xref: /openbmc/linux/fs/gfs2/bmap.c (revision 3a83e4e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	struct buffer_head *bh;
60 	int release = 0;
61 
62 	if (!page || page->index) {
63 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
64 		if (!page)
65 			return -ENOMEM;
66 		release = 1;
67 	}
68 
69 	if (!PageUptodate(page)) {
70 		void *kaddr = kmap(page);
71 		u64 dsize = i_size_read(inode);
72 
73 		if (dsize > gfs2_max_stuffed_size(ip))
74 			dsize = gfs2_max_stuffed_size(ip);
75 
76 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
77 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
78 		kunmap(page);
79 
80 		SetPageUptodate(page);
81 	}
82 
83 	if (!page_has_buffers(page))
84 		create_empty_buffers(page, BIT(inode->i_blkbits),
85 				     BIT(BH_Uptodate));
86 
87 	bh = page_buffers(page);
88 
89 	if (!buffer_mapped(bh))
90 		map_bh(bh, inode->i_sb, block);
91 
92 	set_buffer_uptodate(bh);
93 	if (gfs2_is_jdata(ip))
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	else {
96 		mark_buffer_dirty(bh);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (hgt) {
532 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
533 				goto lower_metapath;
534 		} else {
535 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
536 				break;
537 		}
538 
539 fill_up_metapath:
540 		/* Increase height of metapath. */
541 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
542 		if (ret < 0)
543 			return ret;
544 		hgt += ret;
545 		for (; ret; ret--)
546 			do_div(factor, sdp->sd_inptrs);
547 		mp->mp_aheight = hgt + 1;
548 	}
549 	return 0;
550 }
551 
552 static enum walker_status gfs2_hole_walker(struct metapath *mp,
553 					   unsigned int ptrs)
554 {
555 	const __be64 *start, *ptr, *end;
556 	unsigned int hgt;
557 
558 	hgt = mp->mp_aheight - 1;
559 	start = metapointer(hgt, mp);
560 	end = start + ptrs;
561 
562 	for (ptr = start; ptr < end; ptr++) {
563 		if (*ptr) {
564 			mp->mp_list[hgt] += ptr - start;
565 			if (mp->mp_aheight == mp->mp_fheight)
566 				return WALK_STOP;
567 			return WALK_FOLLOW;
568 		}
569 	}
570 	return WALK_CONTINUE;
571 }
572 
573 /**
574  * gfs2_hole_size - figure out the size of a hole
575  * @inode: The inode
576  * @lblock: The logical starting block number
577  * @len: How far to look (in blocks)
578  * @mp: The metapath at lblock
579  * @iomap: The iomap to store the hole size in
580  *
581  * This function modifies @mp.
582  *
583  * Returns: errno on error
584  */
585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
586 			  struct metapath *mp, struct iomap *iomap)
587 {
588 	struct metapath clone;
589 	u64 hole_size;
590 	int ret;
591 
592 	clone_metapath(&clone, mp);
593 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
594 	if (ret < 0)
595 		goto out;
596 
597 	if (ret == 1)
598 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
599 	else
600 		hole_size = len;
601 	iomap->length = hole_size << inode->i_blkbits;
602 	ret = 0;
603 
604 out:
605 	release_metapath(&clone);
606 	return ret;
607 }
608 
609 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
610 					 struct gfs2_glock *gl, unsigned int i,
611 					 unsigned offset, u64 bn)
612 {
613 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
614 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
615 				 sizeof(struct gfs2_dinode)));
616 	BUG_ON(i < 1);
617 	BUG_ON(mp->mp_bh[i] != NULL);
618 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
619 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
620 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
621 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
622 	ptr += offset;
623 	*ptr = cpu_to_be64(bn);
624 	return ptr;
625 }
626 
627 enum alloc_state {
628 	ALLOC_DATA = 0,
629 	ALLOC_GROW_DEPTH = 1,
630 	ALLOC_GROW_HEIGHT = 2,
631 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
632 };
633 
634 /**
635  * gfs2_iomap_alloc - Build a metadata tree of the requested height
636  * @inode: The GFS2 inode
637  * @iomap: The iomap structure
638  * @mp: The metapath, with proper height information calculated
639  *
640  * In this routine we may have to alloc:
641  *   i) Indirect blocks to grow the metadata tree height
642  *  ii) Indirect blocks to fill in lower part of the metadata tree
643  * iii) Data blocks
644  *
645  * This function is called after gfs2_iomap_get, which works out the
646  * total number of blocks which we need via gfs2_alloc_size.
647  *
648  * We then do the actual allocation asking for an extent at a time (if
649  * enough contiguous free blocks are available, there will only be one
650  * allocation request per call) and uses the state machine to initialise
651  * the blocks in order.
652  *
653  * Right now, this function will allocate at most one indirect block
654  * worth of data -- with a default block size of 4K, that's slightly
655  * less than 2M.  If this limitation is ever removed to allow huge
656  * allocations, we would probably still want to limit the iomap size we
657  * return to avoid stalling other tasks during huge writes; the next
658  * iomap iteration would then find the blocks already allocated.
659  *
660  * Returns: errno on error
661  */
662 
663 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
664 			    struct metapath *mp)
665 {
666 	struct gfs2_inode *ip = GFS2_I(inode);
667 	struct gfs2_sbd *sdp = GFS2_SB(inode);
668 	struct buffer_head *dibh = mp->mp_bh[0];
669 	u64 bn;
670 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
671 	size_t dblks = iomap->length >> inode->i_blkbits;
672 	const unsigned end_of_metadata = mp->mp_fheight - 1;
673 	int ret;
674 	enum alloc_state state;
675 	__be64 *ptr;
676 	__be64 zero_bn = 0;
677 
678 	BUG_ON(mp->mp_aheight < 1);
679 	BUG_ON(dibh == NULL);
680 	BUG_ON(dblks < 1);
681 
682 	gfs2_trans_add_meta(ip->i_gl, dibh);
683 
684 	down_write(&ip->i_rw_mutex);
685 
686 	if (mp->mp_fheight == mp->mp_aheight) {
687 		/* Bottom indirect block exists */
688 		state = ALLOC_DATA;
689 	} else {
690 		/* Need to allocate indirect blocks */
691 		if (mp->mp_fheight == ip->i_height) {
692 			/* Writing into existing tree, extend tree down */
693 			iblks = mp->mp_fheight - mp->mp_aheight;
694 			state = ALLOC_GROW_DEPTH;
695 		} else {
696 			/* Building up tree height */
697 			state = ALLOC_GROW_HEIGHT;
698 			iblks = mp->mp_fheight - ip->i_height;
699 			branch_start = metapath_branch_start(mp);
700 			iblks += (mp->mp_fheight - branch_start);
701 		}
702 	}
703 
704 	/* start of the second part of the function (state machine) */
705 
706 	blks = dblks + iblks;
707 	i = mp->mp_aheight;
708 	do {
709 		n = blks - alloced;
710 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
711 		if (ret)
712 			goto out;
713 		alloced += n;
714 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
715 			gfs2_trans_remove_revoke(sdp, bn, n);
716 		switch (state) {
717 		/* Growing height of tree */
718 		case ALLOC_GROW_HEIGHT:
719 			if (i == 1) {
720 				ptr = (__be64 *)(dibh->b_data +
721 						 sizeof(struct gfs2_dinode));
722 				zero_bn = *ptr;
723 			}
724 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
725 			     i++, n--)
726 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
727 			if (i - 1 == mp->mp_fheight - ip->i_height) {
728 				i--;
729 				gfs2_buffer_copy_tail(mp->mp_bh[i],
730 						sizeof(struct gfs2_meta_header),
731 						dibh, sizeof(struct gfs2_dinode));
732 				gfs2_buffer_clear_tail(dibh,
733 						sizeof(struct gfs2_dinode) +
734 						sizeof(__be64));
735 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
736 					sizeof(struct gfs2_meta_header));
737 				*ptr = zero_bn;
738 				state = ALLOC_GROW_DEPTH;
739 				for(i = branch_start; i < mp->mp_fheight; i++) {
740 					if (mp->mp_bh[i] == NULL)
741 						break;
742 					brelse(mp->mp_bh[i]);
743 					mp->mp_bh[i] = NULL;
744 				}
745 				i = branch_start;
746 			}
747 			if (n == 0)
748 				break;
749 			fallthrough;	/* To branching from existing tree */
750 		case ALLOC_GROW_DEPTH:
751 			if (i > 1 && i < mp->mp_fheight)
752 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
753 			for (; i < mp->mp_fheight && n > 0; i++, n--)
754 				gfs2_indirect_init(mp, ip->i_gl, i,
755 						   mp->mp_list[i-1], bn++);
756 			if (i == mp->mp_fheight)
757 				state = ALLOC_DATA;
758 			if (n == 0)
759 				break;
760 			fallthrough;	/* To tree complete, adding data blocks */
761 		case ALLOC_DATA:
762 			BUG_ON(n > dblks);
763 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
764 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
765 			dblks = n;
766 			ptr = metapointer(end_of_metadata, mp);
767 			iomap->addr = bn << inode->i_blkbits;
768 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
769 			while (n-- > 0)
770 				*ptr++ = cpu_to_be64(bn++);
771 			break;
772 		}
773 	} while (iomap->addr == IOMAP_NULL_ADDR);
774 
775 	iomap->type = IOMAP_MAPPED;
776 	iomap->length = (u64)dblks << inode->i_blkbits;
777 	ip->i_height = mp->mp_fheight;
778 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
779 	gfs2_dinode_out(ip, dibh->b_data);
780 out:
781 	up_write(&ip->i_rw_mutex);
782 	return ret;
783 }
784 
785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
786 
787 /**
788  * gfs2_alloc_size - Compute the maximum allocation size
789  * @inode: The inode
790  * @mp: The metapath
791  * @size: Requested size in blocks
792  *
793  * Compute the maximum size of the next allocation at @mp.
794  *
795  * Returns: size in blocks
796  */
797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
798 {
799 	struct gfs2_inode *ip = GFS2_I(inode);
800 	struct gfs2_sbd *sdp = GFS2_SB(inode);
801 	const __be64 *first, *ptr, *end;
802 
803 	/*
804 	 * For writes to stuffed files, this function is called twice via
805 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
806 	 * first time needs to be large enough to get the reservation and
807 	 * allocation sizes right.  The size we return the second time must
808 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
809 	 */
810 
811 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
812 		unsigned int maxsize = mp->mp_fheight > 1 ?
813 			sdp->sd_inptrs : sdp->sd_diptrs;
814 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
815 		if (size > maxsize)
816 			size = maxsize;
817 		return size;
818 	}
819 
820 	first = metapointer(ip->i_height - 1, mp);
821 	end = metaend(ip->i_height - 1, mp);
822 	if (end - first > size)
823 		end = first + size;
824 	for (ptr = first; ptr < end; ptr++) {
825 		if (*ptr)
826 			break;
827 	}
828 	return ptr - first;
829 }
830 
831 /**
832  * gfs2_iomap_get - Map blocks from an inode to disk blocks
833  * @inode: The inode
834  * @pos: Starting position in bytes
835  * @length: Length to map, in bytes
836  * @flags: iomap flags
837  * @iomap: The iomap structure
838  * @mp: The metapath
839  *
840  * Returns: errno
841  */
842 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
843 			  unsigned flags, struct iomap *iomap,
844 			  struct metapath *mp)
845 {
846 	struct gfs2_inode *ip = GFS2_I(inode);
847 	struct gfs2_sbd *sdp = GFS2_SB(inode);
848 	loff_t size = i_size_read(inode);
849 	__be64 *ptr;
850 	sector_t lblock;
851 	sector_t lblock_stop;
852 	int ret;
853 	int eob;
854 	u64 len;
855 	struct buffer_head *dibh = NULL, *bh;
856 	u8 height;
857 
858 	if (!length)
859 		return -EINVAL;
860 
861 	down_read(&ip->i_rw_mutex);
862 
863 	ret = gfs2_meta_inode_buffer(ip, &dibh);
864 	if (ret)
865 		goto unlock;
866 	mp->mp_bh[0] = dibh;
867 
868 	if (gfs2_is_stuffed(ip)) {
869 		if (flags & IOMAP_WRITE) {
870 			loff_t max_size = gfs2_max_stuffed_size(ip);
871 
872 			if (pos + length > max_size)
873 				goto unstuff;
874 			iomap->length = max_size;
875 		} else {
876 			if (pos >= size) {
877 				if (flags & IOMAP_REPORT) {
878 					ret = -ENOENT;
879 					goto unlock;
880 				} else {
881 					iomap->offset = pos;
882 					iomap->length = length;
883 					goto hole_found;
884 				}
885 			}
886 			iomap->length = size;
887 		}
888 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
889 			      sizeof(struct gfs2_dinode);
890 		iomap->type = IOMAP_INLINE;
891 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
892 		goto out;
893 	}
894 
895 unstuff:
896 	lblock = pos >> inode->i_blkbits;
897 	iomap->offset = lblock << inode->i_blkbits;
898 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
899 	len = lblock_stop - lblock + 1;
900 	iomap->length = len << inode->i_blkbits;
901 
902 	height = ip->i_height;
903 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
904 		height++;
905 	find_metapath(sdp, lblock, mp, height);
906 	if (height > ip->i_height || gfs2_is_stuffed(ip))
907 		goto do_alloc;
908 
909 	ret = lookup_metapath(ip, mp);
910 	if (ret)
911 		goto unlock;
912 
913 	if (mp->mp_aheight != ip->i_height)
914 		goto do_alloc;
915 
916 	ptr = metapointer(ip->i_height - 1, mp);
917 	if (*ptr == 0)
918 		goto do_alloc;
919 
920 	bh = mp->mp_bh[ip->i_height - 1];
921 	len = gfs2_extent_length(bh, ptr, len, &eob);
922 
923 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
924 	iomap->length = len << inode->i_blkbits;
925 	iomap->type = IOMAP_MAPPED;
926 	iomap->flags |= IOMAP_F_MERGED;
927 	if (eob)
928 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
929 
930 out:
931 	iomap->bdev = inode->i_sb->s_bdev;
932 unlock:
933 	up_read(&ip->i_rw_mutex);
934 	return ret;
935 
936 do_alloc:
937 	if (flags & IOMAP_REPORT) {
938 		if (pos >= size)
939 			ret = -ENOENT;
940 		else if (height == ip->i_height)
941 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
942 		else
943 			iomap->length = size - pos;
944 	} else if (flags & IOMAP_WRITE) {
945 		u64 alloc_size;
946 
947 		if (flags & IOMAP_DIRECT)
948 			goto out;  /* (see gfs2_file_direct_write) */
949 
950 		len = gfs2_alloc_size(inode, mp, len);
951 		alloc_size = len << inode->i_blkbits;
952 		if (alloc_size < iomap->length)
953 			iomap->length = alloc_size;
954 	} else {
955 		if (pos < size && height == ip->i_height)
956 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
957 	}
958 hole_found:
959 	iomap->addr = IOMAP_NULL_ADDR;
960 	iomap->type = IOMAP_HOLE;
961 	goto out;
962 }
963 
964 /**
965  * gfs2_lblk_to_dblk - convert logical block to disk block
966  * @inode: the inode of the file we're mapping
967  * @lblock: the block relative to the start of the file
968  * @dblock: the returned dblock, if no error
969  *
970  * This function maps a single block from a file logical block (relative to
971  * the start of the file) to a file system absolute block using iomap.
972  *
973  * Returns: the absolute file system block, or an error
974  */
975 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
976 {
977 	struct iomap iomap = { };
978 	struct metapath mp = { .mp_aheight = 1, };
979 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
980 	int ret;
981 
982 	ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
983 	release_metapath(&mp);
984 	if (ret == 0)
985 		*dblock = iomap.addr >> inode->i_blkbits;
986 
987 	return ret;
988 }
989 
990 static int gfs2_write_lock(struct inode *inode)
991 {
992 	struct gfs2_inode *ip = GFS2_I(inode);
993 	struct gfs2_sbd *sdp = GFS2_SB(inode);
994 	int error;
995 
996 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
997 	error = gfs2_glock_nq(&ip->i_gh);
998 	if (error)
999 		goto out_uninit;
1000 	if (&ip->i_inode == sdp->sd_rindex) {
1001 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1002 
1003 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1004 					   GL_NOCACHE, &m_ip->i_gh);
1005 		if (error)
1006 			goto out_unlock;
1007 	}
1008 	return 0;
1009 
1010 out_unlock:
1011 	gfs2_glock_dq(&ip->i_gh);
1012 out_uninit:
1013 	gfs2_holder_uninit(&ip->i_gh);
1014 	return error;
1015 }
1016 
1017 static void gfs2_write_unlock(struct inode *inode)
1018 {
1019 	struct gfs2_inode *ip = GFS2_I(inode);
1020 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1021 
1022 	if (&ip->i_inode == sdp->sd_rindex) {
1023 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1024 
1025 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1026 	}
1027 	gfs2_glock_dq_uninit(&ip->i_gh);
1028 }
1029 
1030 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1031 				   unsigned len, struct iomap *iomap)
1032 {
1033 	unsigned int blockmask = i_blocksize(inode) - 1;
1034 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1035 	unsigned int blocks;
1036 
1037 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1038 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1039 }
1040 
1041 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1042 				 unsigned copied, struct page *page,
1043 				 struct iomap *iomap)
1044 {
1045 	struct gfs2_trans *tr = current->journal_info;
1046 	struct gfs2_inode *ip = GFS2_I(inode);
1047 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1048 
1049 	if (page && !gfs2_is_stuffed(ip))
1050 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1051 
1052 	if (tr->tr_num_buf_new)
1053 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1054 
1055 	gfs2_trans_end(sdp);
1056 }
1057 
1058 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1059 	.page_prepare = gfs2_iomap_page_prepare,
1060 	.page_done = gfs2_iomap_page_done,
1061 };
1062 
1063 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1064 				  loff_t length, unsigned flags,
1065 				  struct iomap *iomap,
1066 				  struct metapath *mp)
1067 {
1068 	struct gfs2_inode *ip = GFS2_I(inode);
1069 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1070 	bool unstuff;
1071 	int ret;
1072 
1073 	unstuff = gfs2_is_stuffed(ip) &&
1074 		  pos + length > gfs2_max_stuffed_size(ip);
1075 
1076 	if (unstuff || iomap->type == IOMAP_HOLE) {
1077 		unsigned int data_blocks, ind_blocks;
1078 		struct gfs2_alloc_parms ap = {};
1079 		unsigned int rblocks;
1080 		struct gfs2_trans *tr;
1081 
1082 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1083 				       &ind_blocks);
1084 		ap.target = data_blocks + ind_blocks;
1085 		ret = gfs2_quota_lock_check(ip, &ap);
1086 		if (ret)
1087 			return ret;
1088 
1089 		ret = gfs2_inplace_reserve(ip, &ap);
1090 		if (ret)
1091 			goto out_qunlock;
1092 
1093 		rblocks = RES_DINODE + ind_blocks;
1094 		if (gfs2_is_jdata(ip))
1095 			rblocks += data_blocks;
1096 		if (ind_blocks || data_blocks)
1097 			rblocks += RES_STATFS + RES_QUOTA;
1098 		if (inode == sdp->sd_rindex)
1099 			rblocks += 2 * RES_STATFS;
1100 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1101 
1102 		ret = gfs2_trans_begin(sdp, rblocks,
1103 				       iomap->length >> inode->i_blkbits);
1104 		if (ret)
1105 			goto out_trans_fail;
1106 
1107 		if (unstuff) {
1108 			ret = gfs2_unstuff_dinode(ip, NULL);
1109 			if (ret)
1110 				goto out_trans_end;
1111 			release_metapath(mp);
1112 			ret = gfs2_iomap_get(inode, iomap->offset,
1113 					     iomap->length, flags, iomap, mp);
1114 			if (ret)
1115 				goto out_trans_end;
1116 		}
1117 
1118 		if (iomap->type == IOMAP_HOLE) {
1119 			ret = gfs2_iomap_alloc(inode, iomap, mp);
1120 			if (ret) {
1121 				gfs2_trans_end(sdp);
1122 				gfs2_inplace_release(ip);
1123 				punch_hole(ip, iomap->offset, iomap->length);
1124 				goto out_qunlock;
1125 			}
1126 		}
1127 
1128 		tr = current->journal_info;
1129 		if (tr->tr_num_buf_new)
1130 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1131 
1132 		gfs2_trans_end(sdp);
1133 	}
1134 
1135 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1136 		iomap->page_ops = &gfs2_iomap_page_ops;
1137 	return 0;
1138 
1139 out_trans_end:
1140 	gfs2_trans_end(sdp);
1141 out_trans_fail:
1142 	gfs2_inplace_release(ip);
1143 out_qunlock:
1144 	gfs2_quota_unlock(ip);
1145 	return ret;
1146 }
1147 
1148 static inline bool gfs2_iomap_need_write_lock(unsigned flags)
1149 {
1150 	return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT);
1151 }
1152 
1153 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1154 			    unsigned flags, struct iomap *iomap,
1155 			    struct iomap *srcmap)
1156 {
1157 	struct gfs2_inode *ip = GFS2_I(inode);
1158 	struct metapath mp = { .mp_aheight = 1, };
1159 	int ret;
1160 
1161 	iomap->flags |= IOMAP_F_BUFFER_HEAD;
1162 
1163 	trace_gfs2_iomap_start(ip, pos, length, flags);
1164 	if (gfs2_iomap_need_write_lock(flags)) {
1165 		ret = gfs2_write_lock(inode);
1166 		if (ret)
1167 			goto out;
1168 	}
1169 
1170 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1171 	if (ret)
1172 		goto out_unlock;
1173 
1174 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1175 	case IOMAP_WRITE:
1176 		if (flags & IOMAP_DIRECT) {
1177 			/*
1178 			 * Silently fall back to buffered I/O for stuffed files
1179 			 * or if we've got a hole (see gfs2_file_direct_write).
1180 			 */
1181 			if (iomap->type != IOMAP_MAPPED)
1182 				ret = -ENOTBLK;
1183 			goto out_unlock;
1184 		}
1185 		break;
1186 	case IOMAP_ZERO:
1187 		if (iomap->type == IOMAP_HOLE)
1188 			goto out_unlock;
1189 		break;
1190 	default:
1191 		goto out_unlock;
1192 	}
1193 
1194 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1195 
1196 out_unlock:
1197 	if (ret && gfs2_iomap_need_write_lock(flags))
1198 		gfs2_write_unlock(inode);
1199 	release_metapath(&mp);
1200 out:
1201 	trace_gfs2_iomap_end(ip, iomap, ret);
1202 	return ret;
1203 }
1204 
1205 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1206 			  ssize_t written, unsigned flags, struct iomap *iomap)
1207 {
1208 	struct gfs2_inode *ip = GFS2_I(inode);
1209 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1210 
1211 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1212 	case IOMAP_WRITE:
1213 		if (flags & IOMAP_DIRECT)
1214 			return 0;
1215 		break;
1216 	case IOMAP_ZERO:
1217 		 if (iomap->type == IOMAP_HOLE)
1218 			 return 0;
1219 		 break;
1220 	default:
1221 		 return 0;
1222 	}
1223 
1224 	if (!gfs2_is_stuffed(ip))
1225 		gfs2_ordered_add_inode(ip);
1226 
1227 	if (inode == sdp->sd_rindex)
1228 		adjust_fs_space(inode);
1229 
1230 	gfs2_inplace_release(ip);
1231 
1232 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1233 		/* Deallocate blocks that were just allocated. */
1234 		loff_t blockmask = i_blocksize(inode) - 1;
1235 		loff_t end = (pos + length) & ~blockmask;
1236 
1237 		pos = (pos + written + blockmask) & ~blockmask;
1238 		if (pos < end) {
1239 			truncate_pagecache_range(inode, pos, end - 1);
1240 			punch_hole(ip, pos, end - pos);
1241 		}
1242 	}
1243 
1244 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1245 		gfs2_quota_unlock(ip);
1246 
1247 	if (unlikely(!written))
1248 		goto out_unlock;
1249 
1250 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1251 		mark_inode_dirty(inode);
1252 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1253 
1254 out_unlock:
1255 	if (gfs2_iomap_need_write_lock(flags))
1256 		gfs2_write_unlock(inode);
1257 	return 0;
1258 }
1259 
1260 const struct iomap_ops gfs2_iomap_ops = {
1261 	.iomap_begin = gfs2_iomap_begin,
1262 	.iomap_end = gfs2_iomap_end,
1263 };
1264 
1265 /**
1266  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1267  * @inode: The inode
1268  * @lblock: The logical block number
1269  * @bh_map: The bh to be mapped
1270  * @create: True if its ok to alloc blocks to satify the request
1271  *
1272  * The size of the requested mapping is defined in bh_map->b_size.
1273  *
1274  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1275  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1276  * bh_map->b_size to indicate the size of the mapping when @lblock and
1277  * successive blocks are mapped, up to the requested size.
1278  *
1279  * Sets buffer_boundary() if a read of metadata will be required
1280  * before the next block can be mapped. Sets buffer_new() if new
1281  * blocks were allocated.
1282  *
1283  * Returns: errno
1284  */
1285 
1286 int gfs2_block_map(struct inode *inode, sector_t lblock,
1287 		   struct buffer_head *bh_map, int create)
1288 {
1289 	struct gfs2_inode *ip = GFS2_I(inode);
1290 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1291 	loff_t length = bh_map->b_size;
1292 	struct metapath mp = { .mp_aheight = 1, };
1293 	struct iomap iomap = { };
1294 	int ret;
1295 
1296 	clear_buffer_mapped(bh_map);
1297 	clear_buffer_new(bh_map);
1298 	clear_buffer_boundary(bh_map);
1299 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1300 
1301 	if (create) {
1302 		ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1303 		if (!ret && iomap.type == IOMAP_HOLE)
1304 			ret = gfs2_iomap_alloc(inode, &iomap, &mp);
1305 		release_metapath(&mp);
1306 	} else {
1307 		ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1308 		release_metapath(&mp);
1309 	}
1310 	if (ret)
1311 		goto out;
1312 
1313 	if (iomap.length > bh_map->b_size) {
1314 		iomap.length = bh_map->b_size;
1315 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1316 	}
1317 	if (iomap.addr != IOMAP_NULL_ADDR)
1318 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1319 	bh_map->b_size = iomap.length;
1320 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1321 		set_buffer_boundary(bh_map);
1322 	if (iomap.flags & IOMAP_F_NEW)
1323 		set_buffer_new(bh_map);
1324 
1325 out:
1326 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1327 	return ret;
1328 }
1329 
1330 /*
1331  * Deprecated: do not use in new code
1332  */
1333 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1334 {
1335 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1336 	int ret;
1337 	int create = *new;
1338 
1339 	BUG_ON(!extlen);
1340 	BUG_ON(!dblock);
1341 	BUG_ON(!new);
1342 
1343 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1344 	ret = gfs2_block_map(inode, lblock, &bh, create);
1345 	*extlen = bh.b_size >> inode->i_blkbits;
1346 	*dblock = bh.b_blocknr;
1347 	if (buffer_new(&bh))
1348 		*new = 1;
1349 	else
1350 		*new = 0;
1351 	return ret;
1352 }
1353 
1354 /*
1355  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1356  * uses iomap write to perform its actions, which begin their own transactions
1357  * (iomap_begin, page_prepare, etc.)
1358  */
1359 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1360 				 unsigned int length)
1361 {
1362 	BUG_ON(current->journal_info);
1363 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1364 }
1365 
1366 #define GFS2_JTRUNC_REVOKES 8192
1367 
1368 /**
1369  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1370  * @inode: The inode being truncated
1371  * @oldsize: The original (larger) size
1372  * @newsize: The new smaller size
1373  *
1374  * With jdata files, we have to journal a revoke for each block which is
1375  * truncated. As a result, we need to split this into separate transactions
1376  * if the number of pages being truncated gets too large.
1377  */
1378 
1379 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1380 {
1381 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1382 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1383 	u64 chunk;
1384 	int error;
1385 
1386 	while (oldsize != newsize) {
1387 		struct gfs2_trans *tr;
1388 		unsigned int offs;
1389 
1390 		chunk = oldsize - newsize;
1391 		if (chunk > max_chunk)
1392 			chunk = max_chunk;
1393 
1394 		offs = oldsize & ~PAGE_MASK;
1395 		if (offs && chunk > PAGE_SIZE)
1396 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1397 
1398 		truncate_pagecache(inode, oldsize - chunk);
1399 		oldsize -= chunk;
1400 
1401 		tr = current->journal_info;
1402 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1403 			continue;
1404 
1405 		gfs2_trans_end(sdp);
1406 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1407 		if (error)
1408 			return error;
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 static int trunc_start(struct inode *inode, u64 newsize)
1415 {
1416 	struct gfs2_inode *ip = GFS2_I(inode);
1417 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1418 	struct buffer_head *dibh = NULL;
1419 	int journaled = gfs2_is_jdata(ip);
1420 	u64 oldsize = inode->i_size;
1421 	int error;
1422 
1423 	if (!gfs2_is_stuffed(ip)) {
1424 		unsigned int blocksize = i_blocksize(inode);
1425 		unsigned int offs = newsize & (blocksize - 1);
1426 		if (offs) {
1427 			error = gfs2_block_zero_range(inode, newsize,
1428 						      blocksize - offs);
1429 			if (error)
1430 				return error;
1431 		}
1432 	}
1433 	if (journaled)
1434 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1435 	else
1436 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1437 	if (error)
1438 		return error;
1439 
1440 	error = gfs2_meta_inode_buffer(ip, &dibh);
1441 	if (error)
1442 		goto out;
1443 
1444 	gfs2_trans_add_meta(ip->i_gl, dibh);
1445 
1446 	if (gfs2_is_stuffed(ip))
1447 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1448 	else
1449 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1450 
1451 	i_size_write(inode, newsize);
1452 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1453 	gfs2_dinode_out(ip, dibh->b_data);
1454 
1455 	if (journaled)
1456 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1457 	else
1458 		truncate_pagecache(inode, newsize);
1459 
1460 out:
1461 	brelse(dibh);
1462 	if (current->journal_info)
1463 		gfs2_trans_end(sdp);
1464 	return error;
1465 }
1466 
1467 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1468 			 struct iomap *iomap)
1469 {
1470 	struct metapath mp = { .mp_aheight = 1, };
1471 	int ret;
1472 
1473 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1474 	if (!ret && iomap->type == IOMAP_HOLE)
1475 		ret = gfs2_iomap_alloc(inode, iomap, &mp);
1476 	release_metapath(&mp);
1477 	return ret;
1478 }
1479 
1480 /**
1481  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1482  * @ip: inode
1483  * @rg_gh: holder of resource group glock
1484  * @bh: buffer head to sweep
1485  * @start: starting point in bh
1486  * @end: end point in bh
1487  * @meta: true if bh points to metadata (rather than data)
1488  * @btotal: place to keep count of total blocks freed
1489  *
1490  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1491  * free, and free them all. However, we do it one rgrp at a time. If this
1492  * block has references to multiple rgrps, we break it into individual
1493  * transactions. This allows other processes to use the rgrps while we're
1494  * focused on a single one, for better concurrency / performance.
1495  * At every transaction boundary, we rewrite the inode into the journal.
1496  * That way the bitmaps are kept consistent with the inode and we can recover
1497  * if we're interrupted by power-outages.
1498  *
1499  * Returns: 0, or return code if an error occurred.
1500  *          *btotal has the total number of blocks freed
1501  */
1502 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1503 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1504 			      bool meta, u32 *btotal)
1505 {
1506 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1507 	struct gfs2_rgrpd *rgd;
1508 	struct gfs2_trans *tr;
1509 	__be64 *p;
1510 	int blks_outside_rgrp;
1511 	u64 bn, bstart, isize_blks;
1512 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1513 	int ret = 0;
1514 	bool buf_in_tr = false; /* buffer was added to transaction */
1515 
1516 more_rgrps:
1517 	rgd = NULL;
1518 	if (gfs2_holder_initialized(rd_gh)) {
1519 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1520 		gfs2_assert_withdraw(sdp,
1521 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1522 	}
1523 	blks_outside_rgrp = 0;
1524 	bstart = 0;
1525 	blen = 0;
1526 
1527 	for (p = start; p < end; p++) {
1528 		if (!*p)
1529 			continue;
1530 		bn = be64_to_cpu(*p);
1531 
1532 		if (rgd) {
1533 			if (!rgrp_contains_block(rgd, bn)) {
1534 				blks_outside_rgrp++;
1535 				continue;
1536 			}
1537 		} else {
1538 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1539 			if (unlikely(!rgd)) {
1540 				ret = -EIO;
1541 				goto out;
1542 			}
1543 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1544 						 0, rd_gh);
1545 			if (ret)
1546 				goto out;
1547 
1548 			/* Must be done with the rgrp glock held: */
1549 			if (gfs2_rs_active(&ip->i_res) &&
1550 			    rgd == ip->i_res.rs_rbm.rgd)
1551 				gfs2_rs_deltree(&ip->i_res);
1552 		}
1553 
1554 		/* The size of our transactions will be unknown until we
1555 		   actually process all the metadata blocks that relate to
1556 		   the rgrp. So we estimate. We know it can't be more than
1557 		   the dinode's i_blocks and we don't want to exceed the
1558 		   journal flush threshold, sd_log_thresh2. */
1559 		if (current->journal_info == NULL) {
1560 			unsigned int jblocks_rqsted, revokes;
1561 
1562 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1563 				RES_INDIRECT;
1564 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1565 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1566 				jblocks_rqsted +=
1567 					atomic_read(&sdp->sd_log_thresh2);
1568 			else
1569 				jblocks_rqsted += isize_blks;
1570 			revokes = jblocks_rqsted;
1571 			if (meta)
1572 				revokes += end - start;
1573 			else if (ip->i_depth)
1574 				revokes += sdp->sd_inptrs;
1575 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1576 			if (ret)
1577 				goto out_unlock;
1578 			down_write(&ip->i_rw_mutex);
1579 		}
1580 		/* check if we will exceed the transaction blocks requested */
1581 		tr = current->journal_info;
1582 		if (tr->tr_num_buf_new + RES_STATFS +
1583 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1584 			/* We set blks_outside_rgrp to ensure the loop will
1585 			   be repeated for the same rgrp, but with a new
1586 			   transaction. */
1587 			blks_outside_rgrp++;
1588 			/* This next part is tricky. If the buffer was added
1589 			   to the transaction, we've already set some block
1590 			   pointers to 0, so we better follow through and free
1591 			   them, or we will introduce corruption (so break).
1592 			   This may be impossible, or at least rare, but I
1593 			   decided to cover the case regardless.
1594 
1595 			   If the buffer was not added to the transaction
1596 			   (this call), doing so would exceed our transaction
1597 			   size, so we need to end the transaction and start a
1598 			   new one (so goto). */
1599 
1600 			if (buf_in_tr)
1601 				break;
1602 			goto out_unlock;
1603 		}
1604 
1605 		gfs2_trans_add_meta(ip->i_gl, bh);
1606 		buf_in_tr = true;
1607 		*p = 0;
1608 		if (bstart + blen == bn) {
1609 			blen++;
1610 			continue;
1611 		}
1612 		if (bstart) {
1613 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1614 			(*btotal) += blen;
1615 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1616 		}
1617 		bstart = bn;
1618 		blen = 1;
1619 	}
1620 	if (bstart) {
1621 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1622 		(*btotal) += blen;
1623 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1624 	}
1625 out_unlock:
1626 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1627 					    outside the rgrp we just processed,
1628 					    do it all over again. */
1629 		if (current->journal_info) {
1630 			struct buffer_head *dibh;
1631 
1632 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1633 			if (ret)
1634 				goto out;
1635 
1636 			/* Every transaction boundary, we rewrite the dinode
1637 			   to keep its di_blocks current in case of failure. */
1638 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1639 				current_time(&ip->i_inode);
1640 			gfs2_trans_add_meta(ip->i_gl, dibh);
1641 			gfs2_dinode_out(ip, dibh->b_data);
1642 			brelse(dibh);
1643 			up_write(&ip->i_rw_mutex);
1644 			gfs2_trans_end(sdp);
1645 			buf_in_tr = false;
1646 		}
1647 		gfs2_glock_dq_uninit(rd_gh);
1648 		cond_resched();
1649 		goto more_rgrps;
1650 	}
1651 out:
1652 	return ret;
1653 }
1654 
1655 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1656 {
1657 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1658 		return false;
1659 	return true;
1660 }
1661 
1662 /**
1663  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1664  * @mp: starting metapath
1665  * @h: desired height to search
1666  *
1667  * Assumes the metapath is valid (with buffers) out to height h.
1668  * Returns: true if a non-null pointer was found in the metapath buffer
1669  *          false if all remaining pointers are NULL in the buffer
1670  */
1671 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1672 			     unsigned int h,
1673 			     __u16 *end_list, unsigned int end_aligned)
1674 {
1675 	struct buffer_head *bh = mp->mp_bh[h];
1676 	__be64 *first, *ptr, *end;
1677 
1678 	first = metaptr1(h, mp);
1679 	ptr = first + mp->mp_list[h];
1680 	end = (__be64 *)(bh->b_data + bh->b_size);
1681 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1682 		bool keep_end = h < end_aligned;
1683 		end = first + end_list[h] + keep_end;
1684 	}
1685 
1686 	while (ptr < end) {
1687 		if (*ptr) { /* if we have a non-null pointer */
1688 			mp->mp_list[h] = ptr - first;
1689 			h++;
1690 			if (h < GFS2_MAX_META_HEIGHT)
1691 				mp->mp_list[h] = 0;
1692 			return true;
1693 		}
1694 		ptr++;
1695 	}
1696 	return false;
1697 }
1698 
1699 enum dealloc_states {
1700 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1701 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1702 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1703 	DEALLOC_DONE = 3,       /* process complete */
1704 };
1705 
1706 static inline void
1707 metapointer_range(struct metapath *mp, int height,
1708 		  __u16 *start_list, unsigned int start_aligned,
1709 		  __u16 *end_list, unsigned int end_aligned,
1710 		  __be64 **start, __be64 **end)
1711 {
1712 	struct buffer_head *bh = mp->mp_bh[height];
1713 	__be64 *first;
1714 
1715 	first = metaptr1(height, mp);
1716 	*start = first;
1717 	if (mp_eq_to_hgt(mp, start_list, height)) {
1718 		bool keep_start = height < start_aligned;
1719 		*start = first + start_list[height] + keep_start;
1720 	}
1721 	*end = (__be64 *)(bh->b_data + bh->b_size);
1722 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1723 		bool keep_end = height < end_aligned;
1724 		*end = first + end_list[height] + keep_end;
1725 	}
1726 }
1727 
1728 static inline bool walk_done(struct gfs2_sbd *sdp,
1729 			     struct metapath *mp, int height,
1730 			     __u16 *end_list, unsigned int end_aligned)
1731 {
1732 	__u16 end;
1733 
1734 	if (end_list) {
1735 		bool keep_end = height < end_aligned;
1736 		if (!mp_eq_to_hgt(mp, end_list, height))
1737 			return false;
1738 		end = end_list[height] + keep_end;
1739 	} else
1740 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1741 	return mp->mp_list[height] >= end;
1742 }
1743 
1744 /**
1745  * punch_hole - deallocate blocks in a file
1746  * @ip: inode to truncate
1747  * @offset: the start of the hole
1748  * @length: the size of the hole (or 0 for truncate)
1749  *
1750  * Punch a hole into a file or truncate a file at a given position.  This
1751  * function operates in whole blocks (@offset and @length are rounded
1752  * accordingly); partially filled blocks must be cleared otherwise.
1753  *
1754  * This function works from the bottom up, and from the right to the left. In
1755  * other words, it strips off the highest layer (data) before stripping any of
1756  * the metadata. Doing it this way is best in case the operation is interrupted
1757  * by power failure, etc.  The dinode is rewritten in every transaction to
1758  * guarantee integrity.
1759  */
1760 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1761 {
1762 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1763 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1764 	struct metapath mp = {};
1765 	struct buffer_head *dibh, *bh;
1766 	struct gfs2_holder rd_gh;
1767 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1768 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1769 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1770 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1771 	unsigned int start_aligned, end_aligned;
1772 	unsigned int strip_h = ip->i_height - 1;
1773 	u32 btotal = 0;
1774 	int ret, state;
1775 	int mp_h; /* metapath buffers are read in to this height */
1776 	u64 prev_bnr = 0;
1777 	__be64 *start, *end;
1778 
1779 	if (offset >= maxsize) {
1780 		/*
1781 		 * The starting point lies beyond the allocated meta-data;
1782 		 * there are no blocks do deallocate.
1783 		 */
1784 		return 0;
1785 	}
1786 
1787 	/*
1788 	 * The start position of the hole is defined by lblock, start_list, and
1789 	 * start_aligned.  The end position of the hole is defined by lend,
1790 	 * end_list, and end_aligned.
1791 	 *
1792 	 * start_aligned and end_aligned define down to which height the start
1793 	 * and end positions are aligned to the metadata tree (i.e., the
1794 	 * position is a multiple of the metadata granularity at the height
1795 	 * above).  This determines at which heights additional meta pointers
1796 	 * needs to be preserved for the remaining data.
1797 	 */
1798 
1799 	if (length) {
1800 		u64 end_offset = offset + length;
1801 		u64 lend;
1802 
1803 		/*
1804 		 * Clip the end at the maximum file size for the given height:
1805 		 * that's how far the metadata goes; files bigger than that
1806 		 * will have additional layers of indirection.
1807 		 */
1808 		if (end_offset > maxsize)
1809 			end_offset = maxsize;
1810 		lend = end_offset >> bsize_shift;
1811 
1812 		if (lblock >= lend)
1813 			return 0;
1814 
1815 		find_metapath(sdp, lend, &mp, ip->i_height);
1816 		end_list = __end_list;
1817 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1818 
1819 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1820 			if (end_list[mp_h])
1821 				break;
1822 		}
1823 		end_aligned = mp_h;
1824 	}
1825 
1826 	find_metapath(sdp, lblock, &mp, ip->i_height);
1827 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1828 
1829 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1830 		if (start_list[mp_h])
1831 			break;
1832 	}
1833 	start_aligned = mp_h;
1834 
1835 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1836 	if (ret)
1837 		return ret;
1838 
1839 	mp.mp_bh[0] = dibh;
1840 	ret = lookup_metapath(ip, &mp);
1841 	if (ret)
1842 		goto out_metapath;
1843 
1844 	/* issue read-ahead on metadata */
1845 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1846 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1847 				  end_list, end_aligned, &start, &end);
1848 		gfs2_metapath_ra(ip->i_gl, start, end);
1849 	}
1850 
1851 	if (mp.mp_aheight == ip->i_height)
1852 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1853 	else
1854 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1855 
1856 	ret = gfs2_rindex_update(sdp);
1857 	if (ret)
1858 		goto out_metapath;
1859 
1860 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1861 	if (ret)
1862 		goto out_metapath;
1863 	gfs2_holder_mark_uninitialized(&rd_gh);
1864 
1865 	mp_h = strip_h;
1866 
1867 	while (state != DEALLOC_DONE) {
1868 		switch (state) {
1869 		/* Truncate a full metapath at the given strip height.
1870 		 * Note that strip_h == mp_h in order to be in this state. */
1871 		case DEALLOC_MP_FULL:
1872 			bh = mp.mp_bh[mp_h];
1873 			gfs2_assert_withdraw(sdp, bh);
1874 			if (gfs2_assert_withdraw(sdp,
1875 						 prev_bnr != bh->b_blocknr)) {
1876 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1877 					 "s_h:%u, mp_h:%u\n",
1878 				       (unsigned long long)ip->i_no_addr,
1879 				       prev_bnr, ip->i_height, strip_h, mp_h);
1880 			}
1881 			prev_bnr = bh->b_blocknr;
1882 
1883 			if (gfs2_metatype_check(sdp, bh,
1884 						(mp_h ? GFS2_METATYPE_IN :
1885 							GFS2_METATYPE_DI))) {
1886 				ret = -EIO;
1887 				goto out;
1888 			}
1889 
1890 			/*
1891 			 * Below, passing end_aligned as 0 gives us the
1892 			 * metapointer range excluding the end point: the end
1893 			 * point is the first metapath we must not deallocate!
1894 			 */
1895 
1896 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1897 					  end_list, 0 /* end_aligned */,
1898 					  &start, &end);
1899 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1900 						 start, end,
1901 						 mp_h != ip->i_height - 1,
1902 						 &btotal);
1903 
1904 			/* If we hit an error or just swept dinode buffer,
1905 			   just exit. */
1906 			if (ret || !mp_h) {
1907 				state = DEALLOC_DONE;
1908 				break;
1909 			}
1910 			state = DEALLOC_MP_LOWER;
1911 			break;
1912 
1913 		/* lower the metapath strip height */
1914 		case DEALLOC_MP_LOWER:
1915 			/* We're done with the current buffer, so release it,
1916 			   unless it's the dinode buffer. Then back up to the
1917 			   previous pointer. */
1918 			if (mp_h) {
1919 				brelse(mp.mp_bh[mp_h]);
1920 				mp.mp_bh[mp_h] = NULL;
1921 			}
1922 			/* If we can't get any lower in height, we've stripped
1923 			   off all we can. Next step is to back up and start
1924 			   stripping the previous level of metadata. */
1925 			if (mp_h == 0) {
1926 				strip_h--;
1927 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1928 				mp_h = strip_h;
1929 				state = DEALLOC_FILL_MP;
1930 				break;
1931 			}
1932 			mp.mp_list[mp_h] = 0;
1933 			mp_h--; /* search one metadata height down */
1934 			mp.mp_list[mp_h]++;
1935 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1936 				break;
1937 			/* Here we've found a part of the metapath that is not
1938 			 * allocated. We need to search at that height for the
1939 			 * next non-null pointer. */
1940 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1941 				state = DEALLOC_FILL_MP;
1942 				mp_h++;
1943 			}
1944 			/* No more non-null pointers at this height. Back up
1945 			   to the previous height and try again. */
1946 			break; /* loop around in the same state */
1947 
1948 		/* Fill the metapath with buffers to the given height. */
1949 		case DEALLOC_FILL_MP:
1950 			/* Fill the buffers out to the current height. */
1951 			ret = fillup_metapath(ip, &mp, mp_h);
1952 			if (ret < 0)
1953 				goto out;
1954 
1955 			/* On the first pass, issue read-ahead on metadata. */
1956 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1957 				unsigned int height = mp.mp_aheight - 1;
1958 
1959 				/* No read-ahead for data blocks. */
1960 				if (mp.mp_aheight - 1 == strip_h)
1961 					height--;
1962 
1963 				for (; height >= mp.mp_aheight - ret; height--) {
1964 					metapointer_range(&mp, height,
1965 							  start_list, start_aligned,
1966 							  end_list, end_aligned,
1967 							  &start, &end);
1968 					gfs2_metapath_ra(ip->i_gl, start, end);
1969 				}
1970 			}
1971 
1972 			/* If buffers found for the entire strip height */
1973 			if (mp.mp_aheight - 1 == strip_h) {
1974 				state = DEALLOC_MP_FULL;
1975 				break;
1976 			}
1977 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1978 				mp_h = mp.mp_aheight - 1;
1979 
1980 			/* If we find a non-null block pointer, crawl a bit
1981 			   higher up in the metapath and try again, otherwise
1982 			   we need to look lower for a new starting point. */
1983 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1984 				mp_h++;
1985 			else
1986 				state = DEALLOC_MP_LOWER;
1987 			break;
1988 		}
1989 	}
1990 
1991 	if (btotal) {
1992 		if (current->journal_info == NULL) {
1993 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1994 					       RES_QUOTA, 0);
1995 			if (ret)
1996 				goto out;
1997 			down_write(&ip->i_rw_mutex);
1998 		}
1999 		gfs2_statfs_change(sdp, 0, +btotal, 0);
2000 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
2001 				  ip->i_inode.i_gid);
2002 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2003 		gfs2_trans_add_meta(ip->i_gl, dibh);
2004 		gfs2_dinode_out(ip, dibh->b_data);
2005 		up_write(&ip->i_rw_mutex);
2006 		gfs2_trans_end(sdp);
2007 	}
2008 
2009 out:
2010 	if (gfs2_holder_initialized(&rd_gh))
2011 		gfs2_glock_dq_uninit(&rd_gh);
2012 	if (current->journal_info) {
2013 		up_write(&ip->i_rw_mutex);
2014 		gfs2_trans_end(sdp);
2015 		cond_resched();
2016 	}
2017 	gfs2_quota_unhold(ip);
2018 out_metapath:
2019 	release_metapath(&mp);
2020 	return ret;
2021 }
2022 
2023 static int trunc_end(struct gfs2_inode *ip)
2024 {
2025 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2026 	struct buffer_head *dibh;
2027 	int error;
2028 
2029 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2030 	if (error)
2031 		return error;
2032 
2033 	down_write(&ip->i_rw_mutex);
2034 
2035 	error = gfs2_meta_inode_buffer(ip, &dibh);
2036 	if (error)
2037 		goto out;
2038 
2039 	if (!i_size_read(&ip->i_inode)) {
2040 		ip->i_height = 0;
2041 		ip->i_goal = ip->i_no_addr;
2042 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2043 		gfs2_ordered_del_inode(ip);
2044 	}
2045 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2046 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2047 
2048 	gfs2_trans_add_meta(ip->i_gl, dibh);
2049 	gfs2_dinode_out(ip, dibh->b_data);
2050 	brelse(dibh);
2051 
2052 out:
2053 	up_write(&ip->i_rw_mutex);
2054 	gfs2_trans_end(sdp);
2055 	return error;
2056 }
2057 
2058 /**
2059  * do_shrink - make a file smaller
2060  * @inode: the inode
2061  * @newsize: the size to make the file
2062  *
2063  * Called with an exclusive lock on @inode. The @size must
2064  * be equal to or smaller than the current inode size.
2065  *
2066  * Returns: errno
2067  */
2068 
2069 static int do_shrink(struct inode *inode, u64 newsize)
2070 {
2071 	struct gfs2_inode *ip = GFS2_I(inode);
2072 	int error;
2073 
2074 	error = trunc_start(inode, newsize);
2075 	if (error < 0)
2076 		return error;
2077 	if (gfs2_is_stuffed(ip))
2078 		return 0;
2079 
2080 	error = punch_hole(ip, newsize, 0);
2081 	if (error == 0)
2082 		error = trunc_end(ip);
2083 
2084 	return error;
2085 }
2086 
2087 void gfs2_trim_blocks(struct inode *inode)
2088 {
2089 	int ret;
2090 
2091 	ret = do_shrink(inode, inode->i_size);
2092 	WARN_ON(ret != 0);
2093 }
2094 
2095 /**
2096  * do_grow - Touch and update inode size
2097  * @inode: The inode
2098  * @size: The new size
2099  *
2100  * This function updates the timestamps on the inode and
2101  * may also increase the size of the inode. This function
2102  * must not be called with @size any smaller than the current
2103  * inode size.
2104  *
2105  * Although it is not strictly required to unstuff files here,
2106  * earlier versions of GFS2 have a bug in the stuffed file reading
2107  * code which will result in a buffer overrun if the size is larger
2108  * than the max stuffed file size. In order to prevent this from
2109  * occurring, such files are unstuffed, but in other cases we can
2110  * just update the inode size directly.
2111  *
2112  * Returns: 0 on success, or -ve on error
2113  */
2114 
2115 static int do_grow(struct inode *inode, u64 size)
2116 {
2117 	struct gfs2_inode *ip = GFS2_I(inode);
2118 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2119 	struct gfs2_alloc_parms ap = { .target = 1, };
2120 	struct buffer_head *dibh;
2121 	int error;
2122 	int unstuff = 0;
2123 
2124 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2125 		error = gfs2_quota_lock_check(ip, &ap);
2126 		if (error)
2127 			return error;
2128 
2129 		error = gfs2_inplace_reserve(ip, &ap);
2130 		if (error)
2131 			goto do_grow_qunlock;
2132 		unstuff = 1;
2133 	}
2134 
2135 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2136 				 (unstuff &&
2137 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2138 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2139 				  0 : RES_QUOTA), 0);
2140 	if (error)
2141 		goto do_grow_release;
2142 
2143 	if (unstuff) {
2144 		error = gfs2_unstuff_dinode(ip, NULL);
2145 		if (error)
2146 			goto do_end_trans;
2147 	}
2148 
2149 	error = gfs2_meta_inode_buffer(ip, &dibh);
2150 	if (error)
2151 		goto do_end_trans;
2152 
2153 	truncate_setsize(inode, size);
2154 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2155 	gfs2_trans_add_meta(ip->i_gl, dibh);
2156 	gfs2_dinode_out(ip, dibh->b_data);
2157 	brelse(dibh);
2158 
2159 do_end_trans:
2160 	gfs2_trans_end(sdp);
2161 do_grow_release:
2162 	if (unstuff) {
2163 		gfs2_inplace_release(ip);
2164 do_grow_qunlock:
2165 		gfs2_quota_unlock(ip);
2166 	}
2167 	return error;
2168 }
2169 
2170 /**
2171  * gfs2_setattr_size - make a file a given size
2172  * @inode: the inode
2173  * @newsize: the size to make the file
2174  *
2175  * The file size can grow, shrink, or stay the same size. This
2176  * is called holding i_rwsem and an exclusive glock on the inode
2177  * in question.
2178  *
2179  * Returns: errno
2180  */
2181 
2182 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2183 {
2184 	struct gfs2_inode *ip = GFS2_I(inode);
2185 	int ret;
2186 
2187 	BUG_ON(!S_ISREG(inode->i_mode));
2188 
2189 	ret = inode_newsize_ok(inode, newsize);
2190 	if (ret)
2191 		return ret;
2192 
2193 	inode_dio_wait(inode);
2194 
2195 	ret = gfs2_qa_get(ip);
2196 	if (ret)
2197 		goto out;
2198 
2199 	if (newsize >= inode->i_size) {
2200 		ret = do_grow(inode, newsize);
2201 		goto out;
2202 	}
2203 
2204 	ret = do_shrink(inode, newsize);
2205 out:
2206 	gfs2_rs_delete(ip, NULL);
2207 	gfs2_qa_put(ip);
2208 	return ret;
2209 }
2210 
2211 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2212 {
2213 	int error;
2214 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2215 	if (!error)
2216 		error = trunc_end(ip);
2217 	return error;
2218 }
2219 
2220 int gfs2_file_dealloc(struct gfs2_inode *ip)
2221 {
2222 	return punch_hole(ip, 0, 0);
2223 }
2224 
2225 /**
2226  * gfs2_free_journal_extents - Free cached journal bmap info
2227  * @jd: The journal
2228  *
2229  */
2230 
2231 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2232 {
2233 	struct gfs2_journal_extent *jext;
2234 
2235 	while(!list_empty(&jd->extent_list)) {
2236 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2237 		list_del(&jext->list);
2238 		kfree(jext);
2239 	}
2240 }
2241 
2242 /**
2243  * gfs2_add_jextent - Add or merge a new extent to extent cache
2244  * @jd: The journal descriptor
2245  * @lblock: The logical block at start of new extent
2246  * @dblock: The physical block at start of new extent
2247  * @blocks: Size of extent in fs blocks
2248  *
2249  * Returns: 0 on success or -ENOMEM
2250  */
2251 
2252 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2253 {
2254 	struct gfs2_journal_extent *jext;
2255 
2256 	if (!list_empty(&jd->extent_list)) {
2257 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2258 		if ((jext->dblock + jext->blocks) == dblock) {
2259 			jext->blocks += blocks;
2260 			return 0;
2261 		}
2262 	}
2263 
2264 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2265 	if (jext == NULL)
2266 		return -ENOMEM;
2267 	jext->dblock = dblock;
2268 	jext->lblock = lblock;
2269 	jext->blocks = blocks;
2270 	list_add_tail(&jext->list, &jd->extent_list);
2271 	jd->nr_extents++;
2272 	return 0;
2273 }
2274 
2275 /**
2276  * gfs2_map_journal_extents - Cache journal bmap info
2277  * @sdp: The super block
2278  * @jd: The journal to map
2279  *
2280  * Create a reusable "extent" mapping from all logical
2281  * blocks to all physical blocks for the given journal.  This will save
2282  * us time when writing journal blocks.  Most journals will have only one
2283  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2284  * arranges the journal blocks sequentially to maximize performance.
2285  * So the extent would map the first block for the entire file length.
2286  * However, gfs2_jadd can happen while file activity is happening, so
2287  * those journals may not be sequential.  Less likely is the case where
2288  * the users created their own journals by mounting the metafs and
2289  * laying it out.  But it's still possible.  These journals might have
2290  * several extents.
2291  *
2292  * Returns: 0 on success, or error on failure
2293  */
2294 
2295 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2296 {
2297 	u64 lblock = 0;
2298 	u64 lblock_stop;
2299 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2300 	struct buffer_head bh;
2301 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2302 	u64 size;
2303 	int rc;
2304 	ktime_t start, end;
2305 
2306 	start = ktime_get();
2307 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2308 	size = (lblock_stop - lblock) << shift;
2309 	jd->nr_extents = 0;
2310 	WARN_ON(!list_empty(&jd->extent_list));
2311 
2312 	do {
2313 		bh.b_state = 0;
2314 		bh.b_blocknr = 0;
2315 		bh.b_size = size;
2316 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2317 		if (rc || !buffer_mapped(&bh))
2318 			goto fail;
2319 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2320 		if (rc)
2321 			goto fail;
2322 		size -= bh.b_size;
2323 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2324 	} while(size > 0);
2325 
2326 	end = ktime_get();
2327 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2328 		jd->nr_extents, ktime_ms_delta(end, start));
2329 	return 0;
2330 
2331 fail:
2332 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2333 		rc, jd->jd_jid,
2334 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2335 		jd->nr_extents);
2336 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2337 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2338 		bh.b_state, (unsigned long long)bh.b_size);
2339 	gfs2_free_journal_extents(jd);
2340 	return rc;
2341 }
2342 
2343 /**
2344  * gfs2_write_alloc_required - figure out if a write will require an allocation
2345  * @ip: the file being written to
2346  * @offset: the offset to write to
2347  * @len: the number of bytes being written
2348  *
2349  * Returns: 1 if an alloc is required, 0 otherwise
2350  */
2351 
2352 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2353 			      unsigned int len)
2354 {
2355 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2356 	struct buffer_head bh;
2357 	unsigned int shift;
2358 	u64 lblock, lblock_stop, size;
2359 	u64 end_of_file;
2360 
2361 	if (!len)
2362 		return 0;
2363 
2364 	if (gfs2_is_stuffed(ip)) {
2365 		if (offset + len > gfs2_max_stuffed_size(ip))
2366 			return 1;
2367 		return 0;
2368 	}
2369 
2370 	shift = sdp->sd_sb.sb_bsize_shift;
2371 	BUG_ON(gfs2_is_dir(ip));
2372 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2373 	lblock = offset >> shift;
2374 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2375 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2376 		return 1;
2377 
2378 	size = (lblock_stop - lblock) << shift;
2379 	do {
2380 		bh.b_state = 0;
2381 		bh.b_size = size;
2382 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2383 		if (!buffer_mapped(&bh))
2384 			return 1;
2385 		size -= bh.b_size;
2386 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2387 	} while(size > 0);
2388 
2389 	return 0;
2390 }
2391 
2392 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2393 {
2394 	struct gfs2_inode *ip = GFS2_I(inode);
2395 	struct buffer_head *dibh;
2396 	int error;
2397 
2398 	if (offset >= inode->i_size)
2399 		return 0;
2400 	if (offset + length > inode->i_size)
2401 		length = inode->i_size - offset;
2402 
2403 	error = gfs2_meta_inode_buffer(ip, &dibh);
2404 	if (error)
2405 		return error;
2406 	gfs2_trans_add_meta(ip->i_gl, dibh);
2407 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2408 	       length);
2409 	brelse(dibh);
2410 	return 0;
2411 }
2412 
2413 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2414 					 loff_t length)
2415 {
2416 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2417 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2418 	int error;
2419 
2420 	while (length) {
2421 		struct gfs2_trans *tr;
2422 		loff_t chunk;
2423 		unsigned int offs;
2424 
2425 		chunk = length;
2426 		if (chunk > max_chunk)
2427 			chunk = max_chunk;
2428 
2429 		offs = offset & ~PAGE_MASK;
2430 		if (offs && chunk > PAGE_SIZE)
2431 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2432 
2433 		truncate_pagecache_range(inode, offset, chunk);
2434 		offset += chunk;
2435 		length -= chunk;
2436 
2437 		tr = current->journal_info;
2438 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2439 			continue;
2440 
2441 		gfs2_trans_end(sdp);
2442 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2443 		if (error)
2444 			return error;
2445 	}
2446 	return 0;
2447 }
2448 
2449 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2450 {
2451 	struct inode *inode = file_inode(file);
2452 	struct gfs2_inode *ip = GFS2_I(inode);
2453 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2454 	unsigned int blocksize = i_blocksize(inode);
2455 	loff_t start, end;
2456 	int error;
2457 
2458 	if (!gfs2_is_stuffed(ip)) {
2459 		unsigned int start_off, end_len;
2460 
2461 		start_off = offset & (blocksize - 1);
2462 		end_len = (offset + length) & (blocksize - 1);
2463 		if (start_off) {
2464 			unsigned int len = length;
2465 			if (length > blocksize - start_off)
2466 				len = blocksize - start_off;
2467 			error = gfs2_block_zero_range(inode, offset, len);
2468 			if (error)
2469 				goto out;
2470 			if (start_off + length < blocksize)
2471 				end_len = 0;
2472 		}
2473 		if (end_len) {
2474 			error = gfs2_block_zero_range(inode,
2475 				offset + length - end_len, end_len);
2476 			if (error)
2477 				goto out;
2478 		}
2479 	}
2480 
2481 	start = round_down(offset, blocksize);
2482 	end = round_up(offset + length, blocksize) - 1;
2483 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2484 	if (error)
2485 		return error;
2486 
2487 	if (gfs2_is_jdata(ip))
2488 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2489 					 GFS2_JTRUNC_REVOKES);
2490 	else
2491 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2492 	if (error)
2493 		return error;
2494 
2495 	if (gfs2_is_stuffed(ip)) {
2496 		error = stuffed_zero_range(inode, offset, length);
2497 		if (error)
2498 			goto out;
2499 	}
2500 
2501 	if (gfs2_is_jdata(ip)) {
2502 		BUG_ON(!current->journal_info);
2503 		gfs2_journaled_truncate_range(inode, offset, length);
2504 	} else
2505 		truncate_pagecache_range(inode, offset, offset + length - 1);
2506 
2507 	file_update_time(file);
2508 	mark_inode_dirty(inode);
2509 
2510 	if (current->journal_info)
2511 		gfs2_trans_end(sdp);
2512 
2513 	if (!gfs2_is_stuffed(ip))
2514 		error = punch_hole(ip, offset, length);
2515 
2516 out:
2517 	if (current->journal_info)
2518 		gfs2_trans_end(sdp);
2519 	return error;
2520 }
2521