1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/blkdev.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/crc32.h> 16 #include <linux/iomap.h> 17 #include <linux/ktime.h> 18 19 #include "gfs2.h" 20 #include "incore.h" 21 #include "bmap.h" 22 #include "glock.h" 23 #include "inode.h" 24 #include "meta_io.h" 25 #include "quota.h" 26 #include "rgrp.h" 27 #include "log.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "dir.h" 31 #include "util.h" 32 #include "aops.h" 33 #include "trace_gfs2.h" 34 35 /* This doesn't need to be that large as max 64 bit pointers in a 4k 36 * block is 512, so __u16 is fine for that. It saves stack space to 37 * keep it small. 38 */ 39 struct metapath { 40 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 41 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 42 int mp_fheight; /* find_metapath height */ 43 int mp_aheight; /* actual height (lookup height) */ 44 }; 45 46 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 47 48 /** 49 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 50 * @ip: the inode 51 * @dibh: the dinode buffer 52 * @block: the block number that was allocated 53 * @page: The (optional) page. This is looked up if @page is NULL 54 * 55 * Returns: errno 56 */ 57 58 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 59 u64 block, struct page *page) 60 { 61 struct inode *inode = &ip->i_inode; 62 struct buffer_head *bh; 63 int release = 0; 64 65 if (!page || page->index) { 66 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 67 if (!page) 68 return -ENOMEM; 69 release = 1; 70 } 71 72 if (!PageUptodate(page)) { 73 void *kaddr = kmap(page); 74 u64 dsize = i_size_read(inode); 75 76 if (dsize > gfs2_max_stuffed_size(ip)) 77 dsize = gfs2_max_stuffed_size(ip); 78 79 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 80 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 81 kunmap(page); 82 83 SetPageUptodate(page); 84 } 85 86 if (!page_has_buffers(page)) 87 create_empty_buffers(page, BIT(inode->i_blkbits), 88 BIT(BH_Uptodate)); 89 90 bh = page_buffers(page); 91 92 if (!buffer_mapped(bh)) 93 map_bh(bh, inode->i_sb, block); 94 95 set_buffer_uptodate(bh); 96 if (gfs2_is_jdata(ip)) 97 gfs2_trans_add_data(ip->i_gl, bh); 98 else { 99 mark_buffer_dirty(bh); 100 gfs2_ordered_add_inode(ip); 101 } 102 103 if (release) { 104 unlock_page(page); 105 put_page(page); 106 } 107 108 return 0; 109 } 110 111 /** 112 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 113 * @ip: The GFS2 inode to unstuff 114 * @page: The (optional) page. This is looked up if the @page is NULL 115 * 116 * This routine unstuffs a dinode and returns it to a "normal" state such 117 * that the height can be grown in the traditional way. 118 * 119 * Returns: errno 120 */ 121 122 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 123 { 124 struct buffer_head *bh, *dibh; 125 struct gfs2_dinode *di; 126 u64 block = 0; 127 int isdir = gfs2_is_dir(ip); 128 int error; 129 130 down_write(&ip->i_rw_mutex); 131 132 error = gfs2_meta_inode_buffer(ip, &dibh); 133 if (error) 134 goto out; 135 136 if (i_size_read(&ip->i_inode)) { 137 /* Get a free block, fill it with the stuffed data, 138 and write it out to disk */ 139 140 unsigned int n = 1; 141 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 142 if (error) 143 goto out_brelse; 144 if (isdir) { 145 gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1); 146 error = gfs2_dir_get_new_buffer(ip, block, &bh); 147 if (error) 148 goto out_brelse; 149 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 150 dibh, sizeof(struct gfs2_dinode)); 151 brelse(bh); 152 } else { 153 error = gfs2_unstuffer_page(ip, dibh, block, page); 154 if (error) 155 goto out_brelse; 156 } 157 } 158 159 /* Set up the pointer to the new block */ 160 161 gfs2_trans_add_meta(ip->i_gl, dibh); 162 di = (struct gfs2_dinode *)dibh->b_data; 163 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 164 165 if (i_size_read(&ip->i_inode)) { 166 *(__be64 *)(di + 1) = cpu_to_be64(block); 167 gfs2_add_inode_blocks(&ip->i_inode, 1); 168 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 169 } 170 171 ip->i_height = 1; 172 di->di_height = cpu_to_be16(1); 173 174 out_brelse: 175 brelse(dibh); 176 out: 177 up_write(&ip->i_rw_mutex); 178 return error; 179 } 180 181 182 /** 183 * find_metapath - Find path through the metadata tree 184 * @sdp: The superblock 185 * @block: The disk block to look up 186 * @mp: The metapath to return the result in 187 * @height: The pre-calculated height of the metadata tree 188 * 189 * This routine returns a struct metapath structure that defines a path 190 * through the metadata of inode "ip" to get to block "block". 191 * 192 * Example: 193 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 194 * filesystem with a blocksize of 4096. 195 * 196 * find_metapath() would return a struct metapath structure set to: 197 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 198 * 199 * That means that in order to get to the block containing the byte at 200 * offset 101342453, we would load the indirect block pointed to by pointer 201 * 0 in the dinode. We would then load the indirect block pointed to by 202 * pointer 48 in that indirect block. We would then load the data block 203 * pointed to by pointer 165 in that indirect block. 204 * 205 * ---------------------------------------- 206 * | Dinode | | 207 * | | 4| 208 * | |0 1 2 3 4 5 9| 209 * | | 6| 210 * ---------------------------------------- 211 * | 212 * | 213 * V 214 * ---------------------------------------- 215 * | Indirect Block | 216 * | 5| 217 * | 4 4 4 4 4 5 5 1| 218 * |0 5 6 7 8 9 0 1 2| 219 * ---------------------------------------- 220 * | 221 * | 222 * V 223 * ---------------------------------------- 224 * | Indirect Block | 225 * | 1 1 1 1 1 5| 226 * | 6 6 6 6 6 1| 227 * |0 3 4 5 6 7 2| 228 * ---------------------------------------- 229 * | 230 * | 231 * V 232 * ---------------------------------------- 233 * | Data block containing offset | 234 * | 101342453 | 235 * | | 236 * | | 237 * ---------------------------------------- 238 * 239 */ 240 241 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 242 struct metapath *mp, unsigned int height) 243 { 244 unsigned int i; 245 246 mp->mp_fheight = height; 247 for (i = height; i--;) 248 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 249 } 250 251 static inline unsigned int metapath_branch_start(const struct metapath *mp) 252 { 253 if (mp->mp_list[0] == 0) 254 return 2; 255 return 1; 256 } 257 258 /** 259 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 260 * @height: The metadata height (0 = dinode) 261 * @mp: The metapath 262 */ 263 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 264 { 265 struct buffer_head *bh = mp->mp_bh[height]; 266 if (height == 0) 267 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 268 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 269 } 270 271 /** 272 * metapointer - Return pointer to start of metadata in a buffer 273 * @height: The metadata height (0 = dinode) 274 * @mp: The metapath 275 * 276 * Return a pointer to the block number of the next height of the metadata 277 * tree given a buffer containing the pointer to the current height of the 278 * metadata tree. 279 */ 280 281 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 282 { 283 __be64 *p = metaptr1(height, mp); 284 return p + mp->mp_list[height]; 285 } 286 287 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 288 { 289 const struct buffer_head *bh = mp->mp_bh[height]; 290 return (const __be64 *)(bh->b_data + bh->b_size); 291 } 292 293 static void clone_metapath(struct metapath *clone, struct metapath *mp) 294 { 295 unsigned int hgt; 296 297 *clone = *mp; 298 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 299 get_bh(clone->mp_bh[hgt]); 300 } 301 302 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 303 { 304 const __be64 *t; 305 306 for (t = start; t < end; t++) { 307 struct buffer_head *rabh; 308 309 if (!*t) 310 continue; 311 312 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 313 if (trylock_buffer(rabh)) { 314 if (!buffer_uptodate(rabh)) { 315 rabh->b_end_io = end_buffer_read_sync; 316 submit_bh(REQ_OP_READ, 317 REQ_RAHEAD | REQ_META | REQ_PRIO, 318 rabh); 319 continue; 320 } 321 unlock_buffer(rabh); 322 } 323 brelse(rabh); 324 } 325 } 326 327 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 328 unsigned int x, unsigned int h) 329 { 330 for (; x < h; x++) { 331 __be64 *ptr = metapointer(x, mp); 332 u64 dblock = be64_to_cpu(*ptr); 333 int ret; 334 335 if (!dblock) 336 break; 337 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 338 if (ret) 339 return ret; 340 } 341 mp->mp_aheight = x + 1; 342 return 0; 343 } 344 345 /** 346 * lookup_metapath - Walk the metadata tree to a specific point 347 * @ip: The inode 348 * @mp: The metapath 349 * 350 * Assumes that the inode's buffer has already been looked up and 351 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 352 * by find_metapath(). 353 * 354 * If this function encounters part of the tree which has not been 355 * allocated, it returns the current height of the tree at the point 356 * at which it found the unallocated block. Blocks which are found are 357 * added to the mp->mp_bh[] list. 358 * 359 * Returns: error 360 */ 361 362 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 363 { 364 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 365 } 366 367 /** 368 * fillup_metapath - fill up buffers for the metadata path to a specific height 369 * @ip: The inode 370 * @mp: The metapath 371 * @h: The height to which it should be mapped 372 * 373 * Similar to lookup_metapath, but does lookups for a range of heights 374 * 375 * Returns: error or the number of buffers filled 376 */ 377 378 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 379 { 380 unsigned int x = 0; 381 int ret; 382 383 if (h) { 384 /* find the first buffer we need to look up. */ 385 for (x = h - 1; x > 0; x--) { 386 if (mp->mp_bh[x]) 387 break; 388 } 389 } 390 ret = __fillup_metapath(ip, mp, x, h); 391 if (ret) 392 return ret; 393 return mp->mp_aheight - x - 1; 394 } 395 396 static void release_metapath(struct metapath *mp) 397 { 398 int i; 399 400 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 401 if (mp->mp_bh[i] == NULL) 402 break; 403 brelse(mp->mp_bh[i]); 404 mp->mp_bh[i] = NULL; 405 } 406 } 407 408 /** 409 * gfs2_extent_length - Returns length of an extent of blocks 410 * @bh: The metadata block 411 * @ptr: Current position in @bh 412 * @limit: Max extent length to return 413 * @eob: Set to 1 if we hit "end of block" 414 * 415 * Returns: The length of the extent (minimum of one block) 416 */ 417 418 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 419 { 420 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 421 const __be64 *first = ptr; 422 u64 d = be64_to_cpu(*ptr); 423 424 *eob = 0; 425 do { 426 ptr++; 427 if (ptr >= end) 428 break; 429 d++; 430 } while(be64_to_cpu(*ptr) == d); 431 if (ptr >= end) 432 *eob = 1; 433 return ptr - first; 434 } 435 436 typedef const __be64 *(*gfs2_metadata_walker)( 437 struct metapath *mp, 438 const __be64 *start, const __be64 *end, 439 u64 factor, void *data); 440 441 #define WALK_STOP ((__be64 *)0) 442 #define WALK_NEXT ((__be64 *)1) 443 444 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock, 445 u64 len, struct metapath *mp, gfs2_metadata_walker walker, 446 void *data) 447 { 448 struct metapath clone; 449 struct gfs2_inode *ip = GFS2_I(inode); 450 struct gfs2_sbd *sdp = GFS2_SB(inode); 451 const __be64 *start, *end, *ptr; 452 u64 factor = 1; 453 unsigned int hgt; 454 int ret = 0; 455 456 for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--) 457 factor *= sdp->sd_inptrs; 458 459 for (;;) { 460 u64 step; 461 462 /* Walk indirect block. */ 463 start = metapointer(hgt, mp); 464 end = metaend(hgt, mp); 465 466 step = (end - start) * factor; 467 if (step > len) 468 end = start + DIV_ROUND_UP_ULL(len, factor); 469 470 ptr = walker(mp, start, end, factor, data); 471 if (ptr == WALK_STOP) 472 break; 473 if (step >= len) 474 break; 475 len -= step; 476 if (ptr != WALK_NEXT) { 477 BUG_ON(!*ptr); 478 mp->mp_list[hgt] += ptr - start; 479 goto fill_up_metapath; 480 } 481 482 lower_metapath: 483 /* Decrease height of metapath. */ 484 if (mp != &clone) { 485 clone_metapath(&clone, mp); 486 mp = &clone; 487 } 488 brelse(mp->mp_bh[hgt]); 489 mp->mp_bh[hgt] = NULL; 490 if (!hgt) 491 break; 492 hgt--; 493 factor *= sdp->sd_inptrs; 494 495 /* Advance in metadata tree. */ 496 (mp->mp_list[hgt])++; 497 start = metapointer(hgt, mp); 498 end = metaend(hgt, mp); 499 if (start >= end) { 500 mp->mp_list[hgt] = 0; 501 if (!hgt) 502 break; 503 goto lower_metapath; 504 } 505 506 fill_up_metapath: 507 /* Increase height of metapath. */ 508 if (mp != &clone) { 509 clone_metapath(&clone, mp); 510 mp = &clone; 511 } 512 ret = fillup_metapath(ip, mp, ip->i_height - 1); 513 if (ret < 0) 514 break; 515 hgt += ret; 516 for (; ret; ret--) 517 do_div(factor, sdp->sd_inptrs); 518 mp->mp_aheight = hgt + 1; 519 } 520 if (mp == &clone) 521 release_metapath(mp); 522 return ret; 523 } 524 525 struct gfs2_hole_walker_args { 526 u64 blocks; 527 }; 528 529 static const __be64 *gfs2_hole_walker(struct metapath *mp, 530 const __be64 *start, const __be64 *end, 531 u64 factor, void *data) 532 { 533 struct gfs2_hole_walker_args *args = data; 534 const __be64 *ptr; 535 536 for (ptr = start; ptr < end; ptr++) { 537 if (*ptr) { 538 args->blocks += (ptr - start) * factor; 539 if (mp->mp_aheight == mp->mp_fheight) 540 return WALK_STOP; 541 return ptr; /* increase height */ 542 } 543 } 544 args->blocks += (end - start) * factor; 545 return WALK_NEXT; 546 } 547 548 /** 549 * gfs2_hole_size - figure out the size of a hole 550 * @inode: The inode 551 * @lblock: The logical starting block number 552 * @len: How far to look (in blocks) 553 * @mp: The metapath at lblock 554 * @iomap: The iomap to store the hole size in 555 * 556 * This function modifies @mp. 557 * 558 * Returns: errno on error 559 */ 560 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 561 struct metapath *mp, struct iomap *iomap) 562 { 563 struct gfs2_hole_walker_args args = { }; 564 int ret = 0; 565 566 ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args); 567 if (!ret) 568 iomap->length = args.blocks << inode->i_blkbits; 569 return ret; 570 } 571 572 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 573 struct gfs2_glock *gl, unsigned int i, 574 unsigned offset, u64 bn) 575 { 576 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 577 ((i > 1) ? sizeof(struct gfs2_meta_header) : 578 sizeof(struct gfs2_dinode))); 579 BUG_ON(i < 1); 580 BUG_ON(mp->mp_bh[i] != NULL); 581 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 582 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 583 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 584 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 585 ptr += offset; 586 *ptr = cpu_to_be64(bn); 587 return ptr; 588 } 589 590 enum alloc_state { 591 ALLOC_DATA = 0, 592 ALLOC_GROW_DEPTH = 1, 593 ALLOC_GROW_HEIGHT = 2, 594 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 595 }; 596 597 /** 598 * gfs2_iomap_alloc - Build a metadata tree of the requested height 599 * @inode: The GFS2 inode 600 * @iomap: The iomap structure 601 * @flags: iomap flags 602 * @mp: The metapath, with proper height information calculated 603 * 604 * In this routine we may have to alloc: 605 * i) Indirect blocks to grow the metadata tree height 606 * ii) Indirect blocks to fill in lower part of the metadata tree 607 * iii) Data blocks 608 * 609 * This function is called after gfs2_iomap_get, which works out the 610 * total number of blocks which we need via gfs2_alloc_size. 611 * 612 * We then do the actual allocation asking for an extent at a time (if 613 * enough contiguous free blocks are available, there will only be one 614 * allocation request per call) and uses the state machine to initialise 615 * the blocks in order. 616 * 617 * Right now, this function will allocate at most one indirect block 618 * worth of data -- with a default block size of 4K, that's slightly 619 * less than 2M. If this limitation is ever removed to allow huge 620 * allocations, we would probably still want to limit the iomap size we 621 * return to avoid stalling other tasks during huge writes; the next 622 * iomap iteration would then find the blocks already allocated. 623 * 624 * Returns: errno on error 625 */ 626 627 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 628 unsigned flags, struct metapath *mp) 629 { 630 struct gfs2_inode *ip = GFS2_I(inode); 631 struct gfs2_sbd *sdp = GFS2_SB(inode); 632 struct buffer_head *dibh = mp->mp_bh[0]; 633 u64 bn; 634 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 635 size_t dblks = iomap->length >> inode->i_blkbits; 636 const unsigned end_of_metadata = mp->mp_fheight - 1; 637 int ret; 638 enum alloc_state state; 639 __be64 *ptr; 640 __be64 zero_bn = 0; 641 642 BUG_ON(mp->mp_aheight < 1); 643 BUG_ON(dibh == NULL); 644 BUG_ON(dblks < 1); 645 646 gfs2_trans_add_meta(ip->i_gl, dibh); 647 648 down_write(&ip->i_rw_mutex); 649 650 if (mp->mp_fheight == mp->mp_aheight) { 651 /* Bottom indirect block exists */ 652 state = ALLOC_DATA; 653 } else { 654 /* Need to allocate indirect blocks */ 655 if (mp->mp_fheight == ip->i_height) { 656 /* Writing into existing tree, extend tree down */ 657 iblks = mp->mp_fheight - mp->mp_aheight; 658 state = ALLOC_GROW_DEPTH; 659 } else { 660 /* Building up tree height */ 661 state = ALLOC_GROW_HEIGHT; 662 iblks = mp->mp_fheight - ip->i_height; 663 branch_start = metapath_branch_start(mp); 664 iblks += (mp->mp_fheight - branch_start); 665 } 666 } 667 668 /* start of the second part of the function (state machine) */ 669 670 blks = dblks + iblks; 671 i = mp->mp_aheight; 672 do { 673 n = blks - alloced; 674 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 675 if (ret) 676 goto out; 677 alloced += n; 678 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 679 gfs2_trans_add_unrevoke(sdp, bn, n); 680 switch (state) { 681 /* Growing height of tree */ 682 case ALLOC_GROW_HEIGHT: 683 if (i == 1) { 684 ptr = (__be64 *)(dibh->b_data + 685 sizeof(struct gfs2_dinode)); 686 zero_bn = *ptr; 687 } 688 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 689 i++, n--) 690 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 691 if (i - 1 == mp->mp_fheight - ip->i_height) { 692 i--; 693 gfs2_buffer_copy_tail(mp->mp_bh[i], 694 sizeof(struct gfs2_meta_header), 695 dibh, sizeof(struct gfs2_dinode)); 696 gfs2_buffer_clear_tail(dibh, 697 sizeof(struct gfs2_dinode) + 698 sizeof(__be64)); 699 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 700 sizeof(struct gfs2_meta_header)); 701 *ptr = zero_bn; 702 state = ALLOC_GROW_DEPTH; 703 for(i = branch_start; i < mp->mp_fheight; i++) { 704 if (mp->mp_bh[i] == NULL) 705 break; 706 brelse(mp->mp_bh[i]); 707 mp->mp_bh[i] = NULL; 708 } 709 i = branch_start; 710 } 711 if (n == 0) 712 break; 713 /* Branching from existing tree */ 714 case ALLOC_GROW_DEPTH: 715 if (i > 1 && i < mp->mp_fheight) 716 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 717 for (; i < mp->mp_fheight && n > 0; i++, n--) 718 gfs2_indirect_init(mp, ip->i_gl, i, 719 mp->mp_list[i-1], bn++); 720 if (i == mp->mp_fheight) 721 state = ALLOC_DATA; 722 if (n == 0) 723 break; 724 /* Tree complete, adding data blocks */ 725 case ALLOC_DATA: 726 BUG_ON(n > dblks); 727 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 728 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 729 dblks = n; 730 ptr = metapointer(end_of_metadata, mp); 731 iomap->addr = bn << inode->i_blkbits; 732 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 733 while (n-- > 0) 734 *ptr++ = cpu_to_be64(bn++); 735 break; 736 } 737 } while (iomap->addr == IOMAP_NULL_ADDR); 738 739 iomap->type = IOMAP_MAPPED; 740 iomap->length = (u64)dblks << inode->i_blkbits; 741 ip->i_height = mp->mp_fheight; 742 gfs2_add_inode_blocks(&ip->i_inode, alloced); 743 gfs2_dinode_out(ip, dibh->b_data); 744 out: 745 up_write(&ip->i_rw_mutex); 746 return ret; 747 } 748 749 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 750 751 /** 752 * gfs2_alloc_size - Compute the maximum allocation size 753 * @inode: The inode 754 * @mp: The metapath 755 * @size: Requested size in blocks 756 * 757 * Compute the maximum size of the next allocation at @mp. 758 * 759 * Returns: size in blocks 760 */ 761 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 762 { 763 struct gfs2_inode *ip = GFS2_I(inode); 764 struct gfs2_sbd *sdp = GFS2_SB(inode); 765 const __be64 *first, *ptr, *end; 766 767 /* 768 * For writes to stuffed files, this function is called twice via 769 * gfs2_iomap_get, before and after unstuffing. The size we return the 770 * first time needs to be large enough to get the reservation and 771 * allocation sizes right. The size we return the second time must 772 * be exact or else gfs2_iomap_alloc won't do the right thing. 773 */ 774 775 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 776 unsigned int maxsize = mp->mp_fheight > 1 ? 777 sdp->sd_inptrs : sdp->sd_diptrs; 778 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 779 if (size > maxsize) 780 size = maxsize; 781 return size; 782 } 783 784 first = metapointer(ip->i_height - 1, mp); 785 end = metaend(ip->i_height - 1, mp); 786 if (end - first > size) 787 end = first + size; 788 for (ptr = first; ptr < end; ptr++) { 789 if (*ptr) 790 break; 791 } 792 return ptr - first; 793 } 794 795 /** 796 * gfs2_iomap_get - Map blocks from an inode to disk blocks 797 * @inode: The inode 798 * @pos: Starting position in bytes 799 * @length: Length to map, in bytes 800 * @flags: iomap flags 801 * @iomap: The iomap structure 802 * @mp: The metapath 803 * 804 * Returns: errno 805 */ 806 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 807 unsigned flags, struct iomap *iomap, 808 struct metapath *mp) 809 { 810 struct gfs2_inode *ip = GFS2_I(inode); 811 struct gfs2_sbd *sdp = GFS2_SB(inode); 812 loff_t size = i_size_read(inode); 813 __be64 *ptr; 814 sector_t lblock; 815 sector_t lblock_stop; 816 int ret; 817 int eob; 818 u64 len; 819 struct buffer_head *dibh = NULL, *bh; 820 u8 height; 821 822 if (!length) 823 return -EINVAL; 824 825 down_read(&ip->i_rw_mutex); 826 827 ret = gfs2_meta_inode_buffer(ip, &dibh); 828 if (ret) 829 goto unlock; 830 mp->mp_bh[0] = dibh; 831 832 if (gfs2_is_stuffed(ip)) { 833 if (flags & IOMAP_WRITE) { 834 loff_t max_size = gfs2_max_stuffed_size(ip); 835 836 if (pos + length > max_size) 837 goto unstuff; 838 iomap->length = max_size; 839 } else { 840 if (pos >= size) { 841 if (flags & IOMAP_REPORT) { 842 ret = -ENOENT; 843 goto unlock; 844 } else { 845 /* report a hole */ 846 iomap->offset = pos; 847 iomap->length = length; 848 goto do_alloc; 849 } 850 } 851 iomap->length = size; 852 } 853 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 854 sizeof(struct gfs2_dinode); 855 iomap->type = IOMAP_INLINE; 856 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 857 goto out; 858 } 859 860 unstuff: 861 lblock = pos >> inode->i_blkbits; 862 iomap->offset = lblock << inode->i_blkbits; 863 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 864 len = lblock_stop - lblock + 1; 865 iomap->length = len << inode->i_blkbits; 866 867 height = ip->i_height; 868 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 869 height++; 870 find_metapath(sdp, lblock, mp, height); 871 if (height > ip->i_height || gfs2_is_stuffed(ip)) 872 goto do_alloc; 873 874 ret = lookup_metapath(ip, mp); 875 if (ret) 876 goto unlock; 877 878 if (mp->mp_aheight != ip->i_height) 879 goto do_alloc; 880 881 ptr = metapointer(ip->i_height - 1, mp); 882 if (*ptr == 0) 883 goto do_alloc; 884 885 bh = mp->mp_bh[ip->i_height - 1]; 886 len = gfs2_extent_length(bh, ptr, len, &eob); 887 888 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 889 iomap->length = len << inode->i_blkbits; 890 iomap->type = IOMAP_MAPPED; 891 iomap->flags |= IOMAP_F_MERGED; 892 if (eob) 893 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 894 895 out: 896 iomap->bdev = inode->i_sb->s_bdev; 897 unlock: 898 up_read(&ip->i_rw_mutex); 899 return ret; 900 901 do_alloc: 902 iomap->addr = IOMAP_NULL_ADDR; 903 iomap->type = IOMAP_HOLE; 904 if (flags & IOMAP_REPORT) { 905 if (pos >= size) 906 ret = -ENOENT; 907 else if (height == ip->i_height) 908 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 909 else 910 iomap->length = size - pos; 911 } else if (flags & IOMAP_WRITE) { 912 u64 alloc_size; 913 914 if (flags & IOMAP_DIRECT) 915 goto out; /* (see gfs2_file_direct_write) */ 916 917 len = gfs2_alloc_size(inode, mp, len); 918 alloc_size = len << inode->i_blkbits; 919 if (alloc_size < iomap->length) 920 iomap->length = alloc_size; 921 } else { 922 if (pos < size && height == ip->i_height) 923 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 924 } 925 goto out; 926 } 927 928 static int gfs2_write_lock(struct inode *inode) 929 { 930 struct gfs2_inode *ip = GFS2_I(inode); 931 struct gfs2_sbd *sdp = GFS2_SB(inode); 932 int error; 933 934 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 935 error = gfs2_glock_nq(&ip->i_gh); 936 if (error) 937 goto out_uninit; 938 if (&ip->i_inode == sdp->sd_rindex) { 939 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 940 941 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 942 GL_NOCACHE, &m_ip->i_gh); 943 if (error) 944 goto out_unlock; 945 } 946 return 0; 947 948 out_unlock: 949 gfs2_glock_dq(&ip->i_gh); 950 out_uninit: 951 gfs2_holder_uninit(&ip->i_gh); 952 return error; 953 } 954 955 static void gfs2_write_unlock(struct inode *inode) 956 { 957 struct gfs2_inode *ip = GFS2_I(inode); 958 struct gfs2_sbd *sdp = GFS2_SB(inode); 959 960 if (&ip->i_inode == sdp->sd_rindex) { 961 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 962 963 gfs2_glock_dq_uninit(&m_ip->i_gh); 964 } 965 gfs2_glock_dq_uninit(&ip->i_gh); 966 } 967 968 static void gfs2_iomap_journaled_page_done(struct inode *inode, loff_t pos, 969 unsigned copied, struct page *page, 970 struct iomap *iomap) 971 { 972 struct gfs2_inode *ip = GFS2_I(inode); 973 974 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 975 } 976 977 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 978 loff_t length, unsigned flags, 979 struct iomap *iomap, 980 struct metapath *mp) 981 { 982 struct gfs2_inode *ip = GFS2_I(inode); 983 struct gfs2_sbd *sdp = GFS2_SB(inode); 984 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 985 bool unstuff, alloc_required; 986 int ret; 987 988 ret = gfs2_write_lock(inode); 989 if (ret) 990 return ret; 991 992 unstuff = gfs2_is_stuffed(ip) && 993 pos + length > gfs2_max_stuffed_size(ip); 994 995 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp); 996 if (ret) 997 goto out_unlock; 998 999 alloc_required = unstuff || iomap->type == IOMAP_HOLE; 1000 1001 if (alloc_required || gfs2_is_jdata(ip)) 1002 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1003 &ind_blocks); 1004 1005 if (alloc_required) { 1006 struct gfs2_alloc_parms ap = { 1007 .target = data_blocks + ind_blocks 1008 }; 1009 1010 ret = gfs2_quota_lock_check(ip, &ap); 1011 if (ret) 1012 goto out_unlock; 1013 1014 ret = gfs2_inplace_reserve(ip, &ap); 1015 if (ret) 1016 goto out_qunlock; 1017 } 1018 1019 rblocks = RES_DINODE + ind_blocks; 1020 if (gfs2_is_jdata(ip)) 1021 rblocks += data_blocks; 1022 if (ind_blocks || data_blocks) 1023 rblocks += RES_STATFS + RES_QUOTA; 1024 if (inode == sdp->sd_rindex) 1025 rblocks += 2 * RES_STATFS; 1026 if (alloc_required) 1027 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1028 1029 ret = gfs2_trans_begin(sdp, rblocks, iomap->length >> inode->i_blkbits); 1030 if (ret) 1031 goto out_trans_fail; 1032 1033 if (unstuff) { 1034 ret = gfs2_unstuff_dinode(ip, NULL); 1035 if (ret) 1036 goto out_trans_end; 1037 release_metapath(mp); 1038 ret = gfs2_iomap_get(inode, iomap->offset, iomap->length, 1039 flags, iomap, mp); 1040 if (ret) 1041 goto out_trans_end; 1042 } 1043 1044 if (iomap->type == IOMAP_HOLE) { 1045 ret = gfs2_iomap_alloc(inode, iomap, flags, mp); 1046 if (ret) { 1047 gfs2_trans_end(sdp); 1048 gfs2_inplace_release(ip); 1049 punch_hole(ip, iomap->offset, iomap->length); 1050 goto out_qunlock; 1051 } 1052 } 1053 if (!gfs2_is_stuffed(ip) && gfs2_is_jdata(ip)) 1054 iomap->page_done = gfs2_iomap_journaled_page_done; 1055 return 0; 1056 1057 out_trans_end: 1058 gfs2_trans_end(sdp); 1059 out_trans_fail: 1060 if (alloc_required) 1061 gfs2_inplace_release(ip); 1062 out_qunlock: 1063 if (alloc_required) 1064 gfs2_quota_unlock(ip); 1065 out_unlock: 1066 gfs2_write_unlock(inode); 1067 return ret; 1068 } 1069 1070 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1071 unsigned flags, struct iomap *iomap) 1072 { 1073 struct gfs2_inode *ip = GFS2_I(inode); 1074 struct metapath mp = { .mp_aheight = 1, }; 1075 int ret; 1076 1077 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1078 1079 trace_gfs2_iomap_start(ip, pos, length, flags); 1080 if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) { 1081 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1082 } else { 1083 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1084 1085 /* 1086 * Silently fall back to buffered I/O for stuffed files or if 1087 * we've hot a hole (see gfs2_file_direct_write). 1088 */ 1089 if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) && 1090 iomap->type != IOMAP_MAPPED) 1091 ret = -ENOTBLK; 1092 } 1093 if (!ret) { 1094 get_bh(mp.mp_bh[0]); 1095 iomap->private = mp.mp_bh[0]; 1096 } 1097 release_metapath(&mp); 1098 trace_gfs2_iomap_end(ip, iomap, ret); 1099 return ret; 1100 } 1101 1102 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1103 ssize_t written, unsigned flags, struct iomap *iomap) 1104 { 1105 struct gfs2_inode *ip = GFS2_I(inode); 1106 struct gfs2_sbd *sdp = GFS2_SB(inode); 1107 struct gfs2_trans *tr = current->journal_info; 1108 struct buffer_head *dibh = iomap->private; 1109 1110 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE) 1111 goto out; 1112 1113 if (iomap->type != IOMAP_INLINE) { 1114 gfs2_ordered_add_inode(ip); 1115 1116 if (tr->tr_num_buf_new) 1117 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1118 else 1119 gfs2_trans_add_meta(ip->i_gl, dibh); 1120 } 1121 1122 if (inode == sdp->sd_rindex) { 1123 adjust_fs_space(inode); 1124 sdp->sd_rindex_uptodate = 0; 1125 } 1126 1127 gfs2_trans_end(sdp); 1128 gfs2_inplace_release(ip); 1129 1130 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1131 /* Deallocate blocks that were just allocated. */ 1132 loff_t blockmask = i_blocksize(inode) - 1; 1133 loff_t end = (pos + length) & ~blockmask; 1134 1135 pos = (pos + written + blockmask) & ~blockmask; 1136 if (pos < end) { 1137 truncate_pagecache_range(inode, pos, end - 1); 1138 punch_hole(ip, pos, end - pos); 1139 } 1140 } 1141 1142 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1143 gfs2_quota_unlock(ip); 1144 gfs2_write_unlock(inode); 1145 1146 out: 1147 if (dibh) 1148 brelse(dibh); 1149 return 0; 1150 } 1151 1152 const struct iomap_ops gfs2_iomap_ops = { 1153 .iomap_begin = gfs2_iomap_begin, 1154 .iomap_end = gfs2_iomap_end, 1155 }; 1156 1157 /** 1158 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1159 * @inode: The inode 1160 * @lblock: The logical block number 1161 * @bh_map: The bh to be mapped 1162 * @create: True if its ok to alloc blocks to satify the request 1163 * 1164 * The size of the requested mapping is defined in bh_map->b_size. 1165 * 1166 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1167 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1168 * bh_map->b_size to indicate the size of the mapping when @lblock and 1169 * successive blocks are mapped, up to the requested size. 1170 * 1171 * Sets buffer_boundary() if a read of metadata will be required 1172 * before the next block can be mapped. Sets buffer_new() if new 1173 * blocks were allocated. 1174 * 1175 * Returns: errno 1176 */ 1177 1178 int gfs2_block_map(struct inode *inode, sector_t lblock, 1179 struct buffer_head *bh_map, int create) 1180 { 1181 struct gfs2_inode *ip = GFS2_I(inode); 1182 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1183 loff_t length = bh_map->b_size; 1184 struct metapath mp = { .mp_aheight = 1, }; 1185 struct iomap iomap = { }; 1186 int ret; 1187 1188 clear_buffer_mapped(bh_map); 1189 clear_buffer_new(bh_map); 1190 clear_buffer_boundary(bh_map); 1191 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1192 1193 if (create) { 1194 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1195 if (!ret && iomap.type == IOMAP_HOLE) 1196 ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp); 1197 release_metapath(&mp); 1198 } else { 1199 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1200 release_metapath(&mp); 1201 } 1202 if (ret) 1203 goto out; 1204 1205 if (iomap.length > bh_map->b_size) { 1206 iomap.length = bh_map->b_size; 1207 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1208 } 1209 if (iomap.addr != IOMAP_NULL_ADDR) 1210 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1211 bh_map->b_size = iomap.length; 1212 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1213 set_buffer_boundary(bh_map); 1214 if (iomap.flags & IOMAP_F_NEW) 1215 set_buffer_new(bh_map); 1216 1217 out: 1218 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1219 return ret; 1220 } 1221 1222 /* 1223 * Deprecated: do not use in new code 1224 */ 1225 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1226 { 1227 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1228 int ret; 1229 int create = *new; 1230 1231 BUG_ON(!extlen); 1232 BUG_ON(!dblock); 1233 BUG_ON(!new); 1234 1235 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1236 ret = gfs2_block_map(inode, lblock, &bh, create); 1237 *extlen = bh.b_size >> inode->i_blkbits; 1238 *dblock = bh.b_blocknr; 1239 if (buffer_new(&bh)) 1240 *new = 1; 1241 else 1242 *new = 0; 1243 return ret; 1244 } 1245 1246 /** 1247 * gfs2_block_zero_range - Deal with zeroing out data 1248 * 1249 * This is partly borrowed from ext3. 1250 */ 1251 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1252 unsigned int length) 1253 { 1254 struct address_space *mapping = inode->i_mapping; 1255 struct gfs2_inode *ip = GFS2_I(inode); 1256 unsigned long index = from >> PAGE_SHIFT; 1257 unsigned offset = from & (PAGE_SIZE-1); 1258 unsigned blocksize, iblock, pos; 1259 struct buffer_head *bh; 1260 struct page *page; 1261 int err; 1262 1263 page = find_or_create_page(mapping, index, GFP_NOFS); 1264 if (!page) 1265 return 0; 1266 1267 blocksize = inode->i_sb->s_blocksize; 1268 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 1269 1270 if (!page_has_buffers(page)) 1271 create_empty_buffers(page, blocksize, 0); 1272 1273 /* Find the buffer that contains "offset" */ 1274 bh = page_buffers(page); 1275 pos = blocksize; 1276 while (offset >= pos) { 1277 bh = bh->b_this_page; 1278 iblock++; 1279 pos += blocksize; 1280 } 1281 1282 err = 0; 1283 1284 if (!buffer_mapped(bh)) { 1285 gfs2_block_map(inode, iblock, bh, 0); 1286 /* unmapped? It's a hole - nothing to do */ 1287 if (!buffer_mapped(bh)) 1288 goto unlock; 1289 } 1290 1291 /* Ok, it's mapped. Make sure it's up-to-date */ 1292 if (PageUptodate(page)) 1293 set_buffer_uptodate(bh); 1294 1295 if (!buffer_uptodate(bh)) { 1296 err = -EIO; 1297 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1298 wait_on_buffer(bh); 1299 /* Uhhuh. Read error. Complain and punt. */ 1300 if (!buffer_uptodate(bh)) 1301 goto unlock; 1302 err = 0; 1303 } 1304 1305 if (gfs2_is_jdata(ip)) 1306 gfs2_trans_add_data(ip->i_gl, bh); 1307 else 1308 gfs2_ordered_add_inode(ip); 1309 1310 zero_user(page, offset, length); 1311 mark_buffer_dirty(bh); 1312 unlock: 1313 unlock_page(page); 1314 put_page(page); 1315 return err; 1316 } 1317 1318 #define GFS2_JTRUNC_REVOKES 8192 1319 1320 /** 1321 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1322 * @inode: The inode being truncated 1323 * @oldsize: The original (larger) size 1324 * @newsize: The new smaller size 1325 * 1326 * With jdata files, we have to journal a revoke for each block which is 1327 * truncated. As a result, we need to split this into separate transactions 1328 * if the number of pages being truncated gets too large. 1329 */ 1330 1331 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1332 { 1333 struct gfs2_sbd *sdp = GFS2_SB(inode); 1334 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1335 u64 chunk; 1336 int error; 1337 1338 while (oldsize != newsize) { 1339 struct gfs2_trans *tr; 1340 unsigned int offs; 1341 1342 chunk = oldsize - newsize; 1343 if (chunk > max_chunk) 1344 chunk = max_chunk; 1345 1346 offs = oldsize & ~PAGE_MASK; 1347 if (offs && chunk > PAGE_SIZE) 1348 chunk = offs + ((chunk - offs) & PAGE_MASK); 1349 1350 truncate_pagecache(inode, oldsize - chunk); 1351 oldsize -= chunk; 1352 1353 tr = current->journal_info; 1354 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1355 continue; 1356 1357 gfs2_trans_end(sdp); 1358 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1359 if (error) 1360 return error; 1361 } 1362 1363 return 0; 1364 } 1365 1366 static int trunc_start(struct inode *inode, u64 newsize) 1367 { 1368 struct gfs2_inode *ip = GFS2_I(inode); 1369 struct gfs2_sbd *sdp = GFS2_SB(inode); 1370 struct buffer_head *dibh = NULL; 1371 int journaled = gfs2_is_jdata(ip); 1372 u64 oldsize = inode->i_size; 1373 int error; 1374 1375 if (journaled) 1376 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1377 else 1378 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1379 if (error) 1380 return error; 1381 1382 error = gfs2_meta_inode_buffer(ip, &dibh); 1383 if (error) 1384 goto out; 1385 1386 gfs2_trans_add_meta(ip->i_gl, dibh); 1387 1388 if (gfs2_is_stuffed(ip)) { 1389 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1390 } else { 1391 unsigned int blocksize = i_blocksize(inode); 1392 unsigned int offs = newsize & (blocksize - 1); 1393 if (offs) { 1394 error = gfs2_block_zero_range(inode, newsize, 1395 blocksize - offs); 1396 if (error) 1397 goto out; 1398 } 1399 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1400 } 1401 1402 i_size_write(inode, newsize); 1403 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1404 gfs2_dinode_out(ip, dibh->b_data); 1405 1406 if (journaled) 1407 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1408 else 1409 truncate_pagecache(inode, newsize); 1410 1411 out: 1412 brelse(dibh); 1413 if (current->journal_info) 1414 gfs2_trans_end(sdp); 1415 return error; 1416 } 1417 1418 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1419 struct iomap *iomap) 1420 { 1421 struct metapath mp = { .mp_aheight = 1, }; 1422 int ret; 1423 1424 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1425 if (!ret && iomap->type == IOMAP_HOLE) 1426 ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp); 1427 release_metapath(&mp); 1428 return ret; 1429 } 1430 1431 /** 1432 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1433 * @ip: inode 1434 * @rg_gh: holder of resource group glock 1435 * @bh: buffer head to sweep 1436 * @start: starting point in bh 1437 * @end: end point in bh 1438 * @meta: true if bh points to metadata (rather than data) 1439 * @btotal: place to keep count of total blocks freed 1440 * 1441 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1442 * free, and free them all. However, we do it one rgrp at a time. If this 1443 * block has references to multiple rgrps, we break it into individual 1444 * transactions. This allows other processes to use the rgrps while we're 1445 * focused on a single one, for better concurrency / performance. 1446 * At every transaction boundary, we rewrite the inode into the journal. 1447 * That way the bitmaps are kept consistent with the inode and we can recover 1448 * if we're interrupted by power-outages. 1449 * 1450 * Returns: 0, or return code if an error occurred. 1451 * *btotal has the total number of blocks freed 1452 */ 1453 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1454 struct buffer_head *bh, __be64 *start, __be64 *end, 1455 bool meta, u32 *btotal) 1456 { 1457 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1458 struct gfs2_rgrpd *rgd; 1459 struct gfs2_trans *tr; 1460 __be64 *p; 1461 int blks_outside_rgrp; 1462 u64 bn, bstart, isize_blks; 1463 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1464 int ret = 0; 1465 bool buf_in_tr = false; /* buffer was added to transaction */ 1466 1467 more_rgrps: 1468 rgd = NULL; 1469 if (gfs2_holder_initialized(rd_gh)) { 1470 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1471 gfs2_assert_withdraw(sdp, 1472 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1473 } 1474 blks_outside_rgrp = 0; 1475 bstart = 0; 1476 blen = 0; 1477 1478 for (p = start; p < end; p++) { 1479 if (!*p) 1480 continue; 1481 bn = be64_to_cpu(*p); 1482 1483 if (rgd) { 1484 if (!rgrp_contains_block(rgd, bn)) { 1485 blks_outside_rgrp++; 1486 continue; 1487 } 1488 } else { 1489 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1490 if (unlikely(!rgd)) { 1491 ret = -EIO; 1492 goto out; 1493 } 1494 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1495 0, rd_gh); 1496 if (ret) 1497 goto out; 1498 1499 /* Must be done with the rgrp glock held: */ 1500 if (gfs2_rs_active(&ip->i_res) && 1501 rgd == ip->i_res.rs_rbm.rgd) 1502 gfs2_rs_deltree(&ip->i_res); 1503 } 1504 1505 /* The size of our transactions will be unknown until we 1506 actually process all the metadata blocks that relate to 1507 the rgrp. So we estimate. We know it can't be more than 1508 the dinode's i_blocks and we don't want to exceed the 1509 journal flush threshold, sd_log_thresh2. */ 1510 if (current->journal_info == NULL) { 1511 unsigned int jblocks_rqsted, revokes; 1512 1513 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1514 RES_INDIRECT; 1515 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1516 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1517 jblocks_rqsted += 1518 atomic_read(&sdp->sd_log_thresh2); 1519 else 1520 jblocks_rqsted += isize_blks; 1521 revokes = jblocks_rqsted; 1522 if (meta) 1523 revokes += end - start; 1524 else if (ip->i_depth) 1525 revokes += sdp->sd_inptrs; 1526 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1527 if (ret) 1528 goto out_unlock; 1529 down_write(&ip->i_rw_mutex); 1530 } 1531 /* check if we will exceed the transaction blocks requested */ 1532 tr = current->journal_info; 1533 if (tr->tr_num_buf_new + RES_STATFS + 1534 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1535 /* We set blks_outside_rgrp to ensure the loop will 1536 be repeated for the same rgrp, but with a new 1537 transaction. */ 1538 blks_outside_rgrp++; 1539 /* This next part is tricky. If the buffer was added 1540 to the transaction, we've already set some block 1541 pointers to 0, so we better follow through and free 1542 them, or we will introduce corruption (so break). 1543 This may be impossible, or at least rare, but I 1544 decided to cover the case regardless. 1545 1546 If the buffer was not added to the transaction 1547 (this call), doing so would exceed our transaction 1548 size, so we need to end the transaction and start a 1549 new one (so goto). */ 1550 1551 if (buf_in_tr) 1552 break; 1553 goto out_unlock; 1554 } 1555 1556 gfs2_trans_add_meta(ip->i_gl, bh); 1557 buf_in_tr = true; 1558 *p = 0; 1559 if (bstart + blen == bn) { 1560 blen++; 1561 continue; 1562 } 1563 if (bstart) { 1564 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1565 (*btotal) += blen; 1566 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1567 } 1568 bstart = bn; 1569 blen = 1; 1570 } 1571 if (bstart) { 1572 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1573 (*btotal) += blen; 1574 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1575 } 1576 out_unlock: 1577 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1578 outside the rgrp we just processed, 1579 do it all over again. */ 1580 if (current->journal_info) { 1581 struct buffer_head *dibh; 1582 1583 ret = gfs2_meta_inode_buffer(ip, &dibh); 1584 if (ret) 1585 goto out; 1586 1587 /* Every transaction boundary, we rewrite the dinode 1588 to keep its di_blocks current in case of failure. */ 1589 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1590 current_time(&ip->i_inode); 1591 gfs2_trans_add_meta(ip->i_gl, dibh); 1592 gfs2_dinode_out(ip, dibh->b_data); 1593 brelse(dibh); 1594 up_write(&ip->i_rw_mutex); 1595 gfs2_trans_end(sdp); 1596 } 1597 gfs2_glock_dq_uninit(rd_gh); 1598 cond_resched(); 1599 goto more_rgrps; 1600 } 1601 out: 1602 return ret; 1603 } 1604 1605 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1606 { 1607 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1608 return false; 1609 return true; 1610 } 1611 1612 /** 1613 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1614 * @mp: starting metapath 1615 * @h: desired height to search 1616 * 1617 * Assumes the metapath is valid (with buffers) out to height h. 1618 * Returns: true if a non-null pointer was found in the metapath buffer 1619 * false if all remaining pointers are NULL in the buffer 1620 */ 1621 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1622 unsigned int h, 1623 __u16 *end_list, unsigned int end_aligned) 1624 { 1625 struct buffer_head *bh = mp->mp_bh[h]; 1626 __be64 *first, *ptr, *end; 1627 1628 first = metaptr1(h, mp); 1629 ptr = first + mp->mp_list[h]; 1630 end = (__be64 *)(bh->b_data + bh->b_size); 1631 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1632 bool keep_end = h < end_aligned; 1633 end = first + end_list[h] + keep_end; 1634 } 1635 1636 while (ptr < end) { 1637 if (*ptr) { /* if we have a non-null pointer */ 1638 mp->mp_list[h] = ptr - first; 1639 h++; 1640 if (h < GFS2_MAX_META_HEIGHT) 1641 mp->mp_list[h] = 0; 1642 return true; 1643 } 1644 ptr++; 1645 } 1646 return false; 1647 } 1648 1649 enum dealloc_states { 1650 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1651 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1652 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1653 DEALLOC_DONE = 3, /* process complete */ 1654 }; 1655 1656 static inline void 1657 metapointer_range(struct metapath *mp, int height, 1658 __u16 *start_list, unsigned int start_aligned, 1659 __u16 *end_list, unsigned int end_aligned, 1660 __be64 **start, __be64 **end) 1661 { 1662 struct buffer_head *bh = mp->mp_bh[height]; 1663 __be64 *first; 1664 1665 first = metaptr1(height, mp); 1666 *start = first; 1667 if (mp_eq_to_hgt(mp, start_list, height)) { 1668 bool keep_start = height < start_aligned; 1669 *start = first + start_list[height] + keep_start; 1670 } 1671 *end = (__be64 *)(bh->b_data + bh->b_size); 1672 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1673 bool keep_end = height < end_aligned; 1674 *end = first + end_list[height] + keep_end; 1675 } 1676 } 1677 1678 static inline bool walk_done(struct gfs2_sbd *sdp, 1679 struct metapath *mp, int height, 1680 __u16 *end_list, unsigned int end_aligned) 1681 { 1682 __u16 end; 1683 1684 if (end_list) { 1685 bool keep_end = height < end_aligned; 1686 if (!mp_eq_to_hgt(mp, end_list, height)) 1687 return false; 1688 end = end_list[height] + keep_end; 1689 } else 1690 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1691 return mp->mp_list[height] >= end; 1692 } 1693 1694 /** 1695 * punch_hole - deallocate blocks in a file 1696 * @ip: inode to truncate 1697 * @offset: the start of the hole 1698 * @length: the size of the hole (or 0 for truncate) 1699 * 1700 * Punch a hole into a file or truncate a file at a given position. This 1701 * function operates in whole blocks (@offset and @length are rounded 1702 * accordingly); partially filled blocks must be cleared otherwise. 1703 * 1704 * This function works from the bottom up, and from the right to the left. In 1705 * other words, it strips off the highest layer (data) before stripping any of 1706 * the metadata. Doing it this way is best in case the operation is interrupted 1707 * by power failure, etc. The dinode is rewritten in every transaction to 1708 * guarantee integrity. 1709 */ 1710 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1711 { 1712 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1713 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1714 struct metapath mp = {}; 1715 struct buffer_head *dibh, *bh; 1716 struct gfs2_holder rd_gh; 1717 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1718 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1719 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1720 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1721 unsigned int start_aligned, uninitialized_var(end_aligned); 1722 unsigned int strip_h = ip->i_height - 1; 1723 u32 btotal = 0; 1724 int ret, state; 1725 int mp_h; /* metapath buffers are read in to this height */ 1726 u64 prev_bnr = 0; 1727 __be64 *start, *end; 1728 1729 if (offset >= maxsize) { 1730 /* 1731 * The starting point lies beyond the allocated meta-data; 1732 * there are no blocks do deallocate. 1733 */ 1734 return 0; 1735 } 1736 1737 /* 1738 * The start position of the hole is defined by lblock, start_list, and 1739 * start_aligned. The end position of the hole is defined by lend, 1740 * end_list, and end_aligned. 1741 * 1742 * start_aligned and end_aligned define down to which height the start 1743 * and end positions are aligned to the metadata tree (i.e., the 1744 * position is a multiple of the metadata granularity at the height 1745 * above). This determines at which heights additional meta pointers 1746 * needs to be preserved for the remaining data. 1747 */ 1748 1749 if (length) { 1750 u64 end_offset = offset + length; 1751 u64 lend; 1752 1753 /* 1754 * Clip the end at the maximum file size for the given height: 1755 * that's how far the metadata goes; files bigger than that 1756 * will have additional layers of indirection. 1757 */ 1758 if (end_offset > maxsize) 1759 end_offset = maxsize; 1760 lend = end_offset >> bsize_shift; 1761 1762 if (lblock >= lend) 1763 return 0; 1764 1765 find_metapath(sdp, lend, &mp, ip->i_height); 1766 end_list = __end_list; 1767 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1768 1769 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1770 if (end_list[mp_h]) 1771 break; 1772 } 1773 end_aligned = mp_h; 1774 } 1775 1776 find_metapath(sdp, lblock, &mp, ip->i_height); 1777 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1778 1779 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1780 if (start_list[mp_h]) 1781 break; 1782 } 1783 start_aligned = mp_h; 1784 1785 ret = gfs2_meta_inode_buffer(ip, &dibh); 1786 if (ret) 1787 return ret; 1788 1789 mp.mp_bh[0] = dibh; 1790 ret = lookup_metapath(ip, &mp); 1791 if (ret) 1792 goto out_metapath; 1793 1794 /* issue read-ahead on metadata */ 1795 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1796 metapointer_range(&mp, mp_h, start_list, start_aligned, 1797 end_list, end_aligned, &start, &end); 1798 gfs2_metapath_ra(ip->i_gl, start, end); 1799 } 1800 1801 if (mp.mp_aheight == ip->i_height) 1802 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1803 else 1804 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1805 1806 ret = gfs2_rindex_update(sdp); 1807 if (ret) 1808 goto out_metapath; 1809 1810 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1811 if (ret) 1812 goto out_metapath; 1813 gfs2_holder_mark_uninitialized(&rd_gh); 1814 1815 mp_h = strip_h; 1816 1817 while (state != DEALLOC_DONE) { 1818 switch (state) { 1819 /* Truncate a full metapath at the given strip height. 1820 * Note that strip_h == mp_h in order to be in this state. */ 1821 case DEALLOC_MP_FULL: 1822 bh = mp.mp_bh[mp_h]; 1823 gfs2_assert_withdraw(sdp, bh); 1824 if (gfs2_assert_withdraw(sdp, 1825 prev_bnr != bh->b_blocknr)) { 1826 printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, " 1827 "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n", 1828 sdp->sd_fsname, 1829 (unsigned long long)ip->i_no_addr, 1830 prev_bnr, ip->i_height, strip_h, mp_h); 1831 } 1832 prev_bnr = bh->b_blocknr; 1833 1834 if (gfs2_metatype_check(sdp, bh, 1835 (mp_h ? GFS2_METATYPE_IN : 1836 GFS2_METATYPE_DI))) { 1837 ret = -EIO; 1838 goto out; 1839 } 1840 1841 /* 1842 * Below, passing end_aligned as 0 gives us the 1843 * metapointer range excluding the end point: the end 1844 * point is the first metapath we must not deallocate! 1845 */ 1846 1847 metapointer_range(&mp, mp_h, start_list, start_aligned, 1848 end_list, 0 /* end_aligned */, 1849 &start, &end); 1850 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1851 start, end, 1852 mp_h != ip->i_height - 1, 1853 &btotal); 1854 1855 /* If we hit an error or just swept dinode buffer, 1856 just exit. */ 1857 if (ret || !mp_h) { 1858 state = DEALLOC_DONE; 1859 break; 1860 } 1861 state = DEALLOC_MP_LOWER; 1862 break; 1863 1864 /* lower the metapath strip height */ 1865 case DEALLOC_MP_LOWER: 1866 /* We're done with the current buffer, so release it, 1867 unless it's the dinode buffer. Then back up to the 1868 previous pointer. */ 1869 if (mp_h) { 1870 brelse(mp.mp_bh[mp_h]); 1871 mp.mp_bh[mp_h] = NULL; 1872 } 1873 /* If we can't get any lower in height, we've stripped 1874 off all we can. Next step is to back up and start 1875 stripping the previous level of metadata. */ 1876 if (mp_h == 0) { 1877 strip_h--; 1878 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1879 mp_h = strip_h; 1880 state = DEALLOC_FILL_MP; 1881 break; 1882 } 1883 mp.mp_list[mp_h] = 0; 1884 mp_h--; /* search one metadata height down */ 1885 mp.mp_list[mp_h]++; 1886 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1887 break; 1888 /* Here we've found a part of the metapath that is not 1889 * allocated. We need to search at that height for the 1890 * next non-null pointer. */ 1891 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1892 state = DEALLOC_FILL_MP; 1893 mp_h++; 1894 } 1895 /* No more non-null pointers at this height. Back up 1896 to the previous height and try again. */ 1897 break; /* loop around in the same state */ 1898 1899 /* Fill the metapath with buffers to the given height. */ 1900 case DEALLOC_FILL_MP: 1901 /* Fill the buffers out to the current height. */ 1902 ret = fillup_metapath(ip, &mp, mp_h); 1903 if (ret < 0) 1904 goto out; 1905 1906 /* On the first pass, issue read-ahead on metadata. */ 1907 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1908 unsigned int height = mp.mp_aheight - 1; 1909 1910 /* No read-ahead for data blocks. */ 1911 if (mp.mp_aheight - 1 == strip_h) 1912 height--; 1913 1914 for (; height >= mp.mp_aheight - ret; height--) { 1915 metapointer_range(&mp, height, 1916 start_list, start_aligned, 1917 end_list, end_aligned, 1918 &start, &end); 1919 gfs2_metapath_ra(ip->i_gl, start, end); 1920 } 1921 } 1922 1923 /* If buffers found for the entire strip height */ 1924 if (mp.mp_aheight - 1 == strip_h) { 1925 state = DEALLOC_MP_FULL; 1926 break; 1927 } 1928 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1929 mp_h = mp.mp_aheight - 1; 1930 1931 /* If we find a non-null block pointer, crawl a bit 1932 higher up in the metapath and try again, otherwise 1933 we need to look lower for a new starting point. */ 1934 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1935 mp_h++; 1936 else 1937 state = DEALLOC_MP_LOWER; 1938 break; 1939 } 1940 } 1941 1942 if (btotal) { 1943 if (current->journal_info == NULL) { 1944 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1945 RES_QUOTA, 0); 1946 if (ret) 1947 goto out; 1948 down_write(&ip->i_rw_mutex); 1949 } 1950 gfs2_statfs_change(sdp, 0, +btotal, 0); 1951 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1952 ip->i_inode.i_gid); 1953 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1954 gfs2_trans_add_meta(ip->i_gl, dibh); 1955 gfs2_dinode_out(ip, dibh->b_data); 1956 up_write(&ip->i_rw_mutex); 1957 gfs2_trans_end(sdp); 1958 } 1959 1960 out: 1961 if (gfs2_holder_initialized(&rd_gh)) 1962 gfs2_glock_dq_uninit(&rd_gh); 1963 if (current->journal_info) { 1964 up_write(&ip->i_rw_mutex); 1965 gfs2_trans_end(sdp); 1966 cond_resched(); 1967 } 1968 gfs2_quota_unhold(ip); 1969 out_metapath: 1970 release_metapath(&mp); 1971 return ret; 1972 } 1973 1974 static int trunc_end(struct gfs2_inode *ip) 1975 { 1976 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1977 struct buffer_head *dibh; 1978 int error; 1979 1980 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1981 if (error) 1982 return error; 1983 1984 down_write(&ip->i_rw_mutex); 1985 1986 error = gfs2_meta_inode_buffer(ip, &dibh); 1987 if (error) 1988 goto out; 1989 1990 if (!i_size_read(&ip->i_inode)) { 1991 ip->i_height = 0; 1992 ip->i_goal = ip->i_no_addr; 1993 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1994 gfs2_ordered_del_inode(ip); 1995 } 1996 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1997 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 1998 1999 gfs2_trans_add_meta(ip->i_gl, dibh); 2000 gfs2_dinode_out(ip, dibh->b_data); 2001 brelse(dibh); 2002 2003 out: 2004 up_write(&ip->i_rw_mutex); 2005 gfs2_trans_end(sdp); 2006 return error; 2007 } 2008 2009 /** 2010 * do_shrink - make a file smaller 2011 * @inode: the inode 2012 * @newsize: the size to make the file 2013 * 2014 * Called with an exclusive lock on @inode. The @size must 2015 * be equal to or smaller than the current inode size. 2016 * 2017 * Returns: errno 2018 */ 2019 2020 static int do_shrink(struct inode *inode, u64 newsize) 2021 { 2022 struct gfs2_inode *ip = GFS2_I(inode); 2023 int error; 2024 2025 error = trunc_start(inode, newsize); 2026 if (error < 0) 2027 return error; 2028 if (gfs2_is_stuffed(ip)) 2029 return 0; 2030 2031 error = punch_hole(ip, newsize, 0); 2032 if (error == 0) 2033 error = trunc_end(ip); 2034 2035 return error; 2036 } 2037 2038 void gfs2_trim_blocks(struct inode *inode) 2039 { 2040 int ret; 2041 2042 ret = do_shrink(inode, inode->i_size); 2043 WARN_ON(ret != 0); 2044 } 2045 2046 /** 2047 * do_grow - Touch and update inode size 2048 * @inode: The inode 2049 * @size: The new size 2050 * 2051 * This function updates the timestamps on the inode and 2052 * may also increase the size of the inode. This function 2053 * must not be called with @size any smaller than the current 2054 * inode size. 2055 * 2056 * Although it is not strictly required to unstuff files here, 2057 * earlier versions of GFS2 have a bug in the stuffed file reading 2058 * code which will result in a buffer overrun if the size is larger 2059 * than the max stuffed file size. In order to prevent this from 2060 * occurring, such files are unstuffed, but in other cases we can 2061 * just update the inode size directly. 2062 * 2063 * Returns: 0 on success, or -ve on error 2064 */ 2065 2066 static int do_grow(struct inode *inode, u64 size) 2067 { 2068 struct gfs2_inode *ip = GFS2_I(inode); 2069 struct gfs2_sbd *sdp = GFS2_SB(inode); 2070 struct gfs2_alloc_parms ap = { .target = 1, }; 2071 struct buffer_head *dibh; 2072 int error; 2073 int unstuff = 0; 2074 2075 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2076 error = gfs2_quota_lock_check(ip, &ap); 2077 if (error) 2078 return error; 2079 2080 error = gfs2_inplace_reserve(ip, &ap); 2081 if (error) 2082 goto do_grow_qunlock; 2083 unstuff = 1; 2084 } 2085 2086 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2087 (unstuff && 2088 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2089 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2090 0 : RES_QUOTA), 0); 2091 if (error) 2092 goto do_grow_release; 2093 2094 if (unstuff) { 2095 error = gfs2_unstuff_dinode(ip, NULL); 2096 if (error) 2097 goto do_end_trans; 2098 } 2099 2100 error = gfs2_meta_inode_buffer(ip, &dibh); 2101 if (error) 2102 goto do_end_trans; 2103 2104 i_size_write(inode, size); 2105 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2106 gfs2_trans_add_meta(ip->i_gl, dibh); 2107 gfs2_dinode_out(ip, dibh->b_data); 2108 brelse(dibh); 2109 2110 do_end_trans: 2111 gfs2_trans_end(sdp); 2112 do_grow_release: 2113 if (unstuff) { 2114 gfs2_inplace_release(ip); 2115 do_grow_qunlock: 2116 gfs2_quota_unlock(ip); 2117 } 2118 return error; 2119 } 2120 2121 /** 2122 * gfs2_setattr_size - make a file a given size 2123 * @inode: the inode 2124 * @newsize: the size to make the file 2125 * 2126 * The file size can grow, shrink, or stay the same size. This 2127 * is called holding i_rwsem and an exclusive glock on the inode 2128 * in question. 2129 * 2130 * Returns: errno 2131 */ 2132 2133 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2134 { 2135 struct gfs2_inode *ip = GFS2_I(inode); 2136 int ret; 2137 2138 BUG_ON(!S_ISREG(inode->i_mode)); 2139 2140 ret = inode_newsize_ok(inode, newsize); 2141 if (ret) 2142 return ret; 2143 2144 inode_dio_wait(inode); 2145 2146 ret = gfs2_rsqa_alloc(ip); 2147 if (ret) 2148 goto out; 2149 2150 if (newsize >= inode->i_size) { 2151 ret = do_grow(inode, newsize); 2152 goto out; 2153 } 2154 2155 ret = do_shrink(inode, newsize); 2156 out: 2157 gfs2_rsqa_delete(ip, NULL); 2158 return ret; 2159 } 2160 2161 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2162 { 2163 int error; 2164 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2165 if (!error) 2166 error = trunc_end(ip); 2167 return error; 2168 } 2169 2170 int gfs2_file_dealloc(struct gfs2_inode *ip) 2171 { 2172 return punch_hole(ip, 0, 0); 2173 } 2174 2175 /** 2176 * gfs2_free_journal_extents - Free cached journal bmap info 2177 * @jd: The journal 2178 * 2179 */ 2180 2181 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2182 { 2183 struct gfs2_journal_extent *jext; 2184 2185 while(!list_empty(&jd->extent_list)) { 2186 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 2187 list_del(&jext->list); 2188 kfree(jext); 2189 } 2190 } 2191 2192 /** 2193 * gfs2_add_jextent - Add or merge a new extent to extent cache 2194 * @jd: The journal descriptor 2195 * @lblock: The logical block at start of new extent 2196 * @dblock: The physical block at start of new extent 2197 * @blocks: Size of extent in fs blocks 2198 * 2199 * Returns: 0 on success or -ENOMEM 2200 */ 2201 2202 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2203 { 2204 struct gfs2_journal_extent *jext; 2205 2206 if (!list_empty(&jd->extent_list)) { 2207 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 2208 if ((jext->dblock + jext->blocks) == dblock) { 2209 jext->blocks += blocks; 2210 return 0; 2211 } 2212 } 2213 2214 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2215 if (jext == NULL) 2216 return -ENOMEM; 2217 jext->dblock = dblock; 2218 jext->lblock = lblock; 2219 jext->blocks = blocks; 2220 list_add_tail(&jext->list, &jd->extent_list); 2221 jd->nr_extents++; 2222 return 0; 2223 } 2224 2225 /** 2226 * gfs2_map_journal_extents - Cache journal bmap info 2227 * @sdp: The super block 2228 * @jd: The journal to map 2229 * 2230 * Create a reusable "extent" mapping from all logical 2231 * blocks to all physical blocks for the given journal. This will save 2232 * us time when writing journal blocks. Most journals will have only one 2233 * extent that maps all their logical blocks. That's because gfs2.mkfs 2234 * arranges the journal blocks sequentially to maximize performance. 2235 * So the extent would map the first block for the entire file length. 2236 * However, gfs2_jadd can happen while file activity is happening, so 2237 * those journals may not be sequential. Less likely is the case where 2238 * the users created their own journals by mounting the metafs and 2239 * laying it out. But it's still possible. These journals might have 2240 * several extents. 2241 * 2242 * Returns: 0 on success, or error on failure 2243 */ 2244 2245 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2246 { 2247 u64 lblock = 0; 2248 u64 lblock_stop; 2249 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2250 struct buffer_head bh; 2251 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2252 u64 size; 2253 int rc; 2254 ktime_t start, end; 2255 2256 start = ktime_get(); 2257 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2258 size = (lblock_stop - lblock) << shift; 2259 jd->nr_extents = 0; 2260 WARN_ON(!list_empty(&jd->extent_list)); 2261 2262 do { 2263 bh.b_state = 0; 2264 bh.b_blocknr = 0; 2265 bh.b_size = size; 2266 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2267 if (rc || !buffer_mapped(&bh)) 2268 goto fail; 2269 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2270 if (rc) 2271 goto fail; 2272 size -= bh.b_size; 2273 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2274 } while(size > 0); 2275 2276 end = ktime_get(); 2277 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2278 jd->nr_extents, ktime_ms_delta(end, start)); 2279 return 0; 2280 2281 fail: 2282 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2283 rc, jd->jd_jid, 2284 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2285 jd->nr_extents); 2286 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2287 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2288 bh.b_state, (unsigned long long)bh.b_size); 2289 gfs2_free_journal_extents(jd); 2290 return rc; 2291 } 2292 2293 /** 2294 * gfs2_write_alloc_required - figure out if a write will require an allocation 2295 * @ip: the file being written to 2296 * @offset: the offset to write to 2297 * @len: the number of bytes being written 2298 * 2299 * Returns: 1 if an alloc is required, 0 otherwise 2300 */ 2301 2302 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2303 unsigned int len) 2304 { 2305 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2306 struct buffer_head bh; 2307 unsigned int shift; 2308 u64 lblock, lblock_stop, size; 2309 u64 end_of_file; 2310 2311 if (!len) 2312 return 0; 2313 2314 if (gfs2_is_stuffed(ip)) { 2315 if (offset + len > gfs2_max_stuffed_size(ip)) 2316 return 1; 2317 return 0; 2318 } 2319 2320 shift = sdp->sd_sb.sb_bsize_shift; 2321 BUG_ON(gfs2_is_dir(ip)); 2322 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2323 lblock = offset >> shift; 2324 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2325 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2326 return 1; 2327 2328 size = (lblock_stop - lblock) << shift; 2329 do { 2330 bh.b_state = 0; 2331 bh.b_size = size; 2332 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2333 if (!buffer_mapped(&bh)) 2334 return 1; 2335 size -= bh.b_size; 2336 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2337 } while(size > 0); 2338 2339 return 0; 2340 } 2341 2342 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2343 { 2344 struct gfs2_inode *ip = GFS2_I(inode); 2345 struct buffer_head *dibh; 2346 int error; 2347 2348 if (offset >= inode->i_size) 2349 return 0; 2350 if (offset + length > inode->i_size) 2351 length = inode->i_size - offset; 2352 2353 error = gfs2_meta_inode_buffer(ip, &dibh); 2354 if (error) 2355 return error; 2356 gfs2_trans_add_meta(ip->i_gl, dibh); 2357 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2358 length); 2359 brelse(dibh); 2360 return 0; 2361 } 2362 2363 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2364 loff_t length) 2365 { 2366 struct gfs2_sbd *sdp = GFS2_SB(inode); 2367 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2368 int error; 2369 2370 while (length) { 2371 struct gfs2_trans *tr; 2372 loff_t chunk; 2373 unsigned int offs; 2374 2375 chunk = length; 2376 if (chunk > max_chunk) 2377 chunk = max_chunk; 2378 2379 offs = offset & ~PAGE_MASK; 2380 if (offs && chunk > PAGE_SIZE) 2381 chunk = offs + ((chunk - offs) & PAGE_MASK); 2382 2383 truncate_pagecache_range(inode, offset, chunk); 2384 offset += chunk; 2385 length -= chunk; 2386 2387 tr = current->journal_info; 2388 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2389 continue; 2390 2391 gfs2_trans_end(sdp); 2392 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2393 if (error) 2394 return error; 2395 } 2396 return 0; 2397 } 2398 2399 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2400 { 2401 struct inode *inode = file_inode(file); 2402 struct gfs2_inode *ip = GFS2_I(inode); 2403 struct gfs2_sbd *sdp = GFS2_SB(inode); 2404 int error; 2405 2406 if (gfs2_is_jdata(ip)) 2407 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2408 GFS2_JTRUNC_REVOKES); 2409 else 2410 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2411 if (error) 2412 return error; 2413 2414 if (gfs2_is_stuffed(ip)) { 2415 error = stuffed_zero_range(inode, offset, length); 2416 if (error) 2417 goto out; 2418 } else { 2419 unsigned int start_off, end_len, blocksize; 2420 2421 blocksize = i_blocksize(inode); 2422 start_off = offset & (blocksize - 1); 2423 end_len = (offset + length) & (blocksize - 1); 2424 if (start_off) { 2425 unsigned int len = length; 2426 if (length > blocksize - start_off) 2427 len = blocksize - start_off; 2428 error = gfs2_block_zero_range(inode, offset, len); 2429 if (error) 2430 goto out; 2431 if (start_off + length < blocksize) 2432 end_len = 0; 2433 } 2434 if (end_len) { 2435 error = gfs2_block_zero_range(inode, 2436 offset + length - end_len, end_len); 2437 if (error) 2438 goto out; 2439 } 2440 } 2441 2442 if (gfs2_is_jdata(ip)) { 2443 BUG_ON(!current->journal_info); 2444 gfs2_journaled_truncate_range(inode, offset, length); 2445 } else 2446 truncate_pagecache_range(inode, offset, offset + length - 1); 2447 2448 file_update_time(file); 2449 mark_inode_dirty(inode); 2450 2451 if (current->journal_info) 2452 gfs2_trans_end(sdp); 2453 2454 if (!gfs2_is_stuffed(ip)) 2455 error = punch_hole(ip, offset, length); 2456 2457 out: 2458 if (current->journal_info) 2459 gfs2_trans_end(sdp); 2460 return error; 2461 } 2462