1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/spinlock.h> 13 #include <linux/completion.h> 14 #include <linux/buffer_head.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mpage.h> 18 #include <linux/fs.h> 19 #include <linux/writeback.h> 20 #include <linux/swap.h> 21 #include <linux/gfs2_ondisk.h> 22 #include <linux/backing-dev.h> 23 #include <linux/uio.h> 24 #include <trace/events/writeback.h> 25 26 #include "gfs2.h" 27 #include "incore.h" 28 #include "bmap.h" 29 #include "glock.h" 30 #include "inode.h" 31 #include "log.h" 32 #include "meta_io.h" 33 #include "quota.h" 34 #include "trans.h" 35 #include "rgrp.h" 36 #include "super.h" 37 #include "util.h" 38 #include "glops.h" 39 40 41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page, 42 unsigned int from, unsigned int len) 43 { 44 struct buffer_head *head = page_buffers(page); 45 unsigned int bsize = head->b_size; 46 struct buffer_head *bh; 47 unsigned int to = from + len; 48 unsigned int start, end; 49 50 for (bh = head, start = 0; bh != head || !start; 51 bh = bh->b_this_page, start = end) { 52 end = start + bsize; 53 if (end <= from) 54 continue; 55 if (start >= to) 56 break; 57 set_buffer_uptodate(bh); 58 gfs2_trans_add_data(ip->i_gl, bh); 59 } 60 } 61 62 /** 63 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block 64 * @inode: The inode 65 * @lblock: The block number to look up 66 * @bh_result: The buffer head to return the result in 67 * @create: Non-zero if we may add block to the file 68 * 69 * Returns: errno 70 */ 71 72 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock, 73 struct buffer_head *bh_result, int create) 74 { 75 int error; 76 77 error = gfs2_block_map(inode, lblock, bh_result, 0); 78 if (error) 79 return error; 80 if (!buffer_mapped(bh_result)) 81 return -EIO; 82 return 0; 83 } 84 85 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock, 86 struct buffer_head *bh_result, int create) 87 { 88 return gfs2_block_map(inode, lblock, bh_result, 0); 89 } 90 91 /** 92 * gfs2_writepage_common - Common bits of writepage 93 * @page: The page to be written 94 * @wbc: The writeback control 95 * 96 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error. 97 */ 98 99 static int gfs2_writepage_common(struct page *page, 100 struct writeback_control *wbc) 101 { 102 struct inode *inode = page->mapping->host; 103 struct gfs2_inode *ip = GFS2_I(inode); 104 struct gfs2_sbd *sdp = GFS2_SB(inode); 105 loff_t i_size = i_size_read(inode); 106 pgoff_t end_index = i_size >> PAGE_SHIFT; 107 unsigned offset; 108 109 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 110 goto out; 111 if (current->journal_info) 112 goto redirty; 113 /* Is the page fully outside i_size? (truncate in progress) */ 114 offset = i_size & (PAGE_SIZE-1); 115 if (page->index > end_index || (page->index == end_index && !offset)) { 116 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 117 goto out; 118 } 119 return 1; 120 redirty: 121 redirty_page_for_writepage(wbc, page); 122 out: 123 unlock_page(page); 124 return 0; 125 } 126 127 /** 128 * gfs2_writepage - Write page for writeback mappings 129 * @page: The page 130 * @wbc: The writeback control 131 * 132 */ 133 134 static int gfs2_writepage(struct page *page, struct writeback_control *wbc) 135 { 136 int ret; 137 138 ret = gfs2_writepage_common(page, wbc); 139 if (ret <= 0) 140 return ret; 141 142 return nobh_writepage(page, gfs2_get_block_noalloc, wbc); 143 } 144 145 /* This is the same as calling block_write_full_page, but it also 146 * writes pages outside of i_size 147 */ 148 static int gfs2_write_full_page(struct page *page, get_block_t *get_block, 149 struct writeback_control *wbc) 150 { 151 struct inode * const inode = page->mapping->host; 152 loff_t i_size = i_size_read(inode); 153 const pgoff_t end_index = i_size >> PAGE_SHIFT; 154 unsigned offset; 155 156 /* 157 * The page straddles i_size. It must be zeroed out on each and every 158 * writepage invocation because it may be mmapped. "A file is mapped 159 * in multiples of the page size. For a file that is not a multiple of 160 * the page size, the remaining memory is zeroed when mapped, and 161 * writes to that region are not written out to the file." 162 */ 163 offset = i_size & (PAGE_SIZE-1); 164 if (page->index == end_index && offset) 165 zero_user_segment(page, offset, PAGE_SIZE); 166 167 return __block_write_full_page(inode, page, get_block, wbc, 168 end_buffer_async_write); 169 } 170 171 /** 172 * __gfs2_jdata_writepage - The core of jdata writepage 173 * @page: The page to write 174 * @wbc: The writeback control 175 * 176 * This is shared between writepage and writepages and implements the 177 * core of the writepage operation. If a transaction is required then 178 * PageChecked will have been set and the transaction will have 179 * already been started before this is called. 180 */ 181 182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 183 { 184 struct inode *inode = page->mapping->host; 185 struct gfs2_inode *ip = GFS2_I(inode); 186 struct gfs2_sbd *sdp = GFS2_SB(inode); 187 188 if (PageChecked(page)) { 189 ClearPageChecked(page); 190 if (!page_has_buffers(page)) { 191 create_empty_buffers(page, inode->i_sb->s_blocksize, 192 BIT(BH_Dirty)|BIT(BH_Uptodate)); 193 } 194 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize); 195 } 196 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc); 197 } 198 199 /** 200 * gfs2_jdata_writepage - Write complete page 201 * @page: Page to write 202 * @wbc: The writeback control 203 * 204 * Returns: errno 205 * 206 */ 207 208 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 209 { 210 struct inode *inode = page->mapping->host; 211 struct gfs2_inode *ip = GFS2_I(inode); 212 struct gfs2_sbd *sdp = GFS2_SB(inode); 213 int ret; 214 215 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 216 goto out; 217 if (PageChecked(page) || current->journal_info) 218 goto out_ignore; 219 ret = __gfs2_jdata_writepage(page, wbc); 220 return ret; 221 222 out_ignore: 223 redirty_page_for_writepage(wbc, page); 224 out: 225 unlock_page(page); 226 return 0; 227 } 228 229 /** 230 * gfs2_writepages - Write a bunch of dirty pages back to disk 231 * @mapping: The mapping to write 232 * @wbc: Write-back control 233 * 234 * Used for both ordered and writeback modes. 235 */ 236 static int gfs2_writepages(struct address_space *mapping, 237 struct writeback_control *wbc) 238 { 239 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 240 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc); 241 242 /* 243 * Even if we didn't write any pages here, we might still be holding 244 * dirty pages in the ail. We forcibly flush the ail because we don't 245 * want balance_dirty_pages() to loop indefinitely trying to write out 246 * pages held in the ail that it can't find. 247 */ 248 if (ret == 0) 249 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags); 250 251 return ret; 252 } 253 254 /** 255 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages 256 * @mapping: The mapping 257 * @wbc: The writeback control 258 * @pvec: The vector of pages 259 * @nr_pages: The number of pages to write 260 * @done_index: Page index 261 * 262 * Returns: non-zero if loop should terminate, zero otherwise 263 */ 264 265 static int gfs2_write_jdata_pagevec(struct address_space *mapping, 266 struct writeback_control *wbc, 267 struct pagevec *pvec, 268 int nr_pages, 269 pgoff_t *done_index) 270 { 271 struct inode *inode = mapping->host; 272 struct gfs2_sbd *sdp = GFS2_SB(inode); 273 unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize); 274 int i; 275 int ret; 276 277 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks); 278 if (ret < 0) 279 return ret; 280 281 for(i = 0; i < nr_pages; i++) { 282 struct page *page = pvec->pages[i]; 283 284 *done_index = page->index; 285 286 lock_page(page); 287 288 if (unlikely(page->mapping != mapping)) { 289 continue_unlock: 290 unlock_page(page); 291 continue; 292 } 293 294 if (!PageDirty(page)) { 295 /* someone wrote it for us */ 296 goto continue_unlock; 297 } 298 299 if (PageWriteback(page)) { 300 if (wbc->sync_mode != WB_SYNC_NONE) 301 wait_on_page_writeback(page); 302 else 303 goto continue_unlock; 304 } 305 306 BUG_ON(PageWriteback(page)); 307 if (!clear_page_dirty_for_io(page)) 308 goto continue_unlock; 309 310 trace_wbc_writepage(wbc, inode_to_bdi(inode)); 311 312 ret = __gfs2_jdata_writepage(page, wbc); 313 if (unlikely(ret)) { 314 if (ret == AOP_WRITEPAGE_ACTIVATE) { 315 unlock_page(page); 316 ret = 0; 317 } else { 318 319 /* 320 * done_index is set past this page, 321 * so media errors will not choke 322 * background writeout for the entire 323 * file. This has consequences for 324 * range_cyclic semantics (ie. it may 325 * not be suitable for data integrity 326 * writeout). 327 */ 328 *done_index = page->index + 1; 329 ret = 1; 330 break; 331 } 332 } 333 334 /* 335 * We stop writing back only if we are not doing 336 * integrity sync. In case of integrity sync we have to 337 * keep going until we have written all the pages 338 * we tagged for writeback prior to entering this loop. 339 */ 340 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { 341 ret = 1; 342 break; 343 } 344 345 } 346 gfs2_trans_end(sdp); 347 return ret; 348 } 349 350 /** 351 * gfs2_write_cache_jdata - Like write_cache_pages but different 352 * @mapping: The mapping to write 353 * @wbc: The writeback control 354 * 355 * The reason that we use our own function here is that we need to 356 * start transactions before we grab page locks. This allows us 357 * to get the ordering right. 358 */ 359 360 static int gfs2_write_cache_jdata(struct address_space *mapping, 361 struct writeback_control *wbc) 362 { 363 int ret = 0; 364 int done = 0; 365 struct pagevec pvec; 366 int nr_pages; 367 pgoff_t uninitialized_var(writeback_index); 368 pgoff_t index; 369 pgoff_t end; 370 pgoff_t done_index; 371 int cycled; 372 int range_whole = 0; 373 int tag; 374 375 pagevec_init(&pvec); 376 if (wbc->range_cyclic) { 377 writeback_index = mapping->writeback_index; /* prev offset */ 378 index = writeback_index; 379 if (index == 0) 380 cycled = 1; 381 else 382 cycled = 0; 383 end = -1; 384 } else { 385 index = wbc->range_start >> PAGE_SHIFT; 386 end = wbc->range_end >> PAGE_SHIFT; 387 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 388 range_whole = 1; 389 cycled = 1; /* ignore range_cyclic tests */ 390 } 391 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 392 tag = PAGECACHE_TAG_TOWRITE; 393 else 394 tag = PAGECACHE_TAG_DIRTY; 395 396 retry: 397 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 398 tag_pages_for_writeback(mapping, index, end); 399 done_index = index; 400 while (!done && (index <= end)) { 401 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 402 tag); 403 if (nr_pages == 0) 404 break; 405 406 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index); 407 if (ret) 408 done = 1; 409 if (ret > 0) 410 ret = 0; 411 pagevec_release(&pvec); 412 cond_resched(); 413 } 414 415 if (!cycled && !done) { 416 /* 417 * range_cyclic: 418 * We hit the last page and there is more work to be done: wrap 419 * back to the start of the file 420 */ 421 cycled = 1; 422 index = 0; 423 end = writeback_index - 1; 424 goto retry; 425 } 426 427 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 428 mapping->writeback_index = done_index; 429 430 return ret; 431 } 432 433 434 /** 435 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk 436 * @mapping: The mapping to write 437 * @wbc: The writeback control 438 * 439 */ 440 441 static int gfs2_jdata_writepages(struct address_space *mapping, 442 struct writeback_control *wbc) 443 { 444 struct gfs2_inode *ip = GFS2_I(mapping->host); 445 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 446 int ret; 447 448 ret = gfs2_write_cache_jdata(mapping, wbc); 449 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) { 450 gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL | 451 GFS2_LFC_JDATA_WPAGES); 452 ret = gfs2_write_cache_jdata(mapping, wbc); 453 } 454 return ret; 455 } 456 457 /** 458 * stuffed_readpage - Fill in a Linux page with stuffed file data 459 * @ip: the inode 460 * @page: the page 461 * 462 * Returns: errno 463 */ 464 465 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page) 466 { 467 struct buffer_head *dibh; 468 u64 dsize = i_size_read(&ip->i_inode); 469 void *kaddr; 470 int error; 471 472 /* 473 * Due to the order of unstuffing files and ->fault(), we can be 474 * asked for a zero page in the case of a stuffed file being extended, 475 * so we need to supply one here. It doesn't happen often. 476 */ 477 if (unlikely(page->index)) { 478 zero_user(page, 0, PAGE_SIZE); 479 SetPageUptodate(page); 480 return 0; 481 } 482 483 error = gfs2_meta_inode_buffer(ip, &dibh); 484 if (error) 485 return error; 486 487 kaddr = kmap_atomic(page); 488 if (dsize > gfs2_max_stuffed_size(ip)) 489 dsize = gfs2_max_stuffed_size(ip); 490 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 491 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 492 kunmap_atomic(kaddr); 493 flush_dcache_page(page); 494 brelse(dibh); 495 SetPageUptodate(page); 496 497 return 0; 498 } 499 500 501 /** 502 * __gfs2_readpage - readpage 503 * @file: The file to read a page for 504 * @page: The page to read 505 * 506 * This is the core of gfs2's readpage. It's used by the internal file 507 * reading code as in that case we already hold the glock. Also it's 508 * called by gfs2_readpage() once the required lock has been granted. 509 */ 510 511 static int __gfs2_readpage(void *file, struct page *page) 512 { 513 struct gfs2_inode *ip = GFS2_I(page->mapping->host); 514 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 515 int error; 516 517 if (gfs2_is_stuffed(ip)) { 518 error = stuffed_readpage(ip, page); 519 unlock_page(page); 520 } else { 521 error = mpage_readpage(page, gfs2_block_map); 522 } 523 524 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 525 return -EIO; 526 527 return error; 528 } 529 530 /** 531 * gfs2_readpage - read a page of a file 532 * @file: The file to read 533 * @page: The page of the file 534 * 535 * This deals with the locking required. We have to unlock and 536 * relock the page in order to get the locking in the right 537 * order. 538 */ 539 540 static int gfs2_readpage(struct file *file, struct page *page) 541 { 542 struct address_space *mapping = page->mapping; 543 struct gfs2_inode *ip = GFS2_I(mapping->host); 544 struct gfs2_holder gh; 545 int error; 546 547 unlock_page(page); 548 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 549 error = gfs2_glock_nq(&gh); 550 if (unlikely(error)) 551 goto out; 552 error = AOP_TRUNCATED_PAGE; 553 lock_page(page); 554 if (page->mapping == mapping && !PageUptodate(page)) 555 error = __gfs2_readpage(file, page); 556 else 557 unlock_page(page); 558 gfs2_glock_dq(&gh); 559 out: 560 gfs2_holder_uninit(&gh); 561 if (error && error != AOP_TRUNCATED_PAGE) 562 lock_page(page); 563 return error; 564 } 565 566 /** 567 * gfs2_internal_read - read an internal file 568 * @ip: The gfs2 inode 569 * @buf: The buffer to fill 570 * @pos: The file position 571 * @size: The amount to read 572 * 573 */ 574 575 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos, 576 unsigned size) 577 { 578 struct address_space *mapping = ip->i_inode.i_mapping; 579 unsigned long index = *pos / PAGE_SIZE; 580 unsigned offset = *pos & (PAGE_SIZE - 1); 581 unsigned copied = 0; 582 unsigned amt; 583 struct page *page; 584 void *p; 585 586 do { 587 amt = size - copied; 588 if (offset + size > PAGE_SIZE) 589 amt = PAGE_SIZE - offset; 590 page = read_cache_page(mapping, index, __gfs2_readpage, NULL); 591 if (IS_ERR(page)) 592 return PTR_ERR(page); 593 p = kmap_atomic(page); 594 memcpy(buf + copied, p + offset, amt); 595 kunmap_atomic(p); 596 put_page(page); 597 copied += amt; 598 index++; 599 offset = 0; 600 } while(copied < size); 601 (*pos) += size; 602 return size; 603 } 604 605 /** 606 * gfs2_readpages - Read a bunch of pages at once 607 * @file: The file to read from 608 * @mapping: Address space info 609 * @pages: List of pages to read 610 * @nr_pages: Number of pages to read 611 * 612 * Some notes: 613 * 1. This is only for readahead, so we can simply ignore any things 614 * which are slightly inconvenient (such as locking conflicts between 615 * the page lock and the glock) and return having done no I/O. Its 616 * obviously not something we'd want to do on too regular a basis. 617 * Any I/O we ignore at this time will be done via readpage later. 618 * 2. We don't handle stuffed files here we let readpage do the honours. 619 * 3. mpage_readpages() does most of the heavy lifting in the common case. 620 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places. 621 */ 622 623 static int gfs2_readpages(struct file *file, struct address_space *mapping, 624 struct list_head *pages, unsigned nr_pages) 625 { 626 struct inode *inode = mapping->host; 627 struct gfs2_inode *ip = GFS2_I(inode); 628 struct gfs2_sbd *sdp = GFS2_SB(inode); 629 struct gfs2_holder gh; 630 int ret; 631 632 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 633 ret = gfs2_glock_nq(&gh); 634 if (unlikely(ret)) 635 goto out_uninit; 636 if (!gfs2_is_stuffed(ip)) 637 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map); 638 gfs2_glock_dq(&gh); 639 out_uninit: 640 gfs2_holder_uninit(&gh); 641 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 642 ret = -EIO; 643 return ret; 644 } 645 646 /** 647 * gfs2_write_begin - Begin to write to a file 648 * @file: The file to write to 649 * @mapping: The mapping in which to write 650 * @pos: The file offset at which to start writing 651 * @len: Length of the write 652 * @flags: Various flags 653 * @pagep: Pointer to return the page 654 * @fsdata: Pointer to return fs data (unused by GFS2) 655 * 656 * Returns: errno 657 */ 658 659 static int gfs2_write_begin(struct file *file, struct address_space *mapping, 660 loff_t pos, unsigned len, unsigned flags, 661 struct page **pagep, void **fsdata) 662 { 663 struct gfs2_inode *ip = GFS2_I(mapping->host); 664 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 665 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 666 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 667 unsigned requested = 0; 668 int alloc_required; 669 int error = 0; 670 pgoff_t index = pos >> PAGE_SHIFT; 671 unsigned from = pos & (PAGE_SIZE - 1); 672 struct page *page; 673 674 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 675 error = gfs2_glock_nq(&ip->i_gh); 676 if (unlikely(error)) 677 goto out_uninit; 678 if (&ip->i_inode == sdp->sd_rindex) { 679 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 680 GL_NOCACHE, &m_ip->i_gh); 681 if (unlikely(error)) { 682 gfs2_glock_dq(&ip->i_gh); 683 goto out_uninit; 684 } 685 } 686 687 alloc_required = gfs2_write_alloc_required(ip, pos, len); 688 689 if (alloc_required || gfs2_is_jdata(ip)) 690 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks); 691 692 if (alloc_required) { 693 struct gfs2_alloc_parms ap = { .aflags = 0, }; 694 requested = data_blocks + ind_blocks; 695 ap.target = requested; 696 error = gfs2_quota_lock_check(ip, &ap); 697 if (error) 698 goto out_unlock; 699 700 error = gfs2_inplace_reserve(ip, &ap); 701 if (error) 702 goto out_qunlock; 703 } 704 705 rblocks = RES_DINODE + ind_blocks; 706 if (gfs2_is_jdata(ip)) 707 rblocks += data_blocks ? data_blocks : 1; 708 if (ind_blocks || data_blocks) 709 rblocks += RES_STATFS + RES_QUOTA; 710 if (&ip->i_inode == sdp->sd_rindex) 711 rblocks += 2 * RES_STATFS; 712 if (alloc_required) 713 rblocks += gfs2_rg_blocks(ip, requested); 714 715 error = gfs2_trans_begin(sdp, rblocks, 716 PAGE_SIZE/sdp->sd_sb.sb_bsize); 717 if (error) 718 goto out_trans_fail; 719 720 error = -ENOMEM; 721 flags |= AOP_FLAG_NOFS; 722 page = grab_cache_page_write_begin(mapping, index, flags); 723 *pagep = page; 724 if (unlikely(!page)) 725 goto out_endtrans; 726 727 if (gfs2_is_stuffed(ip)) { 728 error = 0; 729 if (pos + len > gfs2_max_stuffed_size(ip)) { 730 error = gfs2_unstuff_dinode(ip, page); 731 if (error == 0) 732 goto prepare_write; 733 } else if (!PageUptodate(page)) { 734 error = stuffed_readpage(ip, page); 735 } 736 goto out; 737 } 738 739 prepare_write: 740 error = __block_write_begin(page, from, len, gfs2_block_map); 741 out: 742 if (error == 0) 743 return 0; 744 745 unlock_page(page); 746 put_page(page); 747 748 gfs2_trans_end(sdp); 749 if (alloc_required) { 750 gfs2_inplace_release(ip); 751 if (pos + len > ip->i_inode.i_size) 752 gfs2_trim_blocks(&ip->i_inode); 753 } 754 goto out_qunlock; 755 756 out_endtrans: 757 gfs2_trans_end(sdp); 758 out_trans_fail: 759 if (alloc_required) 760 gfs2_inplace_release(ip); 761 out_qunlock: 762 if (alloc_required) 763 gfs2_quota_unlock(ip); 764 out_unlock: 765 if (&ip->i_inode == sdp->sd_rindex) { 766 gfs2_glock_dq(&m_ip->i_gh); 767 gfs2_holder_uninit(&m_ip->i_gh); 768 } 769 gfs2_glock_dq(&ip->i_gh); 770 out_uninit: 771 gfs2_holder_uninit(&ip->i_gh); 772 return error; 773 } 774 775 /** 776 * adjust_fs_space - Adjusts the free space available due to gfs2_grow 777 * @inode: the rindex inode 778 */ 779 static void adjust_fs_space(struct inode *inode) 780 { 781 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info; 782 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 783 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); 784 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; 785 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; 786 struct buffer_head *m_bh, *l_bh; 787 u64 fs_total, new_free; 788 789 /* Total up the file system space, according to the latest rindex. */ 790 fs_total = gfs2_ri_total(sdp); 791 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0) 792 return; 793 794 spin_lock(&sdp->sd_statfs_spin); 795 gfs2_statfs_change_in(m_sc, m_bh->b_data + 796 sizeof(struct gfs2_dinode)); 797 if (fs_total > (m_sc->sc_total + l_sc->sc_total)) 798 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total); 799 else 800 new_free = 0; 801 spin_unlock(&sdp->sd_statfs_spin); 802 fs_warn(sdp, "File system extended by %llu blocks.\n", 803 (unsigned long long)new_free); 804 gfs2_statfs_change(sdp, new_free, new_free, 0); 805 806 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0) 807 goto out; 808 update_statfs(sdp, m_bh, l_bh); 809 brelse(l_bh); 810 out: 811 brelse(m_bh); 812 } 813 814 /** 815 * gfs2_stuffed_write_end - Write end for stuffed files 816 * @inode: The inode 817 * @dibh: The buffer_head containing the on-disk inode 818 * @pos: The file position 819 * @copied: How much was actually copied by the VFS 820 * @page: The page 821 * 822 * This copies the data from the page into the inode block after 823 * the inode data structure itself. 824 * 825 * Returns: errno 826 */ 827 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh, 828 loff_t pos, unsigned copied, 829 struct page *page) 830 { 831 struct gfs2_inode *ip = GFS2_I(inode); 832 u64 to = pos + copied; 833 void *kaddr; 834 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode); 835 836 BUG_ON(pos + copied > gfs2_max_stuffed_size(ip)); 837 838 kaddr = kmap_atomic(page); 839 memcpy(buf + pos, kaddr + pos, copied); 840 flush_dcache_page(page); 841 kunmap_atomic(kaddr); 842 843 WARN_ON(!PageUptodate(page)); 844 unlock_page(page); 845 put_page(page); 846 847 if (copied) { 848 if (inode->i_size < to) 849 i_size_write(inode, to); 850 mark_inode_dirty(inode); 851 } 852 return copied; 853 } 854 855 /** 856 * gfs2_write_end 857 * @file: The file to write to 858 * @mapping: The address space to write to 859 * @pos: The file position 860 * @len: The length of the data 861 * @copied: How much was actually copied by the VFS 862 * @page: The page that has been written 863 * @fsdata: The fsdata (unused in GFS2) 864 * 865 * The main write_end function for GFS2. We just put our locking around the VFS 866 * provided functions. 867 * 868 * Returns: errno 869 */ 870 871 static int gfs2_write_end(struct file *file, struct address_space *mapping, 872 loff_t pos, unsigned len, unsigned copied, 873 struct page *page, void *fsdata) 874 { 875 struct inode *inode = page->mapping->host; 876 struct gfs2_inode *ip = GFS2_I(inode); 877 struct gfs2_sbd *sdp = GFS2_SB(inode); 878 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 879 struct buffer_head *dibh; 880 int ret; 881 struct gfs2_trans *tr = current->journal_info; 882 BUG_ON(!tr); 883 884 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL); 885 886 ret = gfs2_meta_inode_buffer(ip, &dibh); 887 if (unlikely(ret)) 888 goto out; 889 890 if (gfs2_is_stuffed(ip)) { 891 ret = gfs2_stuffed_write_end(inode, dibh, pos, copied, page); 892 page = NULL; 893 goto out2; 894 } 895 896 if (gfs2_is_jdata(ip)) 897 gfs2_page_add_databufs(ip, page, pos & ~PAGE_MASK, len); 898 else 899 gfs2_ordered_add_inode(ip); 900 901 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 902 page = NULL; 903 if (tr->tr_num_buf_new) 904 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 905 else 906 gfs2_trans_add_meta(ip->i_gl, dibh); 907 908 out2: 909 if (inode == sdp->sd_rindex) { 910 adjust_fs_space(inode); 911 sdp->sd_rindex_uptodate = 0; 912 } 913 914 brelse(dibh); 915 out: 916 if (page) { 917 unlock_page(page); 918 put_page(page); 919 } 920 gfs2_trans_end(sdp); 921 gfs2_inplace_release(ip); 922 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 923 gfs2_quota_unlock(ip); 924 if (inode == sdp->sd_rindex) { 925 gfs2_glock_dq(&m_ip->i_gh); 926 gfs2_holder_uninit(&m_ip->i_gh); 927 } 928 gfs2_glock_dq(&ip->i_gh); 929 gfs2_holder_uninit(&ip->i_gh); 930 return ret; 931 } 932 933 /** 934 * jdata_set_page_dirty - Page dirtying function 935 * @page: The page to dirty 936 * 937 * Returns: 1 if it dirtyed the page, or 0 otherwise 938 */ 939 940 static int jdata_set_page_dirty(struct page *page) 941 { 942 SetPageChecked(page); 943 return __set_page_dirty_buffers(page); 944 } 945 946 /** 947 * gfs2_bmap - Block map function 948 * @mapping: Address space info 949 * @lblock: The block to map 950 * 951 * Returns: The disk address for the block or 0 on hole or error 952 */ 953 954 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock) 955 { 956 struct gfs2_inode *ip = GFS2_I(mapping->host); 957 struct gfs2_holder i_gh; 958 sector_t dblock = 0; 959 int error; 960 961 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); 962 if (error) 963 return 0; 964 965 if (!gfs2_is_stuffed(ip)) 966 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map); 967 968 gfs2_glock_dq_uninit(&i_gh); 969 970 return dblock; 971 } 972 973 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh) 974 { 975 struct gfs2_bufdata *bd; 976 977 lock_buffer(bh); 978 gfs2_log_lock(sdp); 979 clear_buffer_dirty(bh); 980 bd = bh->b_private; 981 if (bd) { 982 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh)) 983 list_del_init(&bd->bd_list); 984 else 985 gfs2_remove_from_journal(bh, REMOVE_JDATA); 986 } 987 bh->b_bdev = NULL; 988 clear_buffer_mapped(bh); 989 clear_buffer_req(bh); 990 clear_buffer_new(bh); 991 gfs2_log_unlock(sdp); 992 unlock_buffer(bh); 993 } 994 995 static void gfs2_invalidatepage(struct page *page, unsigned int offset, 996 unsigned int length) 997 { 998 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 999 unsigned int stop = offset + length; 1000 int partial_page = (offset || length < PAGE_SIZE); 1001 struct buffer_head *bh, *head; 1002 unsigned long pos = 0; 1003 1004 BUG_ON(!PageLocked(page)); 1005 if (!partial_page) 1006 ClearPageChecked(page); 1007 if (!page_has_buffers(page)) 1008 goto out; 1009 1010 bh = head = page_buffers(page); 1011 do { 1012 if (pos + bh->b_size > stop) 1013 return; 1014 1015 if (offset <= pos) 1016 gfs2_discard(sdp, bh); 1017 pos += bh->b_size; 1018 bh = bh->b_this_page; 1019 } while (bh != head); 1020 out: 1021 if (!partial_page) 1022 try_to_release_page(page, 0); 1023 } 1024 1025 /** 1026 * gfs2_ok_for_dio - check that dio is valid on this file 1027 * @ip: The inode 1028 * @offset: The offset at which we are reading or writing 1029 * 1030 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o) 1031 * 1 (to accept the i/o request) 1032 */ 1033 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset) 1034 { 1035 /* 1036 * Should we return an error here? I can't see that O_DIRECT for 1037 * a stuffed file makes any sense. For now we'll silently fall 1038 * back to buffered I/O 1039 */ 1040 if (gfs2_is_stuffed(ip)) 1041 return 0; 1042 1043 if (offset >= i_size_read(&ip->i_inode)) 1044 return 0; 1045 return 1; 1046 } 1047 1048 1049 1050 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1051 { 1052 struct file *file = iocb->ki_filp; 1053 struct inode *inode = file->f_mapping->host; 1054 struct address_space *mapping = inode->i_mapping; 1055 struct gfs2_inode *ip = GFS2_I(inode); 1056 loff_t offset = iocb->ki_pos; 1057 struct gfs2_holder gh; 1058 int rv; 1059 1060 /* 1061 * Deferred lock, even if its a write, since we do no allocation 1062 * on this path. All we need change is atime, and this lock mode 1063 * ensures that other nodes have flushed their buffered read caches 1064 * (i.e. their page cache entries for this inode). We do not, 1065 * unfortunately have the option of only flushing a range like 1066 * the VFS does. 1067 */ 1068 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 1069 rv = gfs2_glock_nq(&gh); 1070 if (rv) 1071 goto out_uninit; 1072 rv = gfs2_ok_for_dio(ip, offset); 1073 if (rv != 1) 1074 goto out; /* dio not valid, fall back to buffered i/o */ 1075 1076 /* 1077 * Now since we are holding a deferred (CW) lock at this point, you 1078 * might be wondering why this is ever needed. There is a case however 1079 * where we've granted a deferred local lock against a cached exclusive 1080 * glock. That is ok provided all granted local locks are deferred, but 1081 * it also means that it is possible to encounter pages which are 1082 * cached and possibly also mapped. So here we check for that and sort 1083 * them out ahead of the dio. The glock state machine will take care of 1084 * everything else. 1085 * 1086 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in 1087 * the first place, mapping->nr_pages will always be zero. 1088 */ 1089 if (mapping->nrpages) { 1090 loff_t lstart = offset & ~(PAGE_SIZE - 1); 1091 loff_t len = iov_iter_count(iter); 1092 loff_t end = PAGE_ALIGN(offset + len) - 1; 1093 1094 rv = 0; 1095 if (len == 0) 1096 goto out; 1097 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags)) 1098 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len); 1099 rv = filemap_write_and_wait_range(mapping, lstart, end); 1100 if (rv) 1101 goto out; 1102 if (iov_iter_rw(iter) == WRITE) 1103 truncate_inode_pages_range(mapping, lstart, end); 1104 } 1105 1106 rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 1107 gfs2_get_block_direct, NULL, NULL, 0); 1108 out: 1109 gfs2_glock_dq(&gh); 1110 out_uninit: 1111 gfs2_holder_uninit(&gh); 1112 return rv; 1113 } 1114 1115 /** 1116 * gfs2_releasepage - free the metadata associated with a page 1117 * @page: the page that's being released 1118 * @gfp_mask: passed from Linux VFS, ignored by us 1119 * 1120 * Call try_to_free_buffers() if the buffers in this page can be 1121 * released. 1122 * 1123 * Returns: 0 1124 */ 1125 1126 int gfs2_releasepage(struct page *page, gfp_t gfp_mask) 1127 { 1128 struct address_space *mapping = page->mapping; 1129 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 1130 struct buffer_head *bh, *head; 1131 struct gfs2_bufdata *bd; 1132 1133 if (!page_has_buffers(page)) 1134 return 0; 1135 1136 /* 1137 * From xfs_vm_releasepage: mm accommodates an old ext3 case where 1138 * clean pages might not have had the dirty bit cleared. Thus, it can 1139 * send actual dirty pages to ->releasepage() via shrink_active_list(). 1140 * 1141 * As a workaround, we skip pages that contain dirty buffers below. 1142 * Once ->releasepage isn't called on dirty pages anymore, we can warn 1143 * on dirty buffers like we used to here again. 1144 */ 1145 1146 gfs2_log_lock(sdp); 1147 spin_lock(&sdp->sd_ail_lock); 1148 head = bh = page_buffers(page); 1149 do { 1150 if (atomic_read(&bh->b_count)) 1151 goto cannot_release; 1152 bd = bh->b_private; 1153 if (bd && bd->bd_tr) 1154 goto cannot_release; 1155 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh))) 1156 goto cannot_release; 1157 bh = bh->b_this_page; 1158 } while(bh != head); 1159 spin_unlock(&sdp->sd_ail_lock); 1160 1161 head = bh = page_buffers(page); 1162 do { 1163 bd = bh->b_private; 1164 if (bd) { 1165 gfs2_assert_warn(sdp, bd->bd_bh == bh); 1166 if (!list_empty(&bd->bd_list)) 1167 list_del_init(&bd->bd_list); 1168 bd->bd_bh = NULL; 1169 bh->b_private = NULL; 1170 kmem_cache_free(gfs2_bufdata_cachep, bd); 1171 } 1172 1173 bh = bh->b_this_page; 1174 } while (bh != head); 1175 gfs2_log_unlock(sdp); 1176 1177 return try_to_free_buffers(page); 1178 1179 cannot_release: 1180 spin_unlock(&sdp->sd_ail_lock); 1181 gfs2_log_unlock(sdp); 1182 return 0; 1183 } 1184 1185 static const struct address_space_operations gfs2_writeback_aops = { 1186 .writepage = gfs2_writepage, 1187 .writepages = gfs2_writepages, 1188 .readpage = gfs2_readpage, 1189 .readpages = gfs2_readpages, 1190 .write_begin = gfs2_write_begin, 1191 .write_end = gfs2_write_end, 1192 .bmap = gfs2_bmap, 1193 .invalidatepage = gfs2_invalidatepage, 1194 .releasepage = gfs2_releasepage, 1195 .direct_IO = gfs2_direct_IO, 1196 .migratepage = buffer_migrate_page, 1197 .is_partially_uptodate = block_is_partially_uptodate, 1198 .error_remove_page = generic_error_remove_page, 1199 }; 1200 1201 static const struct address_space_operations gfs2_ordered_aops = { 1202 .writepage = gfs2_writepage, 1203 .writepages = gfs2_writepages, 1204 .readpage = gfs2_readpage, 1205 .readpages = gfs2_readpages, 1206 .write_begin = gfs2_write_begin, 1207 .write_end = gfs2_write_end, 1208 .set_page_dirty = __set_page_dirty_buffers, 1209 .bmap = gfs2_bmap, 1210 .invalidatepage = gfs2_invalidatepage, 1211 .releasepage = gfs2_releasepage, 1212 .direct_IO = gfs2_direct_IO, 1213 .migratepage = buffer_migrate_page, 1214 .is_partially_uptodate = block_is_partially_uptodate, 1215 .error_remove_page = generic_error_remove_page, 1216 }; 1217 1218 static const struct address_space_operations gfs2_jdata_aops = { 1219 .writepage = gfs2_jdata_writepage, 1220 .writepages = gfs2_jdata_writepages, 1221 .readpage = gfs2_readpage, 1222 .readpages = gfs2_readpages, 1223 .write_begin = gfs2_write_begin, 1224 .write_end = gfs2_write_end, 1225 .set_page_dirty = jdata_set_page_dirty, 1226 .bmap = gfs2_bmap, 1227 .invalidatepage = gfs2_invalidatepage, 1228 .releasepage = gfs2_releasepage, 1229 .is_partially_uptodate = block_is_partially_uptodate, 1230 .error_remove_page = generic_error_remove_page, 1231 }; 1232 1233 void gfs2_set_aops(struct inode *inode) 1234 { 1235 struct gfs2_inode *ip = GFS2_I(inode); 1236 1237 if (gfs2_is_writeback(ip)) 1238 inode->i_mapping->a_ops = &gfs2_writeback_aops; 1239 else if (gfs2_is_ordered(ip)) 1240 inode->i_mapping->a_ops = &gfs2_ordered_aops; 1241 else if (gfs2_is_jdata(ip)) 1242 inode->i_mapping->a_ops = &gfs2_jdata_aops; 1243 else 1244 BUG(); 1245 } 1246 1247