREG(inode->i_mode)); 1757 1758 ret = inode_newsize_ok(inode, newsize); 1759 if (ret) 1760 return ret; 1761 1762 inode_dio_wait(inode); 1763 1764 ret = gfs2_rsqa_alloc(ip); 1765 if (ret) 1766 goto out; 1767 1768 if (newsize >= inode->i_size) { 1769 ret = do_grow(inode, newsize); 1770 goto out; 1771 } 1772 1773 ret = do_shrink(inode, newsize); 1774 out: 1775 gfs2_rsqa_delete(ip, NULL); 1776 return ret; 1777 } 1778 1779 int gfs2_truncatei_resume(struct gfs2_inode *ip) 1780 { 1781 int error; 1782 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 1783 if (!error) 1784 error = trunc_end(ip); 1785 return error; 1786 } 1787 1788 int gfs2_file_dealloc(struct gfs2_inode *ip) 1789 { 1790 return punch_hole(ip, 0, 0); 1791 } 1792 1793 /** 1794 * gfs2_free_journal_extents - Free cached journal bmap info 1795 * @jd: The journal 1796 * 1797 */ 1798 1799 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 1800 { 1801 struct gfs2_journal_extent *jext; 1802 1803 while(!list_empty(&jd->extent_list)) { 1804 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 1805 list_del(&jext->list); 1806 kfree(jext); 1807 } 1808 } 1809 1810 /** 1811 * gfs2_add_jextent - Add or merge a new extent to extent cache 1812 * @jd: The journal descriptor 1813 * @lblock: The logical block at start of new extent 1814 * @dblock: The physical block at start of new extent 1815 * @blocks: Size of extent in fs blocks 1816 * 1817 * Returns: 0 on success or -ENOMEM 1818 */ 1819 1820 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 1821 { 1822 struct gfs2_journal_extent *jext; 1823 1824 if (!list_empty(&jd->extent_list)) { 1825 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 1826 if ((jext->dblock + jext->blocks) == dblock) { 1827 jext->blocks += blocks; 1828 return 0; 1829 } 1830 } 1831 1832 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 1833 if (jext == NULL) 1834 return -ENOMEM; 1835 jext->dblock = dblock; 1836 jext->lblock = lblock; 1837 jext->blocks = blocks; 1838 list_add_tail(&jext->list, &jd->extent_list); 1839 jd->nr_extents++; 1840 return 0; 1841 } 1842 1843 /** 1844 * gfs2_map_journal_extents - Cache journal bmap info 1845 * @sdp: The super block 1846 * @jd: The journal to map 1847 * 1848 * Create a reusable "extent" mapping from all logical 1849 * blocks to all physical blocks for the given journal. This will save 1850 * us time when writing journal blocks. Most journals will have only one 1851 * extent that maps all their logical blocks. That's because gfs2.mkfs 1852 * arranges the journal blocks sequentially to maximize performance. 1853 * So the extent would map the first block for the entire file length. 1854 * However, gfs2_jadd can happen while file activity is happening, so 1855 * those journals may not be sequential. Less likely is the case where 1856 * the users created their own journals by mounting the metafs and 1857 * laying it out. But it's still possible. These journals might have 1858 * several extents. 1859 * 1860 * Returns: 0 on success, or error on failure 1861 */ 1862 1863 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 1864 { 1865 u64 lblock = 0; 1866 u64 lblock_stop; 1867 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 1868 struct buffer_head bh; 1869 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 1870 u64 size; 1871 int rc; 1872 1873 lblock_stop = i_size_read(jd->jd_inode) >> shift; 1874 size = (lblock_stop - lblock) << shift; 1875 jd->nr_extents = 0; 1876 WARN_ON(!list_empty(&jd->extent_list)); 1877 1878 do { 1879 bh.b_state = 0; 1880 bh.b_blocknr = 0; 1881 bh.b_size = size; 1882 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 1883 if (rc || !buffer_mapped(&bh)) 1884 goto fail; 1885 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 1886 if (rc) 1887 goto fail; 1888 size -= bh.b_size; 1889 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 1890 } while(size > 0); 1891 1892 fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid, 1893 jd->nr_extents); 1894 return 0; 1895 1896 fail: 1897 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 1898 rc, jd->jd_jid, 1899 (unsigned long long)(i_size_read(jd->jd_inode) - size), 1900 jd->nr_extents); 1901 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 1902 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 1903 bh.b_state, (unsigned long long)bh.b_size); 1904 gfs2_free_journal_extents(jd); 1905 return rc; 1906 } 1907 1908 /** 1909 * gfs2_write_alloc_required - figure out if a write will require an allocation 1910 * @ip: the file being written to 1911 * @offset: the offset to write to 1912 * @len: the number of bytes being written 1913 * 1914 * Returns: 1 if an alloc is required, 0 otherwise 1915 */ 1916 1917 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 1918 unsigned int len) 1919 { 1920 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1921 struct buffer_head bh; 1922 unsigned int shift; 1923 u64 lblock, lblock_stop, size; 1924 u64 end_of_file; 1925 1926 if (!len) 1927 return 0; 1928 1929 if (gfs2_is_stuffed(ip)) { 1930 if (offset + len > gfs2_max_stuffed_size(ip)) 1931 return 1; 1932 return 0; 1933 } 1934 1935 shift = sdp->sd_sb.sb_bsize_shift; 1936 BUG_ON(gfs2_is_dir(ip)); 1937 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 1938 lblock = offset >> shift; 1939 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 1940 if (lblock_stop > end_of_file) 1941 return 1; 1942 1943 size = (lblock_stop - lblock) << shift; 1944 do { 1945 bh.b_state = 0; 1946 bh.b_size = size; 1947 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 1948 if (!buffer_mapped(&bh)) 1949 return 1; 1950 size -= bh.b_size; 1951 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 1952 } while(size > 0); 1953 1954 return 0; 1955 } 1956 1957 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 1958 { 1959 struct gfs2_inode *ip = GFS2_I(inode); 1960 struct buffer_head *dibh; 1961 int error; 1962 1963 if (offset >= inode->i_size) 1964 return 0; 1965 if (offset + length > inode->i_size) 1966 length = inode->i_size - offset; 1967 1968 error = gfs2_meta_inode_buffer(ip, &dibh); 1969 if (error) 1970 return error; 1971 gfs2_trans_add_meta(ip->i_gl, dibh); 1972 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 1973 length); 1974 brelse(dibh); 1975 return 0; 1976 } 1977 1978 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 1979 loff_t length) 1980 { 1981 struct gfs2_sbd *sdp = GFS2_SB(inode); 1982 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1983 int error; 1984 1985 while (length) { 1986 struct gfs2_trans *tr; 1987 loff_t chunk; 1988 unsigned int offs; 1989 1990 chunk = length; 1991 if (chunk > max_chunk) 1992 chunk = max_chunk; 1993 1994 offs = offset & ~PAGE_MASK; 1995 if (offs && chunk > PAGE_SIZE) 1996 chunk = offs + ((chunk - offs) & PAGE_MASK); 1997 1998 truncate_pagecache_range(inode, offset, chunk); 1999 offset += chunk; 2000 length -= chunk; 2001 2002 tr = current->journal_info; 2003 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2004 continue; 2005 2006 gfs2_trans_end(sdp); 2007 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2008 if (error) 2009 return error; 2010 } 2011 return 0; 2012 } 2013 2014 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2015 { 2016 struct inode *inode = file_inode(file); 2017 struct gfs2_inode *ip = GFS2_I(inode); 2018 struct gfs2_sbd *sdp = GFS2_SB(inode); 2019 int error; 2020 2021 if (gfs2_is_jdata(ip)) 2022 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2023 GFS2_JTRUNC_REVOKES); 2024 else 2025 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2026 if (error) 2027 return error; 2028 2029 if (gfs2_is_stuffed(ip)) { 2030 error = stuffed_zero_range(inode, offset, length); 2031 if (error) 2032 goto out; 2033 } else { 2034 unsigned int start_off, end_off, blocksize; 2035 2036 blocksize = i_blocksize(inode); 2037 start_off = offset & (blocksize - 1); 2038 end_off = (offset + length) & (blocksize - 1); 2039 if (start_off) { 2040 unsigned int len = length; 2041 if (length > blocksize - start_off) 2042 len = blocksize - start_off; 2043 error = gfs2_block_zero_range(inode, offset, len); 2044 if (error) 2045 goto out; 2046 if (start_off + length < blocksize) 2047 end_off = 0; 2048 } 2049 if (end_off) { 2050 error = gfs2_block_zero_range(inode, 2051 offset + length - end_off, end_off); 2052 if (error) 2053 goto out; 2054 } 2055 } 2056 2057 if (gfs2_is_jdata(ip)) { 2058 BUG_ON(!current->journal_info); 2059 gfs2_journaled_truncate_range(inode, offset, length); 2060 } else 2061 truncate_pagecache_range(inode, offset, offset + length - 1); 2062 2063 file_update_time(file); 2064 mark_inode_dirty(inode); 2065 2066 if (current->journal_info) 2067 gfs2_trans_end(sdp); 2068 2069 if (!gfs2_is_stuffed(ip)) 2070 error = punch_hole(ip, offset, length); 2071 2072 out: 2073 if (current->journal_info) 2074 gfs2_trans_end(sdp); 2075 return error; 2076 } 2077