xref: /openbmc/linux/fs/gfs2/aops.c (revision c29cd900)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 
38 
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 				   unsigned int from, unsigned int to)
41 {
42 	struct buffer_head *head = page_buffers(page);
43 	unsigned int bsize = head->b_size;
44 	struct buffer_head *bh;
45 	unsigned int start, end;
46 
47 	for (bh = head, start = 0; bh != head || !start;
48 	     bh = bh->b_this_page, start = end) {
49 		end = start + bsize;
50 		if (end <= from || start >= to)
51 			continue;
52 		if (gfs2_is_jdata(ip))
53 			set_buffer_uptodate(bh);
54 		gfs2_trans_add_bh(ip->i_gl, bh, 0);
55 	}
56 }
57 
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67 
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 				  struct buffer_head *bh_result, int create)
70 {
71 	int error;
72 
73 	error = gfs2_block_map(inode, lblock, bh_result, 0);
74 	if (error)
75 		return error;
76 	if (!buffer_mapped(bh_result))
77 		return -EIO;
78 	return 0;
79 }
80 
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 				 struct buffer_head *bh_result, int create)
83 {
84 	return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86 
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94 
95 static int gfs2_writepage_common(struct page *page,
96 				 struct writeback_control *wbc)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct gfs2_inode *ip = GFS2_I(inode);
100 	struct gfs2_sbd *sdp = GFS2_SB(inode);
101 	loff_t i_size = i_size_read(inode);
102 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 	unsigned offset;
104 
105 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 		goto out;
107 	if (current->journal_info)
108 		goto redirty;
109 	/* Is the page fully outside i_size? (truncate in progress) */
110 	offset = i_size & (PAGE_CACHE_SIZE-1);
111 	if (page->index > end_index || (page->index == end_index && !offset)) {
112 		page->mapping->a_ops->invalidatepage(page, 0);
113 		goto out;
114 	}
115 	return 1;
116 redirty:
117 	redirty_page_for_writepage(wbc, page);
118 out:
119 	unlock_page(page);
120 	return 0;
121 }
122 
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129 
130 static int gfs2_writeback_writepage(struct page *page,
131 				    struct writeback_control *wbc)
132 {
133 	int ret;
134 
135 	ret = gfs2_writepage_common(page, wbc);
136 	if (ret <= 0)
137 		return ret;
138 
139 	ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
140 	if (ret == -EAGAIN)
141 		ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
142 	return ret;
143 }
144 
145 /**
146  * gfs2_ordered_writepage - Write page for ordered data files
147  * @page: The page to write
148  * @wbc: The writeback control
149  *
150  */
151 
152 static int gfs2_ordered_writepage(struct page *page,
153 				  struct writeback_control *wbc)
154 {
155 	struct inode *inode = page->mapping->host;
156 	struct gfs2_inode *ip = GFS2_I(inode);
157 	int ret;
158 
159 	ret = gfs2_writepage_common(page, wbc);
160 	if (ret <= 0)
161 		return ret;
162 
163 	if (!page_has_buffers(page)) {
164 		create_empty_buffers(page, inode->i_sb->s_blocksize,
165 				     (1 << BH_Dirty)|(1 << BH_Uptodate));
166 	}
167 	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
168 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170 
171 /**
172  * __gfs2_jdata_writepage - The core of jdata writepage
173  * @page: The page to write
174  * @wbc: The writeback control
175  *
176  * This is shared between writepage and writepages and implements the
177  * core of the writepage operation. If a transaction is required then
178  * PageChecked will have been set and the transaction will have
179  * already been started before this is called.
180  */
181 
182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
183 {
184 	struct inode *inode = page->mapping->host;
185 	struct gfs2_inode *ip = GFS2_I(inode);
186 	struct gfs2_sbd *sdp = GFS2_SB(inode);
187 
188 	if (PageChecked(page)) {
189 		ClearPageChecked(page);
190 		if (!page_has_buffers(page)) {
191 			create_empty_buffers(page, inode->i_sb->s_blocksize,
192 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
193 		}
194 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
195 	}
196 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
197 }
198 
199 /**
200  * gfs2_jdata_writepage - Write complete page
201  * @page: Page to write
202  *
203  * Returns: errno
204  *
205  */
206 
207 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
208 {
209 	struct inode *inode = page->mapping->host;
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 	int done_trans = 0;
213 
214 	if (PageChecked(page)) {
215 		if (wbc->sync_mode != WB_SYNC_ALL)
216 			goto out_ignore;
217 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
218 		if (ret)
219 			goto out_ignore;
220 		done_trans = 1;
221 	}
222 	ret = gfs2_writepage_common(page, wbc);
223 	if (ret > 0)
224 		ret = __gfs2_jdata_writepage(page, wbc);
225 	if (done_trans)
226 		gfs2_trans_end(sdp);
227 	return ret;
228 
229 out_ignore:
230 	redirty_page_for_writepage(wbc, page);
231 	unlock_page(page);
232 	return 0;
233 }
234 
235 /**
236  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
237  * @mapping: The mapping to write
238  * @wbc: Write-back control
239  *
240  * For the data=writeback case we can already ignore buffer heads
241  * and write whole extents at once. This is a big reduction in the
242  * number of I/O requests we send and the bmap calls we make in this case.
243  */
244 static int gfs2_writeback_writepages(struct address_space *mapping,
245 				     struct writeback_control *wbc)
246 {
247 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
248 }
249 
250 /**
251  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252  * @mapping: The mapping
253  * @wbc: The writeback control
254  * @writepage: The writepage function to call for each page
255  * @pvec: The vector of pages
256  * @nr_pages: The number of pages to write
257  *
258  * Returns: non-zero if loop should terminate, zero otherwise
259  */
260 
261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262 				    struct writeback_control *wbc,
263 				    struct pagevec *pvec,
264 				    int nr_pages, pgoff_t end)
265 {
266 	struct inode *inode = mapping->host;
267 	struct gfs2_sbd *sdp = GFS2_SB(inode);
268 	loff_t i_size = i_size_read(inode);
269 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
270 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
271 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
272 	int i;
273 	int ret;
274 
275 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
276 	if (ret < 0)
277 		return ret;
278 
279 	for(i = 0; i < nr_pages; i++) {
280 		struct page *page = pvec->pages[i];
281 
282 		lock_page(page);
283 
284 		if (unlikely(page->mapping != mapping)) {
285 			unlock_page(page);
286 			continue;
287 		}
288 
289 		if (!wbc->range_cyclic && page->index > end) {
290 			ret = 1;
291 			unlock_page(page);
292 			continue;
293 		}
294 
295 		if (wbc->sync_mode != WB_SYNC_NONE)
296 			wait_on_page_writeback(page);
297 
298 		if (PageWriteback(page) ||
299 		    !clear_page_dirty_for_io(page)) {
300 			unlock_page(page);
301 			continue;
302 		}
303 
304 		/* Is the page fully outside i_size? (truncate in progress) */
305 		if (page->index > end_index || (page->index == end_index && !offset)) {
306 			page->mapping->a_ops->invalidatepage(page, 0);
307 			unlock_page(page);
308 			continue;
309 		}
310 
311 		ret = __gfs2_jdata_writepage(page, wbc);
312 
313 		if (ret || (--(wbc->nr_to_write) <= 0))
314 			ret = 1;
315 	}
316 	gfs2_trans_end(sdp);
317 	return ret;
318 }
319 
320 /**
321  * gfs2_write_cache_jdata - Like write_cache_pages but different
322  * @mapping: The mapping to write
323  * @wbc: The writeback control
324  * @writepage: The writepage function to call
325  * @data: The data to pass to writepage
326  *
327  * The reason that we use our own function here is that we need to
328  * start transactions before we grab page locks. This allows us
329  * to get the ordering right.
330  */
331 
332 static int gfs2_write_cache_jdata(struct address_space *mapping,
333 				  struct writeback_control *wbc)
334 {
335 	int ret = 0;
336 	int done = 0;
337 	struct pagevec pvec;
338 	int nr_pages;
339 	pgoff_t index;
340 	pgoff_t end;
341 	int scanned = 0;
342 	int range_whole = 0;
343 
344 	pagevec_init(&pvec, 0);
345 	if (wbc->range_cyclic) {
346 		index = mapping->writeback_index; /* Start from prev offset */
347 		end = -1;
348 	} else {
349 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
350 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
351 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
352 			range_whole = 1;
353 		scanned = 1;
354 	}
355 
356 retry:
357 	 while (!done && (index <= end) &&
358 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 					       PAGECACHE_TAG_DIRTY,
360 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
361 		scanned = 1;
362 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
363 		if (ret)
364 			done = 1;
365 		if (ret > 0)
366 			ret = 0;
367 
368 		pagevec_release(&pvec);
369 		cond_resched();
370 	}
371 
372 	if (!scanned && !done) {
373 		/*
374 		 * We hit the last page and there is more work to be done: wrap
375 		 * back to the start of the file
376 		 */
377 		scanned = 1;
378 		index = 0;
379 		goto retry;
380 	}
381 
382 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
383 		mapping->writeback_index = index;
384 	return ret;
385 }
386 
387 
388 /**
389  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
390  * @mapping: The mapping to write
391  * @wbc: The writeback control
392  *
393  */
394 
395 static int gfs2_jdata_writepages(struct address_space *mapping,
396 				 struct writeback_control *wbc)
397 {
398 	struct gfs2_inode *ip = GFS2_I(mapping->host);
399 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
400 	int ret;
401 
402 	ret = gfs2_write_cache_jdata(mapping, wbc);
403 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
404 		gfs2_log_flush(sdp, ip->i_gl);
405 		ret = gfs2_write_cache_jdata(mapping, wbc);
406 	}
407 	return ret;
408 }
409 
410 /**
411  * stuffed_readpage - Fill in a Linux page with stuffed file data
412  * @ip: the inode
413  * @page: the page
414  *
415  * Returns: errno
416  */
417 
418 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
419 {
420 	struct buffer_head *dibh;
421 	void *kaddr;
422 	int error;
423 
424 	/*
425 	 * Due to the order of unstuffing files and ->fault(), we can be
426 	 * asked for a zero page in the case of a stuffed file being extended,
427 	 * so we need to supply one here. It doesn't happen often.
428 	 */
429 	if (unlikely(page->index)) {
430 		zero_user(page, 0, PAGE_CACHE_SIZE);
431 		SetPageUptodate(page);
432 		return 0;
433 	}
434 
435 	error = gfs2_meta_inode_buffer(ip, &dibh);
436 	if (error)
437 		return error;
438 
439 	kaddr = kmap_atomic(page, KM_USER0);
440 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode),
441 	       ip->i_disksize);
442 	memset(kaddr + ip->i_disksize, 0, PAGE_CACHE_SIZE - ip->i_disksize);
443 	kunmap_atomic(kaddr, KM_USER0);
444 	flush_dcache_page(page);
445 	brelse(dibh);
446 	SetPageUptodate(page);
447 
448 	return 0;
449 }
450 
451 
452 /**
453  * __gfs2_readpage - readpage
454  * @file: The file to read a page for
455  * @page: The page to read
456  *
457  * This is the core of gfs2's readpage. Its used by the internal file
458  * reading code as in that case we already hold the glock. Also its
459  * called by gfs2_readpage() once the required lock has been granted.
460  *
461  */
462 
463 static int __gfs2_readpage(void *file, struct page *page)
464 {
465 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
466 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
467 	int error;
468 
469 	if (gfs2_is_stuffed(ip)) {
470 		error = stuffed_readpage(ip, page);
471 		unlock_page(page);
472 	} else {
473 		error = mpage_readpage(page, gfs2_block_map);
474 	}
475 
476 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
477 		return -EIO;
478 
479 	return error;
480 }
481 
482 /**
483  * gfs2_readpage - read a page of a file
484  * @file: The file to read
485  * @page: The page of the file
486  *
487  * This deals with the locking required. We have to unlock and
488  * relock the page in order to get the locking in the right
489  * order.
490  */
491 
492 static int gfs2_readpage(struct file *file, struct page *page)
493 {
494 	struct address_space *mapping = page->mapping;
495 	struct gfs2_inode *ip = GFS2_I(mapping->host);
496 	struct gfs2_holder gh;
497 	int error;
498 
499 	unlock_page(page);
500 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
501 	error = gfs2_glock_nq(&gh);
502 	if (unlikely(error))
503 		goto out;
504 	error = AOP_TRUNCATED_PAGE;
505 	lock_page(page);
506 	if (page->mapping == mapping && !PageUptodate(page))
507 		error = __gfs2_readpage(file, page);
508 	else
509 		unlock_page(page);
510 	gfs2_glock_dq(&gh);
511 out:
512 	gfs2_holder_uninit(&gh);
513 	if (error && error != AOP_TRUNCATED_PAGE)
514 		lock_page(page);
515 	return error;
516 }
517 
518 /**
519  * gfs2_internal_read - read an internal file
520  * @ip: The gfs2 inode
521  * @ra_state: The readahead state (or NULL for no readahead)
522  * @buf: The buffer to fill
523  * @pos: The file position
524  * @size: The amount to read
525  *
526  */
527 
528 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
529                        char *buf, loff_t *pos, unsigned size)
530 {
531 	struct address_space *mapping = ip->i_inode.i_mapping;
532 	unsigned long index = *pos / PAGE_CACHE_SIZE;
533 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
534 	unsigned copied = 0;
535 	unsigned amt;
536 	struct page *page;
537 	void *p;
538 
539 	do {
540 		amt = size - copied;
541 		if (offset + size > PAGE_CACHE_SIZE)
542 			amt = PAGE_CACHE_SIZE - offset;
543 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
544 		if (IS_ERR(page))
545 			return PTR_ERR(page);
546 		p = kmap_atomic(page, KM_USER0);
547 		memcpy(buf + copied, p + offset, amt);
548 		kunmap_atomic(p, KM_USER0);
549 		mark_page_accessed(page);
550 		page_cache_release(page);
551 		copied += amt;
552 		index++;
553 		offset = 0;
554 	} while(copied < size);
555 	(*pos) += size;
556 	return size;
557 }
558 
559 /**
560  * gfs2_readpages - Read a bunch of pages at once
561  *
562  * Some notes:
563  * 1. This is only for readahead, so we can simply ignore any things
564  *    which are slightly inconvenient (such as locking conflicts between
565  *    the page lock and the glock) and return having done no I/O. Its
566  *    obviously not something we'd want to do on too regular a basis.
567  *    Any I/O we ignore at this time will be done via readpage later.
568  * 2. We don't handle stuffed files here we let readpage do the honours.
569  * 3. mpage_readpages() does most of the heavy lifting in the common case.
570  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
571  */
572 
573 static int gfs2_readpages(struct file *file, struct address_space *mapping,
574 			  struct list_head *pages, unsigned nr_pages)
575 {
576 	struct inode *inode = mapping->host;
577 	struct gfs2_inode *ip = GFS2_I(inode);
578 	struct gfs2_sbd *sdp = GFS2_SB(inode);
579 	struct gfs2_holder gh;
580 	int ret;
581 
582 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
583 	ret = gfs2_glock_nq(&gh);
584 	if (unlikely(ret))
585 		goto out_uninit;
586 	if (!gfs2_is_stuffed(ip))
587 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
588 	gfs2_glock_dq(&gh);
589 out_uninit:
590 	gfs2_holder_uninit(&gh);
591 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
592 		ret = -EIO;
593 	return ret;
594 }
595 
596 /**
597  * gfs2_write_begin - Begin to write to a file
598  * @file: The file to write to
599  * @mapping: The mapping in which to write
600  * @pos: The file offset at which to start writing
601  * @len: Length of the write
602  * @flags: Various flags
603  * @pagep: Pointer to return the page
604  * @fsdata: Pointer to return fs data (unused by GFS2)
605  *
606  * Returns: errno
607  */
608 
609 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
610 			    loff_t pos, unsigned len, unsigned flags,
611 			    struct page **pagep, void **fsdata)
612 {
613 	struct gfs2_inode *ip = GFS2_I(mapping->host);
614 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
615 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
616 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
617 	int alloc_required;
618 	int error = 0;
619 	struct gfs2_alloc *al;
620 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
621 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
622 	unsigned to = from + len;
623 	struct page *page;
624 
625 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
626 	error = gfs2_glock_nq(&ip->i_gh);
627 	if (unlikely(error))
628 		goto out_uninit;
629 	if (&ip->i_inode == sdp->sd_rindex) {
630 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
631 					   GL_NOCACHE, &m_ip->i_gh);
632 		if (unlikely(error)) {
633 			gfs2_glock_dq(&ip->i_gh);
634 			goto out_uninit;
635 		}
636 	}
637 
638 	error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
639 	if (error)
640 		goto out_unlock;
641 
642 	if (alloc_required || gfs2_is_jdata(ip))
643 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
644 
645 	if (alloc_required) {
646 		al = gfs2_alloc_get(ip);
647 		if (!al) {
648 			error = -ENOMEM;
649 			goto out_unlock;
650 		}
651 
652 		error = gfs2_quota_lock_check(ip);
653 		if (error)
654 			goto out_alloc_put;
655 
656 		al->al_requested = data_blocks + ind_blocks;
657 		error = gfs2_inplace_reserve(ip);
658 		if (error)
659 			goto out_qunlock;
660 	}
661 
662 	rblocks = RES_DINODE + ind_blocks;
663 	if (gfs2_is_jdata(ip))
664 		rblocks += data_blocks ? data_blocks : 1;
665 	if (ind_blocks || data_blocks)
666 		rblocks += RES_STATFS + RES_QUOTA;
667 	if (&ip->i_inode == sdp->sd_rindex)
668 		rblocks += 2 * RES_STATFS;
669 
670 	error = gfs2_trans_begin(sdp, rblocks,
671 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
672 	if (error)
673 		goto out_trans_fail;
674 
675 	error = -ENOMEM;
676 	flags |= AOP_FLAG_NOFS;
677 	page = grab_cache_page_write_begin(mapping, index, flags);
678 	*pagep = page;
679 	if (unlikely(!page))
680 		goto out_endtrans;
681 
682 	if (gfs2_is_stuffed(ip)) {
683 		error = 0;
684 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
685 			error = gfs2_unstuff_dinode(ip, page);
686 			if (error == 0)
687 				goto prepare_write;
688 		} else if (!PageUptodate(page)) {
689 			error = stuffed_readpage(ip, page);
690 		}
691 		goto out;
692 	}
693 
694 prepare_write:
695 	error = block_prepare_write(page, from, to, gfs2_block_map);
696 out:
697 	if (error == 0)
698 		return 0;
699 
700 	page_cache_release(page);
701 	if (pos + len > ip->i_inode.i_size)
702 		vmtruncate(&ip->i_inode, ip->i_inode.i_size);
703 out_endtrans:
704 	gfs2_trans_end(sdp);
705 out_trans_fail:
706 	if (alloc_required) {
707 		gfs2_inplace_release(ip);
708 out_qunlock:
709 		gfs2_quota_unlock(ip);
710 out_alloc_put:
711 		gfs2_alloc_put(ip);
712 	}
713 out_unlock:
714 	if (&ip->i_inode == sdp->sd_rindex) {
715 		gfs2_glock_dq(&m_ip->i_gh);
716 		gfs2_holder_uninit(&m_ip->i_gh);
717 	}
718 	gfs2_glock_dq(&ip->i_gh);
719 out_uninit:
720 	gfs2_holder_uninit(&ip->i_gh);
721 	return error;
722 }
723 
724 /**
725  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
726  * @inode: the rindex inode
727  */
728 static void adjust_fs_space(struct inode *inode)
729 {
730 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
731 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
732 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
733 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
734 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
735 	struct buffer_head *m_bh, *l_bh;
736 	u64 fs_total, new_free;
737 
738 	/* Total up the file system space, according to the latest rindex. */
739 	fs_total = gfs2_ri_total(sdp);
740 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
741 		return;
742 
743 	spin_lock(&sdp->sd_statfs_spin);
744 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
745 			      sizeof(struct gfs2_dinode));
746 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
747 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
748 	else
749 		new_free = 0;
750 	spin_unlock(&sdp->sd_statfs_spin);
751 	fs_warn(sdp, "File system extended by %llu blocks.\n",
752 		(unsigned long long)new_free);
753 	gfs2_statfs_change(sdp, new_free, new_free, 0);
754 
755 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
756 		goto out;
757 	update_statfs(sdp, m_bh, l_bh);
758 	brelse(l_bh);
759 out:
760 	brelse(m_bh);
761 }
762 
763 /**
764  * gfs2_stuffed_write_end - Write end for stuffed files
765  * @inode: The inode
766  * @dibh: The buffer_head containing the on-disk inode
767  * @pos: The file position
768  * @len: The length of the write
769  * @copied: How much was actually copied by the VFS
770  * @page: The page
771  *
772  * This copies the data from the page into the inode block after
773  * the inode data structure itself.
774  *
775  * Returns: errno
776  */
777 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
778 				  loff_t pos, unsigned len, unsigned copied,
779 				  struct page *page)
780 {
781 	struct gfs2_inode *ip = GFS2_I(inode);
782 	struct gfs2_sbd *sdp = GFS2_SB(inode);
783 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
784 	u64 to = pos + copied;
785 	void *kaddr;
786 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
787 	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
788 
789 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
790 	kaddr = kmap_atomic(page, KM_USER0);
791 	memcpy(buf + pos, kaddr + pos, copied);
792 	memset(kaddr + pos + copied, 0, len - copied);
793 	flush_dcache_page(page);
794 	kunmap_atomic(kaddr, KM_USER0);
795 
796 	if (!PageUptodate(page))
797 		SetPageUptodate(page);
798 	unlock_page(page);
799 	page_cache_release(page);
800 
801 	if (copied) {
802 		if (inode->i_size < to) {
803 			i_size_write(inode, to);
804 			ip->i_disksize = inode->i_size;
805 		}
806 		gfs2_dinode_out(ip, di);
807 		mark_inode_dirty(inode);
808 	}
809 
810 	if (inode == sdp->sd_rindex) {
811 		adjust_fs_space(inode);
812 		ip->i_gh.gh_flags |= GL_NOCACHE;
813 	}
814 
815 	brelse(dibh);
816 	gfs2_trans_end(sdp);
817 	if (inode == sdp->sd_rindex) {
818 		gfs2_glock_dq(&m_ip->i_gh);
819 		gfs2_holder_uninit(&m_ip->i_gh);
820 	}
821 	gfs2_glock_dq(&ip->i_gh);
822 	gfs2_holder_uninit(&ip->i_gh);
823 	return copied;
824 }
825 
826 /**
827  * gfs2_write_end
828  * @file: The file to write to
829  * @mapping: The address space to write to
830  * @pos: The file position
831  * @len: The length of the data
832  * @copied:
833  * @page: The page that has been written
834  * @fsdata: The fsdata (unused in GFS2)
835  *
836  * The main write_end function for GFS2. We have a separate one for
837  * stuffed files as they are slightly different, otherwise we just
838  * put our locking around the VFS provided functions.
839  *
840  * Returns: errno
841  */
842 
843 static int gfs2_write_end(struct file *file, struct address_space *mapping,
844 			  loff_t pos, unsigned len, unsigned copied,
845 			  struct page *page, void *fsdata)
846 {
847 	struct inode *inode = page->mapping->host;
848 	struct gfs2_inode *ip = GFS2_I(inode);
849 	struct gfs2_sbd *sdp = GFS2_SB(inode);
850 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
851 	struct buffer_head *dibh;
852 	struct gfs2_alloc *al = ip->i_alloc;
853 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
854 	unsigned int to = from + len;
855 	int ret;
856 
857 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
858 
859 	ret = gfs2_meta_inode_buffer(ip, &dibh);
860 	if (unlikely(ret)) {
861 		unlock_page(page);
862 		page_cache_release(page);
863 		goto failed;
864 	}
865 
866 	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
867 
868 	if (gfs2_is_stuffed(ip))
869 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
870 
871 	if (!gfs2_is_writeback(ip))
872 		gfs2_page_add_databufs(ip, page, from, to);
873 
874 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
875 	if (ret > 0) {
876 		if (inode->i_size > ip->i_disksize)
877 			ip->i_disksize = inode->i_size;
878 		gfs2_dinode_out(ip, dibh->b_data);
879 		mark_inode_dirty(inode);
880 	}
881 
882 	if (inode == sdp->sd_rindex) {
883 		adjust_fs_space(inode);
884 		ip->i_gh.gh_flags |= GL_NOCACHE;
885 	}
886 
887 	brelse(dibh);
888 	gfs2_trans_end(sdp);
889 failed:
890 	if (al) {
891 		gfs2_inplace_release(ip);
892 		gfs2_quota_unlock(ip);
893 		gfs2_alloc_put(ip);
894 	}
895 	if (inode == sdp->sd_rindex) {
896 		gfs2_glock_dq(&m_ip->i_gh);
897 		gfs2_holder_uninit(&m_ip->i_gh);
898 	}
899 	gfs2_glock_dq(&ip->i_gh);
900 	gfs2_holder_uninit(&ip->i_gh);
901 	return ret;
902 }
903 
904 /**
905  * gfs2_set_page_dirty - Page dirtying function
906  * @page: The page to dirty
907  *
908  * Returns: 1 if it dirtyed the page, or 0 otherwise
909  */
910 
911 static int gfs2_set_page_dirty(struct page *page)
912 {
913 	SetPageChecked(page);
914 	return __set_page_dirty_buffers(page);
915 }
916 
917 /**
918  * gfs2_bmap - Block map function
919  * @mapping: Address space info
920  * @lblock: The block to map
921  *
922  * Returns: The disk address for the block or 0 on hole or error
923  */
924 
925 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
926 {
927 	struct gfs2_inode *ip = GFS2_I(mapping->host);
928 	struct gfs2_holder i_gh;
929 	sector_t dblock = 0;
930 	int error;
931 
932 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
933 	if (error)
934 		return 0;
935 
936 	if (!gfs2_is_stuffed(ip))
937 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
938 
939 	gfs2_glock_dq_uninit(&i_gh);
940 
941 	return dblock;
942 }
943 
944 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
945 {
946 	struct gfs2_bufdata *bd;
947 
948 	lock_buffer(bh);
949 	gfs2_log_lock(sdp);
950 	clear_buffer_dirty(bh);
951 	bd = bh->b_private;
952 	if (bd) {
953 		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
954 			list_del_init(&bd->bd_le.le_list);
955 		else
956 			gfs2_remove_from_journal(bh, current->journal_info, 0);
957 	}
958 	bh->b_bdev = NULL;
959 	clear_buffer_mapped(bh);
960 	clear_buffer_req(bh);
961 	clear_buffer_new(bh);
962 	gfs2_log_unlock(sdp);
963 	unlock_buffer(bh);
964 }
965 
966 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
967 {
968 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
969 	struct buffer_head *bh, *head;
970 	unsigned long pos = 0;
971 
972 	BUG_ON(!PageLocked(page));
973 	if (offset == 0)
974 		ClearPageChecked(page);
975 	if (!page_has_buffers(page))
976 		goto out;
977 
978 	bh = head = page_buffers(page);
979 	do {
980 		if (offset <= pos)
981 			gfs2_discard(sdp, bh);
982 		pos += bh->b_size;
983 		bh = bh->b_this_page;
984 	} while (bh != head);
985 out:
986 	if (offset == 0)
987 		try_to_release_page(page, 0);
988 }
989 
990 /**
991  * gfs2_ok_for_dio - check that dio is valid on this file
992  * @ip: The inode
993  * @rw: READ or WRITE
994  * @offset: The offset at which we are reading or writing
995  *
996  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
997  *          1 (to accept the i/o request)
998  */
999 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1000 {
1001 	/*
1002 	 * Should we return an error here? I can't see that O_DIRECT for
1003 	 * a stuffed file makes any sense. For now we'll silently fall
1004 	 * back to buffered I/O
1005 	 */
1006 	if (gfs2_is_stuffed(ip))
1007 		return 0;
1008 
1009 	if (offset >= i_size_read(&ip->i_inode))
1010 		return 0;
1011 	return 1;
1012 }
1013 
1014 
1015 
1016 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1017 			      const struct iovec *iov, loff_t offset,
1018 			      unsigned long nr_segs)
1019 {
1020 	struct file *file = iocb->ki_filp;
1021 	struct inode *inode = file->f_mapping->host;
1022 	struct gfs2_inode *ip = GFS2_I(inode);
1023 	struct gfs2_holder gh;
1024 	int rv;
1025 
1026 	/*
1027 	 * Deferred lock, even if its a write, since we do no allocation
1028 	 * on this path. All we need change is atime, and this lock mode
1029 	 * ensures that other nodes have flushed their buffered read caches
1030 	 * (i.e. their page cache entries for this inode). We do not,
1031 	 * unfortunately have the option of only flushing a range like
1032 	 * the VFS does.
1033 	 */
1034 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1035 	rv = gfs2_glock_nq(&gh);
1036 	if (rv)
1037 		return rv;
1038 	rv = gfs2_ok_for_dio(ip, rw, offset);
1039 	if (rv != 1)
1040 		goto out; /* dio not valid, fall back to buffered i/o */
1041 
1042 	rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1043 					   iov, offset, nr_segs,
1044 					   gfs2_get_block_direct, NULL);
1045 out:
1046 	gfs2_glock_dq_m(1, &gh);
1047 	gfs2_holder_uninit(&gh);
1048 	return rv;
1049 }
1050 
1051 /**
1052  * gfs2_releasepage - free the metadata associated with a page
1053  * @page: the page that's being released
1054  * @gfp_mask: passed from Linux VFS, ignored by us
1055  *
1056  * Call try_to_free_buffers() if the buffers in this page can be
1057  * released.
1058  *
1059  * Returns: 0
1060  */
1061 
1062 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1063 {
1064 	struct inode *aspace = page->mapping->host;
1065 	struct gfs2_sbd *sdp = aspace->i_sb->s_fs_info;
1066 	struct buffer_head *bh, *head;
1067 	struct gfs2_bufdata *bd;
1068 
1069 	if (!page_has_buffers(page))
1070 		return 0;
1071 
1072 	gfs2_log_lock(sdp);
1073 	head = bh = page_buffers(page);
1074 	do {
1075 		if (atomic_read(&bh->b_count))
1076 			goto cannot_release;
1077 		bd = bh->b_private;
1078 		if (bd && bd->bd_ail)
1079 			goto cannot_release;
1080 		gfs2_assert_warn(sdp, !buffer_pinned(bh));
1081 		gfs2_assert_warn(sdp, !buffer_dirty(bh));
1082 		bh = bh->b_this_page;
1083 	} while(bh != head);
1084 	gfs2_log_unlock(sdp);
1085 
1086 	head = bh = page_buffers(page);
1087 	do {
1088 		gfs2_log_lock(sdp);
1089 		bd = bh->b_private;
1090 		if (bd) {
1091 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1092 			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1093 			if (!list_empty(&bd->bd_le.le_list)) {
1094 				if (!buffer_pinned(bh))
1095 					list_del_init(&bd->bd_le.le_list);
1096 				else
1097 					bd = NULL;
1098 			}
1099 			if (bd)
1100 				bd->bd_bh = NULL;
1101 			bh->b_private = NULL;
1102 		}
1103 		gfs2_log_unlock(sdp);
1104 		if (bd)
1105 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1106 
1107 		bh = bh->b_this_page;
1108 	} while (bh != head);
1109 
1110 	return try_to_free_buffers(page);
1111 cannot_release:
1112 	gfs2_log_unlock(sdp);
1113 	return 0;
1114 }
1115 
1116 static const struct address_space_operations gfs2_writeback_aops = {
1117 	.writepage = gfs2_writeback_writepage,
1118 	.writepages = gfs2_writeback_writepages,
1119 	.readpage = gfs2_readpage,
1120 	.readpages = gfs2_readpages,
1121 	.sync_page = block_sync_page,
1122 	.write_begin = gfs2_write_begin,
1123 	.write_end = gfs2_write_end,
1124 	.bmap = gfs2_bmap,
1125 	.invalidatepage = gfs2_invalidatepage,
1126 	.releasepage = gfs2_releasepage,
1127 	.direct_IO = gfs2_direct_IO,
1128 	.migratepage = buffer_migrate_page,
1129 	.is_partially_uptodate = block_is_partially_uptodate,
1130 	.error_remove_page = generic_error_remove_page,
1131 };
1132 
1133 static const struct address_space_operations gfs2_ordered_aops = {
1134 	.writepage = gfs2_ordered_writepage,
1135 	.readpage = gfs2_readpage,
1136 	.readpages = gfs2_readpages,
1137 	.sync_page = block_sync_page,
1138 	.write_begin = gfs2_write_begin,
1139 	.write_end = gfs2_write_end,
1140 	.set_page_dirty = gfs2_set_page_dirty,
1141 	.bmap = gfs2_bmap,
1142 	.invalidatepage = gfs2_invalidatepage,
1143 	.releasepage = gfs2_releasepage,
1144 	.direct_IO = gfs2_direct_IO,
1145 	.migratepage = buffer_migrate_page,
1146 	.is_partially_uptodate = block_is_partially_uptodate,
1147 	.error_remove_page = generic_error_remove_page,
1148 };
1149 
1150 static const struct address_space_operations gfs2_jdata_aops = {
1151 	.writepage = gfs2_jdata_writepage,
1152 	.writepages = gfs2_jdata_writepages,
1153 	.readpage = gfs2_readpage,
1154 	.readpages = gfs2_readpages,
1155 	.sync_page = block_sync_page,
1156 	.write_begin = gfs2_write_begin,
1157 	.write_end = gfs2_write_end,
1158 	.set_page_dirty = gfs2_set_page_dirty,
1159 	.bmap = gfs2_bmap,
1160 	.invalidatepage = gfs2_invalidatepage,
1161 	.releasepage = gfs2_releasepage,
1162 	.is_partially_uptodate = block_is_partially_uptodate,
1163 	.error_remove_page = generic_error_remove_page,
1164 };
1165 
1166 void gfs2_set_aops(struct inode *inode)
1167 {
1168 	struct gfs2_inode *ip = GFS2_I(inode);
1169 
1170 	if (gfs2_is_writeback(ip))
1171 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1172 	else if (gfs2_is_ordered(ip))
1173 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1174 	else if (gfs2_is_jdata(ip))
1175 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1176 	else
1177 		BUG();
1178 }
1179 
1180