1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 struct buffer_head *bh; 60 int release = 0; 61 62 if (!page || page->index) { 63 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 64 if (!page) 65 return -ENOMEM; 66 release = 1; 67 } 68 69 if (!PageUptodate(page)) { 70 void *kaddr = kmap(page); 71 u64 dsize = i_size_read(inode); 72 73 if (dsize > gfs2_max_stuffed_size(ip)) 74 dsize = gfs2_max_stuffed_size(ip); 75 76 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 77 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 78 kunmap(page); 79 80 SetPageUptodate(page); 81 } 82 83 if (!page_has_buffers(page)) 84 create_empty_buffers(page, BIT(inode->i_blkbits), 85 BIT(BH_Uptodate)); 86 87 bh = page_buffers(page); 88 89 if (!buffer_mapped(bh)) 90 map_bh(bh, inode->i_sb, block); 91 92 set_buffer_uptodate(bh); 93 if (gfs2_is_jdata(ip)) 94 gfs2_trans_add_data(ip->i_gl, bh); 95 else { 96 mark_buffer_dirty(bh); 97 gfs2_ordered_add_inode(ip); 98 } 99 100 if (release) { 101 unlock_page(page); 102 put_page(page); 103 } 104 105 return 0; 106 } 107 108 /** 109 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 110 * @ip: The GFS2 inode to unstuff 111 * @page: The (optional) page. This is looked up if the @page is NULL 112 * 113 * This routine unstuffs a dinode and returns it to a "normal" state such 114 * that the height can be grown in the traditional way. 115 * 116 * Returns: errno 117 */ 118 119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 120 { 121 struct buffer_head *bh, *dibh; 122 struct gfs2_dinode *di; 123 u64 block = 0; 124 int isdir = gfs2_is_dir(ip); 125 int error; 126 127 down_write(&ip->i_rw_mutex); 128 129 error = gfs2_meta_inode_buffer(ip, &dibh); 130 if (error) 131 goto out; 132 133 if (i_size_read(&ip->i_inode)) { 134 /* Get a free block, fill it with the stuffed data, 135 and write it out to disk */ 136 137 unsigned int n = 1; 138 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 139 if (error) 140 goto out_brelse; 141 if (isdir) { 142 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 143 error = gfs2_dir_get_new_buffer(ip, block, &bh); 144 if (error) 145 goto out_brelse; 146 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 147 dibh, sizeof(struct gfs2_dinode)); 148 brelse(bh); 149 } else { 150 error = gfs2_unstuffer_page(ip, dibh, block, page); 151 if (error) 152 goto out_brelse; 153 } 154 } 155 156 /* Set up the pointer to the new block */ 157 158 gfs2_trans_add_meta(ip->i_gl, dibh); 159 di = (struct gfs2_dinode *)dibh->b_data; 160 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 161 162 if (i_size_read(&ip->i_inode)) { 163 *(__be64 *)(di + 1) = cpu_to_be64(block); 164 gfs2_add_inode_blocks(&ip->i_inode, 1); 165 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 166 } 167 168 ip->i_height = 1; 169 di->di_height = cpu_to_be16(1); 170 171 out_brelse: 172 brelse(dibh); 173 out: 174 up_write(&ip->i_rw_mutex); 175 return error; 176 } 177 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static void release_metapath(struct metapath *mp) 394 { 395 int i; 396 397 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 398 if (mp->mp_bh[i] == NULL) 399 break; 400 brelse(mp->mp_bh[i]); 401 mp->mp_bh[i] = NULL; 402 } 403 } 404 405 /** 406 * gfs2_extent_length - Returns length of an extent of blocks 407 * @bh: The metadata block 408 * @ptr: Current position in @bh 409 * @limit: Max extent length to return 410 * @eob: Set to 1 if we hit "end of block" 411 * 412 * Returns: The length of the extent (minimum of one block) 413 */ 414 415 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 416 { 417 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 418 const __be64 *first = ptr; 419 u64 d = be64_to_cpu(*ptr); 420 421 *eob = 0; 422 do { 423 ptr++; 424 if (ptr >= end) 425 break; 426 d++; 427 } while(be64_to_cpu(*ptr) == d); 428 if (ptr >= end) 429 *eob = 1; 430 return ptr - first; 431 } 432 433 typedef const __be64 *(*gfs2_metadata_walker)( 434 struct metapath *mp, 435 const __be64 *start, const __be64 *end, 436 u64 factor, void *data); 437 438 #define WALK_STOP ((__be64 *)0) 439 #define WALK_NEXT ((__be64 *)1) 440 441 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock, 442 u64 len, struct metapath *mp, gfs2_metadata_walker walker, 443 void *data) 444 { 445 struct metapath clone; 446 struct gfs2_inode *ip = GFS2_I(inode); 447 struct gfs2_sbd *sdp = GFS2_SB(inode); 448 const __be64 *start, *end, *ptr; 449 u64 factor = 1; 450 unsigned int hgt; 451 int ret = 0; 452 453 for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--) 454 factor *= sdp->sd_inptrs; 455 456 for (;;) { 457 u64 step; 458 459 /* Walk indirect block. */ 460 start = metapointer(hgt, mp); 461 end = metaend(hgt, mp); 462 463 step = (end - start) * factor; 464 if (step > len) 465 end = start + DIV_ROUND_UP_ULL(len, factor); 466 467 ptr = walker(mp, start, end, factor, data); 468 if (ptr == WALK_STOP) 469 break; 470 if (step >= len) 471 break; 472 len -= step; 473 if (ptr != WALK_NEXT) { 474 BUG_ON(!*ptr); 475 mp->mp_list[hgt] += ptr - start; 476 goto fill_up_metapath; 477 } 478 479 lower_metapath: 480 /* Decrease height of metapath. */ 481 if (mp != &clone) { 482 clone_metapath(&clone, mp); 483 mp = &clone; 484 } 485 brelse(mp->mp_bh[hgt]); 486 mp->mp_bh[hgt] = NULL; 487 if (!hgt) 488 break; 489 hgt--; 490 factor *= sdp->sd_inptrs; 491 492 /* Advance in metadata tree. */ 493 (mp->mp_list[hgt])++; 494 start = metapointer(hgt, mp); 495 end = metaend(hgt, mp); 496 if (start >= end) { 497 mp->mp_list[hgt] = 0; 498 if (!hgt) 499 break; 500 goto lower_metapath; 501 } 502 503 fill_up_metapath: 504 /* Increase height of metapath. */ 505 if (mp != &clone) { 506 clone_metapath(&clone, mp); 507 mp = &clone; 508 } 509 ret = fillup_metapath(ip, mp, ip->i_height - 1); 510 if (ret < 0) 511 break; 512 hgt += ret; 513 for (; ret; ret--) 514 do_div(factor, sdp->sd_inptrs); 515 mp->mp_aheight = hgt + 1; 516 } 517 if (mp == &clone) 518 release_metapath(mp); 519 return ret; 520 } 521 522 struct gfs2_hole_walker_args { 523 u64 blocks; 524 }; 525 526 static const __be64 *gfs2_hole_walker(struct metapath *mp, 527 const __be64 *start, const __be64 *end, 528 u64 factor, void *data) 529 { 530 struct gfs2_hole_walker_args *args = data; 531 const __be64 *ptr; 532 533 for (ptr = start; ptr < end; ptr++) { 534 if (*ptr) { 535 args->blocks += (ptr - start) * factor; 536 if (mp->mp_aheight == mp->mp_fheight) 537 return WALK_STOP; 538 return ptr; /* increase height */ 539 } 540 } 541 args->blocks += (end - start) * factor; 542 return WALK_NEXT; 543 } 544 545 /** 546 * gfs2_hole_size - figure out the size of a hole 547 * @inode: The inode 548 * @lblock: The logical starting block number 549 * @len: How far to look (in blocks) 550 * @mp: The metapath at lblock 551 * @iomap: The iomap to store the hole size in 552 * 553 * This function modifies @mp. 554 * 555 * Returns: errno on error 556 */ 557 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 558 struct metapath *mp, struct iomap *iomap) 559 { 560 struct gfs2_hole_walker_args args = { }; 561 int ret = 0; 562 563 ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args); 564 if (!ret) 565 iomap->length = args.blocks << inode->i_blkbits; 566 return ret; 567 } 568 569 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 570 struct gfs2_glock *gl, unsigned int i, 571 unsigned offset, u64 bn) 572 { 573 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 574 ((i > 1) ? sizeof(struct gfs2_meta_header) : 575 sizeof(struct gfs2_dinode))); 576 BUG_ON(i < 1); 577 BUG_ON(mp->mp_bh[i] != NULL); 578 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 579 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 580 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 581 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 582 ptr += offset; 583 *ptr = cpu_to_be64(bn); 584 return ptr; 585 } 586 587 enum alloc_state { 588 ALLOC_DATA = 0, 589 ALLOC_GROW_DEPTH = 1, 590 ALLOC_GROW_HEIGHT = 2, 591 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 592 }; 593 594 /** 595 * gfs2_iomap_alloc - Build a metadata tree of the requested height 596 * @inode: The GFS2 inode 597 * @iomap: The iomap structure 598 * @flags: iomap flags 599 * @mp: The metapath, with proper height information calculated 600 * 601 * In this routine we may have to alloc: 602 * i) Indirect blocks to grow the metadata tree height 603 * ii) Indirect blocks to fill in lower part of the metadata tree 604 * iii) Data blocks 605 * 606 * This function is called after gfs2_iomap_get, which works out the 607 * total number of blocks which we need via gfs2_alloc_size. 608 * 609 * We then do the actual allocation asking for an extent at a time (if 610 * enough contiguous free blocks are available, there will only be one 611 * allocation request per call) and uses the state machine to initialise 612 * the blocks in order. 613 * 614 * Right now, this function will allocate at most one indirect block 615 * worth of data -- with a default block size of 4K, that's slightly 616 * less than 2M. If this limitation is ever removed to allow huge 617 * allocations, we would probably still want to limit the iomap size we 618 * return to avoid stalling other tasks during huge writes; the next 619 * iomap iteration would then find the blocks already allocated. 620 * 621 * Returns: errno on error 622 */ 623 624 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 625 unsigned flags, struct metapath *mp) 626 { 627 struct gfs2_inode *ip = GFS2_I(inode); 628 struct gfs2_sbd *sdp = GFS2_SB(inode); 629 struct buffer_head *dibh = mp->mp_bh[0]; 630 u64 bn; 631 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 632 size_t dblks = iomap->length >> inode->i_blkbits; 633 const unsigned end_of_metadata = mp->mp_fheight - 1; 634 int ret; 635 enum alloc_state state; 636 __be64 *ptr; 637 __be64 zero_bn = 0; 638 639 BUG_ON(mp->mp_aheight < 1); 640 BUG_ON(dibh == NULL); 641 BUG_ON(dblks < 1); 642 643 gfs2_trans_add_meta(ip->i_gl, dibh); 644 645 down_write(&ip->i_rw_mutex); 646 647 if (mp->mp_fheight == mp->mp_aheight) { 648 /* Bottom indirect block exists */ 649 state = ALLOC_DATA; 650 } else { 651 /* Need to allocate indirect blocks */ 652 if (mp->mp_fheight == ip->i_height) { 653 /* Writing into existing tree, extend tree down */ 654 iblks = mp->mp_fheight - mp->mp_aheight; 655 state = ALLOC_GROW_DEPTH; 656 } else { 657 /* Building up tree height */ 658 state = ALLOC_GROW_HEIGHT; 659 iblks = mp->mp_fheight - ip->i_height; 660 branch_start = metapath_branch_start(mp); 661 iblks += (mp->mp_fheight - branch_start); 662 } 663 } 664 665 /* start of the second part of the function (state machine) */ 666 667 blks = dblks + iblks; 668 i = mp->mp_aheight; 669 do { 670 n = blks - alloced; 671 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 672 if (ret) 673 goto out; 674 alloced += n; 675 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 676 gfs2_trans_remove_revoke(sdp, bn, n); 677 switch (state) { 678 /* Growing height of tree */ 679 case ALLOC_GROW_HEIGHT: 680 if (i == 1) { 681 ptr = (__be64 *)(dibh->b_data + 682 sizeof(struct gfs2_dinode)); 683 zero_bn = *ptr; 684 } 685 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 686 i++, n--) 687 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 688 if (i - 1 == mp->mp_fheight - ip->i_height) { 689 i--; 690 gfs2_buffer_copy_tail(mp->mp_bh[i], 691 sizeof(struct gfs2_meta_header), 692 dibh, sizeof(struct gfs2_dinode)); 693 gfs2_buffer_clear_tail(dibh, 694 sizeof(struct gfs2_dinode) + 695 sizeof(__be64)); 696 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 697 sizeof(struct gfs2_meta_header)); 698 *ptr = zero_bn; 699 state = ALLOC_GROW_DEPTH; 700 for(i = branch_start; i < mp->mp_fheight; i++) { 701 if (mp->mp_bh[i] == NULL) 702 break; 703 brelse(mp->mp_bh[i]); 704 mp->mp_bh[i] = NULL; 705 } 706 i = branch_start; 707 } 708 if (n == 0) 709 break; 710 /* fall through - To branching from existing tree */ 711 case ALLOC_GROW_DEPTH: 712 if (i > 1 && i < mp->mp_fheight) 713 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 714 for (; i < mp->mp_fheight && n > 0; i++, n--) 715 gfs2_indirect_init(mp, ip->i_gl, i, 716 mp->mp_list[i-1], bn++); 717 if (i == mp->mp_fheight) 718 state = ALLOC_DATA; 719 if (n == 0) 720 break; 721 /* fall through - To tree complete, adding data blocks */ 722 case ALLOC_DATA: 723 BUG_ON(n > dblks); 724 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 725 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 726 dblks = n; 727 ptr = metapointer(end_of_metadata, mp); 728 iomap->addr = bn << inode->i_blkbits; 729 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 730 while (n-- > 0) 731 *ptr++ = cpu_to_be64(bn++); 732 break; 733 } 734 } while (iomap->addr == IOMAP_NULL_ADDR); 735 736 iomap->type = IOMAP_MAPPED; 737 iomap->length = (u64)dblks << inode->i_blkbits; 738 ip->i_height = mp->mp_fheight; 739 gfs2_add_inode_blocks(&ip->i_inode, alloced); 740 gfs2_dinode_out(ip, dibh->b_data); 741 out: 742 up_write(&ip->i_rw_mutex); 743 return ret; 744 } 745 746 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 747 748 /** 749 * gfs2_alloc_size - Compute the maximum allocation size 750 * @inode: The inode 751 * @mp: The metapath 752 * @size: Requested size in blocks 753 * 754 * Compute the maximum size of the next allocation at @mp. 755 * 756 * Returns: size in blocks 757 */ 758 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 759 { 760 struct gfs2_inode *ip = GFS2_I(inode); 761 struct gfs2_sbd *sdp = GFS2_SB(inode); 762 const __be64 *first, *ptr, *end; 763 764 /* 765 * For writes to stuffed files, this function is called twice via 766 * gfs2_iomap_get, before and after unstuffing. The size we return the 767 * first time needs to be large enough to get the reservation and 768 * allocation sizes right. The size we return the second time must 769 * be exact or else gfs2_iomap_alloc won't do the right thing. 770 */ 771 772 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 773 unsigned int maxsize = mp->mp_fheight > 1 ? 774 sdp->sd_inptrs : sdp->sd_diptrs; 775 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 776 if (size > maxsize) 777 size = maxsize; 778 return size; 779 } 780 781 first = metapointer(ip->i_height - 1, mp); 782 end = metaend(ip->i_height - 1, mp); 783 if (end - first > size) 784 end = first + size; 785 for (ptr = first; ptr < end; ptr++) { 786 if (*ptr) 787 break; 788 } 789 return ptr - first; 790 } 791 792 /** 793 * gfs2_iomap_get - Map blocks from an inode to disk blocks 794 * @inode: The inode 795 * @pos: Starting position in bytes 796 * @length: Length to map, in bytes 797 * @flags: iomap flags 798 * @iomap: The iomap structure 799 * @mp: The metapath 800 * 801 * Returns: errno 802 */ 803 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 804 unsigned flags, struct iomap *iomap, 805 struct metapath *mp) 806 { 807 struct gfs2_inode *ip = GFS2_I(inode); 808 struct gfs2_sbd *sdp = GFS2_SB(inode); 809 loff_t size = i_size_read(inode); 810 __be64 *ptr; 811 sector_t lblock; 812 sector_t lblock_stop; 813 int ret; 814 int eob; 815 u64 len; 816 struct buffer_head *dibh = NULL, *bh; 817 u8 height; 818 819 if (!length) 820 return -EINVAL; 821 822 down_read(&ip->i_rw_mutex); 823 824 ret = gfs2_meta_inode_buffer(ip, &dibh); 825 if (ret) 826 goto unlock; 827 mp->mp_bh[0] = dibh; 828 829 if (gfs2_is_stuffed(ip)) { 830 if (flags & IOMAP_WRITE) { 831 loff_t max_size = gfs2_max_stuffed_size(ip); 832 833 if (pos + length > max_size) 834 goto unstuff; 835 iomap->length = max_size; 836 } else { 837 if (pos >= size) { 838 if (flags & IOMAP_REPORT) { 839 ret = -ENOENT; 840 goto unlock; 841 } else { 842 /* report a hole */ 843 iomap->offset = pos; 844 iomap->length = length; 845 goto do_alloc; 846 } 847 } 848 iomap->length = size; 849 } 850 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 851 sizeof(struct gfs2_dinode); 852 iomap->type = IOMAP_INLINE; 853 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 854 goto out; 855 } 856 857 unstuff: 858 lblock = pos >> inode->i_blkbits; 859 iomap->offset = lblock << inode->i_blkbits; 860 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 861 len = lblock_stop - lblock + 1; 862 iomap->length = len << inode->i_blkbits; 863 864 height = ip->i_height; 865 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 866 height++; 867 find_metapath(sdp, lblock, mp, height); 868 if (height > ip->i_height || gfs2_is_stuffed(ip)) 869 goto do_alloc; 870 871 ret = lookup_metapath(ip, mp); 872 if (ret) 873 goto unlock; 874 875 if (mp->mp_aheight != ip->i_height) 876 goto do_alloc; 877 878 ptr = metapointer(ip->i_height - 1, mp); 879 if (*ptr == 0) 880 goto do_alloc; 881 882 bh = mp->mp_bh[ip->i_height - 1]; 883 len = gfs2_extent_length(bh, ptr, len, &eob); 884 885 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 886 iomap->length = len << inode->i_blkbits; 887 iomap->type = IOMAP_MAPPED; 888 iomap->flags |= IOMAP_F_MERGED; 889 if (eob) 890 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 891 892 out: 893 iomap->bdev = inode->i_sb->s_bdev; 894 unlock: 895 up_read(&ip->i_rw_mutex); 896 return ret; 897 898 do_alloc: 899 iomap->addr = IOMAP_NULL_ADDR; 900 iomap->type = IOMAP_HOLE; 901 if (flags & IOMAP_REPORT) { 902 if (pos >= size) 903 ret = -ENOENT; 904 else if (height == ip->i_height) 905 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 906 else 907 iomap->length = size - pos; 908 } else if (flags & IOMAP_WRITE) { 909 u64 alloc_size; 910 911 if (flags & IOMAP_DIRECT) 912 goto out; /* (see gfs2_file_direct_write) */ 913 914 len = gfs2_alloc_size(inode, mp, len); 915 alloc_size = len << inode->i_blkbits; 916 if (alloc_size < iomap->length) 917 iomap->length = alloc_size; 918 } else { 919 if (pos < size && height == ip->i_height) 920 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 921 } 922 goto out; 923 } 924 925 /** 926 * gfs2_lblk_to_dblk - convert logical block to disk block 927 * @inode: the inode of the file we're mapping 928 * @lblock: the block relative to the start of the file 929 * @dblock: the returned dblock, if no error 930 * 931 * This function maps a single block from a file logical block (relative to 932 * the start of the file) to a file system absolute block using iomap. 933 * 934 * Returns: the absolute file system block, or an error 935 */ 936 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock) 937 { 938 struct iomap iomap = { }; 939 struct metapath mp = { .mp_aheight = 1, }; 940 loff_t pos = (loff_t)lblock << inode->i_blkbits; 941 int ret; 942 943 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp); 944 release_metapath(&mp); 945 if (ret == 0) 946 *dblock = iomap.addr >> inode->i_blkbits; 947 948 return ret; 949 } 950 951 static int gfs2_write_lock(struct inode *inode) 952 { 953 struct gfs2_inode *ip = GFS2_I(inode); 954 struct gfs2_sbd *sdp = GFS2_SB(inode); 955 int error; 956 957 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 958 error = gfs2_glock_nq(&ip->i_gh); 959 if (error) 960 goto out_uninit; 961 if (&ip->i_inode == sdp->sd_rindex) { 962 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 963 964 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 965 GL_NOCACHE, &m_ip->i_gh); 966 if (error) 967 goto out_unlock; 968 } 969 return 0; 970 971 out_unlock: 972 gfs2_glock_dq(&ip->i_gh); 973 out_uninit: 974 gfs2_holder_uninit(&ip->i_gh); 975 return error; 976 } 977 978 static void gfs2_write_unlock(struct inode *inode) 979 { 980 struct gfs2_inode *ip = GFS2_I(inode); 981 struct gfs2_sbd *sdp = GFS2_SB(inode); 982 983 if (&ip->i_inode == sdp->sd_rindex) { 984 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 985 986 gfs2_glock_dq_uninit(&m_ip->i_gh); 987 } 988 gfs2_glock_dq_uninit(&ip->i_gh); 989 } 990 991 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 992 unsigned len, struct iomap *iomap) 993 { 994 struct gfs2_sbd *sdp = GFS2_SB(inode); 995 996 return gfs2_trans_begin(sdp, RES_DINODE + (len >> inode->i_blkbits), 0); 997 } 998 999 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1000 unsigned copied, struct page *page, 1001 struct iomap *iomap) 1002 { 1003 struct gfs2_inode *ip = GFS2_I(inode); 1004 struct gfs2_sbd *sdp = GFS2_SB(inode); 1005 1006 if (page && !gfs2_is_stuffed(ip)) 1007 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1008 gfs2_trans_end(sdp); 1009 } 1010 1011 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1012 .page_prepare = gfs2_iomap_page_prepare, 1013 .page_done = gfs2_iomap_page_done, 1014 }; 1015 1016 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1017 loff_t length, unsigned flags, 1018 struct iomap *iomap, 1019 struct metapath *mp) 1020 { 1021 struct gfs2_inode *ip = GFS2_I(inode); 1022 struct gfs2_sbd *sdp = GFS2_SB(inode); 1023 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1024 bool unstuff, alloc_required; 1025 int ret; 1026 1027 ret = gfs2_write_lock(inode); 1028 if (ret) 1029 return ret; 1030 1031 unstuff = gfs2_is_stuffed(ip) && 1032 pos + length > gfs2_max_stuffed_size(ip); 1033 1034 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp); 1035 if (ret) 1036 goto out_unlock; 1037 1038 alloc_required = unstuff || iomap->type == IOMAP_HOLE; 1039 1040 if (alloc_required || gfs2_is_jdata(ip)) 1041 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1042 &ind_blocks); 1043 1044 if (alloc_required) { 1045 struct gfs2_alloc_parms ap = { 1046 .target = data_blocks + ind_blocks 1047 }; 1048 1049 ret = gfs2_quota_lock_check(ip, &ap); 1050 if (ret) 1051 goto out_unlock; 1052 1053 ret = gfs2_inplace_reserve(ip, &ap); 1054 if (ret) 1055 goto out_qunlock; 1056 } 1057 1058 rblocks = RES_DINODE + ind_blocks; 1059 if (gfs2_is_jdata(ip)) 1060 rblocks += data_blocks; 1061 if (ind_blocks || data_blocks) 1062 rblocks += RES_STATFS + RES_QUOTA; 1063 if (inode == sdp->sd_rindex) 1064 rblocks += 2 * RES_STATFS; 1065 if (alloc_required) 1066 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1067 1068 if (unstuff || iomap->type == IOMAP_HOLE) { 1069 struct gfs2_trans *tr; 1070 1071 ret = gfs2_trans_begin(sdp, rblocks, 1072 iomap->length >> inode->i_blkbits); 1073 if (ret) 1074 goto out_trans_fail; 1075 1076 if (unstuff) { 1077 ret = gfs2_unstuff_dinode(ip, NULL); 1078 if (ret) 1079 goto out_trans_end; 1080 release_metapath(mp); 1081 ret = gfs2_iomap_get(inode, iomap->offset, 1082 iomap->length, flags, iomap, mp); 1083 if (ret) 1084 goto out_trans_end; 1085 } 1086 1087 if (iomap->type == IOMAP_HOLE) { 1088 ret = gfs2_iomap_alloc(inode, iomap, flags, mp); 1089 if (ret) { 1090 gfs2_trans_end(sdp); 1091 gfs2_inplace_release(ip); 1092 punch_hole(ip, iomap->offset, iomap->length); 1093 goto out_qunlock; 1094 } 1095 } 1096 1097 tr = current->journal_info; 1098 if (tr->tr_num_buf_new) 1099 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1100 else 1101 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[0]); 1102 1103 gfs2_trans_end(sdp); 1104 } 1105 1106 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1107 iomap->page_ops = &gfs2_iomap_page_ops; 1108 return 0; 1109 1110 out_trans_end: 1111 gfs2_trans_end(sdp); 1112 out_trans_fail: 1113 if (alloc_required) 1114 gfs2_inplace_release(ip); 1115 out_qunlock: 1116 if (alloc_required) 1117 gfs2_quota_unlock(ip); 1118 out_unlock: 1119 gfs2_write_unlock(inode); 1120 return ret; 1121 } 1122 1123 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1124 unsigned flags, struct iomap *iomap) 1125 { 1126 struct gfs2_inode *ip = GFS2_I(inode); 1127 struct metapath mp = { .mp_aheight = 1, }; 1128 int ret; 1129 1130 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1131 1132 trace_gfs2_iomap_start(ip, pos, length, flags); 1133 if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) { 1134 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1135 } else { 1136 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1137 1138 /* 1139 * Silently fall back to buffered I/O for stuffed files or if 1140 * we've hot a hole (see gfs2_file_direct_write). 1141 */ 1142 if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) && 1143 iomap->type != IOMAP_MAPPED) 1144 ret = -ENOTBLK; 1145 } 1146 release_metapath(&mp); 1147 trace_gfs2_iomap_end(ip, iomap, ret); 1148 return ret; 1149 } 1150 1151 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1152 ssize_t written, unsigned flags, struct iomap *iomap) 1153 { 1154 struct gfs2_inode *ip = GFS2_I(inode); 1155 struct gfs2_sbd *sdp = GFS2_SB(inode); 1156 1157 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE) 1158 goto out; 1159 1160 if (!gfs2_is_stuffed(ip)) 1161 gfs2_ordered_add_inode(ip); 1162 1163 if (inode == sdp->sd_rindex) 1164 adjust_fs_space(inode); 1165 1166 gfs2_inplace_release(ip); 1167 1168 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1169 /* Deallocate blocks that were just allocated. */ 1170 loff_t blockmask = i_blocksize(inode) - 1; 1171 loff_t end = (pos + length) & ~blockmask; 1172 1173 pos = (pos + written + blockmask) & ~blockmask; 1174 if (pos < end) { 1175 truncate_pagecache_range(inode, pos, end - 1); 1176 punch_hole(ip, pos, end - pos); 1177 } 1178 } 1179 1180 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1181 gfs2_quota_unlock(ip); 1182 gfs2_write_unlock(inode); 1183 1184 out: 1185 return 0; 1186 } 1187 1188 const struct iomap_ops gfs2_iomap_ops = { 1189 .iomap_begin = gfs2_iomap_begin, 1190 .iomap_end = gfs2_iomap_end, 1191 }; 1192 1193 /** 1194 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1195 * @inode: The inode 1196 * @lblock: The logical block number 1197 * @bh_map: The bh to be mapped 1198 * @create: True if its ok to alloc blocks to satify the request 1199 * 1200 * The size of the requested mapping is defined in bh_map->b_size. 1201 * 1202 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1203 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1204 * bh_map->b_size to indicate the size of the mapping when @lblock and 1205 * successive blocks are mapped, up to the requested size. 1206 * 1207 * Sets buffer_boundary() if a read of metadata will be required 1208 * before the next block can be mapped. Sets buffer_new() if new 1209 * blocks were allocated. 1210 * 1211 * Returns: errno 1212 */ 1213 1214 int gfs2_block_map(struct inode *inode, sector_t lblock, 1215 struct buffer_head *bh_map, int create) 1216 { 1217 struct gfs2_inode *ip = GFS2_I(inode); 1218 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1219 loff_t length = bh_map->b_size; 1220 struct metapath mp = { .mp_aheight = 1, }; 1221 struct iomap iomap = { }; 1222 int ret; 1223 1224 clear_buffer_mapped(bh_map); 1225 clear_buffer_new(bh_map); 1226 clear_buffer_boundary(bh_map); 1227 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1228 1229 if (create) { 1230 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1231 if (!ret && iomap.type == IOMAP_HOLE) 1232 ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp); 1233 release_metapath(&mp); 1234 } else { 1235 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1236 release_metapath(&mp); 1237 } 1238 if (ret) 1239 goto out; 1240 1241 if (iomap.length > bh_map->b_size) { 1242 iomap.length = bh_map->b_size; 1243 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1244 } 1245 if (iomap.addr != IOMAP_NULL_ADDR) 1246 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1247 bh_map->b_size = iomap.length; 1248 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1249 set_buffer_boundary(bh_map); 1250 if (iomap.flags & IOMAP_F_NEW) 1251 set_buffer_new(bh_map); 1252 1253 out: 1254 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1255 return ret; 1256 } 1257 1258 /* 1259 * Deprecated: do not use in new code 1260 */ 1261 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1262 { 1263 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1264 int ret; 1265 int create = *new; 1266 1267 BUG_ON(!extlen); 1268 BUG_ON(!dblock); 1269 BUG_ON(!new); 1270 1271 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1272 ret = gfs2_block_map(inode, lblock, &bh, create); 1273 *extlen = bh.b_size >> inode->i_blkbits; 1274 *dblock = bh.b_blocknr; 1275 if (buffer_new(&bh)) 1276 *new = 1; 1277 else 1278 *new = 0; 1279 return ret; 1280 } 1281 1282 /** 1283 * gfs2_block_zero_range - Deal with zeroing out data 1284 * 1285 * This is partly borrowed from ext3. 1286 */ 1287 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1288 unsigned int length) 1289 { 1290 struct address_space *mapping = inode->i_mapping; 1291 struct gfs2_inode *ip = GFS2_I(inode); 1292 unsigned long index = from >> PAGE_SHIFT; 1293 unsigned offset = from & (PAGE_SIZE-1); 1294 unsigned blocksize, iblock, pos; 1295 struct buffer_head *bh; 1296 struct page *page; 1297 int err; 1298 1299 page = find_or_create_page(mapping, index, GFP_NOFS); 1300 if (!page) 1301 return 0; 1302 1303 blocksize = inode->i_sb->s_blocksize; 1304 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 1305 1306 if (!page_has_buffers(page)) 1307 create_empty_buffers(page, blocksize, 0); 1308 1309 /* Find the buffer that contains "offset" */ 1310 bh = page_buffers(page); 1311 pos = blocksize; 1312 while (offset >= pos) { 1313 bh = bh->b_this_page; 1314 iblock++; 1315 pos += blocksize; 1316 } 1317 1318 err = 0; 1319 1320 if (!buffer_mapped(bh)) { 1321 gfs2_block_map(inode, iblock, bh, 0); 1322 /* unmapped? It's a hole - nothing to do */ 1323 if (!buffer_mapped(bh)) 1324 goto unlock; 1325 } 1326 1327 /* Ok, it's mapped. Make sure it's up-to-date */ 1328 if (PageUptodate(page)) 1329 set_buffer_uptodate(bh); 1330 1331 if (!buffer_uptodate(bh)) { 1332 err = -EIO; 1333 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1334 wait_on_buffer(bh); 1335 /* Uhhuh. Read error. Complain and punt. */ 1336 if (!buffer_uptodate(bh)) 1337 goto unlock; 1338 err = 0; 1339 } 1340 1341 if (gfs2_is_jdata(ip)) 1342 gfs2_trans_add_data(ip->i_gl, bh); 1343 else 1344 gfs2_ordered_add_inode(ip); 1345 1346 zero_user(page, offset, length); 1347 mark_buffer_dirty(bh); 1348 unlock: 1349 unlock_page(page); 1350 put_page(page); 1351 return err; 1352 } 1353 1354 #define GFS2_JTRUNC_REVOKES 8192 1355 1356 /** 1357 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1358 * @inode: The inode being truncated 1359 * @oldsize: The original (larger) size 1360 * @newsize: The new smaller size 1361 * 1362 * With jdata files, we have to journal a revoke for each block which is 1363 * truncated. As a result, we need to split this into separate transactions 1364 * if the number of pages being truncated gets too large. 1365 */ 1366 1367 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1368 { 1369 struct gfs2_sbd *sdp = GFS2_SB(inode); 1370 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1371 u64 chunk; 1372 int error; 1373 1374 while (oldsize != newsize) { 1375 struct gfs2_trans *tr; 1376 unsigned int offs; 1377 1378 chunk = oldsize - newsize; 1379 if (chunk > max_chunk) 1380 chunk = max_chunk; 1381 1382 offs = oldsize & ~PAGE_MASK; 1383 if (offs && chunk > PAGE_SIZE) 1384 chunk = offs + ((chunk - offs) & PAGE_MASK); 1385 1386 truncate_pagecache(inode, oldsize - chunk); 1387 oldsize -= chunk; 1388 1389 tr = current->journal_info; 1390 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1391 continue; 1392 1393 gfs2_trans_end(sdp); 1394 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1395 if (error) 1396 return error; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static int trunc_start(struct inode *inode, u64 newsize) 1403 { 1404 struct gfs2_inode *ip = GFS2_I(inode); 1405 struct gfs2_sbd *sdp = GFS2_SB(inode); 1406 struct buffer_head *dibh = NULL; 1407 int journaled = gfs2_is_jdata(ip); 1408 u64 oldsize = inode->i_size; 1409 int error; 1410 1411 if (journaled) 1412 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1413 else 1414 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1415 if (error) 1416 return error; 1417 1418 error = gfs2_meta_inode_buffer(ip, &dibh); 1419 if (error) 1420 goto out; 1421 1422 gfs2_trans_add_meta(ip->i_gl, dibh); 1423 1424 if (gfs2_is_stuffed(ip)) { 1425 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1426 } else { 1427 unsigned int blocksize = i_blocksize(inode); 1428 unsigned int offs = newsize & (blocksize - 1); 1429 if (offs) { 1430 error = gfs2_block_zero_range(inode, newsize, 1431 blocksize - offs); 1432 if (error) 1433 goto out; 1434 } 1435 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1436 } 1437 1438 i_size_write(inode, newsize); 1439 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1440 gfs2_dinode_out(ip, dibh->b_data); 1441 1442 if (journaled) 1443 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1444 else 1445 truncate_pagecache(inode, newsize); 1446 1447 out: 1448 brelse(dibh); 1449 if (current->journal_info) 1450 gfs2_trans_end(sdp); 1451 return error; 1452 } 1453 1454 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1455 struct iomap *iomap) 1456 { 1457 struct metapath mp = { .mp_aheight = 1, }; 1458 int ret; 1459 1460 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1461 if (!ret && iomap->type == IOMAP_HOLE) 1462 ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp); 1463 release_metapath(&mp); 1464 return ret; 1465 } 1466 1467 /** 1468 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1469 * @ip: inode 1470 * @rg_gh: holder of resource group glock 1471 * @bh: buffer head to sweep 1472 * @start: starting point in bh 1473 * @end: end point in bh 1474 * @meta: true if bh points to metadata (rather than data) 1475 * @btotal: place to keep count of total blocks freed 1476 * 1477 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1478 * free, and free them all. However, we do it one rgrp at a time. If this 1479 * block has references to multiple rgrps, we break it into individual 1480 * transactions. This allows other processes to use the rgrps while we're 1481 * focused on a single one, for better concurrency / performance. 1482 * At every transaction boundary, we rewrite the inode into the journal. 1483 * That way the bitmaps are kept consistent with the inode and we can recover 1484 * if we're interrupted by power-outages. 1485 * 1486 * Returns: 0, or return code if an error occurred. 1487 * *btotal has the total number of blocks freed 1488 */ 1489 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1490 struct buffer_head *bh, __be64 *start, __be64 *end, 1491 bool meta, u32 *btotal) 1492 { 1493 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1494 struct gfs2_rgrpd *rgd; 1495 struct gfs2_trans *tr; 1496 __be64 *p; 1497 int blks_outside_rgrp; 1498 u64 bn, bstart, isize_blks; 1499 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1500 int ret = 0; 1501 bool buf_in_tr = false; /* buffer was added to transaction */ 1502 1503 more_rgrps: 1504 rgd = NULL; 1505 if (gfs2_holder_initialized(rd_gh)) { 1506 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1507 gfs2_assert_withdraw(sdp, 1508 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1509 } 1510 blks_outside_rgrp = 0; 1511 bstart = 0; 1512 blen = 0; 1513 1514 for (p = start; p < end; p++) { 1515 if (!*p) 1516 continue; 1517 bn = be64_to_cpu(*p); 1518 1519 if (rgd) { 1520 if (!rgrp_contains_block(rgd, bn)) { 1521 blks_outside_rgrp++; 1522 continue; 1523 } 1524 } else { 1525 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1526 if (unlikely(!rgd)) { 1527 ret = -EIO; 1528 goto out; 1529 } 1530 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1531 0, rd_gh); 1532 if (ret) 1533 goto out; 1534 1535 /* Must be done with the rgrp glock held: */ 1536 if (gfs2_rs_active(&ip->i_res) && 1537 rgd == ip->i_res.rs_rbm.rgd) 1538 gfs2_rs_deltree(&ip->i_res); 1539 } 1540 1541 /* The size of our transactions will be unknown until we 1542 actually process all the metadata blocks that relate to 1543 the rgrp. So we estimate. We know it can't be more than 1544 the dinode's i_blocks and we don't want to exceed the 1545 journal flush threshold, sd_log_thresh2. */ 1546 if (current->journal_info == NULL) { 1547 unsigned int jblocks_rqsted, revokes; 1548 1549 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1550 RES_INDIRECT; 1551 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1552 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1553 jblocks_rqsted += 1554 atomic_read(&sdp->sd_log_thresh2); 1555 else 1556 jblocks_rqsted += isize_blks; 1557 revokes = jblocks_rqsted; 1558 if (meta) 1559 revokes += end - start; 1560 else if (ip->i_depth) 1561 revokes += sdp->sd_inptrs; 1562 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1563 if (ret) 1564 goto out_unlock; 1565 down_write(&ip->i_rw_mutex); 1566 } 1567 /* check if we will exceed the transaction blocks requested */ 1568 tr = current->journal_info; 1569 if (tr->tr_num_buf_new + RES_STATFS + 1570 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1571 /* We set blks_outside_rgrp to ensure the loop will 1572 be repeated for the same rgrp, but with a new 1573 transaction. */ 1574 blks_outside_rgrp++; 1575 /* This next part is tricky. If the buffer was added 1576 to the transaction, we've already set some block 1577 pointers to 0, so we better follow through and free 1578 them, or we will introduce corruption (so break). 1579 This may be impossible, or at least rare, but I 1580 decided to cover the case regardless. 1581 1582 If the buffer was not added to the transaction 1583 (this call), doing so would exceed our transaction 1584 size, so we need to end the transaction and start a 1585 new one (so goto). */ 1586 1587 if (buf_in_tr) 1588 break; 1589 goto out_unlock; 1590 } 1591 1592 gfs2_trans_add_meta(ip->i_gl, bh); 1593 buf_in_tr = true; 1594 *p = 0; 1595 if (bstart + blen == bn) { 1596 blen++; 1597 continue; 1598 } 1599 if (bstart) { 1600 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1601 (*btotal) += blen; 1602 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1603 } 1604 bstart = bn; 1605 blen = 1; 1606 } 1607 if (bstart) { 1608 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1609 (*btotal) += blen; 1610 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1611 } 1612 out_unlock: 1613 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1614 outside the rgrp we just processed, 1615 do it all over again. */ 1616 if (current->journal_info) { 1617 struct buffer_head *dibh; 1618 1619 ret = gfs2_meta_inode_buffer(ip, &dibh); 1620 if (ret) 1621 goto out; 1622 1623 /* Every transaction boundary, we rewrite the dinode 1624 to keep its di_blocks current in case of failure. */ 1625 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1626 current_time(&ip->i_inode); 1627 gfs2_trans_add_meta(ip->i_gl, dibh); 1628 gfs2_dinode_out(ip, dibh->b_data); 1629 brelse(dibh); 1630 up_write(&ip->i_rw_mutex); 1631 gfs2_trans_end(sdp); 1632 } 1633 gfs2_glock_dq_uninit(rd_gh); 1634 cond_resched(); 1635 goto more_rgrps; 1636 } 1637 out: 1638 return ret; 1639 } 1640 1641 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1642 { 1643 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1644 return false; 1645 return true; 1646 } 1647 1648 /** 1649 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1650 * @mp: starting metapath 1651 * @h: desired height to search 1652 * 1653 * Assumes the metapath is valid (with buffers) out to height h. 1654 * Returns: true if a non-null pointer was found in the metapath buffer 1655 * false if all remaining pointers are NULL in the buffer 1656 */ 1657 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1658 unsigned int h, 1659 __u16 *end_list, unsigned int end_aligned) 1660 { 1661 struct buffer_head *bh = mp->mp_bh[h]; 1662 __be64 *first, *ptr, *end; 1663 1664 first = metaptr1(h, mp); 1665 ptr = first + mp->mp_list[h]; 1666 end = (__be64 *)(bh->b_data + bh->b_size); 1667 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1668 bool keep_end = h < end_aligned; 1669 end = first + end_list[h] + keep_end; 1670 } 1671 1672 while (ptr < end) { 1673 if (*ptr) { /* if we have a non-null pointer */ 1674 mp->mp_list[h] = ptr - first; 1675 h++; 1676 if (h < GFS2_MAX_META_HEIGHT) 1677 mp->mp_list[h] = 0; 1678 return true; 1679 } 1680 ptr++; 1681 } 1682 return false; 1683 } 1684 1685 enum dealloc_states { 1686 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1687 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1688 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1689 DEALLOC_DONE = 3, /* process complete */ 1690 }; 1691 1692 static inline void 1693 metapointer_range(struct metapath *mp, int height, 1694 __u16 *start_list, unsigned int start_aligned, 1695 __u16 *end_list, unsigned int end_aligned, 1696 __be64 **start, __be64 **end) 1697 { 1698 struct buffer_head *bh = mp->mp_bh[height]; 1699 __be64 *first; 1700 1701 first = metaptr1(height, mp); 1702 *start = first; 1703 if (mp_eq_to_hgt(mp, start_list, height)) { 1704 bool keep_start = height < start_aligned; 1705 *start = first + start_list[height] + keep_start; 1706 } 1707 *end = (__be64 *)(bh->b_data + bh->b_size); 1708 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1709 bool keep_end = height < end_aligned; 1710 *end = first + end_list[height] + keep_end; 1711 } 1712 } 1713 1714 static inline bool walk_done(struct gfs2_sbd *sdp, 1715 struct metapath *mp, int height, 1716 __u16 *end_list, unsigned int end_aligned) 1717 { 1718 __u16 end; 1719 1720 if (end_list) { 1721 bool keep_end = height < end_aligned; 1722 if (!mp_eq_to_hgt(mp, end_list, height)) 1723 return false; 1724 end = end_list[height] + keep_end; 1725 } else 1726 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1727 return mp->mp_list[height] >= end; 1728 } 1729 1730 /** 1731 * punch_hole - deallocate blocks in a file 1732 * @ip: inode to truncate 1733 * @offset: the start of the hole 1734 * @length: the size of the hole (or 0 for truncate) 1735 * 1736 * Punch a hole into a file or truncate a file at a given position. This 1737 * function operates in whole blocks (@offset and @length are rounded 1738 * accordingly); partially filled blocks must be cleared otherwise. 1739 * 1740 * This function works from the bottom up, and from the right to the left. In 1741 * other words, it strips off the highest layer (data) before stripping any of 1742 * the metadata. Doing it this way is best in case the operation is interrupted 1743 * by power failure, etc. The dinode is rewritten in every transaction to 1744 * guarantee integrity. 1745 */ 1746 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1747 { 1748 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1749 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1750 struct metapath mp = {}; 1751 struct buffer_head *dibh, *bh; 1752 struct gfs2_holder rd_gh; 1753 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1754 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1755 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1756 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1757 unsigned int start_aligned, uninitialized_var(end_aligned); 1758 unsigned int strip_h = ip->i_height - 1; 1759 u32 btotal = 0; 1760 int ret, state; 1761 int mp_h; /* metapath buffers are read in to this height */ 1762 u64 prev_bnr = 0; 1763 __be64 *start, *end; 1764 1765 if (offset >= maxsize) { 1766 /* 1767 * The starting point lies beyond the allocated meta-data; 1768 * there are no blocks do deallocate. 1769 */ 1770 return 0; 1771 } 1772 1773 /* 1774 * The start position of the hole is defined by lblock, start_list, and 1775 * start_aligned. The end position of the hole is defined by lend, 1776 * end_list, and end_aligned. 1777 * 1778 * start_aligned and end_aligned define down to which height the start 1779 * and end positions are aligned to the metadata tree (i.e., the 1780 * position is a multiple of the metadata granularity at the height 1781 * above). This determines at which heights additional meta pointers 1782 * needs to be preserved for the remaining data. 1783 */ 1784 1785 if (length) { 1786 u64 end_offset = offset + length; 1787 u64 lend; 1788 1789 /* 1790 * Clip the end at the maximum file size for the given height: 1791 * that's how far the metadata goes; files bigger than that 1792 * will have additional layers of indirection. 1793 */ 1794 if (end_offset > maxsize) 1795 end_offset = maxsize; 1796 lend = end_offset >> bsize_shift; 1797 1798 if (lblock >= lend) 1799 return 0; 1800 1801 find_metapath(sdp, lend, &mp, ip->i_height); 1802 end_list = __end_list; 1803 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1804 1805 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1806 if (end_list[mp_h]) 1807 break; 1808 } 1809 end_aligned = mp_h; 1810 } 1811 1812 find_metapath(sdp, lblock, &mp, ip->i_height); 1813 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1814 1815 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1816 if (start_list[mp_h]) 1817 break; 1818 } 1819 start_aligned = mp_h; 1820 1821 ret = gfs2_meta_inode_buffer(ip, &dibh); 1822 if (ret) 1823 return ret; 1824 1825 mp.mp_bh[0] = dibh; 1826 ret = lookup_metapath(ip, &mp); 1827 if (ret) 1828 goto out_metapath; 1829 1830 /* issue read-ahead on metadata */ 1831 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1832 metapointer_range(&mp, mp_h, start_list, start_aligned, 1833 end_list, end_aligned, &start, &end); 1834 gfs2_metapath_ra(ip->i_gl, start, end); 1835 } 1836 1837 if (mp.mp_aheight == ip->i_height) 1838 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1839 else 1840 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1841 1842 ret = gfs2_rindex_update(sdp); 1843 if (ret) 1844 goto out_metapath; 1845 1846 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1847 if (ret) 1848 goto out_metapath; 1849 gfs2_holder_mark_uninitialized(&rd_gh); 1850 1851 mp_h = strip_h; 1852 1853 while (state != DEALLOC_DONE) { 1854 switch (state) { 1855 /* Truncate a full metapath at the given strip height. 1856 * Note that strip_h == mp_h in order to be in this state. */ 1857 case DEALLOC_MP_FULL: 1858 bh = mp.mp_bh[mp_h]; 1859 gfs2_assert_withdraw(sdp, bh); 1860 if (gfs2_assert_withdraw(sdp, 1861 prev_bnr != bh->b_blocknr)) { 1862 printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, " 1863 "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n", 1864 sdp->sd_fsname, 1865 (unsigned long long)ip->i_no_addr, 1866 prev_bnr, ip->i_height, strip_h, mp_h); 1867 } 1868 prev_bnr = bh->b_blocknr; 1869 1870 if (gfs2_metatype_check(sdp, bh, 1871 (mp_h ? GFS2_METATYPE_IN : 1872 GFS2_METATYPE_DI))) { 1873 ret = -EIO; 1874 goto out; 1875 } 1876 1877 /* 1878 * Below, passing end_aligned as 0 gives us the 1879 * metapointer range excluding the end point: the end 1880 * point is the first metapath we must not deallocate! 1881 */ 1882 1883 metapointer_range(&mp, mp_h, start_list, start_aligned, 1884 end_list, 0 /* end_aligned */, 1885 &start, &end); 1886 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1887 start, end, 1888 mp_h != ip->i_height - 1, 1889 &btotal); 1890 1891 /* If we hit an error or just swept dinode buffer, 1892 just exit. */ 1893 if (ret || !mp_h) { 1894 state = DEALLOC_DONE; 1895 break; 1896 } 1897 state = DEALLOC_MP_LOWER; 1898 break; 1899 1900 /* lower the metapath strip height */ 1901 case DEALLOC_MP_LOWER: 1902 /* We're done with the current buffer, so release it, 1903 unless it's the dinode buffer. Then back up to the 1904 previous pointer. */ 1905 if (mp_h) { 1906 brelse(mp.mp_bh[mp_h]); 1907 mp.mp_bh[mp_h] = NULL; 1908 } 1909 /* If we can't get any lower in height, we've stripped 1910 off all we can. Next step is to back up and start 1911 stripping the previous level of metadata. */ 1912 if (mp_h == 0) { 1913 strip_h--; 1914 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1915 mp_h = strip_h; 1916 state = DEALLOC_FILL_MP; 1917 break; 1918 } 1919 mp.mp_list[mp_h] = 0; 1920 mp_h--; /* search one metadata height down */ 1921 mp.mp_list[mp_h]++; 1922 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1923 break; 1924 /* Here we've found a part of the metapath that is not 1925 * allocated. We need to search at that height for the 1926 * next non-null pointer. */ 1927 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1928 state = DEALLOC_FILL_MP; 1929 mp_h++; 1930 } 1931 /* No more non-null pointers at this height. Back up 1932 to the previous height and try again. */ 1933 break; /* loop around in the same state */ 1934 1935 /* Fill the metapath with buffers to the given height. */ 1936 case DEALLOC_FILL_MP: 1937 /* Fill the buffers out to the current height. */ 1938 ret = fillup_metapath(ip, &mp, mp_h); 1939 if (ret < 0) 1940 goto out; 1941 1942 /* On the first pass, issue read-ahead on metadata. */ 1943 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1944 unsigned int height = mp.mp_aheight - 1; 1945 1946 /* No read-ahead for data blocks. */ 1947 if (mp.mp_aheight - 1 == strip_h) 1948 height--; 1949 1950 for (; height >= mp.mp_aheight - ret; height--) { 1951 metapointer_range(&mp, height, 1952 start_list, start_aligned, 1953 end_list, end_aligned, 1954 &start, &end); 1955 gfs2_metapath_ra(ip->i_gl, start, end); 1956 } 1957 } 1958 1959 /* If buffers found for the entire strip height */ 1960 if (mp.mp_aheight - 1 == strip_h) { 1961 state = DEALLOC_MP_FULL; 1962 break; 1963 } 1964 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1965 mp_h = mp.mp_aheight - 1; 1966 1967 /* If we find a non-null block pointer, crawl a bit 1968 higher up in the metapath and try again, otherwise 1969 we need to look lower for a new starting point. */ 1970 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1971 mp_h++; 1972 else 1973 state = DEALLOC_MP_LOWER; 1974 break; 1975 } 1976 } 1977 1978 if (btotal) { 1979 if (current->journal_info == NULL) { 1980 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1981 RES_QUOTA, 0); 1982 if (ret) 1983 goto out; 1984 down_write(&ip->i_rw_mutex); 1985 } 1986 gfs2_statfs_change(sdp, 0, +btotal, 0); 1987 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1988 ip->i_inode.i_gid); 1989 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1990 gfs2_trans_add_meta(ip->i_gl, dibh); 1991 gfs2_dinode_out(ip, dibh->b_data); 1992 up_write(&ip->i_rw_mutex); 1993 gfs2_trans_end(sdp); 1994 } 1995 1996 out: 1997 if (gfs2_holder_initialized(&rd_gh)) 1998 gfs2_glock_dq_uninit(&rd_gh); 1999 if (current->journal_info) { 2000 up_write(&ip->i_rw_mutex); 2001 gfs2_trans_end(sdp); 2002 cond_resched(); 2003 } 2004 gfs2_quota_unhold(ip); 2005 out_metapath: 2006 release_metapath(&mp); 2007 return ret; 2008 } 2009 2010 static int trunc_end(struct gfs2_inode *ip) 2011 { 2012 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2013 struct buffer_head *dibh; 2014 int error; 2015 2016 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2017 if (error) 2018 return error; 2019 2020 down_write(&ip->i_rw_mutex); 2021 2022 error = gfs2_meta_inode_buffer(ip, &dibh); 2023 if (error) 2024 goto out; 2025 2026 if (!i_size_read(&ip->i_inode)) { 2027 ip->i_height = 0; 2028 ip->i_goal = ip->i_no_addr; 2029 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2030 gfs2_ordered_del_inode(ip); 2031 } 2032 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2033 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2034 2035 gfs2_trans_add_meta(ip->i_gl, dibh); 2036 gfs2_dinode_out(ip, dibh->b_data); 2037 brelse(dibh); 2038 2039 out: 2040 up_write(&ip->i_rw_mutex); 2041 gfs2_trans_end(sdp); 2042 return error; 2043 } 2044 2045 /** 2046 * do_shrink - make a file smaller 2047 * @inode: the inode 2048 * @newsize: the size to make the file 2049 * 2050 * Called with an exclusive lock on @inode. The @size must 2051 * be equal to or smaller than the current inode size. 2052 * 2053 * Returns: errno 2054 */ 2055 2056 static int do_shrink(struct inode *inode, u64 newsize) 2057 { 2058 struct gfs2_inode *ip = GFS2_I(inode); 2059 int error; 2060 2061 error = trunc_start(inode, newsize); 2062 if (error < 0) 2063 return error; 2064 if (gfs2_is_stuffed(ip)) 2065 return 0; 2066 2067 error = punch_hole(ip, newsize, 0); 2068 if (error == 0) 2069 error = trunc_end(ip); 2070 2071 return error; 2072 } 2073 2074 void gfs2_trim_blocks(struct inode *inode) 2075 { 2076 int ret; 2077 2078 ret = do_shrink(inode, inode->i_size); 2079 WARN_ON(ret != 0); 2080 } 2081 2082 /** 2083 * do_grow - Touch and update inode size 2084 * @inode: The inode 2085 * @size: The new size 2086 * 2087 * This function updates the timestamps on the inode and 2088 * may also increase the size of the inode. This function 2089 * must not be called with @size any smaller than the current 2090 * inode size. 2091 * 2092 * Although it is not strictly required to unstuff files here, 2093 * earlier versions of GFS2 have a bug in the stuffed file reading 2094 * code which will result in a buffer overrun if the size is larger 2095 * than the max stuffed file size. In order to prevent this from 2096 * occurring, such files are unstuffed, but in other cases we can 2097 * just update the inode size directly. 2098 * 2099 * Returns: 0 on success, or -ve on error 2100 */ 2101 2102 static int do_grow(struct inode *inode, u64 size) 2103 { 2104 struct gfs2_inode *ip = GFS2_I(inode); 2105 struct gfs2_sbd *sdp = GFS2_SB(inode); 2106 struct gfs2_alloc_parms ap = { .target = 1, }; 2107 struct buffer_head *dibh; 2108 int error; 2109 int unstuff = 0; 2110 2111 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2112 error = gfs2_quota_lock_check(ip, &ap); 2113 if (error) 2114 return error; 2115 2116 error = gfs2_inplace_reserve(ip, &ap); 2117 if (error) 2118 goto do_grow_qunlock; 2119 unstuff = 1; 2120 } 2121 2122 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2123 (unstuff && 2124 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2125 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2126 0 : RES_QUOTA), 0); 2127 if (error) 2128 goto do_grow_release; 2129 2130 if (unstuff) { 2131 error = gfs2_unstuff_dinode(ip, NULL); 2132 if (error) 2133 goto do_end_trans; 2134 } 2135 2136 error = gfs2_meta_inode_buffer(ip, &dibh); 2137 if (error) 2138 goto do_end_trans; 2139 2140 i_size_write(inode, size); 2141 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2142 gfs2_trans_add_meta(ip->i_gl, dibh); 2143 gfs2_dinode_out(ip, dibh->b_data); 2144 brelse(dibh); 2145 2146 do_end_trans: 2147 gfs2_trans_end(sdp); 2148 do_grow_release: 2149 if (unstuff) { 2150 gfs2_inplace_release(ip); 2151 do_grow_qunlock: 2152 gfs2_quota_unlock(ip); 2153 } 2154 return error; 2155 } 2156 2157 /** 2158 * gfs2_setattr_size - make a file a given size 2159 * @inode: the inode 2160 * @newsize: the size to make the file 2161 * 2162 * The file size can grow, shrink, or stay the same size. This 2163 * is called holding i_rwsem and an exclusive glock on the inode 2164 * in question. 2165 * 2166 * Returns: errno 2167 */ 2168 2169 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2170 { 2171 struct gfs2_inode *ip = GFS2_I(inode); 2172 int ret; 2173 2174 BUG_ON(!S_ISREG(inode->i_mode)); 2175 2176 ret = inode_newsize_ok(inode, newsize); 2177 if (ret) 2178 return ret; 2179 2180 inode_dio_wait(inode); 2181 2182 ret = gfs2_rsqa_alloc(ip); 2183 if (ret) 2184 goto out; 2185 2186 if (newsize >= inode->i_size) { 2187 ret = do_grow(inode, newsize); 2188 goto out; 2189 } 2190 2191 ret = do_shrink(inode, newsize); 2192 out: 2193 gfs2_rsqa_delete(ip, NULL); 2194 return ret; 2195 } 2196 2197 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2198 { 2199 int error; 2200 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2201 if (!error) 2202 error = trunc_end(ip); 2203 return error; 2204 } 2205 2206 int gfs2_file_dealloc(struct gfs2_inode *ip) 2207 { 2208 return punch_hole(ip, 0, 0); 2209 } 2210 2211 /** 2212 * gfs2_free_journal_extents - Free cached journal bmap info 2213 * @jd: The journal 2214 * 2215 */ 2216 2217 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2218 { 2219 struct gfs2_journal_extent *jext; 2220 2221 while(!list_empty(&jd->extent_list)) { 2222 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 2223 list_del(&jext->list); 2224 kfree(jext); 2225 } 2226 } 2227 2228 /** 2229 * gfs2_add_jextent - Add or merge a new extent to extent cache 2230 * @jd: The journal descriptor 2231 * @lblock: The logical block at start of new extent 2232 * @dblock: The physical block at start of new extent 2233 * @blocks: Size of extent in fs blocks 2234 * 2235 * Returns: 0 on success or -ENOMEM 2236 */ 2237 2238 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2239 { 2240 struct gfs2_journal_extent *jext; 2241 2242 if (!list_empty(&jd->extent_list)) { 2243 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 2244 if ((jext->dblock + jext->blocks) == dblock) { 2245 jext->blocks += blocks; 2246 return 0; 2247 } 2248 } 2249 2250 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2251 if (jext == NULL) 2252 return -ENOMEM; 2253 jext->dblock = dblock; 2254 jext->lblock = lblock; 2255 jext->blocks = blocks; 2256 list_add_tail(&jext->list, &jd->extent_list); 2257 jd->nr_extents++; 2258 return 0; 2259 } 2260 2261 /** 2262 * gfs2_map_journal_extents - Cache journal bmap info 2263 * @sdp: The super block 2264 * @jd: The journal to map 2265 * 2266 * Create a reusable "extent" mapping from all logical 2267 * blocks to all physical blocks for the given journal. This will save 2268 * us time when writing journal blocks. Most journals will have only one 2269 * extent that maps all their logical blocks. That's because gfs2.mkfs 2270 * arranges the journal blocks sequentially to maximize performance. 2271 * So the extent would map the first block for the entire file length. 2272 * However, gfs2_jadd can happen while file activity is happening, so 2273 * those journals may not be sequential. Less likely is the case where 2274 * the users created their own journals by mounting the metafs and 2275 * laying it out. But it's still possible. These journals might have 2276 * several extents. 2277 * 2278 * Returns: 0 on success, or error on failure 2279 */ 2280 2281 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2282 { 2283 u64 lblock = 0; 2284 u64 lblock_stop; 2285 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2286 struct buffer_head bh; 2287 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2288 u64 size; 2289 int rc; 2290 ktime_t start, end; 2291 2292 start = ktime_get(); 2293 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2294 size = (lblock_stop - lblock) << shift; 2295 jd->nr_extents = 0; 2296 WARN_ON(!list_empty(&jd->extent_list)); 2297 2298 do { 2299 bh.b_state = 0; 2300 bh.b_blocknr = 0; 2301 bh.b_size = size; 2302 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2303 if (rc || !buffer_mapped(&bh)) 2304 goto fail; 2305 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2306 if (rc) 2307 goto fail; 2308 size -= bh.b_size; 2309 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2310 } while(size > 0); 2311 2312 end = ktime_get(); 2313 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2314 jd->nr_extents, ktime_ms_delta(end, start)); 2315 return 0; 2316 2317 fail: 2318 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2319 rc, jd->jd_jid, 2320 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2321 jd->nr_extents); 2322 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2323 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2324 bh.b_state, (unsigned long long)bh.b_size); 2325 gfs2_free_journal_extents(jd); 2326 return rc; 2327 } 2328 2329 /** 2330 * gfs2_write_alloc_required - figure out if a write will require an allocation 2331 * @ip: the file being written to 2332 * @offset: the offset to write to 2333 * @len: the number of bytes being written 2334 * 2335 * Returns: 1 if an alloc is required, 0 otherwise 2336 */ 2337 2338 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2339 unsigned int len) 2340 { 2341 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2342 struct buffer_head bh; 2343 unsigned int shift; 2344 u64 lblock, lblock_stop, size; 2345 u64 end_of_file; 2346 2347 if (!len) 2348 return 0; 2349 2350 if (gfs2_is_stuffed(ip)) { 2351 if (offset + len > gfs2_max_stuffed_size(ip)) 2352 return 1; 2353 return 0; 2354 } 2355 2356 shift = sdp->sd_sb.sb_bsize_shift; 2357 BUG_ON(gfs2_is_dir(ip)); 2358 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2359 lblock = offset >> shift; 2360 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2361 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2362 return 1; 2363 2364 size = (lblock_stop - lblock) << shift; 2365 do { 2366 bh.b_state = 0; 2367 bh.b_size = size; 2368 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2369 if (!buffer_mapped(&bh)) 2370 return 1; 2371 size -= bh.b_size; 2372 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2373 } while(size > 0); 2374 2375 return 0; 2376 } 2377 2378 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2379 { 2380 struct gfs2_inode *ip = GFS2_I(inode); 2381 struct buffer_head *dibh; 2382 int error; 2383 2384 if (offset >= inode->i_size) 2385 return 0; 2386 if (offset + length > inode->i_size) 2387 length = inode->i_size - offset; 2388 2389 error = gfs2_meta_inode_buffer(ip, &dibh); 2390 if (error) 2391 return error; 2392 gfs2_trans_add_meta(ip->i_gl, dibh); 2393 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2394 length); 2395 brelse(dibh); 2396 return 0; 2397 } 2398 2399 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2400 loff_t length) 2401 { 2402 struct gfs2_sbd *sdp = GFS2_SB(inode); 2403 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2404 int error; 2405 2406 while (length) { 2407 struct gfs2_trans *tr; 2408 loff_t chunk; 2409 unsigned int offs; 2410 2411 chunk = length; 2412 if (chunk > max_chunk) 2413 chunk = max_chunk; 2414 2415 offs = offset & ~PAGE_MASK; 2416 if (offs && chunk > PAGE_SIZE) 2417 chunk = offs + ((chunk - offs) & PAGE_MASK); 2418 2419 truncate_pagecache_range(inode, offset, chunk); 2420 offset += chunk; 2421 length -= chunk; 2422 2423 tr = current->journal_info; 2424 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2425 continue; 2426 2427 gfs2_trans_end(sdp); 2428 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2429 if (error) 2430 return error; 2431 } 2432 return 0; 2433 } 2434 2435 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2436 { 2437 struct inode *inode = file_inode(file); 2438 struct gfs2_inode *ip = GFS2_I(inode); 2439 struct gfs2_sbd *sdp = GFS2_SB(inode); 2440 int error; 2441 2442 if (gfs2_is_jdata(ip)) 2443 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2444 GFS2_JTRUNC_REVOKES); 2445 else 2446 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2447 if (error) 2448 return error; 2449 2450 if (gfs2_is_stuffed(ip)) { 2451 error = stuffed_zero_range(inode, offset, length); 2452 if (error) 2453 goto out; 2454 } else { 2455 unsigned int start_off, end_len, blocksize; 2456 2457 blocksize = i_blocksize(inode); 2458 start_off = offset & (blocksize - 1); 2459 end_len = (offset + length) & (blocksize - 1); 2460 if (start_off) { 2461 unsigned int len = length; 2462 if (length > blocksize - start_off) 2463 len = blocksize - start_off; 2464 error = gfs2_block_zero_range(inode, offset, len); 2465 if (error) 2466 goto out; 2467 if (start_off + length < blocksize) 2468 end_len = 0; 2469 } 2470 if (end_len) { 2471 error = gfs2_block_zero_range(inode, 2472 offset + length - end_len, end_len); 2473 if (error) 2474 goto out; 2475 } 2476 } 2477 2478 if (gfs2_is_jdata(ip)) { 2479 BUG_ON(!current->journal_info); 2480 gfs2_journaled_truncate_range(inode, offset, length); 2481 } else 2482 truncate_pagecache_range(inode, offset, offset + length - 1); 2483 2484 file_update_time(file); 2485 mark_inode_dirty(inode); 2486 2487 if (current->journal_info) 2488 gfs2_trans_end(sdp); 2489 2490 if (!gfs2_is_stuffed(ip)) 2491 error = punch_hole(ip, offset, length); 2492 2493 out: 2494 if (current->journal_info) 2495 gfs2_trans_end(sdp); 2496 return error; 2497 } 2498