xref: /openbmc/linux/fs/gfs2/aops.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39 
40 
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 				   unsigned int from, unsigned int to)
43 {
44 	struct buffer_head *head = page_buffers(page);
45 	unsigned int bsize = head->b_size;
46 	struct buffer_head *bh;
47 	unsigned int start, end;
48 
49 	for (bh = head, start = 0; bh != head || !start;
50 	     bh = bh->b_this_page, start = end) {
51 		end = start + bsize;
52 		if (end <= from || start >= to)
53 			continue;
54 		if (gfs2_is_jdata(ip))
55 			set_buffer_uptodate(bh);
56 		gfs2_trans_add_data(ip->i_gl, bh);
57 	}
58 }
59 
60 /**
61  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62  * @inode: The inode
63  * @lblock: The block number to look up
64  * @bh_result: The buffer head to return the result in
65  * @create: Non-zero if we may add block to the file
66  *
67  * Returns: errno
68  */
69 
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 				  struct buffer_head *bh_result, int create)
72 {
73 	int error;
74 
75 	error = gfs2_block_map(inode, lblock, bh_result, 0);
76 	if (error)
77 		return error;
78 	if (!buffer_mapped(bh_result))
79 		return -EIO;
80 	return 0;
81 }
82 
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 				 struct buffer_head *bh_result, int create)
85 {
86 	return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88 
89 /**
90  * gfs2_writepage_common - Common bits of writepage
91  * @page: The page to be written
92  * @wbc: The writeback control
93  *
94  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95  */
96 
97 static int gfs2_writepage_common(struct page *page,
98 				 struct writeback_control *wbc)
99 {
100 	struct inode *inode = page->mapping->host;
101 	struct gfs2_inode *ip = GFS2_I(inode);
102 	struct gfs2_sbd *sdp = GFS2_SB(inode);
103 	loff_t i_size = i_size_read(inode);
104 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
105 	unsigned offset;
106 
107 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108 		goto out;
109 	if (current->journal_info)
110 		goto redirty;
111 	/* Is the page fully outside i_size? (truncate in progress) */
112 	offset = i_size & (PAGE_CACHE_SIZE-1);
113 	if (page->index > end_index || (page->index == end_index && !offset)) {
114 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
115 		goto out;
116 	}
117 	return 1;
118 redirty:
119 	redirty_page_for_writepage(wbc, page);
120 out:
121 	unlock_page(page);
122 	return 0;
123 }
124 
125 /**
126  * gfs2_writepage - Write page for writeback mappings
127  * @page: The page
128  * @wbc: The writeback control
129  *
130  */
131 
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134 	int ret;
135 
136 	ret = gfs2_writepage_common(page, wbc);
137 	if (ret <= 0)
138 		return ret;
139 
140 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142 
143 /**
144  * __gfs2_jdata_writepage - The core of jdata writepage
145  * @page: The page to write
146  * @wbc: The writeback control
147  *
148  * This is shared between writepage and writepages and implements the
149  * core of the writepage operation. If a transaction is required then
150  * PageChecked will have been set and the transaction will have
151  * already been started before this is called.
152  */
153 
154 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
155 {
156 	struct inode *inode = page->mapping->host;
157 	struct gfs2_inode *ip = GFS2_I(inode);
158 	struct gfs2_sbd *sdp = GFS2_SB(inode);
159 
160 	if (PageChecked(page)) {
161 		ClearPageChecked(page);
162 		if (!page_has_buffers(page)) {
163 			create_empty_buffers(page, inode->i_sb->s_blocksize,
164 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
165 		}
166 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
167 	}
168 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170 
171 /**
172  * gfs2_jdata_writepage - Write complete page
173  * @page: Page to write
174  * @wbc: The writeback control
175  *
176  * Returns: errno
177  *
178  */
179 
180 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 	struct inode *inode = page->mapping->host;
183 	struct gfs2_sbd *sdp = GFS2_SB(inode);
184 	int ret;
185 	int done_trans = 0;
186 
187 	if (PageChecked(page)) {
188 		if (wbc->sync_mode != WB_SYNC_ALL)
189 			goto out_ignore;
190 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
191 		if (ret)
192 			goto out_ignore;
193 		done_trans = 1;
194 	}
195 	ret = gfs2_writepage_common(page, wbc);
196 	if (ret > 0)
197 		ret = __gfs2_jdata_writepage(page, wbc);
198 	if (done_trans)
199 		gfs2_trans_end(sdp);
200 	return ret;
201 
202 out_ignore:
203 	redirty_page_for_writepage(wbc, page);
204 	unlock_page(page);
205 	return 0;
206 }
207 
208 /**
209  * gfs2_writepages - Write a bunch of dirty pages back to disk
210  * @mapping: The mapping to write
211  * @wbc: Write-back control
212  *
213  * Used for both ordered and writeback modes.
214  */
215 static int gfs2_writepages(struct address_space *mapping,
216 			   struct writeback_control *wbc)
217 {
218 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
219 }
220 
221 /**
222  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
223  * @mapping: The mapping
224  * @wbc: The writeback control
225  * @pvec: The vector of pages
226  * @nr_pages: The number of pages to write
227  * @end: End position
228  * @done_index: Page index
229  *
230  * Returns: non-zero if loop should terminate, zero otherwise
231  */
232 
233 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
234 				    struct writeback_control *wbc,
235 				    struct pagevec *pvec,
236 				    int nr_pages, pgoff_t end,
237 				    pgoff_t *done_index)
238 {
239 	struct inode *inode = mapping->host;
240 	struct gfs2_sbd *sdp = GFS2_SB(inode);
241 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
242 	int i;
243 	int ret;
244 
245 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
246 	if (ret < 0)
247 		return ret;
248 
249 	for(i = 0; i < nr_pages; i++) {
250 		struct page *page = pvec->pages[i];
251 
252 		/*
253 		 * At this point, the page may be truncated or
254 		 * invalidated (changing page->mapping to NULL), or
255 		 * even swizzled back from swapper_space to tmpfs file
256 		 * mapping. However, page->index will not change
257 		 * because we have a reference on the page.
258 		 */
259 		if (page->index > end) {
260 			/*
261 			 * can't be range_cyclic (1st pass) because
262 			 * end == -1 in that case.
263 			 */
264 			ret = 1;
265 			break;
266 		}
267 
268 		*done_index = page->index;
269 
270 		lock_page(page);
271 
272 		if (unlikely(page->mapping != mapping)) {
273 continue_unlock:
274 			unlock_page(page);
275 			continue;
276 		}
277 
278 		if (!PageDirty(page)) {
279 			/* someone wrote it for us */
280 			goto continue_unlock;
281 		}
282 
283 		if (PageWriteback(page)) {
284 			if (wbc->sync_mode != WB_SYNC_NONE)
285 				wait_on_page_writeback(page);
286 			else
287 				goto continue_unlock;
288 		}
289 
290 		BUG_ON(PageWriteback(page));
291 		if (!clear_page_dirty_for_io(page))
292 			goto continue_unlock;
293 
294 		trace_wbc_writepage(wbc, inode_to_bdi(inode));
295 
296 		ret = __gfs2_jdata_writepage(page, wbc);
297 		if (unlikely(ret)) {
298 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
299 				unlock_page(page);
300 				ret = 0;
301 			} else {
302 
303 				/*
304 				 * done_index is set past this page,
305 				 * so media errors will not choke
306 				 * background writeout for the entire
307 				 * file. This has consequences for
308 				 * range_cyclic semantics (ie. it may
309 				 * not be suitable for data integrity
310 				 * writeout).
311 				 */
312 				*done_index = page->index + 1;
313 				ret = 1;
314 				break;
315 			}
316 		}
317 
318 		/*
319 		 * We stop writing back only if we are not doing
320 		 * integrity sync. In case of integrity sync we have to
321 		 * keep going until we have written all the pages
322 		 * we tagged for writeback prior to entering this loop.
323 		 */
324 		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
325 			ret = 1;
326 			break;
327 		}
328 
329 	}
330 	gfs2_trans_end(sdp);
331 	return ret;
332 }
333 
334 /**
335  * gfs2_write_cache_jdata - Like write_cache_pages but different
336  * @mapping: The mapping to write
337  * @wbc: The writeback control
338  *
339  * The reason that we use our own function here is that we need to
340  * start transactions before we grab page locks. This allows us
341  * to get the ordering right.
342  */
343 
344 static int gfs2_write_cache_jdata(struct address_space *mapping,
345 				  struct writeback_control *wbc)
346 {
347 	int ret = 0;
348 	int done = 0;
349 	struct pagevec pvec;
350 	int nr_pages;
351 	pgoff_t uninitialized_var(writeback_index);
352 	pgoff_t index;
353 	pgoff_t end;
354 	pgoff_t done_index;
355 	int cycled;
356 	int range_whole = 0;
357 	int tag;
358 
359 	pagevec_init(&pvec, 0);
360 	if (wbc->range_cyclic) {
361 		writeback_index = mapping->writeback_index; /* prev offset */
362 		index = writeback_index;
363 		if (index == 0)
364 			cycled = 1;
365 		else
366 			cycled = 0;
367 		end = -1;
368 	} else {
369 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
370 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
371 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
372 			range_whole = 1;
373 		cycled = 1; /* ignore range_cyclic tests */
374 	}
375 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
376 		tag = PAGECACHE_TAG_TOWRITE;
377 	else
378 		tag = PAGECACHE_TAG_DIRTY;
379 
380 retry:
381 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
382 		tag_pages_for_writeback(mapping, index, end);
383 	done_index = index;
384 	while (!done && (index <= end)) {
385 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
386 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
387 		if (nr_pages == 0)
388 			break;
389 
390 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
391 		if (ret)
392 			done = 1;
393 		if (ret > 0)
394 			ret = 0;
395 		pagevec_release(&pvec);
396 		cond_resched();
397 	}
398 
399 	if (!cycled && !done) {
400 		/*
401 		 * range_cyclic:
402 		 * We hit the last page and there is more work to be done: wrap
403 		 * back to the start of the file
404 		 */
405 		cycled = 1;
406 		index = 0;
407 		end = writeback_index - 1;
408 		goto retry;
409 	}
410 
411 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
412 		mapping->writeback_index = done_index;
413 
414 	return ret;
415 }
416 
417 
418 /**
419  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
420  * @mapping: The mapping to write
421  * @wbc: The writeback control
422  *
423  */
424 
425 static int gfs2_jdata_writepages(struct address_space *mapping,
426 				 struct writeback_control *wbc)
427 {
428 	struct gfs2_inode *ip = GFS2_I(mapping->host);
429 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
430 	int ret;
431 
432 	ret = gfs2_write_cache_jdata(mapping, wbc);
433 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
434 		gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
435 		ret = gfs2_write_cache_jdata(mapping, wbc);
436 	}
437 	return ret;
438 }
439 
440 /**
441  * stuffed_readpage - Fill in a Linux page with stuffed file data
442  * @ip: the inode
443  * @page: the page
444  *
445  * Returns: errno
446  */
447 
448 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
449 {
450 	struct buffer_head *dibh;
451 	u64 dsize = i_size_read(&ip->i_inode);
452 	void *kaddr;
453 	int error;
454 
455 	/*
456 	 * Due to the order of unstuffing files and ->fault(), we can be
457 	 * asked for a zero page in the case of a stuffed file being extended,
458 	 * so we need to supply one here. It doesn't happen often.
459 	 */
460 	if (unlikely(page->index)) {
461 		zero_user(page, 0, PAGE_CACHE_SIZE);
462 		SetPageUptodate(page);
463 		return 0;
464 	}
465 
466 	error = gfs2_meta_inode_buffer(ip, &dibh);
467 	if (error)
468 		return error;
469 
470 	kaddr = kmap_atomic(page);
471 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
472 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
473 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
474 	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
475 	kunmap_atomic(kaddr);
476 	flush_dcache_page(page);
477 	brelse(dibh);
478 	SetPageUptodate(page);
479 
480 	return 0;
481 }
482 
483 
484 /**
485  * __gfs2_readpage - readpage
486  * @file: The file to read a page for
487  * @page: The page to read
488  *
489  * This is the core of gfs2's readpage. Its used by the internal file
490  * reading code as in that case we already hold the glock. Also its
491  * called by gfs2_readpage() once the required lock has been granted.
492  *
493  */
494 
495 static int __gfs2_readpage(void *file, struct page *page)
496 {
497 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
498 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
499 	int error;
500 
501 	if (gfs2_is_stuffed(ip)) {
502 		error = stuffed_readpage(ip, page);
503 		unlock_page(page);
504 	} else {
505 		error = mpage_readpage(page, gfs2_block_map);
506 	}
507 
508 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
509 		return -EIO;
510 
511 	return error;
512 }
513 
514 /**
515  * gfs2_readpage - read a page of a file
516  * @file: The file to read
517  * @page: The page of the file
518  *
519  * This deals with the locking required. We have to unlock and
520  * relock the page in order to get the locking in the right
521  * order.
522  */
523 
524 static int gfs2_readpage(struct file *file, struct page *page)
525 {
526 	struct address_space *mapping = page->mapping;
527 	struct gfs2_inode *ip = GFS2_I(mapping->host);
528 	struct gfs2_holder gh;
529 	int error;
530 
531 	unlock_page(page);
532 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
533 	error = gfs2_glock_nq(&gh);
534 	if (unlikely(error))
535 		goto out;
536 	error = AOP_TRUNCATED_PAGE;
537 	lock_page(page);
538 	if (page->mapping == mapping && !PageUptodate(page))
539 		error = __gfs2_readpage(file, page);
540 	else
541 		unlock_page(page);
542 	gfs2_glock_dq(&gh);
543 out:
544 	gfs2_holder_uninit(&gh);
545 	if (error && error != AOP_TRUNCATED_PAGE)
546 		lock_page(page);
547 	return error;
548 }
549 
550 /**
551  * gfs2_internal_read - read an internal file
552  * @ip: The gfs2 inode
553  * @buf: The buffer to fill
554  * @pos: The file position
555  * @size: The amount to read
556  *
557  */
558 
559 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
560                        unsigned size)
561 {
562 	struct address_space *mapping = ip->i_inode.i_mapping;
563 	unsigned long index = *pos / PAGE_CACHE_SIZE;
564 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
565 	unsigned copied = 0;
566 	unsigned amt;
567 	struct page *page;
568 	void *p;
569 
570 	do {
571 		amt = size - copied;
572 		if (offset + size > PAGE_CACHE_SIZE)
573 			amt = PAGE_CACHE_SIZE - offset;
574 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
575 		if (IS_ERR(page))
576 			return PTR_ERR(page);
577 		p = kmap_atomic(page);
578 		memcpy(buf + copied, p + offset, amt);
579 		kunmap_atomic(p);
580 		page_cache_release(page);
581 		copied += amt;
582 		index++;
583 		offset = 0;
584 	} while(copied < size);
585 	(*pos) += size;
586 	return size;
587 }
588 
589 /**
590  * gfs2_readpages - Read a bunch of pages at once
591  * @file: The file to read from
592  * @mapping: Address space info
593  * @pages: List of pages to read
594  * @nr_pages: Number of pages to read
595  *
596  * Some notes:
597  * 1. This is only for readahead, so we can simply ignore any things
598  *    which are slightly inconvenient (such as locking conflicts between
599  *    the page lock and the glock) and return having done no I/O. Its
600  *    obviously not something we'd want to do on too regular a basis.
601  *    Any I/O we ignore at this time will be done via readpage later.
602  * 2. We don't handle stuffed files here we let readpage do the honours.
603  * 3. mpage_readpages() does most of the heavy lifting in the common case.
604  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
605  */
606 
607 static int gfs2_readpages(struct file *file, struct address_space *mapping,
608 			  struct list_head *pages, unsigned nr_pages)
609 {
610 	struct inode *inode = mapping->host;
611 	struct gfs2_inode *ip = GFS2_I(inode);
612 	struct gfs2_sbd *sdp = GFS2_SB(inode);
613 	struct gfs2_holder gh;
614 	int ret;
615 
616 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
617 	ret = gfs2_glock_nq(&gh);
618 	if (unlikely(ret))
619 		goto out_uninit;
620 	if (!gfs2_is_stuffed(ip))
621 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
622 	gfs2_glock_dq(&gh);
623 out_uninit:
624 	gfs2_holder_uninit(&gh);
625 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
626 		ret = -EIO;
627 	return ret;
628 }
629 
630 /**
631  * gfs2_write_begin - Begin to write to a file
632  * @file: The file to write to
633  * @mapping: The mapping in which to write
634  * @pos: The file offset at which to start writing
635  * @len: Length of the write
636  * @flags: Various flags
637  * @pagep: Pointer to return the page
638  * @fsdata: Pointer to return fs data (unused by GFS2)
639  *
640  * Returns: errno
641  */
642 
643 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
644 			    loff_t pos, unsigned len, unsigned flags,
645 			    struct page **pagep, void **fsdata)
646 {
647 	struct gfs2_inode *ip = GFS2_I(mapping->host);
648 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
649 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
650 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
651 	unsigned requested = 0;
652 	int alloc_required;
653 	int error = 0;
654 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
655 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
656 	struct page *page;
657 
658 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
659 	error = gfs2_glock_nq(&ip->i_gh);
660 	if (unlikely(error))
661 		goto out_uninit;
662 	if (&ip->i_inode == sdp->sd_rindex) {
663 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
664 					   GL_NOCACHE, &m_ip->i_gh);
665 		if (unlikely(error)) {
666 			gfs2_glock_dq(&ip->i_gh);
667 			goto out_uninit;
668 		}
669 	}
670 
671 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
672 
673 	if (alloc_required || gfs2_is_jdata(ip))
674 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
675 
676 	if (alloc_required) {
677 		struct gfs2_alloc_parms ap = { .aflags = 0, };
678 		requested = data_blocks + ind_blocks;
679 		ap.target = requested;
680 		error = gfs2_quota_lock_check(ip, &ap);
681 		if (error)
682 			goto out_unlock;
683 
684 		error = gfs2_inplace_reserve(ip, &ap);
685 		if (error)
686 			goto out_qunlock;
687 	}
688 
689 	rblocks = RES_DINODE + ind_blocks;
690 	if (gfs2_is_jdata(ip))
691 		rblocks += data_blocks ? data_blocks : 1;
692 	if (ind_blocks || data_blocks)
693 		rblocks += RES_STATFS + RES_QUOTA;
694 	if (&ip->i_inode == sdp->sd_rindex)
695 		rblocks += 2 * RES_STATFS;
696 	if (alloc_required)
697 		rblocks += gfs2_rg_blocks(ip, requested);
698 
699 	error = gfs2_trans_begin(sdp, rblocks,
700 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
701 	if (error)
702 		goto out_trans_fail;
703 
704 	error = -ENOMEM;
705 	flags |= AOP_FLAG_NOFS;
706 	page = grab_cache_page_write_begin(mapping, index, flags);
707 	*pagep = page;
708 	if (unlikely(!page))
709 		goto out_endtrans;
710 
711 	if (gfs2_is_stuffed(ip)) {
712 		error = 0;
713 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
714 			error = gfs2_unstuff_dinode(ip, page);
715 			if (error == 0)
716 				goto prepare_write;
717 		} else if (!PageUptodate(page)) {
718 			error = stuffed_readpage(ip, page);
719 		}
720 		goto out;
721 	}
722 
723 prepare_write:
724 	error = __block_write_begin(page, from, len, gfs2_block_map);
725 out:
726 	if (error == 0)
727 		return 0;
728 
729 	unlock_page(page);
730 	page_cache_release(page);
731 
732 	gfs2_trans_end(sdp);
733 	if (pos + len > ip->i_inode.i_size)
734 		gfs2_trim_blocks(&ip->i_inode);
735 	goto out_trans_fail;
736 
737 out_endtrans:
738 	gfs2_trans_end(sdp);
739 out_trans_fail:
740 	if (alloc_required) {
741 		gfs2_inplace_release(ip);
742 out_qunlock:
743 		gfs2_quota_unlock(ip);
744 	}
745 out_unlock:
746 	if (&ip->i_inode == sdp->sd_rindex) {
747 		gfs2_glock_dq(&m_ip->i_gh);
748 		gfs2_holder_uninit(&m_ip->i_gh);
749 	}
750 	gfs2_glock_dq(&ip->i_gh);
751 out_uninit:
752 	gfs2_holder_uninit(&ip->i_gh);
753 	return error;
754 }
755 
756 /**
757  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
758  * @inode: the rindex inode
759  */
760 static void adjust_fs_space(struct inode *inode)
761 {
762 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
763 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
764 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
765 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
766 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
767 	struct buffer_head *m_bh, *l_bh;
768 	u64 fs_total, new_free;
769 
770 	/* Total up the file system space, according to the latest rindex. */
771 	fs_total = gfs2_ri_total(sdp);
772 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
773 		return;
774 
775 	spin_lock(&sdp->sd_statfs_spin);
776 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
777 			      sizeof(struct gfs2_dinode));
778 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
779 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
780 	else
781 		new_free = 0;
782 	spin_unlock(&sdp->sd_statfs_spin);
783 	fs_warn(sdp, "File system extended by %llu blocks.\n",
784 		(unsigned long long)new_free);
785 	gfs2_statfs_change(sdp, new_free, new_free, 0);
786 
787 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
788 		goto out;
789 	update_statfs(sdp, m_bh, l_bh);
790 	brelse(l_bh);
791 out:
792 	brelse(m_bh);
793 }
794 
795 /**
796  * gfs2_stuffed_write_end - Write end for stuffed files
797  * @inode: The inode
798  * @dibh: The buffer_head containing the on-disk inode
799  * @pos: The file position
800  * @len: The length of the write
801  * @copied: How much was actually copied by the VFS
802  * @page: The page
803  *
804  * This copies the data from the page into the inode block after
805  * the inode data structure itself.
806  *
807  * Returns: errno
808  */
809 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
810 				  loff_t pos, unsigned len, unsigned copied,
811 				  struct page *page)
812 {
813 	struct gfs2_inode *ip = GFS2_I(inode);
814 	struct gfs2_sbd *sdp = GFS2_SB(inode);
815 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
816 	u64 to = pos + copied;
817 	void *kaddr;
818 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
819 
820 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
821 	kaddr = kmap_atomic(page);
822 	memcpy(buf + pos, kaddr + pos, copied);
823 	memset(kaddr + pos + copied, 0, len - copied);
824 	flush_dcache_page(page);
825 	kunmap_atomic(kaddr);
826 
827 	if (!PageUptodate(page))
828 		SetPageUptodate(page);
829 	unlock_page(page);
830 	page_cache_release(page);
831 
832 	if (copied) {
833 		if (inode->i_size < to)
834 			i_size_write(inode, to);
835 		mark_inode_dirty(inode);
836 	}
837 
838 	if (inode == sdp->sd_rindex) {
839 		adjust_fs_space(inode);
840 		sdp->sd_rindex_uptodate = 0;
841 	}
842 
843 	brelse(dibh);
844 	gfs2_trans_end(sdp);
845 	if (inode == sdp->sd_rindex) {
846 		gfs2_glock_dq(&m_ip->i_gh);
847 		gfs2_holder_uninit(&m_ip->i_gh);
848 	}
849 	gfs2_glock_dq(&ip->i_gh);
850 	gfs2_holder_uninit(&ip->i_gh);
851 	return copied;
852 }
853 
854 /**
855  * gfs2_write_end
856  * @file: The file to write to
857  * @mapping: The address space to write to
858  * @pos: The file position
859  * @len: The length of the data
860  * @copied: How much was actually copied by the VFS
861  * @page: The page that has been written
862  * @fsdata: The fsdata (unused in GFS2)
863  *
864  * The main write_end function for GFS2. We have a separate one for
865  * stuffed files as they are slightly different, otherwise we just
866  * put our locking around the VFS provided functions.
867  *
868  * Returns: errno
869  */
870 
871 static int gfs2_write_end(struct file *file, struct address_space *mapping,
872 			  loff_t pos, unsigned len, unsigned copied,
873 			  struct page *page, void *fsdata)
874 {
875 	struct inode *inode = page->mapping->host;
876 	struct gfs2_inode *ip = GFS2_I(inode);
877 	struct gfs2_sbd *sdp = GFS2_SB(inode);
878 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
879 	struct buffer_head *dibh;
880 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
881 	unsigned int to = from + len;
882 	int ret;
883 	struct gfs2_trans *tr = current->journal_info;
884 	BUG_ON(!tr);
885 
886 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
887 
888 	ret = gfs2_meta_inode_buffer(ip, &dibh);
889 	if (unlikely(ret)) {
890 		unlock_page(page);
891 		page_cache_release(page);
892 		goto failed;
893 	}
894 
895 	if (gfs2_is_stuffed(ip))
896 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
897 
898 	if (!gfs2_is_writeback(ip))
899 		gfs2_page_add_databufs(ip, page, from, to);
900 
901 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
902 	if (tr->tr_num_buf_new)
903 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
904 	else
905 		gfs2_trans_add_meta(ip->i_gl, dibh);
906 
907 
908 	if (inode == sdp->sd_rindex) {
909 		adjust_fs_space(inode);
910 		sdp->sd_rindex_uptodate = 0;
911 	}
912 
913 	brelse(dibh);
914 failed:
915 	gfs2_trans_end(sdp);
916 	gfs2_inplace_release(ip);
917 	if (ip->i_res->rs_qa_qd_num)
918 		gfs2_quota_unlock(ip);
919 	if (inode == sdp->sd_rindex) {
920 		gfs2_glock_dq(&m_ip->i_gh);
921 		gfs2_holder_uninit(&m_ip->i_gh);
922 	}
923 	gfs2_glock_dq(&ip->i_gh);
924 	gfs2_holder_uninit(&ip->i_gh);
925 	return ret;
926 }
927 
928 /**
929  * gfs2_set_page_dirty - Page dirtying function
930  * @page: The page to dirty
931  *
932  * Returns: 1 if it dirtyed the page, or 0 otherwise
933  */
934 
935 static int gfs2_set_page_dirty(struct page *page)
936 {
937 	SetPageChecked(page);
938 	return __set_page_dirty_buffers(page);
939 }
940 
941 /**
942  * gfs2_bmap - Block map function
943  * @mapping: Address space info
944  * @lblock: The block to map
945  *
946  * Returns: The disk address for the block or 0 on hole or error
947  */
948 
949 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
950 {
951 	struct gfs2_inode *ip = GFS2_I(mapping->host);
952 	struct gfs2_holder i_gh;
953 	sector_t dblock = 0;
954 	int error;
955 
956 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
957 	if (error)
958 		return 0;
959 
960 	if (!gfs2_is_stuffed(ip))
961 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
962 
963 	gfs2_glock_dq_uninit(&i_gh);
964 
965 	return dblock;
966 }
967 
968 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
969 {
970 	struct gfs2_bufdata *bd;
971 
972 	lock_buffer(bh);
973 	gfs2_log_lock(sdp);
974 	clear_buffer_dirty(bh);
975 	bd = bh->b_private;
976 	if (bd) {
977 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
978 			list_del_init(&bd->bd_list);
979 		else
980 			gfs2_remove_from_journal(bh, current->journal_info, 0);
981 	}
982 	bh->b_bdev = NULL;
983 	clear_buffer_mapped(bh);
984 	clear_buffer_req(bh);
985 	clear_buffer_new(bh);
986 	gfs2_log_unlock(sdp);
987 	unlock_buffer(bh);
988 }
989 
990 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
991 				unsigned int length)
992 {
993 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
994 	unsigned int stop = offset + length;
995 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
996 	struct buffer_head *bh, *head;
997 	unsigned long pos = 0;
998 
999 	BUG_ON(!PageLocked(page));
1000 	if (!partial_page)
1001 		ClearPageChecked(page);
1002 	if (!page_has_buffers(page))
1003 		goto out;
1004 
1005 	bh = head = page_buffers(page);
1006 	do {
1007 		if (pos + bh->b_size > stop)
1008 			return;
1009 
1010 		if (offset <= pos)
1011 			gfs2_discard(sdp, bh);
1012 		pos += bh->b_size;
1013 		bh = bh->b_this_page;
1014 	} while (bh != head);
1015 out:
1016 	if (!partial_page)
1017 		try_to_release_page(page, 0);
1018 }
1019 
1020 /**
1021  * gfs2_ok_for_dio - check that dio is valid on this file
1022  * @ip: The inode
1023  * @offset: The offset at which we are reading or writing
1024  *
1025  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1026  *          1 (to accept the i/o request)
1027  */
1028 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1029 {
1030 	/*
1031 	 * Should we return an error here? I can't see that O_DIRECT for
1032 	 * a stuffed file makes any sense. For now we'll silently fall
1033 	 * back to buffered I/O
1034 	 */
1035 	if (gfs2_is_stuffed(ip))
1036 		return 0;
1037 
1038 	if (offset >= i_size_read(&ip->i_inode))
1039 		return 0;
1040 	return 1;
1041 }
1042 
1043 
1044 
1045 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1046 			      loff_t offset)
1047 {
1048 	struct file *file = iocb->ki_filp;
1049 	struct inode *inode = file->f_mapping->host;
1050 	struct address_space *mapping = inode->i_mapping;
1051 	struct gfs2_inode *ip = GFS2_I(inode);
1052 	struct gfs2_holder gh;
1053 	int rv;
1054 
1055 	/*
1056 	 * Deferred lock, even if its a write, since we do no allocation
1057 	 * on this path. All we need change is atime, and this lock mode
1058 	 * ensures that other nodes have flushed their buffered read caches
1059 	 * (i.e. their page cache entries for this inode). We do not,
1060 	 * unfortunately have the option of only flushing a range like
1061 	 * the VFS does.
1062 	 */
1063 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1064 	rv = gfs2_glock_nq(&gh);
1065 	if (rv)
1066 		return rv;
1067 	rv = gfs2_ok_for_dio(ip, offset);
1068 	if (rv != 1)
1069 		goto out; /* dio not valid, fall back to buffered i/o */
1070 
1071 	/*
1072 	 * Now since we are holding a deferred (CW) lock at this point, you
1073 	 * might be wondering why this is ever needed. There is a case however
1074 	 * where we've granted a deferred local lock against a cached exclusive
1075 	 * glock. That is ok provided all granted local locks are deferred, but
1076 	 * it also means that it is possible to encounter pages which are
1077 	 * cached and possibly also mapped. So here we check for that and sort
1078 	 * them out ahead of the dio. The glock state machine will take care of
1079 	 * everything else.
1080 	 *
1081 	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1082 	 * the first place, mapping->nr_pages will always be zero.
1083 	 */
1084 	if (mapping->nrpages) {
1085 		loff_t lstart = offset & (PAGE_CACHE_SIZE - 1);
1086 		loff_t len = iov_iter_count(iter);
1087 		loff_t end = PAGE_ALIGN(offset + len) - 1;
1088 
1089 		rv = 0;
1090 		if (len == 0)
1091 			goto out;
1092 		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1093 			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1094 		rv = filemap_write_and_wait_range(mapping, lstart, end);
1095 		if (rv)
1096 			goto out;
1097 		if (iov_iter_rw(iter) == WRITE)
1098 			truncate_inode_pages_range(mapping, lstart, end);
1099 	}
1100 
1101 	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1102 				  offset, gfs2_get_block_direct, NULL, NULL, 0);
1103 out:
1104 	gfs2_glock_dq(&gh);
1105 	gfs2_holder_uninit(&gh);
1106 	return rv;
1107 }
1108 
1109 /**
1110  * gfs2_releasepage - free the metadata associated with a page
1111  * @page: the page that's being released
1112  * @gfp_mask: passed from Linux VFS, ignored by us
1113  *
1114  * Call try_to_free_buffers() if the buffers in this page can be
1115  * released.
1116  *
1117  * Returns: 0
1118  */
1119 
1120 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1121 {
1122 	struct address_space *mapping = page->mapping;
1123 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1124 	struct buffer_head *bh, *head;
1125 	struct gfs2_bufdata *bd;
1126 
1127 	if (!page_has_buffers(page))
1128 		return 0;
1129 
1130 	gfs2_log_lock(sdp);
1131 	spin_lock(&sdp->sd_ail_lock);
1132 	head = bh = page_buffers(page);
1133 	do {
1134 		if (atomic_read(&bh->b_count))
1135 			goto cannot_release;
1136 		bd = bh->b_private;
1137 		if (bd && bd->bd_tr)
1138 			goto cannot_release;
1139 		if (buffer_pinned(bh) || buffer_dirty(bh))
1140 			goto not_possible;
1141 		bh = bh->b_this_page;
1142 	} while(bh != head);
1143 	spin_unlock(&sdp->sd_ail_lock);
1144 
1145 	head = bh = page_buffers(page);
1146 	do {
1147 		bd = bh->b_private;
1148 		if (bd) {
1149 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1150 			if (!list_empty(&bd->bd_list))
1151 				list_del_init(&bd->bd_list);
1152 			bd->bd_bh = NULL;
1153 			bh->b_private = NULL;
1154 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1155 		}
1156 
1157 		bh = bh->b_this_page;
1158 	} while (bh != head);
1159 	gfs2_log_unlock(sdp);
1160 
1161 	return try_to_free_buffers(page);
1162 
1163 not_possible: /* Should never happen */
1164 	WARN_ON(buffer_dirty(bh));
1165 	WARN_ON(buffer_pinned(bh));
1166 cannot_release:
1167 	spin_unlock(&sdp->sd_ail_lock);
1168 	gfs2_log_unlock(sdp);
1169 	return 0;
1170 }
1171 
1172 static const struct address_space_operations gfs2_writeback_aops = {
1173 	.writepage = gfs2_writepage,
1174 	.writepages = gfs2_writepages,
1175 	.readpage = gfs2_readpage,
1176 	.readpages = gfs2_readpages,
1177 	.write_begin = gfs2_write_begin,
1178 	.write_end = gfs2_write_end,
1179 	.bmap = gfs2_bmap,
1180 	.invalidatepage = gfs2_invalidatepage,
1181 	.releasepage = gfs2_releasepage,
1182 	.direct_IO = gfs2_direct_IO,
1183 	.migratepage = buffer_migrate_page,
1184 	.is_partially_uptodate = block_is_partially_uptodate,
1185 	.error_remove_page = generic_error_remove_page,
1186 };
1187 
1188 static const struct address_space_operations gfs2_ordered_aops = {
1189 	.writepage = gfs2_writepage,
1190 	.writepages = gfs2_writepages,
1191 	.readpage = gfs2_readpage,
1192 	.readpages = gfs2_readpages,
1193 	.write_begin = gfs2_write_begin,
1194 	.write_end = gfs2_write_end,
1195 	.set_page_dirty = gfs2_set_page_dirty,
1196 	.bmap = gfs2_bmap,
1197 	.invalidatepage = gfs2_invalidatepage,
1198 	.releasepage = gfs2_releasepage,
1199 	.direct_IO = gfs2_direct_IO,
1200 	.migratepage = buffer_migrate_page,
1201 	.is_partially_uptodate = block_is_partially_uptodate,
1202 	.error_remove_page = generic_error_remove_page,
1203 };
1204 
1205 static const struct address_space_operations gfs2_jdata_aops = {
1206 	.writepage = gfs2_jdata_writepage,
1207 	.writepages = gfs2_jdata_writepages,
1208 	.readpage = gfs2_readpage,
1209 	.readpages = gfs2_readpages,
1210 	.write_begin = gfs2_write_begin,
1211 	.write_end = gfs2_write_end,
1212 	.set_page_dirty = gfs2_set_page_dirty,
1213 	.bmap = gfs2_bmap,
1214 	.invalidatepage = gfs2_invalidatepage,
1215 	.releasepage = gfs2_releasepage,
1216 	.is_partially_uptodate = block_is_partially_uptodate,
1217 	.error_remove_page = generic_error_remove_page,
1218 };
1219 
1220 void gfs2_set_aops(struct inode *inode)
1221 {
1222 	struct gfs2_inode *ip = GFS2_I(inode);
1223 
1224 	if (gfs2_is_writeback(ip))
1225 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1226 	else if (gfs2_is_ordered(ip))
1227 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1228 	else if (gfs2_is_jdata(ip))
1229 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1230 	else
1231 		BUG();
1232 }
1233 
1234