1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/spinlock.h> 13 #include <linux/completion.h> 14 #include <linux/buffer_head.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mpage.h> 18 #include <linux/fs.h> 19 #include <linux/writeback.h> 20 #include <linux/swap.h> 21 #include <linux/gfs2_ondisk.h> 22 #include <linux/backing-dev.h> 23 #include <linux/uio.h> 24 #include <trace/events/writeback.h> 25 26 #include "gfs2.h" 27 #include "incore.h" 28 #include "bmap.h" 29 #include "glock.h" 30 #include "inode.h" 31 #include "log.h" 32 #include "meta_io.h" 33 #include "quota.h" 34 #include "trans.h" 35 #include "rgrp.h" 36 #include "super.h" 37 #include "util.h" 38 #include "glops.h" 39 40 41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page, 42 unsigned int from, unsigned int len) 43 { 44 struct buffer_head *head = page_buffers(page); 45 unsigned int bsize = head->b_size; 46 struct buffer_head *bh; 47 unsigned int to = from + len; 48 unsigned int start, end; 49 50 for (bh = head, start = 0; bh != head || !start; 51 bh = bh->b_this_page, start = end) { 52 end = start + bsize; 53 if (end <= from) 54 continue; 55 if (start >= to) 56 break; 57 if (gfs2_is_jdata(ip)) 58 set_buffer_uptodate(bh); 59 gfs2_trans_add_data(ip->i_gl, bh); 60 } 61 } 62 63 /** 64 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block 65 * @inode: The inode 66 * @lblock: The block number to look up 67 * @bh_result: The buffer head to return the result in 68 * @create: Non-zero if we may add block to the file 69 * 70 * Returns: errno 71 */ 72 73 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock, 74 struct buffer_head *bh_result, int create) 75 { 76 int error; 77 78 error = gfs2_block_map(inode, lblock, bh_result, 0); 79 if (error) 80 return error; 81 if (!buffer_mapped(bh_result)) 82 return -EIO; 83 return 0; 84 } 85 86 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock, 87 struct buffer_head *bh_result, int create) 88 { 89 return gfs2_block_map(inode, lblock, bh_result, 0); 90 } 91 92 /** 93 * gfs2_writepage_common - Common bits of writepage 94 * @page: The page to be written 95 * @wbc: The writeback control 96 * 97 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error. 98 */ 99 100 static int gfs2_writepage_common(struct page *page, 101 struct writeback_control *wbc) 102 { 103 struct inode *inode = page->mapping->host; 104 struct gfs2_inode *ip = GFS2_I(inode); 105 struct gfs2_sbd *sdp = GFS2_SB(inode); 106 loff_t i_size = i_size_read(inode); 107 pgoff_t end_index = i_size >> PAGE_SHIFT; 108 unsigned offset; 109 110 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 111 goto out; 112 if (current->journal_info) 113 goto redirty; 114 /* Is the page fully outside i_size? (truncate in progress) */ 115 offset = i_size & (PAGE_SIZE-1); 116 if (page->index > end_index || (page->index == end_index && !offset)) { 117 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 118 goto out; 119 } 120 return 1; 121 redirty: 122 redirty_page_for_writepage(wbc, page); 123 out: 124 unlock_page(page); 125 return 0; 126 } 127 128 /** 129 * gfs2_writepage - Write page for writeback mappings 130 * @page: The page 131 * @wbc: The writeback control 132 * 133 */ 134 135 static int gfs2_writepage(struct page *page, struct writeback_control *wbc) 136 { 137 int ret; 138 139 ret = gfs2_writepage_common(page, wbc); 140 if (ret <= 0) 141 return ret; 142 143 return nobh_writepage(page, gfs2_get_block_noalloc, wbc); 144 } 145 146 /* This is the same as calling block_write_full_page, but it also 147 * writes pages outside of i_size 148 */ 149 static int gfs2_write_full_page(struct page *page, get_block_t *get_block, 150 struct writeback_control *wbc) 151 { 152 struct inode * const inode = page->mapping->host; 153 loff_t i_size = i_size_read(inode); 154 const pgoff_t end_index = i_size >> PAGE_SHIFT; 155 unsigned offset; 156 157 /* 158 * The page straddles i_size. It must be zeroed out on each and every 159 * writepage invocation because it may be mmapped. "A file is mapped 160 * in multiples of the page size. For a file that is not a multiple of 161 * the page size, the remaining memory is zeroed when mapped, and 162 * writes to that region are not written out to the file." 163 */ 164 offset = i_size & (PAGE_SIZE-1); 165 if (page->index == end_index && offset) 166 zero_user_segment(page, offset, PAGE_SIZE); 167 168 return __block_write_full_page(inode, page, get_block, wbc, 169 end_buffer_async_write); 170 } 171 172 /** 173 * __gfs2_jdata_writepage - The core of jdata writepage 174 * @page: The page to write 175 * @wbc: The writeback control 176 * 177 * This is shared between writepage and writepages and implements the 178 * core of the writepage operation. If a transaction is required then 179 * PageChecked will have been set and the transaction will have 180 * already been started before this is called. 181 */ 182 183 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 184 { 185 struct inode *inode = page->mapping->host; 186 struct gfs2_inode *ip = GFS2_I(inode); 187 struct gfs2_sbd *sdp = GFS2_SB(inode); 188 189 if (PageChecked(page)) { 190 ClearPageChecked(page); 191 if (!page_has_buffers(page)) { 192 create_empty_buffers(page, inode->i_sb->s_blocksize, 193 BIT(BH_Dirty)|BIT(BH_Uptodate)); 194 } 195 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize); 196 } 197 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc); 198 } 199 200 /** 201 * gfs2_jdata_writepage - Write complete page 202 * @page: Page to write 203 * @wbc: The writeback control 204 * 205 * Returns: errno 206 * 207 */ 208 209 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 210 { 211 struct inode *inode = page->mapping->host; 212 struct gfs2_inode *ip = GFS2_I(inode); 213 struct gfs2_sbd *sdp = GFS2_SB(inode); 214 int ret; 215 216 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 217 goto out; 218 if (PageChecked(page) || current->journal_info) 219 goto out_ignore; 220 ret = __gfs2_jdata_writepage(page, wbc); 221 return ret; 222 223 out_ignore: 224 redirty_page_for_writepage(wbc, page); 225 out: 226 unlock_page(page); 227 return 0; 228 } 229 230 /** 231 * gfs2_writepages - Write a bunch of dirty pages back to disk 232 * @mapping: The mapping to write 233 * @wbc: Write-back control 234 * 235 * Used for both ordered and writeback modes. 236 */ 237 static int gfs2_writepages(struct address_space *mapping, 238 struct writeback_control *wbc) 239 { 240 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 241 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc); 242 243 /* 244 * Even if we didn't write any pages here, we might still be holding 245 * dirty pages in the ail. We forcibly flush the ail because we don't 246 * want balance_dirty_pages() to loop indefinitely trying to write out 247 * pages held in the ail that it can't find. 248 */ 249 if (ret == 0) 250 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags); 251 252 return ret; 253 } 254 255 /** 256 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages 257 * @mapping: The mapping 258 * @wbc: The writeback control 259 * @pvec: The vector of pages 260 * @nr_pages: The number of pages to write 261 * @done_index: Page index 262 * 263 * Returns: non-zero if loop should terminate, zero otherwise 264 */ 265 266 static int gfs2_write_jdata_pagevec(struct address_space *mapping, 267 struct writeback_control *wbc, 268 struct pagevec *pvec, 269 int nr_pages, 270 pgoff_t *done_index) 271 { 272 struct inode *inode = mapping->host; 273 struct gfs2_sbd *sdp = GFS2_SB(inode); 274 unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize); 275 int i; 276 int ret; 277 278 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks); 279 if (ret < 0) 280 return ret; 281 282 for(i = 0; i < nr_pages; i++) { 283 struct page *page = pvec->pages[i]; 284 285 *done_index = page->index; 286 287 lock_page(page); 288 289 if (unlikely(page->mapping != mapping)) { 290 continue_unlock: 291 unlock_page(page); 292 continue; 293 } 294 295 if (!PageDirty(page)) { 296 /* someone wrote it for us */ 297 goto continue_unlock; 298 } 299 300 if (PageWriteback(page)) { 301 if (wbc->sync_mode != WB_SYNC_NONE) 302 wait_on_page_writeback(page); 303 else 304 goto continue_unlock; 305 } 306 307 BUG_ON(PageWriteback(page)); 308 if (!clear_page_dirty_for_io(page)) 309 goto continue_unlock; 310 311 trace_wbc_writepage(wbc, inode_to_bdi(inode)); 312 313 ret = __gfs2_jdata_writepage(page, wbc); 314 if (unlikely(ret)) { 315 if (ret == AOP_WRITEPAGE_ACTIVATE) { 316 unlock_page(page); 317 ret = 0; 318 } else { 319 320 /* 321 * done_index is set past this page, 322 * so media errors will not choke 323 * background writeout for the entire 324 * file. This has consequences for 325 * range_cyclic semantics (ie. it may 326 * not be suitable for data integrity 327 * writeout). 328 */ 329 *done_index = page->index + 1; 330 ret = 1; 331 break; 332 } 333 } 334 335 /* 336 * We stop writing back only if we are not doing 337 * integrity sync. In case of integrity sync we have to 338 * keep going until we have written all the pages 339 * we tagged for writeback prior to entering this loop. 340 */ 341 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { 342 ret = 1; 343 break; 344 } 345 346 } 347 gfs2_trans_end(sdp); 348 return ret; 349 } 350 351 /** 352 * gfs2_write_cache_jdata - Like write_cache_pages but different 353 * @mapping: The mapping to write 354 * @wbc: The writeback control 355 * 356 * The reason that we use our own function here is that we need to 357 * start transactions before we grab page locks. This allows us 358 * to get the ordering right. 359 */ 360 361 static int gfs2_write_cache_jdata(struct address_space *mapping, 362 struct writeback_control *wbc) 363 { 364 int ret = 0; 365 int done = 0; 366 struct pagevec pvec; 367 int nr_pages; 368 pgoff_t uninitialized_var(writeback_index); 369 pgoff_t index; 370 pgoff_t end; 371 pgoff_t done_index; 372 int cycled; 373 int range_whole = 0; 374 int tag; 375 376 pagevec_init(&pvec); 377 if (wbc->range_cyclic) { 378 writeback_index = mapping->writeback_index; /* prev offset */ 379 index = writeback_index; 380 if (index == 0) 381 cycled = 1; 382 else 383 cycled = 0; 384 end = -1; 385 } else { 386 index = wbc->range_start >> PAGE_SHIFT; 387 end = wbc->range_end >> PAGE_SHIFT; 388 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 389 range_whole = 1; 390 cycled = 1; /* ignore range_cyclic tests */ 391 } 392 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 393 tag = PAGECACHE_TAG_TOWRITE; 394 else 395 tag = PAGECACHE_TAG_DIRTY; 396 397 retry: 398 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 399 tag_pages_for_writeback(mapping, index, end); 400 done_index = index; 401 while (!done && (index <= end)) { 402 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 403 tag); 404 if (nr_pages == 0) 405 break; 406 407 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index); 408 if (ret) 409 done = 1; 410 if (ret > 0) 411 ret = 0; 412 pagevec_release(&pvec); 413 cond_resched(); 414 } 415 416 if (!cycled && !done) { 417 /* 418 * range_cyclic: 419 * We hit the last page and there is more work to be done: wrap 420 * back to the start of the file 421 */ 422 cycled = 1; 423 index = 0; 424 end = writeback_index - 1; 425 goto retry; 426 } 427 428 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 429 mapping->writeback_index = done_index; 430 431 return ret; 432 } 433 434 435 /** 436 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk 437 * @mapping: The mapping to write 438 * @wbc: The writeback control 439 * 440 */ 441 442 static int gfs2_jdata_writepages(struct address_space *mapping, 443 struct writeback_control *wbc) 444 { 445 struct gfs2_inode *ip = GFS2_I(mapping->host); 446 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 447 int ret; 448 449 ret = gfs2_write_cache_jdata(mapping, wbc); 450 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) { 451 gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL | 452 GFS2_LFC_JDATA_WPAGES); 453 ret = gfs2_write_cache_jdata(mapping, wbc); 454 } 455 return ret; 456 } 457 458 /** 459 * stuffed_readpage - Fill in a Linux page with stuffed file data 460 * @ip: the inode 461 * @page: the page 462 * 463 * Returns: errno 464 */ 465 466 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page) 467 { 468 struct buffer_head *dibh; 469 u64 dsize = i_size_read(&ip->i_inode); 470 void *kaddr; 471 int error; 472 473 /* 474 * Due to the order of unstuffing files and ->fault(), we can be 475 * asked for a zero page in the case of a stuffed file being extended, 476 * so we need to supply one here. It doesn't happen often. 477 */ 478 if (unlikely(page->index)) { 479 zero_user(page, 0, PAGE_SIZE); 480 SetPageUptodate(page); 481 return 0; 482 } 483 484 error = gfs2_meta_inode_buffer(ip, &dibh); 485 if (error) 486 return error; 487 488 kaddr = kmap_atomic(page); 489 if (dsize > gfs2_max_stuffed_size(ip)) 490 dsize = gfs2_max_stuffed_size(ip); 491 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 492 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 493 kunmap_atomic(kaddr); 494 flush_dcache_page(page); 495 brelse(dibh); 496 SetPageUptodate(page); 497 498 return 0; 499 } 500 501 502 /** 503 * __gfs2_readpage - readpage 504 * @file: The file to read a page for 505 * @page: The page to read 506 * 507 * This is the core of gfs2's readpage. It's used by the internal file 508 * reading code as in that case we already hold the glock. Also it's 509 * called by gfs2_readpage() once the required lock has been granted. 510 */ 511 512 static int __gfs2_readpage(void *file, struct page *page) 513 { 514 struct gfs2_inode *ip = GFS2_I(page->mapping->host); 515 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 516 int error; 517 518 if (gfs2_is_stuffed(ip)) { 519 error = stuffed_readpage(ip, page); 520 unlock_page(page); 521 } else { 522 error = mpage_readpage(page, gfs2_block_map); 523 } 524 525 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 526 return -EIO; 527 528 return error; 529 } 530 531 /** 532 * gfs2_readpage - read a page of a file 533 * @file: The file to read 534 * @page: The page of the file 535 * 536 * This deals with the locking required. We have to unlock and 537 * relock the page in order to get the locking in the right 538 * order. 539 */ 540 541 static int gfs2_readpage(struct file *file, struct page *page) 542 { 543 struct address_space *mapping = page->mapping; 544 struct gfs2_inode *ip = GFS2_I(mapping->host); 545 struct gfs2_holder gh; 546 int error; 547 548 unlock_page(page); 549 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 550 error = gfs2_glock_nq(&gh); 551 if (unlikely(error)) 552 goto out; 553 error = AOP_TRUNCATED_PAGE; 554 lock_page(page); 555 if (page->mapping == mapping && !PageUptodate(page)) 556 error = __gfs2_readpage(file, page); 557 else 558 unlock_page(page); 559 gfs2_glock_dq(&gh); 560 out: 561 gfs2_holder_uninit(&gh); 562 if (error && error != AOP_TRUNCATED_PAGE) 563 lock_page(page); 564 return error; 565 } 566 567 /** 568 * gfs2_internal_read - read an internal file 569 * @ip: The gfs2 inode 570 * @buf: The buffer to fill 571 * @pos: The file position 572 * @size: The amount to read 573 * 574 */ 575 576 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos, 577 unsigned size) 578 { 579 struct address_space *mapping = ip->i_inode.i_mapping; 580 unsigned long index = *pos / PAGE_SIZE; 581 unsigned offset = *pos & (PAGE_SIZE - 1); 582 unsigned copied = 0; 583 unsigned amt; 584 struct page *page; 585 void *p; 586 587 do { 588 amt = size - copied; 589 if (offset + size > PAGE_SIZE) 590 amt = PAGE_SIZE - offset; 591 page = read_cache_page(mapping, index, __gfs2_readpage, NULL); 592 if (IS_ERR(page)) 593 return PTR_ERR(page); 594 p = kmap_atomic(page); 595 memcpy(buf + copied, p + offset, amt); 596 kunmap_atomic(p); 597 put_page(page); 598 copied += amt; 599 index++; 600 offset = 0; 601 } while(copied < size); 602 (*pos) += size; 603 return size; 604 } 605 606 /** 607 * gfs2_readpages - Read a bunch of pages at once 608 * @file: The file to read from 609 * @mapping: Address space info 610 * @pages: List of pages to read 611 * @nr_pages: Number of pages to read 612 * 613 * Some notes: 614 * 1. This is only for readahead, so we can simply ignore any things 615 * which are slightly inconvenient (such as locking conflicts between 616 * the page lock and the glock) and return having done no I/O. Its 617 * obviously not something we'd want to do on too regular a basis. 618 * Any I/O we ignore at this time will be done via readpage later. 619 * 2. We don't handle stuffed files here we let readpage do the honours. 620 * 3. mpage_readpages() does most of the heavy lifting in the common case. 621 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places. 622 */ 623 624 static int gfs2_readpages(struct file *file, struct address_space *mapping, 625 struct list_head *pages, unsigned nr_pages) 626 { 627 struct inode *inode = mapping->host; 628 struct gfs2_inode *ip = GFS2_I(inode); 629 struct gfs2_sbd *sdp = GFS2_SB(inode); 630 struct gfs2_holder gh; 631 int ret; 632 633 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 634 ret = gfs2_glock_nq(&gh); 635 if (unlikely(ret)) 636 goto out_uninit; 637 if (!gfs2_is_stuffed(ip)) 638 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map); 639 gfs2_glock_dq(&gh); 640 out_uninit: 641 gfs2_holder_uninit(&gh); 642 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 643 ret = -EIO; 644 return ret; 645 } 646 647 /** 648 * gfs2_write_begin - Begin to write to a file 649 * @file: The file to write to 650 * @mapping: The mapping in which to write 651 * @pos: The file offset at which to start writing 652 * @len: Length of the write 653 * @flags: Various flags 654 * @pagep: Pointer to return the page 655 * @fsdata: Pointer to return fs data (unused by GFS2) 656 * 657 * Returns: errno 658 */ 659 660 static int gfs2_write_begin(struct file *file, struct address_space *mapping, 661 loff_t pos, unsigned len, unsigned flags, 662 struct page **pagep, void **fsdata) 663 { 664 struct gfs2_inode *ip = GFS2_I(mapping->host); 665 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 666 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 667 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 668 unsigned requested = 0; 669 int alloc_required; 670 int error = 0; 671 pgoff_t index = pos >> PAGE_SHIFT; 672 unsigned from = pos & (PAGE_SIZE - 1); 673 struct page *page; 674 675 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 676 error = gfs2_glock_nq(&ip->i_gh); 677 if (unlikely(error)) 678 goto out_uninit; 679 if (&ip->i_inode == sdp->sd_rindex) { 680 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 681 GL_NOCACHE, &m_ip->i_gh); 682 if (unlikely(error)) { 683 gfs2_glock_dq(&ip->i_gh); 684 goto out_uninit; 685 } 686 } 687 688 alloc_required = gfs2_write_alloc_required(ip, pos, len); 689 690 if (alloc_required || gfs2_is_jdata(ip)) 691 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks); 692 693 if (alloc_required) { 694 struct gfs2_alloc_parms ap = { .aflags = 0, }; 695 requested = data_blocks + ind_blocks; 696 ap.target = requested; 697 error = gfs2_quota_lock_check(ip, &ap); 698 if (error) 699 goto out_unlock; 700 701 error = gfs2_inplace_reserve(ip, &ap); 702 if (error) 703 goto out_qunlock; 704 } 705 706 rblocks = RES_DINODE + ind_blocks; 707 if (gfs2_is_jdata(ip)) 708 rblocks += data_blocks ? data_blocks : 1; 709 if (ind_blocks || data_blocks) 710 rblocks += RES_STATFS + RES_QUOTA; 711 if (&ip->i_inode == sdp->sd_rindex) 712 rblocks += 2 * RES_STATFS; 713 if (alloc_required) 714 rblocks += gfs2_rg_blocks(ip, requested); 715 716 error = gfs2_trans_begin(sdp, rblocks, 717 PAGE_SIZE/sdp->sd_sb.sb_bsize); 718 if (error) 719 goto out_trans_fail; 720 721 error = -ENOMEM; 722 flags |= AOP_FLAG_NOFS; 723 page = grab_cache_page_write_begin(mapping, index, flags); 724 *pagep = page; 725 if (unlikely(!page)) 726 goto out_endtrans; 727 728 if (gfs2_is_stuffed(ip)) { 729 error = 0; 730 if (pos + len > gfs2_max_stuffed_size(ip)) { 731 error = gfs2_unstuff_dinode(ip, page); 732 if (error == 0) 733 goto prepare_write; 734 } else if (!PageUptodate(page)) { 735 error = stuffed_readpage(ip, page); 736 } 737 goto out; 738 } 739 740 prepare_write: 741 error = __block_write_begin(page, from, len, gfs2_block_map); 742 out: 743 if (error == 0) 744 return 0; 745 746 unlock_page(page); 747 put_page(page); 748 749 gfs2_trans_end(sdp); 750 if (pos + len > ip->i_inode.i_size) 751 gfs2_trim_blocks(&ip->i_inode); 752 goto out_trans_fail; 753 754 out_endtrans: 755 gfs2_trans_end(sdp); 756 out_trans_fail: 757 if (alloc_required) { 758 gfs2_inplace_release(ip); 759 out_qunlock: 760 gfs2_quota_unlock(ip); 761 } 762 out_unlock: 763 if (&ip->i_inode == sdp->sd_rindex) { 764 gfs2_glock_dq(&m_ip->i_gh); 765 gfs2_holder_uninit(&m_ip->i_gh); 766 } 767 gfs2_glock_dq(&ip->i_gh); 768 out_uninit: 769 gfs2_holder_uninit(&ip->i_gh); 770 return error; 771 } 772 773 /** 774 * adjust_fs_space - Adjusts the free space available due to gfs2_grow 775 * @inode: the rindex inode 776 */ 777 static void adjust_fs_space(struct inode *inode) 778 { 779 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info; 780 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 781 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); 782 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; 783 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; 784 struct buffer_head *m_bh, *l_bh; 785 u64 fs_total, new_free; 786 787 /* Total up the file system space, according to the latest rindex. */ 788 fs_total = gfs2_ri_total(sdp); 789 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0) 790 return; 791 792 spin_lock(&sdp->sd_statfs_spin); 793 gfs2_statfs_change_in(m_sc, m_bh->b_data + 794 sizeof(struct gfs2_dinode)); 795 if (fs_total > (m_sc->sc_total + l_sc->sc_total)) 796 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total); 797 else 798 new_free = 0; 799 spin_unlock(&sdp->sd_statfs_spin); 800 fs_warn(sdp, "File system extended by %llu blocks.\n", 801 (unsigned long long)new_free); 802 gfs2_statfs_change(sdp, new_free, new_free, 0); 803 804 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0) 805 goto out; 806 update_statfs(sdp, m_bh, l_bh); 807 brelse(l_bh); 808 out: 809 brelse(m_bh); 810 } 811 812 /** 813 * gfs2_stuffed_write_end - Write end for stuffed files 814 * @inode: The inode 815 * @dibh: The buffer_head containing the on-disk inode 816 * @pos: The file position 817 * @len: The length of the write 818 * @copied: How much was actually copied by the VFS 819 * @page: The page 820 * 821 * This copies the data from the page into the inode block after 822 * the inode data structure itself. 823 * 824 * Returns: errno 825 */ 826 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh, 827 loff_t pos, unsigned len, unsigned copied, 828 struct page *page) 829 { 830 struct gfs2_inode *ip = GFS2_I(inode); 831 struct gfs2_sbd *sdp = GFS2_SB(inode); 832 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 833 u64 to = pos + copied; 834 void *kaddr; 835 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode); 836 837 BUG_ON(pos + len > gfs2_max_stuffed_size(ip)); 838 839 kaddr = kmap_atomic(page); 840 memcpy(buf + pos, kaddr + pos, copied); 841 flush_dcache_page(page); 842 kunmap_atomic(kaddr); 843 844 WARN_ON(!PageUptodate(page)); 845 unlock_page(page); 846 put_page(page); 847 848 if (copied) { 849 if (inode->i_size < to) 850 i_size_write(inode, to); 851 mark_inode_dirty(inode); 852 } 853 854 if (inode == sdp->sd_rindex) { 855 adjust_fs_space(inode); 856 sdp->sd_rindex_uptodate = 0; 857 } 858 859 brelse(dibh); 860 gfs2_trans_end(sdp); 861 if (inode == sdp->sd_rindex) { 862 gfs2_glock_dq(&m_ip->i_gh); 863 gfs2_holder_uninit(&m_ip->i_gh); 864 } 865 gfs2_glock_dq(&ip->i_gh); 866 gfs2_holder_uninit(&ip->i_gh); 867 return copied; 868 } 869 870 /** 871 * gfs2_write_end 872 * @file: The file to write to 873 * @mapping: The address space to write to 874 * @pos: The file position 875 * @len: The length of the data 876 * @copied: How much was actually copied by the VFS 877 * @page: The page that has been written 878 * @fsdata: The fsdata (unused in GFS2) 879 * 880 * The main write_end function for GFS2. We have a separate one for 881 * stuffed files as they are slightly different, otherwise we just 882 * put our locking around the VFS provided functions. 883 * 884 * Returns: errno 885 */ 886 887 static int gfs2_write_end(struct file *file, struct address_space *mapping, 888 loff_t pos, unsigned len, unsigned copied, 889 struct page *page, void *fsdata) 890 { 891 struct inode *inode = page->mapping->host; 892 struct gfs2_inode *ip = GFS2_I(inode); 893 struct gfs2_sbd *sdp = GFS2_SB(inode); 894 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 895 struct buffer_head *dibh; 896 int ret; 897 struct gfs2_trans *tr = current->journal_info; 898 BUG_ON(!tr); 899 900 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL); 901 902 ret = gfs2_meta_inode_buffer(ip, &dibh); 903 if (unlikely(ret)) { 904 unlock_page(page); 905 put_page(page); 906 goto failed; 907 } 908 909 if (gfs2_is_stuffed(ip)) 910 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page); 911 912 if (!gfs2_is_writeback(ip)) 913 gfs2_page_add_databufs(ip, page, pos & ~PAGE_MASK, len); 914 915 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 916 if (tr->tr_num_buf_new) 917 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 918 else 919 gfs2_trans_add_meta(ip->i_gl, dibh); 920 921 922 if (inode == sdp->sd_rindex) { 923 adjust_fs_space(inode); 924 sdp->sd_rindex_uptodate = 0; 925 } 926 927 brelse(dibh); 928 failed: 929 gfs2_trans_end(sdp); 930 gfs2_inplace_release(ip); 931 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 932 gfs2_quota_unlock(ip); 933 if (inode == sdp->sd_rindex) { 934 gfs2_glock_dq(&m_ip->i_gh); 935 gfs2_holder_uninit(&m_ip->i_gh); 936 } 937 gfs2_glock_dq(&ip->i_gh); 938 gfs2_holder_uninit(&ip->i_gh); 939 return ret; 940 } 941 942 /** 943 * gfs2_set_page_dirty - Page dirtying function 944 * @page: The page to dirty 945 * 946 * Returns: 1 if it dirtyed the page, or 0 otherwise 947 */ 948 949 static int gfs2_set_page_dirty(struct page *page) 950 { 951 SetPageChecked(page); 952 return __set_page_dirty_buffers(page); 953 } 954 955 /** 956 * gfs2_bmap - Block map function 957 * @mapping: Address space info 958 * @lblock: The block to map 959 * 960 * Returns: The disk address for the block or 0 on hole or error 961 */ 962 963 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock) 964 { 965 struct gfs2_inode *ip = GFS2_I(mapping->host); 966 struct gfs2_holder i_gh; 967 sector_t dblock = 0; 968 int error; 969 970 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); 971 if (error) 972 return 0; 973 974 if (!gfs2_is_stuffed(ip)) 975 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map); 976 977 gfs2_glock_dq_uninit(&i_gh); 978 979 return dblock; 980 } 981 982 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh) 983 { 984 struct gfs2_bufdata *bd; 985 986 lock_buffer(bh); 987 gfs2_log_lock(sdp); 988 clear_buffer_dirty(bh); 989 bd = bh->b_private; 990 if (bd) { 991 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh)) 992 list_del_init(&bd->bd_list); 993 else 994 gfs2_remove_from_journal(bh, REMOVE_JDATA); 995 } 996 bh->b_bdev = NULL; 997 clear_buffer_mapped(bh); 998 clear_buffer_req(bh); 999 clear_buffer_new(bh); 1000 gfs2_log_unlock(sdp); 1001 unlock_buffer(bh); 1002 } 1003 1004 static void gfs2_invalidatepage(struct page *page, unsigned int offset, 1005 unsigned int length) 1006 { 1007 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 1008 unsigned int stop = offset + length; 1009 int partial_page = (offset || length < PAGE_SIZE); 1010 struct buffer_head *bh, *head; 1011 unsigned long pos = 0; 1012 1013 BUG_ON(!PageLocked(page)); 1014 if (!partial_page) 1015 ClearPageChecked(page); 1016 if (!page_has_buffers(page)) 1017 goto out; 1018 1019 bh = head = page_buffers(page); 1020 do { 1021 if (pos + bh->b_size > stop) 1022 return; 1023 1024 if (offset <= pos) 1025 gfs2_discard(sdp, bh); 1026 pos += bh->b_size; 1027 bh = bh->b_this_page; 1028 } while (bh != head); 1029 out: 1030 if (!partial_page) 1031 try_to_release_page(page, 0); 1032 } 1033 1034 /** 1035 * gfs2_ok_for_dio - check that dio is valid on this file 1036 * @ip: The inode 1037 * @offset: The offset at which we are reading or writing 1038 * 1039 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o) 1040 * 1 (to accept the i/o request) 1041 */ 1042 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset) 1043 { 1044 /* 1045 * Should we return an error here? I can't see that O_DIRECT for 1046 * a stuffed file makes any sense. For now we'll silently fall 1047 * back to buffered I/O 1048 */ 1049 if (gfs2_is_stuffed(ip)) 1050 return 0; 1051 1052 if (offset >= i_size_read(&ip->i_inode)) 1053 return 0; 1054 return 1; 1055 } 1056 1057 1058 1059 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1060 { 1061 struct file *file = iocb->ki_filp; 1062 struct inode *inode = file->f_mapping->host; 1063 struct address_space *mapping = inode->i_mapping; 1064 struct gfs2_inode *ip = GFS2_I(inode); 1065 loff_t offset = iocb->ki_pos; 1066 struct gfs2_holder gh; 1067 int rv; 1068 1069 /* 1070 * Deferred lock, even if its a write, since we do no allocation 1071 * on this path. All we need change is atime, and this lock mode 1072 * ensures that other nodes have flushed their buffered read caches 1073 * (i.e. their page cache entries for this inode). We do not, 1074 * unfortunately have the option of only flushing a range like 1075 * the VFS does. 1076 */ 1077 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 1078 rv = gfs2_glock_nq(&gh); 1079 if (rv) 1080 goto out_uninit; 1081 rv = gfs2_ok_for_dio(ip, offset); 1082 if (rv != 1) 1083 goto out; /* dio not valid, fall back to buffered i/o */ 1084 1085 /* 1086 * Now since we are holding a deferred (CW) lock at this point, you 1087 * might be wondering why this is ever needed. There is a case however 1088 * where we've granted a deferred local lock against a cached exclusive 1089 * glock. That is ok provided all granted local locks are deferred, but 1090 * it also means that it is possible to encounter pages which are 1091 * cached and possibly also mapped. So here we check for that and sort 1092 * them out ahead of the dio. The glock state machine will take care of 1093 * everything else. 1094 * 1095 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in 1096 * the first place, mapping->nr_pages will always be zero. 1097 */ 1098 if (mapping->nrpages) { 1099 loff_t lstart = offset & ~(PAGE_SIZE - 1); 1100 loff_t len = iov_iter_count(iter); 1101 loff_t end = PAGE_ALIGN(offset + len) - 1; 1102 1103 rv = 0; 1104 if (len == 0) 1105 goto out; 1106 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags)) 1107 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len); 1108 rv = filemap_write_and_wait_range(mapping, lstart, end); 1109 if (rv) 1110 goto out; 1111 if (iov_iter_rw(iter) == WRITE) 1112 truncate_inode_pages_range(mapping, lstart, end); 1113 } 1114 1115 rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 1116 gfs2_get_block_direct, NULL, NULL, 0); 1117 out: 1118 gfs2_glock_dq(&gh); 1119 out_uninit: 1120 gfs2_holder_uninit(&gh); 1121 return rv; 1122 } 1123 1124 /** 1125 * gfs2_releasepage - free the metadata associated with a page 1126 * @page: the page that's being released 1127 * @gfp_mask: passed from Linux VFS, ignored by us 1128 * 1129 * Call try_to_free_buffers() if the buffers in this page can be 1130 * released. 1131 * 1132 * Returns: 0 1133 */ 1134 1135 int gfs2_releasepage(struct page *page, gfp_t gfp_mask) 1136 { 1137 struct address_space *mapping = page->mapping; 1138 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 1139 struct buffer_head *bh, *head; 1140 struct gfs2_bufdata *bd; 1141 1142 if (!page_has_buffers(page)) 1143 return 0; 1144 1145 /* 1146 * From xfs_vm_releasepage: mm accommodates an old ext3 case where 1147 * clean pages might not have had the dirty bit cleared. Thus, it can 1148 * send actual dirty pages to ->releasepage() via shrink_active_list(). 1149 * 1150 * As a workaround, we skip pages that contain dirty buffers below. 1151 * Once ->releasepage isn't called on dirty pages anymore, we can warn 1152 * on dirty buffers like we used to here again. 1153 */ 1154 1155 gfs2_log_lock(sdp); 1156 spin_lock(&sdp->sd_ail_lock); 1157 head = bh = page_buffers(page); 1158 do { 1159 if (atomic_read(&bh->b_count)) 1160 goto cannot_release; 1161 bd = bh->b_private; 1162 if (bd && bd->bd_tr) 1163 goto cannot_release; 1164 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh))) 1165 goto cannot_release; 1166 bh = bh->b_this_page; 1167 } while(bh != head); 1168 spin_unlock(&sdp->sd_ail_lock); 1169 1170 head = bh = page_buffers(page); 1171 do { 1172 bd = bh->b_private; 1173 if (bd) { 1174 gfs2_assert_warn(sdp, bd->bd_bh == bh); 1175 if (!list_empty(&bd->bd_list)) 1176 list_del_init(&bd->bd_list); 1177 bd->bd_bh = NULL; 1178 bh->b_private = NULL; 1179 kmem_cache_free(gfs2_bufdata_cachep, bd); 1180 } 1181 1182 bh = bh->b_this_page; 1183 } while (bh != head); 1184 gfs2_log_unlock(sdp); 1185 1186 return try_to_free_buffers(page); 1187 1188 cannot_release: 1189 spin_unlock(&sdp->sd_ail_lock); 1190 gfs2_log_unlock(sdp); 1191 return 0; 1192 } 1193 1194 static const struct address_space_operations gfs2_writeback_aops = { 1195 .writepage = gfs2_writepage, 1196 .writepages = gfs2_writepages, 1197 .readpage = gfs2_readpage, 1198 .readpages = gfs2_readpages, 1199 .write_begin = gfs2_write_begin, 1200 .write_end = gfs2_write_end, 1201 .bmap = gfs2_bmap, 1202 .invalidatepage = gfs2_invalidatepage, 1203 .releasepage = gfs2_releasepage, 1204 .direct_IO = gfs2_direct_IO, 1205 .migratepage = buffer_migrate_page, 1206 .is_partially_uptodate = block_is_partially_uptodate, 1207 .error_remove_page = generic_error_remove_page, 1208 }; 1209 1210 static const struct address_space_operations gfs2_ordered_aops = { 1211 .writepage = gfs2_writepage, 1212 .writepages = gfs2_writepages, 1213 .readpage = gfs2_readpage, 1214 .readpages = gfs2_readpages, 1215 .write_begin = gfs2_write_begin, 1216 .write_end = gfs2_write_end, 1217 .set_page_dirty = gfs2_set_page_dirty, 1218 .bmap = gfs2_bmap, 1219 .invalidatepage = gfs2_invalidatepage, 1220 .releasepage = gfs2_releasepage, 1221 .direct_IO = gfs2_direct_IO, 1222 .migratepage = buffer_migrate_page, 1223 .is_partially_uptodate = block_is_partially_uptodate, 1224 .error_remove_page = generic_error_remove_page, 1225 }; 1226 1227 static const struct address_space_operations gfs2_jdata_aops = { 1228 .writepage = gfs2_jdata_writepage, 1229 .writepages = gfs2_jdata_writepages, 1230 .readpage = gfs2_readpage, 1231 .readpages = gfs2_readpages, 1232 .write_begin = gfs2_write_begin, 1233 .write_end = gfs2_write_end, 1234 .set_page_dirty = gfs2_set_page_dirty, 1235 .bmap = gfs2_bmap, 1236 .invalidatepage = gfs2_invalidatepage, 1237 .releasepage = gfs2_releasepage, 1238 .is_partially_uptodate = block_is_partially_uptodate, 1239 .error_remove_page = generic_error_remove_page, 1240 }; 1241 1242 void gfs2_set_aops(struct inode *inode) 1243 { 1244 struct gfs2_inode *ip = GFS2_I(inode); 1245 1246 if (gfs2_is_writeback(ip)) 1247 inode->i_mapping->a_ops = &gfs2_writeback_aops; 1248 else if (gfs2_is_ordered(ip)) 1249 inode->i_mapping->a_ops = &gfs2_ordered_aops; 1250 else if (gfs2_is_jdata(ip)) 1251 inode->i_mapping->a_ops = &gfs2_jdata_aops; 1252 else 1253 BUG(); 1254 } 1255 1256