xref: /openbmc/linux/fs/gfs2/bmap.c (revision 1fd02f66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 
60 	if (!PageUptodate(page)) {
61 		void *kaddr = kmap(page);
62 		u64 dsize = i_size_read(inode);
63 
64 		if (dsize > gfs2_max_stuffed_size(ip))
65 			dsize = gfs2_max_stuffed_size(ip);
66 
67 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
68 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
69 		kunmap(page);
70 
71 		SetPageUptodate(page);
72 	}
73 
74 	if (gfs2_is_jdata(ip)) {
75 		struct buffer_head *bh;
76 
77 		if (!page_has_buffers(page))
78 			create_empty_buffers(page, BIT(inode->i_blkbits),
79 					     BIT(BH_Uptodate));
80 
81 		bh = page_buffers(page);
82 		if (!buffer_mapped(bh))
83 			map_bh(bh, inode->i_sb, block);
84 
85 		set_buffer_uptodate(bh);
86 		gfs2_trans_add_data(ip->i_gl, bh);
87 	} else {
88 		set_page_dirty(page);
89 		gfs2_ordered_add_inode(ip);
90 	}
91 
92 	return 0;
93 }
94 
95 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page)
96 {
97 	struct buffer_head *bh, *dibh;
98 	struct gfs2_dinode *di;
99 	u64 block = 0;
100 	int isdir = gfs2_is_dir(ip);
101 	int error;
102 
103 	error = gfs2_meta_inode_buffer(ip, &dibh);
104 	if (error)
105 		return error;
106 
107 	if (i_size_read(&ip->i_inode)) {
108 		/* Get a free block, fill it with the stuffed data,
109 		   and write it out to disk */
110 
111 		unsigned int n = 1;
112 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
113 		if (error)
114 			goto out_brelse;
115 		if (isdir) {
116 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
117 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
118 			if (error)
119 				goto out_brelse;
120 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
121 					      dibh, sizeof(struct gfs2_dinode));
122 			brelse(bh);
123 		} else {
124 			error = gfs2_unstuffer_page(ip, dibh, block, page);
125 			if (error)
126 				goto out_brelse;
127 		}
128 	}
129 
130 	/*  Set up the pointer to the new block  */
131 
132 	gfs2_trans_add_meta(ip->i_gl, dibh);
133 	di = (struct gfs2_dinode *)dibh->b_data;
134 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
135 
136 	if (i_size_read(&ip->i_inode)) {
137 		*(__be64 *)(di + 1) = cpu_to_be64(block);
138 		gfs2_add_inode_blocks(&ip->i_inode, 1);
139 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
140 	}
141 
142 	ip->i_height = 1;
143 	di->di_height = cpu_to_be16(1);
144 
145 out_brelse:
146 	brelse(dibh);
147 	return error;
148 }
149 
150 /**
151  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
152  * @ip: The GFS2 inode to unstuff
153  *
154  * This routine unstuffs a dinode and returns it to a "normal" state such
155  * that the height can be grown in the traditional way.
156  *
157  * Returns: errno
158  */
159 
160 int gfs2_unstuff_dinode(struct gfs2_inode *ip)
161 {
162 	struct inode *inode = &ip->i_inode;
163 	struct page *page;
164 	int error;
165 
166 	down_write(&ip->i_rw_mutex);
167 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
168 	error = -ENOMEM;
169 	if (!page)
170 		goto out;
171 	error = __gfs2_unstuff_inode(ip, page);
172 	unlock_page(page);
173 	put_page(page);
174 out:
175 	up_write(&ip->i_rw_mutex);
176 	return error;
177 }
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (hgt) {
532 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
533 				goto lower_metapath;
534 		} else {
535 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
536 				break;
537 		}
538 
539 fill_up_metapath:
540 		/* Increase height of metapath. */
541 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
542 		if (ret < 0)
543 			return ret;
544 		hgt += ret;
545 		for (; ret; ret--)
546 			do_div(factor, sdp->sd_inptrs);
547 		mp->mp_aheight = hgt + 1;
548 	}
549 	return 0;
550 }
551 
552 static enum walker_status gfs2_hole_walker(struct metapath *mp,
553 					   unsigned int ptrs)
554 {
555 	const __be64 *start, *ptr, *end;
556 	unsigned int hgt;
557 
558 	hgt = mp->mp_aheight - 1;
559 	start = metapointer(hgt, mp);
560 	end = start + ptrs;
561 
562 	for (ptr = start; ptr < end; ptr++) {
563 		if (*ptr) {
564 			mp->mp_list[hgt] += ptr - start;
565 			if (mp->mp_aheight == mp->mp_fheight)
566 				return WALK_STOP;
567 			return WALK_FOLLOW;
568 		}
569 	}
570 	return WALK_CONTINUE;
571 }
572 
573 /**
574  * gfs2_hole_size - figure out the size of a hole
575  * @inode: The inode
576  * @lblock: The logical starting block number
577  * @len: How far to look (in blocks)
578  * @mp: The metapath at lblock
579  * @iomap: The iomap to store the hole size in
580  *
581  * This function modifies @mp.
582  *
583  * Returns: errno on error
584  */
585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
586 			  struct metapath *mp, struct iomap *iomap)
587 {
588 	struct metapath clone;
589 	u64 hole_size;
590 	int ret;
591 
592 	clone_metapath(&clone, mp);
593 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
594 	if (ret < 0)
595 		goto out;
596 
597 	if (ret == 1)
598 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
599 	else
600 		hole_size = len;
601 	iomap->length = hole_size << inode->i_blkbits;
602 	ret = 0;
603 
604 out:
605 	release_metapath(&clone);
606 	return ret;
607 }
608 
609 static inline void gfs2_indirect_init(struct metapath *mp,
610 				      struct gfs2_glock *gl, unsigned int i,
611 				      unsigned offset, u64 bn)
612 {
613 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
614 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
615 				 sizeof(struct gfs2_dinode)));
616 	BUG_ON(i < 1);
617 	BUG_ON(mp->mp_bh[i] != NULL);
618 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
619 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
620 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
621 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
622 	ptr += offset;
623 	*ptr = cpu_to_be64(bn);
624 }
625 
626 enum alloc_state {
627 	ALLOC_DATA = 0,
628 	ALLOC_GROW_DEPTH = 1,
629 	ALLOC_GROW_HEIGHT = 2,
630 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
631 };
632 
633 /**
634  * __gfs2_iomap_alloc - Build a metadata tree of the requested height
635  * @inode: The GFS2 inode
636  * @iomap: The iomap structure
637  * @mp: The metapath, with proper height information calculated
638  *
639  * In this routine we may have to alloc:
640  *   i) Indirect blocks to grow the metadata tree height
641  *  ii) Indirect blocks to fill in lower part of the metadata tree
642  * iii) Data blocks
643  *
644  * This function is called after __gfs2_iomap_get, which works out the
645  * total number of blocks which we need via gfs2_alloc_size.
646  *
647  * We then do the actual allocation asking for an extent at a time (if
648  * enough contiguous free blocks are available, there will only be one
649  * allocation request per call) and uses the state machine to initialise
650  * the blocks in order.
651  *
652  * Right now, this function will allocate at most one indirect block
653  * worth of data -- with a default block size of 4K, that's slightly
654  * less than 2M.  If this limitation is ever removed to allow huge
655  * allocations, we would probably still want to limit the iomap size we
656  * return to avoid stalling other tasks during huge writes; the next
657  * iomap iteration would then find the blocks already allocated.
658  *
659  * Returns: errno on error
660  */
661 
662 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
663 			      struct metapath *mp)
664 {
665 	struct gfs2_inode *ip = GFS2_I(inode);
666 	struct gfs2_sbd *sdp = GFS2_SB(inode);
667 	struct buffer_head *dibh = mp->mp_bh[0];
668 	u64 bn;
669 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
670 	size_t dblks = iomap->length >> inode->i_blkbits;
671 	const unsigned end_of_metadata = mp->mp_fheight - 1;
672 	int ret;
673 	enum alloc_state state;
674 	__be64 *ptr;
675 	__be64 zero_bn = 0;
676 
677 	BUG_ON(mp->mp_aheight < 1);
678 	BUG_ON(dibh == NULL);
679 	BUG_ON(dblks < 1);
680 
681 	gfs2_trans_add_meta(ip->i_gl, dibh);
682 
683 	down_write(&ip->i_rw_mutex);
684 
685 	if (mp->mp_fheight == mp->mp_aheight) {
686 		/* Bottom indirect block exists */
687 		state = ALLOC_DATA;
688 	} else {
689 		/* Need to allocate indirect blocks */
690 		if (mp->mp_fheight == ip->i_height) {
691 			/* Writing into existing tree, extend tree down */
692 			iblks = mp->mp_fheight - mp->mp_aheight;
693 			state = ALLOC_GROW_DEPTH;
694 		} else {
695 			/* Building up tree height */
696 			state = ALLOC_GROW_HEIGHT;
697 			iblks = mp->mp_fheight - ip->i_height;
698 			branch_start = metapath_branch_start(mp);
699 			iblks += (mp->mp_fheight - branch_start);
700 		}
701 	}
702 
703 	/* start of the second part of the function (state machine) */
704 
705 	blks = dblks + iblks;
706 	i = mp->mp_aheight;
707 	do {
708 		n = blks - alloced;
709 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
710 		if (ret)
711 			goto out;
712 		alloced += n;
713 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
714 			gfs2_trans_remove_revoke(sdp, bn, n);
715 		switch (state) {
716 		/* Growing height of tree */
717 		case ALLOC_GROW_HEIGHT:
718 			if (i == 1) {
719 				ptr = (__be64 *)(dibh->b_data +
720 						 sizeof(struct gfs2_dinode));
721 				zero_bn = *ptr;
722 			}
723 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
724 			     i++, n--)
725 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
726 			if (i - 1 == mp->mp_fheight - ip->i_height) {
727 				i--;
728 				gfs2_buffer_copy_tail(mp->mp_bh[i],
729 						sizeof(struct gfs2_meta_header),
730 						dibh, sizeof(struct gfs2_dinode));
731 				gfs2_buffer_clear_tail(dibh,
732 						sizeof(struct gfs2_dinode) +
733 						sizeof(__be64));
734 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
735 					sizeof(struct gfs2_meta_header));
736 				*ptr = zero_bn;
737 				state = ALLOC_GROW_DEPTH;
738 				for(i = branch_start; i < mp->mp_fheight; i++) {
739 					if (mp->mp_bh[i] == NULL)
740 						break;
741 					brelse(mp->mp_bh[i]);
742 					mp->mp_bh[i] = NULL;
743 				}
744 				i = branch_start;
745 			}
746 			if (n == 0)
747 				break;
748 			fallthrough;	/* To branching from existing tree */
749 		case ALLOC_GROW_DEPTH:
750 			if (i > 1 && i < mp->mp_fheight)
751 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
752 			for (; i < mp->mp_fheight && n > 0; i++, n--)
753 				gfs2_indirect_init(mp, ip->i_gl, i,
754 						   mp->mp_list[i-1], bn++);
755 			if (i == mp->mp_fheight)
756 				state = ALLOC_DATA;
757 			if (n == 0)
758 				break;
759 			fallthrough;	/* To tree complete, adding data blocks */
760 		case ALLOC_DATA:
761 			BUG_ON(n > dblks);
762 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
763 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
764 			dblks = n;
765 			ptr = metapointer(end_of_metadata, mp);
766 			iomap->addr = bn << inode->i_blkbits;
767 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
768 			while (n-- > 0)
769 				*ptr++ = cpu_to_be64(bn++);
770 			break;
771 		}
772 	} while (iomap->addr == IOMAP_NULL_ADDR);
773 
774 	iomap->type = IOMAP_MAPPED;
775 	iomap->length = (u64)dblks << inode->i_blkbits;
776 	ip->i_height = mp->mp_fheight;
777 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
778 	gfs2_dinode_out(ip, dibh->b_data);
779 out:
780 	up_write(&ip->i_rw_mutex);
781 	return ret;
782 }
783 
784 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
785 
786 /**
787  * gfs2_alloc_size - Compute the maximum allocation size
788  * @inode: The inode
789  * @mp: The metapath
790  * @size: Requested size in blocks
791  *
792  * Compute the maximum size of the next allocation at @mp.
793  *
794  * Returns: size in blocks
795  */
796 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
797 {
798 	struct gfs2_inode *ip = GFS2_I(inode);
799 	struct gfs2_sbd *sdp = GFS2_SB(inode);
800 	const __be64 *first, *ptr, *end;
801 
802 	/*
803 	 * For writes to stuffed files, this function is called twice via
804 	 * __gfs2_iomap_get, before and after unstuffing. The size we return the
805 	 * first time needs to be large enough to get the reservation and
806 	 * allocation sizes right.  The size we return the second time must
807 	 * be exact or else __gfs2_iomap_alloc won't do the right thing.
808 	 */
809 
810 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
811 		unsigned int maxsize = mp->mp_fheight > 1 ?
812 			sdp->sd_inptrs : sdp->sd_diptrs;
813 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
814 		if (size > maxsize)
815 			size = maxsize;
816 		return size;
817 	}
818 
819 	first = metapointer(ip->i_height - 1, mp);
820 	end = metaend(ip->i_height - 1, mp);
821 	if (end - first > size)
822 		end = first + size;
823 	for (ptr = first; ptr < end; ptr++) {
824 		if (*ptr)
825 			break;
826 	}
827 	return ptr - first;
828 }
829 
830 /**
831  * __gfs2_iomap_get - Map blocks from an inode to disk blocks
832  * @inode: The inode
833  * @pos: Starting position in bytes
834  * @length: Length to map, in bytes
835  * @flags: iomap flags
836  * @iomap: The iomap structure
837  * @mp: The metapath
838  *
839  * Returns: errno
840  */
841 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
842 			    unsigned flags, struct iomap *iomap,
843 			    struct metapath *mp)
844 {
845 	struct gfs2_inode *ip = GFS2_I(inode);
846 	struct gfs2_sbd *sdp = GFS2_SB(inode);
847 	loff_t size = i_size_read(inode);
848 	__be64 *ptr;
849 	sector_t lblock;
850 	sector_t lblock_stop;
851 	int ret;
852 	int eob;
853 	u64 len;
854 	struct buffer_head *dibh = NULL, *bh;
855 	u8 height;
856 
857 	if (!length)
858 		return -EINVAL;
859 
860 	down_read(&ip->i_rw_mutex);
861 
862 	ret = gfs2_meta_inode_buffer(ip, &dibh);
863 	if (ret)
864 		goto unlock;
865 	mp->mp_bh[0] = dibh;
866 
867 	if (gfs2_is_stuffed(ip)) {
868 		if (flags & IOMAP_WRITE) {
869 			loff_t max_size = gfs2_max_stuffed_size(ip);
870 
871 			if (pos + length > max_size)
872 				goto unstuff;
873 			iomap->length = max_size;
874 		} else {
875 			if (pos >= size) {
876 				if (flags & IOMAP_REPORT) {
877 					ret = -ENOENT;
878 					goto unlock;
879 				} else {
880 					iomap->offset = pos;
881 					iomap->length = length;
882 					goto hole_found;
883 				}
884 			}
885 			iomap->length = size;
886 		}
887 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
888 			      sizeof(struct gfs2_dinode);
889 		iomap->type = IOMAP_INLINE;
890 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
891 		goto out;
892 	}
893 
894 unstuff:
895 	lblock = pos >> inode->i_blkbits;
896 	iomap->offset = lblock << inode->i_blkbits;
897 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
898 	len = lblock_stop - lblock + 1;
899 	iomap->length = len << inode->i_blkbits;
900 
901 	height = ip->i_height;
902 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
903 		height++;
904 	find_metapath(sdp, lblock, mp, height);
905 	if (height > ip->i_height || gfs2_is_stuffed(ip))
906 		goto do_alloc;
907 
908 	ret = lookup_metapath(ip, mp);
909 	if (ret)
910 		goto unlock;
911 
912 	if (mp->mp_aheight != ip->i_height)
913 		goto do_alloc;
914 
915 	ptr = metapointer(ip->i_height - 1, mp);
916 	if (*ptr == 0)
917 		goto do_alloc;
918 
919 	bh = mp->mp_bh[ip->i_height - 1];
920 	len = gfs2_extent_length(bh, ptr, len, &eob);
921 
922 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
923 	iomap->length = len << inode->i_blkbits;
924 	iomap->type = IOMAP_MAPPED;
925 	iomap->flags |= IOMAP_F_MERGED;
926 	if (eob)
927 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
928 
929 out:
930 	iomap->bdev = inode->i_sb->s_bdev;
931 unlock:
932 	up_read(&ip->i_rw_mutex);
933 	return ret;
934 
935 do_alloc:
936 	if (flags & IOMAP_REPORT) {
937 		if (pos >= size)
938 			ret = -ENOENT;
939 		else if (height == ip->i_height)
940 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
941 		else
942 			iomap->length = size - iomap->offset;
943 	} else if (flags & IOMAP_WRITE) {
944 		u64 alloc_size;
945 
946 		if (flags & IOMAP_DIRECT)
947 			goto out;  /* (see gfs2_file_direct_write) */
948 
949 		len = gfs2_alloc_size(inode, mp, len);
950 		alloc_size = len << inode->i_blkbits;
951 		if (alloc_size < iomap->length)
952 			iomap->length = alloc_size;
953 	} else {
954 		if (pos < size && height == ip->i_height)
955 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
956 	}
957 hole_found:
958 	iomap->addr = IOMAP_NULL_ADDR;
959 	iomap->type = IOMAP_HOLE;
960 	goto out;
961 }
962 
963 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
964 				   unsigned len)
965 {
966 	unsigned int blockmask = i_blocksize(inode) - 1;
967 	struct gfs2_sbd *sdp = GFS2_SB(inode);
968 	unsigned int blocks;
969 
970 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
971 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
972 }
973 
974 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
975 				 unsigned copied, struct page *page)
976 {
977 	struct gfs2_trans *tr = current->journal_info;
978 	struct gfs2_inode *ip = GFS2_I(inode);
979 	struct gfs2_sbd *sdp = GFS2_SB(inode);
980 
981 	if (page && !gfs2_is_stuffed(ip))
982 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
983 
984 	if (tr->tr_num_buf_new)
985 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
986 
987 	gfs2_trans_end(sdp);
988 }
989 
990 static const struct iomap_page_ops gfs2_iomap_page_ops = {
991 	.page_prepare = gfs2_iomap_page_prepare,
992 	.page_done = gfs2_iomap_page_done,
993 };
994 
995 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
996 				  loff_t length, unsigned flags,
997 				  struct iomap *iomap,
998 				  struct metapath *mp)
999 {
1000 	struct gfs2_inode *ip = GFS2_I(inode);
1001 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1002 	bool unstuff;
1003 	int ret;
1004 
1005 	unstuff = gfs2_is_stuffed(ip) &&
1006 		  pos + length > gfs2_max_stuffed_size(ip);
1007 
1008 	if (unstuff || iomap->type == IOMAP_HOLE) {
1009 		unsigned int data_blocks, ind_blocks;
1010 		struct gfs2_alloc_parms ap = {};
1011 		unsigned int rblocks;
1012 		struct gfs2_trans *tr;
1013 
1014 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1015 				       &ind_blocks);
1016 		ap.target = data_blocks + ind_blocks;
1017 		ret = gfs2_quota_lock_check(ip, &ap);
1018 		if (ret)
1019 			return ret;
1020 
1021 		ret = gfs2_inplace_reserve(ip, &ap);
1022 		if (ret)
1023 			goto out_qunlock;
1024 
1025 		rblocks = RES_DINODE + ind_blocks;
1026 		if (gfs2_is_jdata(ip))
1027 			rblocks += data_blocks;
1028 		if (ind_blocks || data_blocks)
1029 			rblocks += RES_STATFS + RES_QUOTA;
1030 		if (inode == sdp->sd_rindex)
1031 			rblocks += 2 * RES_STATFS;
1032 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1033 
1034 		ret = gfs2_trans_begin(sdp, rblocks,
1035 				       iomap->length >> inode->i_blkbits);
1036 		if (ret)
1037 			goto out_trans_fail;
1038 
1039 		if (unstuff) {
1040 			ret = gfs2_unstuff_dinode(ip);
1041 			if (ret)
1042 				goto out_trans_end;
1043 			release_metapath(mp);
1044 			ret = __gfs2_iomap_get(inode, iomap->offset,
1045 					       iomap->length, flags, iomap, mp);
1046 			if (ret)
1047 				goto out_trans_end;
1048 		}
1049 
1050 		if (iomap->type == IOMAP_HOLE) {
1051 			ret = __gfs2_iomap_alloc(inode, iomap, mp);
1052 			if (ret) {
1053 				gfs2_trans_end(sdp);
1054 				gfs2_inplace_release(ip);
1055 				punch_hole(ip, iomap->offset, iomap->length);
1056 				goto out_qunlock;
1057 			}
1058 		}
1059 
1060 		tr = current->journal_info;
1061 		if (tr->tr_num_buf_new)
1062 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1063 
1064 		gfs2_trans_end(sdp);
1065 	}
1066 
1067 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1068 		iomap->page_ops = &gfs2_iomap_page_ops;
1069 	return 0;
1070 
1071 out_trans_end:
1072 	gfs2_trans_end(sdp);
1073 out_trans_fail:
1074 	gfs2_inplace_release(ip);
1075 out_qunlock:
1076 	gfs2_quota_unlock(ip);
1077 	return ret;
1078 }
1079 
1080 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1081 			    unsigned flags, struct iomap *iomap,
1082 			    struct iomap *srcmap)
1083 {
1084 	struct gfs2_inode *ip = GFS2_I(inode);
1085 	struct metapath mp = { .mp_aheight = 1, };
1086 	int ret;
1087 
1088 	if (gfs2_is_jdata(ip))
1089 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1090 
1091 	trace_gfs2_iomap_start(ip, pos, length, flags);
1092 	ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1093 	if (ret)
1094 		goto out_unlock;
1095 
1096 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1097 	case IOMAP_WRITE:
1098 		if (flags & IOMAP_DIRECT) {
1099 			/*
1100 			 * Silently fall back to buffered I/O for stuffed files
1101 			 * or if we've got a hole (see gfs2_file_direct_write).
1102 			 */
1103 			if (iomap->type != IOMAP_MAPPED)
1104 				ret = -ENOTBLK;
1105 			goto out_unlock;
1106 		}
1107 		break;
1108 	case IOMAP_ZERO:
1109 		if (iomap->type == IOMAP_HOLE)
1110 			goto out_unlock;
1111 		break;
1112 	default:
1113 		goto out_unlock;
1114 	}
1115 
1116 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1117 
1118 out_unlock:
1119 	release_metapath(&mp);
1120 	trace_gfs2_iomap_end(ip, iomap, ret);
1121 	return ret;
1122 }
1123 
1124 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1125 			  ssize_t written, unsigned flags, struct iomap *iomap)
1126 {
1127 	struct gfs2_inode *ip = GFS2_I(inode);
1128 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1129 
1130 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1131 	case IOMAP_WRITE:
1132 		if (flags & IOMAP_DIRECT)
1133 			return 0;
1134 		break;
1135 	case IOMAP_ZERO:
1136 		 if (iomap->type == IOMAP_HOLE)
1137 			 return 0;
1138 		 break;
1139 	default:
1140 		 return 0;
1141 	}
1142 
1143 	if (!gfs2_is_stuffed(ip))
1144 		gfs2_ordered_add_inode(ip);
1145 
1146 	if (inode == sdp->sd_rindex)
1147 		adjust_fs_space(inode);
1148 
1149 	gfs2_inplace_release(ip);
1150 
1151 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1152 		gfs2_quota_unlock(ip);
1153 
1154 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1155 		/* Deallocate blocks that were just allocated. */
1156 		loff_t blockmask = i_blocksize(inode) - 1;
1157 		loff_t end = (pos + length) & ~blockmask;
1158 
1159 		pos = (pos + written + blockmask) & ~blockmask;
1160 		if (pos < end) {
1161 			truncate_pagecache_range(inode, pos, end - 1);
1162 			punch_hole(ip, pos, end - pos);
1163 		}
1164 	}
1165 
1166 	if (unlikely(!written))
1167 		return 0;
1168 
1169 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1170 		mark_inode_dirty(inode);
1171 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1172 	return 0;
1173 }
1174 
1175 const struct iomap_ops gfs2_iomap_ops = {
1176 	.iomap_begin = gfs2_iomap_begin,
1177 	.iomap_end = gfs2_iomap_end,
1178 };
1179 
1180 /**
1181  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1182  * @inode: The inode
1183  * @lblock: The logical block number
1184  * @bh_map: The bh to be mapped
1185  * @create: True if its ok to alloc blocks to satify the request
1186  *
1187  * The size of the requested mapping is defined in bh_map->b_size.
1188  *
1189  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1190  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1191  * bh_map->b_size to indicate the size of the mapping when @lblock and
1192  * successive blocks are mapped, up to the requested size.
1193  *
1194  * Sets buffer_boundary() if a read of metadata will be required
1195  * before the next block can be mapped. Sets buffer_new() if new
1196  * blocks were allocated.
1197  *
1198  * Returns: errno
1199  */
1200 
1201 int gfs2_block_map(struct inode *inode, sector_t lblock,
1202 		   struct buffer_head *bh_map, int create)
1203 {
1204 	struct gfs2_inode *ip = GFS2_I(inode);
1205 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1206 	loff_t length = bh_map->b_size;
1207 	struct iomap iomap = { };
1208 	int ret;
1209 
1210 	clear_buffer_mapped(bh_map);
1211 	clear_buffer_new(bh_map);
1212 	clear_buffer_boundary(bh_map);
1213 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1214 
1215 	if (!create)
1216 		ret = gfs2_iomap_get(inode, pos, length, &iomap);
1217 	else
1218 		ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1219 	if (ret)
1220 		goto out;
1221 
1222 	if (iomap.length > bh_map->b_size) {
1223 		iomap.length = bh_map->b_size;
1224 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1225 	}
1226 	if (iomap.addr != IOMAP_NULL_ADDR)
1227 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1228 	bh_map->b_size = iomap.length;
1229 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1230 		set_buffer_boundary(bh_map);
1231 	if (iomap.flags & IOMAP_F_NEW)
1232 		set_buffer_new(bh_map);
1233 
1234 out:
1235 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1236 	return ret;
1237 }
1238 
1239 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1240 		    unsigned int *extlen)
1241 {
1242 	unsigned int blkbits = inode->i_blkbits;
1243 	struct iomap iomap = { };
1244 	unsigned int len;
1245 	int ret;
1246 
1247 	ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1248 			     &iomap);
1249 	if (ret)
1250 		return ret;
1251 	if (iomap.type != IOMAP_MAPPED)
1252 		return -EIO;
1253 	*dblock = iomap.addr >> blkbits;
1254 	len = iomap.length >> blkbits;
1255 	if (len < *extlen)
1256 		*extlen = len;
1257 	return 0;
1258 }
1259 
1260 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1261 		      unsigned int *extlen, bool *new)
1262 {
1263 	unsigned int blkbits = inode->i_blkbits;
1264 	struct iomap iomap = { };
1265 	unsigned int len;
1266 	int ret;
1267 
1268 	ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1269 			       &iomap);
1270 	if (ret)
1271 		return ret;
1272 	if (iomap.type != IOMAP_MAPPED)
1273 		return -EIO;
1274 	*dblock = iomap.addr >> blkbits;
1275 	len = iomap.length >> blkbits;
1276 	if (len < *extlen)
1277 		*extlen = len;
1278 	*new = iomap.flags & IOMAP_F_NEW;
1279 	return 0;
1280 }
1281 
1282 /*
1283  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1284  * uses iomap write to perform its actions, which begin their own transactions
1285  * (iomap_begin, page_prepare, etc.)
1286  */
1287 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1288 				 unsigned int length)
1289 {
1290 	BUG_ON(current->journal_info);
1291 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1292 }
1293 
1294 #define GFS2_JTRUNC_REVOKES 8192
1295 
1296 /**
1297  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1298  * @inode: The inode being truncated
1299  * @oldsize: The original (larger) size
1300  * @newsize: The new smaller size
1301  *
1302  * With jdata files, we have to journal a revoke for each block which is
1303  * truncated. As a result, we need to split this into separate transactions
1304  * if the number of pages being truncated gets too large.
1305  */
1306 
1307 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1308 {
1309 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1310 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1311 	u64 chunk;
1312 	int error;
1313 
1314 	while (oldsize != newsize) {
1315 		struct gfs2_trans *tr;
1316 		unsigned int offs;
1317 
1318 		chunk = oldsize - newsize;
1319 		if (chunk > max_chunk)
1320 			chunk = max_chunk;
1321 
1322 		offs = oldsize & ~PAGE_MASK;
1323 		if (offs && chunk > PAGE_SIZE)
1324 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1325 
1326 		truncate_pagecache(inode, oldsize - chunk);
1327 		oldsize -= chunk;
1328 
1329 		tr = current->journal_info;
1330 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1331 			continue;
1332 
1333 		gfs2_trans_end(sdp);
1334 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1335 		if (error)
1336 			return error;
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 static int trunc_start(struct inode *inode, u64 newsize)
1343 {
1344 	struct gfs2_inode *ip = GFS2_I(inode);
1345 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1346 	struct buffer_head *dibh = NULL;
1347 	int journaled = gfs2_is_jdata(ip);
1348 	u64 oldsize = inode->i_size;
1349 	int error;
1350 
1351 	if (!gfs2_is_stuffed(ip)) {
1352 		unsigned int blocksize = i_blocksize(inode);
1353 		unsigned int offs = newsize & (blocksize - 1);
1354 		if (offs) {
1355 			error = gfs2_block_zero_range(inode, newsize,
1356 						      blocksize - offs);
1357 			if (error)
1358 				return error;
1359 		}
1360 	}
1361 	if (journaled)
1362 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1363 	else
1364 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1365 	if (error)
1366 		return error;
1367 
1368 	error = gfs2_meta_inode_buffer(ip, &dibh);
1369 	if (error)
1370 		goto out;
1371 
1372 	gfs2_trans_add_meta(ip->i_gl, dibh);
1373 
1374 	if (gfs2_is_stuffed(ip))
1375 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1376 	else
1377 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1378 
1379 	i_size_write(inode, newsize);
1380 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1381 	gfs2_dinode_out(ip, dibh->b_data);
1382 
1383 	if (journaled)
1384 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1385 	else
1386 		truncate_pagecache(inode, newsize);
1387 
1388 out:
1389 	brelse(dibh);
1390 	if (current->journal_info)
1391 		gfs2_trans_end(sdp);
1392 	return error;
1393 }
1394 
1395 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1396 		   struct iomap *iomap)
1397 {
1398 	struct metapath mp = { .mp_aheight = 1, };
1399 	int ret;
1400 
1401 	ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1402 	release_metapath(&mp);
1403 	return ret;
1404 }
1405 
1406 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1407 		     struct iomap *iomap)
1408 {
1409 	struct metapath mp = { .mp_aheight = 1, };
1410 	int ret;
1411 
1412 	ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1413 	if (!ret && iomap->type == IOMAP_HOLE)
1414 		ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1415 	release_metapath(&mp);
1416 	return ret;
1417 }
1418 
1419 /**
1420  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1421  * @ip: inode
1422  * @rd_gh: holder of resource group glock
1423  * @bh: buffer head to sweep
1424  * @start: starting point in bh
1425  * @end: end point in bh
1426  * @meta: true if bh points to metadata (rather than data)
1427  * @btotal: place to keep count of total blocks freed
1428  *
1429  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1430  * free, and free them all. However, we do it one rgrp at a time. If this
1431  * block has references to multiple rgrps, we break it into individual
1432  * transactions. This allows other processes to use the rgrps while we're
1433  * focused on a single one, for better concurrency / performance.
1434  * At every transaction boundary, we rewrite the inode into the journal.
1435  * That way the bitmaps are kept consistent with the inode and we can recover
1436  * if we're interrupted by power-outages.
1437  *
1438  * Returns: 0, or return code if an error occurred.
1439  *          *btotal has the total number of blocks freed
1440  */
1441 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1442 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1443 			      bool meta, u32 *btotal)
1444 {
1445 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1446 	struct gfs2_rgrpd *rgd;
1447 	struct gfs2_trans *tr;
1448 	__be64 *p;
1449 	int blks_outside_rgrp;
1450 	u64 bn, bstart, isize_blks;
1451 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1452 	int ret = 0;
1453 	bool buf_in_tr = false; /* buffer was added to transaction */
1454 
1455 more_rgrps:
1456 	rgd = NULL;
1457 	if (gfs2_holder_initialized(rd_gh)) {
1458 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1459 		gfs2_assert_withdraw(sdp,
1460 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1461 	}
1462 	blks_outside_rgrp = 0;
1463 	bstart = 0;
1464 	blen = 0;
1465 
1466 	for (p = start; p < end; p++) {
1467 		if (!*p)
1468 			continue;
1469 		bn = be64_to_cpu(*p);
1470 
1471 		if (rgd) {
1472 			if (!rgrp_contains_block(rgd, bn)) {
1473 				blks_outside_rgrp++;
1474 				continue;
1475 			}
1476 		} else {
1477 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1478 			if (unlikely(!rgd)) {
1479 				ret = -EIO;
1480 				goto out;
1481 			}
1482 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1483 						 LM_FLAG_NODE_SCOPE, rd_gh);
1484 			if (ret)
1485 				goto out;
1486 
1487 			/* Must be done with the rgrp glock held: */
1488 			if (gfs2_rs_active(&ip->i_res) &&
1489 			    rgd == ip->i_res.rs_rgd)
1490 				gfs2_rs_deltree(&ip->i_res);
1491 		}
1492 
1493 		/* The size of our transactions will be unknown until we
1494 		   actually process all the metadata blocks that relate to
1495 		   the rgrp. So we estimate. We know it can't be more than
1496 		   the dinode's i_blocks and we don't want to exceed the
1497 		   journal flush threshold, sd_log_thresh2. */
1498 		if (current->journal_info == NULL) {
1499 			unsigned int jblocks_rqsted, revokes;
1500 
1501 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1502 				RES_INDIRECT;
1503 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1504 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1505 				jblocks_rqsted +=
1506 					atomic_read(&sdp->sd_log_thresh2);
1507 			else
1508 				jblocks_rqsted += isize_blks;
1509 			revokes = jblocks_rqsted;
1510 			if (meta)
1511 				revokes += end - start;
1512 			else if (ip->i_depth)
1513 				revokes += sdp->sd_inptrs;
1514 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1515 			if (ret)
1516 				goto out_unlock;
1517 			down_write(&ip->i_rw_mutex);
1518 		}
1519 		/* check if we will exceed the transaction blocks requested */
1520 		tr = current->journal_info;
1521 		if (tr->tr_num_buf_new + RES_STATFS +
1522 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1523 			/* We set blks_outside_rgrp to ensure the loop will
1524 			   be repeated for the same rgrp, but with a new
1525 			   transaction. */
1526 			blks_outside_rgrp++;
1527 			/* This next part is tricky. If the buffer was added
1528 			   to the transaction, we've already set some block
1529 			   pointers to 0, so we better follow through and free
1530 			   them, or we will introduce corruption (so break).
1531 			   This may be impossible, or at least rare, but I
1532 			   decided to cover the case regardless.
1533 
1534 			   If the buffer was not added to the transaction
1535 			   (this call), doing so would exceed our transaction
1536 			   size, so we need to end the transaction and start a
1537 			   new one (so goto). */
1538 
1539 			if (buf_in_tr)
1540 				break;
1541 			goto out_unlock;
1542 		}
1543 
1544 		gfs2_trans_add_meta(ip->i_gl, bh);
1545 		buf_in_tr = true;
1546 		*p = 0;
1547 		if (bstart + blen == bn) {
1548 			blen++;
1549 			continue;
1550 		}
1551 		if (bstart) {
1552 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1553 			(*btotal) += blen;
1554 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1555 		}
1556 		bstart = bn;
1557 		blen = 1;
1558 	}
1559 	if (bstart) {
1560 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1561 		(*btotal) += blen;
1562 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1563 	}
1564 out_unlock:
1565 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1566 					    outside the rgrp we just processed,
1567 					    do it all over again. */
1568 		if (current->journal_info) {
1569 			struct buffer_head *dibh;
1570 
1571 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1572 			if (ret)
1573 				goto out;
1574 
1575 			/* Every transaction boundary, we rewrite the dinode
1576 			   to keep its di_blocks current in case of failure. */
1577 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1578 				current_time(&ip->i_inode);
1579 			gfs2_trans_add_meta(ip->i_gl, dibh);
1580 			gfs2_dinode_out(ip, dibh->b_data);
1581 			brelse(dibh);
1582 			up_write(&ip->i_rw_mutex);
1583 			gfs2_trans_end(sdp);
1584 			buf_in_tr = false;
1585 		}
1586 		gfs2_glock_dq_uninit(rd_gh);
1587 		cond_resched();
1588 		goto more_rgrps;
1589 	}
1590 out:
1591 	return ret;
1592 }
1593 
1594 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1595 {
1596 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1597 		return false;
1598 	return true;
1599 }
1600 
1601 /**
1602  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1603  * @sdp: The superblock
1604  * @mp: starting metapath
1605  * @h: desired height to search
1606  * @end_list: See punch_hole().
1607  * @end_aligned: See punch_hole().
1608  *
1609  * Assumes the metapath is valid (with buffers) out to height h.
1610  * Returns: true if a non-null pointer was found in the metapath buffer
1611  *          false if all remaining pointers are NULL in the buffer
1612  */
1613 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1614 			     unsigned int h,
1615 			     __u16 *end_list, unsigned int end_aligned)
1616 {
1617 	struct buffer_head *bh = mp->mp_bh[h];
1618 	__be64 *first, *ptr, *end;
1619 
1620 	first = metaptr1(h, mp);
1621 	ptr = first + mp->mp_list[h];
1622 	end = (__be64 *)(bh->b_data + bh->b_size);
1623 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1624 		bool keep_end = h < end_aligned;
1625 		end = first + end_list[h] + keep_end;
1626 	}
1627 
1628 	while (ptr < end) {
1629 		if (*ptr) { /* if we have a non-null pointer */
1630 			mp->mp_list[h] = ptr - first;
1631 			h++;
1632 			if (h < GFS2_MAX_META_HEIGHT)
1633 				mp->mp_list[h] = 0;
1634 			return true;
1635 		}
1636 		ptr++;
1637 	}
1638 	return false;
1639 }
1640 
1641 enum dealloc_states {
1642 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1643 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1644 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1645 	DEALLOC_DONE = 3,       /* process complete */
1646 };
1647 
1648 static inline void
1649 metapointer_range(struct metapath *mp, int height,
1650 		  __u16 *start_list, unsigned int start_aligned,
1651 		  __u16 *end_list, unsigned int end_aligned,
1652 		  __be64 **start, __be64 **end)
1653 {
1654 	struct buffer_head *bh = mp->mp_bh[height];
1655 	__be64 *first;
1656 
1657 	first = metaptr1(height, mp);
1658 	*start = first;
1659 	if (mp_eq_to_hgt(mp, start_list, height)) {
1660 		bool keep_start = height < start_aligned;
1661 		*start = first + start_list[height] + keep_start;
1662 	}
1663 	*end = (__be64 *)(bh->b_data + bh->b_size);
1664 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1665 		bool keep_end = height < end_aligned;
1666 		*end = first + end_list[height] + keep_end;
1667 	}
1668 }
1669 
1670 static inline bool walk_done(struct gfs2_sbd *sdp,
1671 			     struct metapath *mp, int height,
1672 			     __u16 *end_list, unsigned int end_aligned)
1673 {
1674 	__u16 end;
1675 
1676 	if (end_list) {
1677 		bool keep_end = height < end_aligned;
1678 		if (!mp_eq_to_hgt(mp, end_list, height))
1679 			return false;
1680 		end = end_list[height] + keep_end;
1681 	} else
1682 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1683 	return mp->mp_list[height] >= end;
1684 }
1685 
1686 /**
1687  * punch_hole - deallocate blocks in a file
1688  * @ip: inode to truncate
1689  * @offset: the start of the hole
1690  * @length: the size of the hole (or 0 for truncate)
1691  *
1692  * Punch a hole into a file or truncate a file at a given position.  This
1693  * function operates in whole blocks (@offset and @length are rounded
1694  * accordingly); partially filled blocks must be cleared otherwise.
1695  *
1696  * This function works from the bottom up, and from the right to the left. In
1697  * other words, it strips off the highest layer (data) before stripping any of
1698  * the metadata. Doing it this way is best in case the operation is interrupted
1699  * by power failure, etc.  The dinode is rewritten in every transaction to
1700  * guarantee integrity.
1701  */
1702 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1703 {
1704 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1705 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1706 	struct metapath mp = {};
1707 	struct buffer_head *dibh, *bh;
1708 	struct gfs2_holder rd_gh;
1709 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1710 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1711 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1712 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1713 	unsigned int start_aligned, end_aligned;
1714 	unsigned int strip_h = ip->i_height - 1;
1715 	u32 btotal = 0;
1716 	int ret, state;
1717 	int mp_h; /* metapath buffers are read in to this height */
1718 	u64 prev_bnr = 0;
1719 	__be64 *start, *end;
1720 
1721 	if (offset >= maxsize) {
1722 		/*
1723 		 * The starting point lies beyond the allocated meta-data;
1724 		 * there are no blocks do deallocate.
1725 		 */
1726 		return 0;
1727 	}
1728 
1729 	/*
1730 	 * The start position of the hole is defined by lblock, start_list, and
1731 	 * start_aligned.  The end position of the hole is defined by lend,
1732 	 * end_list, and end_aligned.
1733 	 *
1734 	 * start_aligned and end_aligned define down to which height the start
1735 	 * and end positions are aligned to the metadata tree (i.e., the
1736 	 * position is a multiple of the metadata granularity at the height
1737 	 * above).  This determines at which heights additional meta pointers
1738 	 * needs to be preserved for the remaining data.
1739 	 */
1740 
1741 	if (length) {
1742 		u64 end_offset = offset + length;
1743 		u64 lend;
1744 
1745 		/*
1746 		 * Clip the end at the maximum file size for the given height:
1747 		 * that's how far the metadata goes; files bigger than that
1748 		 * will have additional layers of indirection.
1749 		 */
1750 		if (end_offset > maxsize)
1751 			end_offset = maxsize;
1752 		lend = end_offset >> bsize_shift;
1753 
1754 		if (lblock >= lend)
1755 			return 0;
1756 
1757 		find_metapath(sdp, lend, &mp, ip->i_height);
1758 		end_list = __end_list;
1759 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1760 
1761 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1762 			if (end_list[mp_h])
1763 				break;
1764 		}
1765 		end_aligned = mp_h;
1766 	}
1767 
1768 	find_metapath(sdp, lblock, &mp, ip->i_height);
1769 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1770 
1771 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1772 		if (start_list[mp_h])
1773 			break;
1774 	}
1775 	start_aligned = mp_h;
1776 
1777 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1778 	if (ret)
1779 		return ret;
1780 
1781 	mp.mp_bh[0] = dibh;
1782 	ret = lookup_metapath(ip, &mp);
1783 	if (ret)
1784 		goto out_metapath;
1785 
1786 	/* issue read-ahead on metadata */
1787 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1788 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1789 				  end_list, end_aligned, &start, &end);
1790 		gfs2_metapath_ra(ip->i_gl, start, end);
1791 	}
1792 
1793 	if (mp.mp_aheight == ip->i_height)
1794 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1795 	else
1796 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1797 
1798 	ret = gfs2_rindex_update(sdp);
1799 	if (ret)
1800 		goto out_metapath;
1801 
1802 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1803 	if (ret)
1804 		goto out_metapath;
1805 	gfs2_holder_mark_uninitialized(&rd_gh);
1806 
1807 	mp_h = strip_h;
1808 
1809 	while (state != DEALLOC_DONE) {
1810 		switch (state) {
1811 		/* Truncate a full metapath at the given strip height.
1812 		 * Note that strip_h == mp_h in order to be in this state. */
1813 		case DEALLOC_MP_FULL:
1814 			bh = mp.mp_bh[mp_h];
1815 			gfs2_assert_withdraw(sdp, bh);
1816 			if (gfs2_assert_withdraw(sdp,
1817 						 prev_bnr != bh->b_blocknr)) {
1818 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1819 					 "s_h:%u, mp_h:%u\n",
1820 				       (unsigned long long)ip->i_no_addr,
1821 				       prev_bnr, ip->i_height, strip_h, mp_h);
1822 			}
1823 			prev_bnr = bh->b_blocknr;
1824 
1825 			if (gfs2_metatype_check(sdp, bh,
1826 						(mp_h ? GFS2_METATYPE_IN :
1827 							GFS2_METATYPE_DI))) {
1828 				ret = -EIO;
1829 				goto out;
1830 			}
1831 
1832 			/*
1833 			 * Below, passing end_aligned as 0 gives us the
1834 			 * metapointer range excluding the end point: the end
1835 			 * point is the first metapath we must not deallocate!
1836 			 */
1837 
1838 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1839 					  end_list, 0 /* end_aligned */,
1840 					  &start, &end);
1841 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1842 						 start, end,
1843 						 mp_h != ip->i_height - 1,
1844 						 &btotal);
1845 
1846 			/* If we hit an error or just swept dinode buffer,
1847 			   just exit. */
1848 			if (ret || !mp_h) {
1849 				state = DEALLOC_DONE;
1850 				break;
1851 			}
1852 			state = DEALLOC_MP_LOWER;
1853 			break;
1854 
1855 		/* lower the metapath strip height */
1856 		case DEALLOC_MP_LOWER:
1857 			/* We're done with the current buffer, so release it,
1858 			   unless it's the dinode buffer. Then back up to the
1859 			   previous pointer. */
1860 			if (mp_h) {
1861 				brelse(mp.mp_bh[mp_h]);
1862 				mp.mp_bh[mp_h] = NULL;
1863 			}
1864 			/* If we can't get any lower in height, we've stripped
1865 			   off all we can. Next step is to back up and start
1866 			   stripping the previous level of metadata. */
1867 			if (mp_h == 0) {
1868 				strip_h--;
1869 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1870 				mp_h = strip_h;
1871 				state = DEALLOC_FILL_MP;
1872 				break;
1873 			}
1874 			mp.mp_list[mp_h] = 0;
1875 			mp_h--; /* search one metadata height down */
1876 			mp.mp_list[mp_h]++;
1877 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1878 				break;
1879 			/* Here we've found a part of the metapath that is not
1880 			 * allocated. We need to search at that height for the
1881 			 * next non-null pointer. */
1882 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1883 				state = DEALLOC_FILL_MP;
1884 				mp_h++;
1885 			}
1886 			/* No more non-null pointers at this height. Back up
1887 			   to the previous height and try again. */
1888 			break; /* loop around in the same state */
1889 
1890 		/* Fill the metapath with buffers to the given height. */
1891 		case DEALLOC_FILL_MP:
1892 			/* Fill the buffers out to the current height. */
1893 			ret = fillup_metapath(ip, &mp, mp_h);
1894 			if (ret < 0)
1895 				goto out;
1896 
1897 			/* On the first pass, issue read-ahead on metadata. */
1898 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1899 				unsigned int height = mp.mp_aheight - 1;
1900 
1901 				/* No read-ahead for data blocks. */
1902 				if (mp.mp_aheight - 1 == strip_h)
1903 					height--;
1904 
1905 				for (; height >= mp.mp_aheight - ret; height--) {
1906 					metapointer_range(&mp, height,
1907 							  start_list, start_aligned,
1908 							  end_list, end_aligned,
1909 							  &start, &end);
1910 					gfs2_metapath_ra(ip->i_gl, start, end);
1911 				}
1912 			}
1913 
1914 			/* If buffers found for the entire strip height */
1915 			if (mp.mp_aheight - 1 == strip_h) {
1916 				state = DEALLOC_MP_FULL;
1917 				break;
1918 			}
1919 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1920 				mp_h = mp.mp_aheight - 1;
1921 
1922 			/* If we find a non-null block pointer, crawl a bit
1923 			   higher up in the metapath and try again, otherwise
1924 			   we need to look lower for a new starting point. */
1925 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1926 				mp_h++;
1927 			else
1928 				state = DEALLOC_MP_LOWER;
1929 			break;
1930 		}
1931 	}
1932 
1933 	if (btotal) {
1934 		if (current->journal_info == NULL) {
1935 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1936 					       RES_QUOTA, 0);
1937 			if (ret)
1938 				goto out;
1939 			down_write(&ip->i_rw_mutex);
1940 		}
1941 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1942 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1943 				  ip->i_inode.i_gid);
1944 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1945 		gfs2_trans_add_meta(ip->i_gl, dibh);
1946 		gfs2_dinode_out(ip, dibh->b_data);
1947 		up_write(&ip->i_rw_mutex);
1948 		gfs2_trans_end(sdp);
1949 	}
1950 
1951 out:
1952 	if (gfs2_holder_initialized(&rd_gh))
1953 		gfs2_glock_dq_uninit(&rd_gh);
1954 	if (current->journal_info) {
1955 		up_write(&ip->i_rw_mutex);
1956 		gfs2_trans_end(sdp);
1957 		cond_resched();
1958 	}
1959 	gfs2_quota_unhold(ip);
1960 out_metapath:
1961 	release_metapath(&mp);
1962 	return ret;
1963 }
1964 
1965 static int trunc_end(struct gfs2_inode *ip)
1966 {
1967 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1968 	struct buffer_head *dibh;
1969 	int error;
1970 
1971 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1972 	if (error)
1973 		return error;
1974 
1975 	down_write(&ip->i_rw_mutex);
1976 
1977 	error = gfs2_meta_inode_buffer(ip, &dibh);
1978 	if (error)
1979 		goto out;
1980 
1981 	if (!i_size_read(&ip->i_inode)) {
1982 		ip->i_height = 0;
1983 		ip->i_goal = ip->i_no_addr;
1984 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1985 		gfs2_ordered_del_inode(ip);
1986 	}
1987 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1988 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1989 
1990 	gfs2_trans_add_meta(ip->i_gl, dibh);
1991 	gfs2_dinode_out(ip, dibh->b_data);
1992 	brelse(dibh);
1993 
1994 out:
1995 	up_write(&ip->i_rw_mutex);
1996 	gfs2_trans_end(sdp);
1997 	return error;
1998 }
1999 
2000 /**
2001  * do_shrink - make a file smaller
2002  * @inode: the inode
2003  * @newsize: the size to make the file
2004  *
2005  * Called with an exclusive lock on @inode. The @size must
2006  * be equal to or smaller than the current inode size.
2007  *
2008  * Returns: errno
2009  */
2010 
2011 static int do_shrink(struct inode *inode, u64 newsize)
2012 {
2013 	struct gfs2_inode *ip = GFS2_I(inode);
2014 	int error;
2015 
2016 	error = trunc_start(inode, newsize);
2017 	if (error < 0)
2018 		return error;
2019 	if (gfs2_is_stuffed(ip))
2020 		return 0;
2021 
2022 	error = punch_hole(ip, newsize, 0);
2023 	if (error == 0)
2024 		error = trunc_end(ip);
2025 
2026 	return error;
2027 }
2028 
2029 void gfs2_trim_blocks(struct inode *inode)
2030 {
2031 	int ret;
2032 
2033 	ret = do_shrink(inode, inode->i_size);
2034 	WARN_ON(ret != 0);
2035 }
2036 
2037 /**
2038  * do_grow - Touch and update inode size
2039  * @inode: The inode
2040  * @size: The new size
2041  *
2042  * This function updates the timestamps on the inode and
2043  * may also increase the size of the inode. This function
2044  * must not be called with @size any smaller than the current
2045  * inode size.
2046  *
2047  * Although it is not strictly required to unstuff files here,
2048  * earlier versions of GFS2 have a bug in the stuffed file reading
2049  * code which will result in a buffer overrun if the size is larger
2050  * than the max stuffed file size. In order to prevent this from
2051  * occurring, such files are unstuffed, but in other cases we can
2052  * just update the inode size directly.
2053  *
2054  * Returns: 0 on success, or -ve on error
2055  */
2056 
2057 static int do_grow(struct inode *inode, u64 size)
2058 {
2059 	struct gfs2_inode *ip = GFS2_I(inode);
2060 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2061 	struct gfs2_alloc_parms ap = { .target = 1, };
2062 	struct buffer_head *dibh;
2063 	int error;
2064 	int unstuff = 0;
2065 
2066 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2067 		error = gfs2_quota_lock_check(ip, &ap);
2068 		if (error)
2069 			return error;
2070 
2071 		error = gfs2_inplace_reserve(ip, &ap);
2072 		if (error)
2073 			goto do_grow_qunlock;
2074 		unstuff = 1;
2075 	}
2076 
2077 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2078 				 (unstuff &&
2079 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2080 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2081 				  0 : RES_QUOTA), 0);
2082 	if (error)
2083 		goto do_grow_release;
2084 
2085 	if (unstuff) {
2086 		error = gfs2_unstuff_dinode(ip);
2087 		if (error)
2088 			goto do_end_trans;
2089 	}
2090 
2091 	error = gfs2_meta_inode_buffer(ip, &dibh);
2092 	if (error)
2093 		goto do_end_trans;
2094 
2095 	truncate_setsize(inode, size);
2096 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2097 	gfs2_trans_add_meta(ip->i_gl, dibh);
2098 	gfs2_dinode_out(ip, dibh->b_data);
2099 	brelse(dibh);
2100 
2101 do_end_trans:
2102 	gfs2_trans_end(sdp);
2103 do_grow_release:
2104 	if (unstuff) {
2105 		gfs2_inplace_release(ip);
2106 do_grow_qunlock:
2107 		gfs2_quota_unlock(ip);
2108 	}
2109 	return error;
2110 }
2111 
2112 /**
2113  * gfs2_setattr_size - make a file a given size
2114  * @inode: the inode
2115  * @newsize: the size to make the file
2116  *
2117  * The file size can grow, shrink, or stay the same size. This
2118  * is called holding i_rwsem and an exclusive glock on the inode
2119  * in question.
2120  *
2121  * Returns: errno
2122  */
2123 
2124 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2125 {
2126 	struct gfs2_inode *ip = GFS2_I(inode);
2127 	int ret;
2128 
2129 	BUG_ON(!S_ISREG(inode->i_mode));
2130 
2131 	ret = inode_newsize_ok(inode, newsize);
2132 	if (ret)
2133 		return ret;
2134 
2135 	inode_dio_wait(inode);
2136 
2137 	ret = gfs2_qa_get(ip);
2138 	if (ret)
2139 		goto out;
2140 
2141 	if (newsize >= inode->i_size) {
2142 		ret = do_grow(inode, newsize);
2143 		goto out;
2144 	}
2145 
2146 	ret = do_shrink(inode, newsize);
2147 out:
2148 	gfs2_rs_delete(ip);
2149 	gfs2_qa_put(ip);
2150 	return ret;
2151 }
2152 
2153 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2154 {
2155 	int error;
2156 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2157 	if (!error)
2158 		error = trunc_end(ip);
2159 	return error;
2160 }
2161 
2162 int gfs2_file_dealloc(struct gfs2_inode *ip)
2163 {
2164 	return punch_hole(ip, 0, 0);
2165 }
2166 
2167 /**
2168  * gfs2_free_journal_extents - Free cached journal bmap info
2169  * @jd: The journal
2170  *
2171  */
2172 
2173 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2174 {
2175 	struct gfs2_journal_extent *jext;
2176 
2177 	while(!list_empty(&jd->extent_list)) {
2178 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2179 		list_del(&jext->list);
2180 		kfree(jext);
2181 	}
2182 }
2183 
2184 /**
2185  * gfs2_add_jextent - Add or merge a new extent to extent cache
2186  * @jd: The journal descriptor
2187  * @lblock: The logical block at start of new extent
2188  * @dblock: The physical block at start of new extent
2189  * @blocks: Size of extent in fs blocks
2190  *
2191  * Returns: 0 on success or -ENOMEM
2192  */
2193 
2194 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2195 {
2196 	struct gfs2_journal_extent *jext;
2197 
2198 	if (!list_empty(&jd->extent_list)) {
2199 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2200 		if ((jext->dblock + jext->blocks) == dblock) {
2201 			jext->blocks += blocks;
2202 			return 0;
2203 		}
2204 	}
2205 
2206 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2207 	if (jext == NULL)
2208 		return -ENOMEM;
2209 	jext->dblock = dblock;
2210 	jext->lblock = lblock;
2211 	jext->blocks = blocks;
2212 	list_add_tail(&jext->list, &jd->extent_list);
2213 	jd->nr_extents++;
2214 	return 0;
2215 }
2216 
2217 /**
2218  * gfs2_map_journal_extents - Cache journal bmap info
2219  * @sdp: The super block
2220  * @jd: The journal to map
2221  *
2222  * Create a reusable "extent" mapping from all logical
2223  * blocks to all physical blocks for the given journal.  This will save
2224  * us time when writing journal blocks.  Most journals will have only one
2225  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2226  * arranges the journal blocks sequentially to maximize performance.
2227  * So the extent would map the first block for the entire file length.
2228  * However, gfs2_jadd can happen while file activity is happening, so
2229  * those journals may not be sequential.  Less likely is the case where
2230  * the users created their own journals by mounting the metafs and
2231  * laying it out.  But it's still possible.  These journals might have
2232  * several extents.
2233  *
2234  * Returns: 0 on success, or error on failure
2235  */
2236 
2237 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2238 {
2239 	u64 lblock = 0;
2240 	u64 lblock_stop;
2241 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2242 	struct buffer_head bh;
2243 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2244 	u64 size;
2245 	int rc;
2246 	ktime_t start, end;
2247 
2248 	start = ktime_get();
2249 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2250 	size = (lblock_stop - lblock) << shift;
2251 	jd->nr_extents = 0;
2252 	WARN_ON(!list_empty(&jd->extent_list));
2253 
2254 	do {
2255 		bh.b_state = 0;
2256 		bh.b_blocknr = 0;
2257 		bh.b_size = size;
2258 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2259 		if (rc || !buffer_mapped(&bh))
2260 			goto fail;
2261 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2262 		if (rc)
2263 			goto fail;
2264 		size -= bh.b_size;
2265 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2266 	} while(size > 0);
2267 
2268 	end = ktime_get();
2269 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2270 		jd->nr_extents, ktime_ms_delta(end, start));
2271 	return 0;
2272 
2273 fail:
2274 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2275 		rc, jd->jd_jid,
2276 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2277 		jd->nr_extents);
2278 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2279 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2280 		bh.b_state, (unsigned long long)bh.b_size);
2281 	gfs2_free_journal_extents(jd);
2282 	return rc;
2283 }
2284 
2285 /**
2286  * gfs2_write_alloc_required - figure out if a write will require an allocation
2287  * @ip: the file being written to
2288  * @offset: the offset to write to
2289  * @len: the number of bytes being written
2290  *
2291  * Returns: 1 if an alloc is required, 0 otherwise
2292  */
2293 
2294 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2295 			      unsigned int len)
2296 {
2297 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2298 	struct buffer_head bh;
2299 	unsigned int shift;
2300 	u64 lblock, lblock_stop, size;
2301 	u64 end_of_file;
2302 
2303 	if (!len)
2304 		return 0;
2305 
2306 	if (gfs2_is_stuffed(ip)) {
2307 		if (offset + len > gfs2_max_stuffed_size(ip))
2308 			return 1;
2309 		return 0;
2310 	}
2311 
2312 	shift = sdp->sd_sb.sb_bsize_shift;
2313 	BUG_ON(gfs2_is_dir(ip));
2314 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2315 	lblock = offset >> shift;
2316 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2317 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2318 		return 1;
2319 
2320 	size = (lblock_stop - lblock) << shift;
2321 	do {
2322 		bh.b_state = 0;
2323 		bh.b_size = size;
2324 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2325 		if (!buffer_mapped(&bh))
2326 			return 1;
2327 		size -= bh.b_size;
2328 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2329 	} while(size > 0);
2330 
2331 	return 0;
2332 }
2333 
2334 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2335 {
2336 	struct gfs2_inode *ip = GFS2_I(inode);
2337 	struct buffer_head *dibh;
2338 	int error;
2339 
2340 	if (offset >= inode->i_size)
2341 		return 0;
2342 	if (offset + length > inode->i_size)
2343 		length = inode->i_size - offset;
2344 
2345 	error = gfs2_meta_inode_buffer(ip, &dibh);
2346 	if (error)
2347 		return error;
2348 	gfs2_trans_add_meta(ip->i_gl, dibh);
2349 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2350 	       length);
2351 	brelse(dibh);
2352 	return 0;
2353 }
2354 
2355 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2356 					 loff_t length)
2357 {
2358 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2359 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2360 	int error;
2361 
2362 	while (length) {
2363 		struct gfs2_trans *tr;
2364 		loff_t chunk;
2365 		unsigned int offs;
2366 
2367 		chunk = length;
2368 		if (chunk > max_chunk)
2369 			chunk = max_chunk;
2370 
2371 		offs = offset & ~PAGE_MASK;
2372 		if (offs && chunk > PAGE_SIZE)
2373 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2374 
2375 		truncate_pagecache_range(inode, offset, chunk);
2376 		offset += chunk;
2377 		length -= chunk;
2378 
2379 		tr = current->journal_info;
2380 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2381 			continue;
2382 
2383 		gfs2_trans_end(sdp);
2384 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2385 		if (error)
2386 			return error;
2387 	}
2388 	return 0;
2389 }
2390 
2391 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2392 {
2393 	struct inode *inode = file_inode(file);
2394 	struct gfs2_inode *ip = GFS2_I(inode);
2395 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2396 	unsigned int blocksize = i_blocksize(inode);
2397 	loff_t start, end;
2398 	int error;
2399 
2400 	if (!gfs2_is_stuffed(ip)) {
2401 		unsigned int start_off, end_len;
2402 
2403 		start_off = offset & (blocksize - 1);
2404 		end_len = (offset + length) & (blocksize - 1);
2405 		if (start_off) {
2406 			unsigned int len = length;
2407 			if (length > blocksize - start_off)
2408 				len = blocksize - start_off;
2409 			error = gfs2_block_zero_range(inode, offset, len);
2410 			if (error)
2411 				goto out;
2412 			if (start_off + length < blocksize)
2413 				end_len = 0;
2414 		}
2415 		if (end_len) {
2416 			error = gfs2_block_zero_range(inode,
2417 				offset + length - end_len, end_len);
2418 			if (error)
2419 				goto out;
2420 		}
2421 	}
2422 
2423 	start = round_down(offset, blocksize);
2424 	end = round_up(offset + length, blocksize) - 1;
2425 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2426 	if (error)
2427 		return error;
2428 
2429 	if (gfs2_is_jdata(ip))
2430 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2431 					 GFS2_JTRUNC_REVOKES);
2432 	else
2433 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2434 	if (error)
2435 		return error;
2436 
2437 	if (gfs2_is_stuffed(ip)) {
2438 		error = stuffed_zero_range(inode, offset, length);
2439 		if (error)
2440 			goto out;
2441 	}
2442 
2443 	if (gfs2_is_jdata(ip)) {
2444 		BUG_ON(!current->journal_info);
2445 		gfs2_journaled_truncate_range(inode, offset, length);
2446 	} else
2447 		truncate_pagecache_range(inode, offset, offset + length - 1);
2448 
2449 	file_update_time(file);
2450 	mark_inode_dirty(inode);
2451 
2452 	if (current->journal_info)
2453 		gfs2_trans_end(sdp);
2454 
2455 	if (!gfs2_is_stuffed(ip))
2456 		error = punch_hole(ip, offset, length);
2457 
2458 out:
2459 	if (current->journal_info)
2460 		gfs2_trans_end(sdp);
2461 	return error;
2462 }
2463 
2464 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2465 		loff_t offset)
2466 {
2467 	int ret;
2468 
2469 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2470 		return -EIO;
2471 
2472 	if (offset >= wpc->iomap.offset &&
2473 	    offset < wpc->iomap.offset + wpc->iomap.length)
2474 		return 0;
2475 
2476 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2477 	ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2478 	return ret;
2479 }
2480 
2481 const struct iomap_writeback_ops gfs2_writeback_ops = {
2482 	.map_blocks		= gfs2_map_blocks,
2483 };
2484