xref: /openbmc/linux/fs/gfs2/aops.c (revision b1e71b06)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 
38 
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 				   unsigned int from, unsigned int to)
41 {
42 	struct buffer_head *head = page_buffers(page);
43 	unsigned int bsize = head->b_size;
44 	struct buffer_head *bh;
45 	unsigned int start, end;
46 
47 	for (bh = head, start = 0; bh != head || !start;
48 	     bh = bh->b_this_page, start = end) {
49 		end = start + bsize;
50 		if (end <= from || start >= to)
51 			continue;
52 		if (gfs2_is_jdata(ip))
53 			set_buffer_uptodate(bh);
54 		gfs2_trans_add_bh(ip->i_gl, bh, 0);
55 	}
56 }
57 
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67 
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 				  struct buffer_head *bh_result, int create)
70 {
71 	int error;
72 
73 	error = gfs2_block_map(inode, lblock, bh_result, 0);
74 	if (error)
75 		return error;
76 	if (!buffer_mapped(bh_result))
77 		return -EIO;
78 	return 0;
79 }
80 
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 				 struct buffer_head *bh_result, int create)
83 {
84 	return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86 
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94 
95 static int gfs2_writepage_common(struct page *page,
96 				 struct writeback_control *wbc)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct gfs2_inode *ip = GFS2_I(inode);
100 	struct gfs2_sbd *sdp = GFS2_SB(inode);
101 	loff_t i_size = i_size_read(inode);
102 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 	unsigned offset;
104 
105 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 		goto out;
107 	if (current->journal_info)
108 		goto redirty;
109 	/* Is the page fully outside i_size? (truncate in progress) */
110 	offset = i_size & (PAGE_CACHE_SIZE-1);
111 	if (page->index > end_index || (page->index == end_index && !offset)) {
112 		page->mapping->a_ops->invalidatepage(page, 0);
113 		goto out;
114 	}
115 	return 1;
116 redirty:
117 	redirty_page_for_writepage(wbc, page);
118 out:
119 	unlock_page(page);
120 	return 0;
121 }
122 
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129 
130 static int gfs2_writeback_writepage(struct page *page,
131 				    struct writeback_control *wbc)
132 {
133 	int ret;
134 
135 	ret = gfs2_writepage_common(page, wbc);
136 	if (ret <= 0)
137 		return ret;
138 
139 	ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
140 	if (ret == -EAGAIN)
141 		ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
142 	return ret;
143 }
144 
145 /**
146  * gfs2_ordered_writepage - Write page for ordered data files
147  * @page: The page to write
148  * @wbc: The writeback control
149  *
150  */
151 
152 static int gfs2_ordered_writepage(struct page *page,
153 				  struct writeback_control *wbc)
154 {
155 	struct inode *inode = page->mapping->host;
156 	struct gfs2_inode *ip = GFS2_I(inode);
157 	int ret;
158 
159 	ret = gfs2_writepage_common(page, wbc);
160 	if (ret <= 0)
161 		return ret;
162 
163 	if (!page_has_buffers(page)) {
164 		create_empty_buffers(page, inode->i_sb->s_blocksize,
165 				     (1 << BH_Dirty)|(1 << BH_Uptodate));
166 	}
167 	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
168 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170 
171 /**
172  * __gfs2_jdata_writepage - The core of jdata writepage
173  * @page: The page to write
174  * @wbc: The writeback control
175  *
176  * This is shared between writepage and writepages and implements the
177  * core of the writepage operation. If a transaction is required then
178  * PageChecked will have been set and the transaction will have
179  * already been started before this is called.
180  */
181 
182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
183 {
184 	struct inode *inode = page->mapping->host;
185 	struct gfs2_inode *ip = GFS2_I(inode);
186 	struct gfs2_sbd *sdp = GFS2_SB(inode);
187 
188 	if (PageChecked(page)) {
189 		ClearPageChecked(page);
190 		if (!page_has_buffers(page)) {
191 			create_empty_buffers(page, inode->i_sb->s_blocksize,
192 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
193 		}
194 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
195 	}
196 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
197 }
198 
199 /**
200  * gfs2_jdata_writepage - Write complete page
201  * @page: Page to write
202  *
203  * Returns: errno
204  *
205  */
206 
207 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
208 {
209 	struct inode *inode = page->mapping->host;
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 	int done_trans = 0;
213 
214 	if (PageChecked(page)) {
215 		if (wbc->sync_mode != WB_SYNC_ALL)
216 			goto out_ignore;
217 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
218 		if (ret)
219 			goto out_ignore;
220 		done_trans = 1;
221 	}
222 	ret = gfs2_writepage_common(page, wbc);
223 	if (ret > 0)
224 		ret = __gfs2_jdata_writepage(page, wbc);
225 	if (done_trans)
226 		gfs2_trans_end(sdp);
227 	return ret;
228 
229 out_ignore:
230 	redirty_page_for_writepage(wbc, page);
231 	unlock_page(page);
232 	return 0;
233 }
234 
235 /**
236  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
237  * @mapping: The mapping to write
238  * @wbc: Write-back control
239  *
240  * For the data=writeback case we can already ignore buffer heads
241  * and write whole extents at once. This is a big reduction in the
242  * number of I/O requests we send and the bmap calls we make in this case.
243  */
244 static int gfs2_writeback_writepages(struct address_space *mapping,
245 				     struct writeback_control *wbc)
246 {
247 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
248 }
249 
250 /**
251  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252  * @mapping: The mapping
253  * @wbc: The writeback control
254  * @writepage: The writepage function to call for each page
255  * @pvec: The vector of pages
256  * @nr_pages: The number of pages to write
257  *
258  * Returns: non-zero if loop should terminate, zero otherwise
259  */
260 
261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262 				    struct writeback_control *wbc,
263 				    struct pagevec *pvec,
264 				    int nr_pages, pgoff_t end)
265 {
266 	struct inode *inode = mapping->host;
267 	struct gfs2_sbd *sdp = GFS2_SB(inode);
268 	loff_t i_size = i_size_read(inode);
269 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
270 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
271 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
272 	struct backing_dev_info *bdi = mapping->backing_dev_info;
273 	int i;
274 	int ret;
275 
276 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
277 	if (ret < 0)
278 		return ret;
279 
280 	for(i = 0; i < nr_pages; i++) {
281 		struct page *page = pvec->pages[i];
282 
283 		lock_page(page);
284 
285 		if (unlikely(page->mapping != mapping)) {
286 			unlock_page(page);
287 			continue;
288 		}
289 
290 		if (!wbc->range_cyclic && page->index > end) {
291 			ret = 1;
292 			unlock_page(page);
293 			continue;
294 		}
295 
296 		if (wbc->sync_mode != WB_SYNC_NONE)
297 			wait_on_page_writeback(page);
298 
299 		if (PageWriteback(page) ||
300 		    !clear_page_dirty_for_io(page)) {
301 			unlock_page(page);
302 			continue;
303 		}
304 
305 		/* Is the page fully outside i_size? (truncate in progress) */
306 		if (page->index > end_index || (page->index == end_index && !offset)) {
307 			page->mapping->a_ops->invalidatepage(page, 0);
308 			unlock_page(page);
309 			continue;
310 		}
311 
312 		ret = __gfs2_jdata_writepage(page, wbc);
313 
314 		if (ret || (--(wbc->nr_to_write) <= 0))
315 			ret = 1;
316 		if (wbc->nonblocking && bdi_write_congested(bdi)) {
317 			wbc->encountered_congestion = 1;
318 			ret = 1;
319 		}
320 
321 	}
322 	gfs2_trans_end(sdp);
323 	return ret;
324 }
325 
326 /**
327  * gfs2_write_cache_jdata - Like write_cache_pages but different
328  * @mapping: The mapping to write
329  * @wbc: The writeback control
330  * @writepage: The writepage function to call
331  * @data: The data to pass to writepage
332  *
333  * The reason that we use our own function here is that we need to
334  * start transactions before we grab page locks. This allows us
335  * to get the ordering right.
336  */
337 
338 static int gfs2_write_cache_jdata(struct address_space *mapping,
339 				  struct writeback_control *wbc)
340 {
341 	struct backing_dev_info *bdi = mapping->backing_dev_info;
342 	int ret = 0;
343 	int done = 0;
344 	struct pagevec pvec;
345 	int nr_pages;
346 	pgoff_t index;
347 	pgoff_t end;
348 	int scanned = 0;
349 	int range_whole = 0;
350 
351 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
352 		wbc->encountered_congestion = 1;
353 		return 0;
354 	}
355 
356 	pagevec_init(&pvec, 0);
357 	if (wbc->range_cyclic) {
358 		index = mapping->writeback_index; /* Start from prev offset */
359 		end = -1;
360 	} else {
361 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
362 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
363 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
364 			range_whole = 1;
365 		scanned = 1;
366 	}
367 
368 retry:
369 	 while (!done && (index <= end) &&
370 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
371 					       PAGECACHE_TAG_DIRTY,
372 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
373 		scanned = 1;
374 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
375 		if (ret)
376 			done = 1;
377 		if (ret > 0)
378 			ret = 0;
379 
380 		pagevec_release(&pvec);
381 		cond_resched();
382 	}
383 
384 	if (!scanned && !done) {
385 		/*
386 		 * We hit the last page and there is more work to be done: wrap
387 		 * back to the start of the file
388 		 */
389 		scanned = 1;
390 		index = 0;
391 		goto retry;
392 	}
393 
394 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
395 		mapping->writeback_index = index;
396 	return ret;
397 }
398 
399 
400 /**
401  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
402  * @mapping: The mapping to write
403  * @wbc: The writeback control
404  *
405  */
406 
407 static int gfs2_jdata_writepages(struct address_space *mapping,
408 				 struct writeback_control *wbc)
409 {
410 	struct gfs2_inode *ip = GFS2_I(mapping->host);
411 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
412 	int ret;
413 
414 	ret = gfs2_write_cache_jdata(mapping, wbc);
415 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
416 		gfs2_log_flush(sdp, ip->i_gl);
417 		ret = gfs2_write_cache_jdata(mapping, wbc);
418 	}
419 	return ret;
420 }
421 
422 /**
423  * stuffed_readpage - Fill in a Linux page with stuffed file data
424  * @ip: the inode
425  * @page: the page
426  *
427  * Returns: errno
428  */
429 
430 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
431 {
432 	struct buffer_head *dibh;
433 	void *kaddr;
434 	int error;
435 
436 	/*
437 	 * Due to the order of unstuffing files and ->fault(), we can be
438 	 * asked for a zero page in the case of a stuffed file being extended,
439 	 * so we need to supply one here. It doesn't happen often.
440 	 */
441 	if (unlikely(page->index)) {
442 		zero_user(page, 0, PAGE_CACHE_SIZE);
443 		SetPageUptodate(page);
444 		return 0;
445 	}
446 
447 	error = gfs2_meta_inode_buffer(ip, &dibh);
448 	if (error)
449 		return error;
450 
451 	kaddr = kmap_atomic(page, KM_USER0);
452 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode),
453 	       ip->i_disksize);
454 	memset(kaddr + ip->i_disksize, 0, PAGE_CACHE_SIZE - ip->i_disksize);
455 	kunmap_atomic(kaddr, KM_USER0);
456 	flush_dcache_page(page);
457 	brelse(dibh);
458 	SetPageUptodate(page);
459 
460 	return 0;
461 }
462 
463 
464 /**
465  * __gfs2_readpage - readpage
466  * @file: The file to read a page for
467  * @page: The page to read
468  *
469  * This is the core of gfs2's readpage. Its used by the internal file
470  * reading code as in that case we already hold the glock. Also its
471  * called by gfs2_readpage() once the required lock has been granted.
472  *
473  */
474 
475 static int __gfs2_readpage(void *file, struct page *page)
476 {
477 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
478 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
479 	int error;
480 
481 	if (gfs2_is_stuffed(ip)) {
482 		error = stuffed_readpage(ip, page);
483 		unlock_page(page);
484 	} else {
485 		error = mpage_readpage(page, gfs2_block_map);
486 	}
487 
488 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
489 		return -EIO;
490 
491 	return error;
492 }
493 
494 /**
495  * gfs2_readpage - read a page of a file
496  * @file: The file to read
497  * @page: The page of the file
498  *
499  * This deals with the locking required. We have to unlock and
500  * relock the page in order to get the locking in the right
501  * order.
502  */
503 
504 static int gfs2_readpage(struct file *file, struct page *page)
505 {
506 	struct address_space *mapping = page->mapping;
507 	struct gfs2_inode *ip = GFS2_I(mapping->host);
508 	struct gfs2_holder gh;
509 	int error;
510 
511 	unlock_page(page);
512 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
513 	error = gfs2_glock_nq(&gh);
514 	if (unlikely(error))
515 		goto out;
516 	error = AOP_TRUNCATED_PAGE;
517 	lock_page(page);
518 	if (page->mapping == mapping && !PageUptodate(page))
519 		error = __gfs2_readpage(file, page);
520 	else
521 		unlock_page(page);
522 	gfs2_glock_dq(&gh);
523 out:
524 	gfs2_holder_uninit(&gh);
525 	if (error && error != AOP_TRUNCATED_PAGE)
526 		lock_page(page);
527 	return error;
528 }
529 
530 /**
531  * gfs2_internal_read - read an internal file
532  * @ip: The gfs2 inode
533  * @ra_state: The readahead state (or NULL for no readahead)
534  * @buf: The buffer to fill
535  * @pos: The file position
536  * @size: The amount to read
537  *
538  */
539 
540 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
541                        char *buf, loff_t *pos, unsigned size)
542 {
543 	struct address_space *mapping = ip->i_inode.i_mapping;
544 	unsigned long index = *pos / PAGE_CACHE_SIZE;
545 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
546 	unsigned copied = 0;
547 	unsigned amt;
548 	struct page *page;
549 	void *p;
550 
551 	do {
552 		amt = size - copied;
553 		if (offset + size > PAGE_CACHE_SIZE)
554 			amt = PAGE_CACHE_SIZE - offset;
555 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
556 		if (IS_ERR(page))
557 			return PTR_ERR(page);
558 		p = kmap_atomic(page, KM_USER0);
559 		memcpy(buf + copied, p + offset, amt);
560 		kunmap_atomic(p, KM_USER0);
561 		mark_page_accessed(page);
562 		page_cache_release(page);
563 		copied += amt;
564 		index++;
565 		offset = 0;
566 	} while(copied < size);
567 	(*pos) += size;
568 	return size;
569 }
570 
571 /**
572  * gfs2_readpages - Read a bunch of pages at once
573  *
574  * Some notes:
575  * 1. This is only for readahead, so we can simply ignore any things
576  *    which are slightly inconvenient (such as locking conflicts between
577  *    the page lock and the glock) and return having done no I/O. Its
578  *    obviously not something we'd want to do on too regular a basis.
579  *    Any I/O we ignore at this time will be done via readpage later.
580  * 2. We don't handle stuffed files here we let readpage do the honours.
581  * 3. mpage_readpages() does most of the heavy lifting in the common case.
582  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
583  */
584 
585 static int gfs2_readpages(struct file *file, struct address_space *mapping,
586 			  struct list_head *pages, unsigned nr_pages)
587 {
588 	struct inode *inode = mapping->host;
589 	struct gfs2_inode *ip = GFS2_I(inode);
590 	struct gfs2_sbd *sdp = GFS2_SB(inode);
591 	struct gfs2_holder gh;
592 	int ret;
593 
594 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
595 	ret = gfs2_glock_nq(&gh);
596 	if (unlikely(ret))
597 		goto out_uninit;
598 	if (!gfs2_is_stuffed(ip))
599 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
600 	gfs2_glock_dq(&gh);
601 out_uninit:
602 	gfs2_holder_uninit(&gh);
603 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
604 		ret = -EIO;
605 	return ret;
606 }
607 
608 /**
609  * gfs2_write_begin - Begin to write to a file
610  * @file: The file to write to
611  * @mapping: The mapping in which to write
612  * @pos: The file offset at which to start writing
613  * @len: Length of the write
614  * @flags: Various flags
615  * @pagep: Pointer to return the page
616  * @fsdata: Pointer to return fs data (unused by GFS2)
617  *
618  * Returns: errno
619  */
620 
621 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
622 			    loff_t pos, unsigned len, unsigned flags,
623 			    struct page **pagep, void **fsdata)
624 {
625 	struct gfs2_inode *ip = GFS2_I(mapping->host);
626 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
627 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
628 	int alloc_required;
629 	int error = 0;
630 	struct gfs2_alloc *al;
631 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
632 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
633 	unsigned to = from + len;
634 	struct page *page;
635 
636 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
637 	error = gfs2_glock_nq(&ip->i_gh);
638 	if (unlikely(error))
639 		goto out_uninit;
640 
641 	error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
642 	if (error)
643 		goto out_unlock;
644 
645 	if (alloc_required || gfs2_is_jdata(ip))
646 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
647 
648 	if (alloc_required) {
649 		al = gfs2_alloc_get(ip);
650 		if (!al) {
651 			error = -ENOMEM;
652 			goto out_unlock;
653 		}
654 
655 		error = gfs2_quota_lock_check(ip);
656 		if (error)
657 			goto out_alloc_put;
658 
659 		al->al_requested = data_blocks + ind_blocks;
660 		error = gfs2_inplace_reserve(ip);
661 		if (error)
662 			goto out_qunlock;
663 	}
664 
665 	rblocks = RES_DINODE + ind_blocks;
666 	if (gfs2_is_jdata(ip))
667 		rblocks += data_blocks ? data_blocks : 1;
668 	if (ind_blocks || data_blocks)
669 		rblocks += RES_STATFS + RES_QUOTA;
670 
671 	error = gfs2_trans_begin(sdp, rblocks,
672 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
673 	if (error)
674 		goto out_trans_fail;
675 
676 	error = -ENOMEM;
677 	flags |= AOP_FLAG_NOFS;
678 	page = grab_cache_page_write_begin(mapping, index, flags);
679 	*pagep = page;
680 	if (unlikely(!page))
681 		goto out_endtrans;
682 
683 	if (gfs2_is_stuffed(ip)) {
684 		error = 0;
685 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
686 			error = gfs2_unstuff_dinode(ip, page);
687 			if (error == 0)
688 				goto prepare_write;
689 		} else if (!PageUptodate(page)) {
690 			error = stuffed_readpage(ip, page);
691 		}
692 		goto out;
693 	}
694 
695 prepare_write:
696 	error = block_prepare_write(page, from, to, gfs2_block_map);
697 out:
698 	if (error == 0)
699 		return 0;
700 
701 	page_cache_release(page);
702 	if (pos + len > ip->i_inode.i_size)
703 		vmtruncate(&ip->i_inode, ip->i_inode.i_size);
704 out_endtrans:
705 	gfs2_trans_end(sdp);
706 out_trans_fail:
707 	if (alloc_required) {
708 		gfs2_inplace_release(ip);
709 out_qunlock:
710 		gfs2_quota_unlock(ip);
711 out_alloc_put:
712 		gfs2_alloc_put(ip);
713 	}
714 out_unlock:
715 	gfs2_glock_dq(&ip->i_gh);
716 out_uninit:
717 	gfs2_holder_uninit(&ip->i_gh);
718 	return error;
719 }
720 
721 /**
722  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
723  * @inode: the rindex inode
724  */
725 static void adjust_fs_space(struct inode *inode)
726 {
727 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
728 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
729 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
730 	u64 fs_total, new_free;
731 
732 	/* Total up the file system space, according to the latest rindex. */
733 	fs_total = gfs2_ri_total(sdp);
734 
735 	spin_lock(&sdp->sd_statfs_spin);
736 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
737 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
738 	else
739 		new_free = 0;
740 	spin_unlock(&sdp->sd_statfs_spin);
741 	fs_warn(sdp, "File system extended by %llu blocks.\n",
742 		(unsigned long long)new_free);
743 	gfs2_statfs_change(sdp, new_free, new_free, 0);
744 }
745 
746 /**
747  * gfs2_stuffed_write_end - Write end for stuffed files
748  * @inode: The inode
749  * @dibh: The buffer_head containing the on-disk inode
750  * @pos: The file position
751  * @len: The length of the write
752  * @copied: How much was actually copied by the VFS
753  * @page: The page
754  *
755  * This copies the data from the page into the inode block after
756  * the inode data structure itself.
757  *
758  * Returns: errno
759  */
760 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
761 				  loff_t pos, unsigned len, unsigned copied,
762 				  struct page *page)
763 {
764 	struct gfs2_inode *ip = GFS2_I(inode);
765 	struct gfs2_sbd *sdp = GFS2_SB(inode);
766 	u64 to = pos + copied;
767 	void *kaddr;
768 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
769 	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
770 
771 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
772 	kaddr = kmap_atomic(page, KM_USER0);
773 	memcpy(buf + pos, kaddr + pos, copied);
774 	memset(kaddr + pos + copied, 0, len - copied);
775 	flush_dcache_page(page);
776 	kunmap_atomic(kaddr, KM_USER0);
777 
778 	if (!PageUptodate(page))
779 		SetPageUptodate(page);
780 	unlock_page(page);
781 	page_cache_release(page);
782 
783 	if (copied) {
784 		if (inode->i_size < to) {
785 			i_size_write(inode, to);
786 			ip->i_disksize = inode->i_size;
787 		}
788 		gfs2_dinode_out(ip, di);
789 		mark_inode_dirty(inode);
790 	}
791 
792 	if (inode == sdp->sd_rindex)
793 		adjust_fs_space(inode);
794 
795 	brelse(dibh);
796 	gfs2_trans_end(sdp);
797 	gfs2_glock_dq(&ip->i_gh);
798 	gfs2_holder_uninit(&ip->i_gh);
799 	return copied;
800 }
801 
802 /**
803  * gfs2_write_end
804  * @file: The file to write to
805  * @mapping: The address space to write to
806  * @pos: The file position
807  * @len: The length of the data
808  * @copied:
809  * @page: The page that has been written
810  * @fsdata: The fsdata (unused in GFS2)
811  *
812  * The main write_end function for GFS2. We have a separate one for
813  * stuffed files as they are slightly different, otherwise we just
814  * put our locking around the VFS provided functions.
815  *
816  * Returns: errno
817  */
818 
819 static int gfs2_write_end(struct file *file, struct address_space *mapping,
820 			  loff_t pos, unsigned len, unsigned copied,
821 			  struct page *page, void *fsdata)
822 {
823 	struct inode *inode = page->mapping->host;
824 	struct gfs2_inode *ip = GFS2_I(inode);
825 	struct gfs2_sbd *sdp = GFS2_SB(inode);
826 	struct buffer_head *dibh;
827 	struct gfs2_alloc *al = ip->i_alloc;
828 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
829 	unsigned int to = from + len;
830 	int ret;
831 
832 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
833 
834 	ret = gfs2_meta_inode_buffer(ip, &dibh);
835 	if (unlikely(ret)) {
836 		unlock_page(page);
837 		page_cache_release(page);
838 		goto failed;
839 	}
840 
841 	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
842 
843 	if (gfs2_is_stuffed(ip))
844 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
845 
846 	if (!gfs2_is_writeback(ip))
847 		gfs2_page_add_databufs(ip, page, from, to);
848 
849 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
850 	if (ret > 0) {
851 		if (inode->i_size > ip->i_disksize)
852 			ip->i_disksize = inode->i_size;
853 		gfs2_dinode_out(ip, dibh->b_data);
854 		mark_inode_dirty(inode);
855 	}
856 
857 	if (inode == sdp->sd_rindex)
858 		adjust_fs_space(inode);
859 
860 	brelse(dibh);
861 	gfs2_trans_end(sdp);
862 failed:
863 	if (al) {
864 		gfs2_inplace_release(ip);
865 		gfs2_quota_unlock(ip);
866 		gfs2_alloc_put(ip);
867 	}
868 	gfs2_glock_dq(&ip->i_gh);
869 	gfs2_holder_uninit(&ip->i_gh);
870 	return ret;
871 }
872 
873 /**
874  * gfs2_set_page_dirty - Page dirtying function
875  * @page: The page to dirty
876  *
877  * Returns: 1 if it dirtyed the page, or 0 otherwise
878  */
879 
880 static int gfs2_set_page_dirty(struct page *page)
881 {
882 	SetPageChecked(page);
883 	return __set_page_dirty_buffers(page);
884 }
885 
886 /**
887  * gfs2_bmap - Block map function
888  * @mapping: Address space info
889  * @lblock: The block to map
890  *
891  * Returns: The disk address for the block or 0 on hole or error
892  */
893 
894 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
895 {
896 	struct gfs2_inode *ip = GFS2_I(mapping->host);
897 	struct gfs2_holder i_gh;
898 	sector_t dblock = 0;
899 	int error;
900 
901 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
902 	if (error)
903 		return 0;
904 
905 	if (!gfs2_is_stuffed(ip))
906 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
907 
908 	gfs2_glock_dq_uninit(&i_gh);
909 
910 	return dblock;
911 }
912 
913 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
914 {
915 	struct gfs2_bufdata *bd;
916 
917 	lock_buffer(bh);
918 	gfs2_log_lock(sdp);
919 	clear_buffer_dirty(bh);
920 	bd = bh->b_private;
921 	if (bd) {
922 		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
923 			list_del_init(&bd->bd_le.le_list);
924 		else
925 			gfs2_remove_from_journal(bh, current->journal_info, 0);
926 	}
927 	bh->b_bdev = NULL;
928 	clear_buffer_mapped(bh);
929 	clear_buffer_req(bh);
930 	clear_buffer_new(bh);
931 	gfs2_log_unlock(sdp);
932 	unlock_buffer(bh);
933 }
934 
935 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
936 {
937 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
938 	struct buffer_head *bh, *head;
939 	unsigned long pos = 0;
940 
941 	BUG_ON(!PageLocked(page));
942 	if (offset == 0)
943 		ClearPageChecked(page);
944 	if (!page_has_buffers(page))
945 		goto out;
946 
947 	bh = head = page_buffers(page);
948 	do {
949 		if (offset <= pos)
950 			gfs2_discard(sdp, bh);
951 		pos += bh->b_size;
952 		bh = bh->b_this_page;
953 	} while (bh != head);
954 out:
955 	if (offset == 0)
956 		try_to_release_page(page, 0);
957 }
958 
959 /**
960  * gfs2_ok_for_dio - check that dio is valid on this file
961  * @ip: The inode
962  * @rw: READ or WRITE
963  * @offset: The offset at which we are reading or writing
964  *
965  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
966  *          1 (to accept the i/o request)
967  */
968 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
969 {
970 	/*
971 	 * Should we return an error here? I can't see that O_DIRECT for
972 	 * a stuffed file makes any sense. For now we'll silently fall
973 	 * back to buffered I/O
974 	 */
975 	if (gfs2_is_stuffed(ip))
976 		return 0;
977 
978 	if (offset >= i_size_read(&ip->i_inode))
979 		return 0;
980 	return 1;
981 }
982 
983 
984 
985 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
986 			      const struct iovec *iov, loff_t offset,
987 			      unsigned long nr_segs)
988 {
989 	struct file *file = iocb->ki_filp;
990 	struct inode *inode = file->f_mapping->host;
991 	struct gfs2_inode *ip = GFS2_I(inode);
992 	struct gfs2_holder gh;
993 	int rv;
994 
995 	/*
996 	 * Deferred lock, even if its a write, since we do no allocation
997 	 * on this path. All we need change is atime, and this lock mode
998 	 * ensures that other nodes have flushed their buffered read caches
999 	 * (i.e. their page cache entries for this inode). We do not,
1000 	 * unfortunately have the option of only flushing a range like
1001 	 * the VFS does.
1002 	 */
1003 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1004 	rv = gfs2_glock_nq(&gh);
1005 	if (rv)
1006 		return rv;
1007 	rv = gfs2_ok_for_dio(ip, rw, offset);
1008 	if (rv != 1)
1009 		goto out; /* dio not valid, fall back to buffered i/o */
1010 
1011 	rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1012 					   iov, offset, nr_segs,
1013 					   gfs2_get_block_direct, NULL);
1014 out:
1015 	gfs2_glock_dq_m(1, &gh);
1016 	gfs2_holder_uninit(&gh);
1017 	return rv;
1018 }
1019 
1020 /**
1021  * gfs2_releasepage - free the metadata associated with a page
1022  * @page: the page that's being released
1023  * @gfp_mask: passed from Linux VFS, ignored by us
1024  *
1025  * Call try_to_free_buffers() if the buffers in this page can be
1026  * released.
1027  *
1028  * Returns: 0
1029  */
1030 
1031 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1032 {
1033 	struct inode *aspace = page->mapping->host;
1034 	struct gfs2_sbd *sdp = aspace->i_sb->s_fs_info;
1035 	struct buffer_head *bh, *head;
1036 	struct gfs2_bufdata *bd;
1037 
1038 	if (!page_has_buffers(page))
1039 		return 0;
1040 
1041 	gfs2_log_lock(sdp);
1042 	head = bh = page_buffers(page);
1043 	do {
1044 		if (atomic_read(&bh->b_count))
1045 			goto cannot_release;
1046 		bd = bh->b_private;
1047 		if (bd && bd->bd_ail)
1048 			goto cannot_release;
1049 		gfs2_assert_warn(sdp, !buffer_pinned(bh));
1050 		gfs2_assert_warn(sdp, !buffer_dirty(bh));
1051 		bh = bh->b_this_page;
1052 	} while(bh != head);
1053 	gfs2_log_unlock(sdp);
1054 
1055 	head = bh = page_buffers(page);
1056 	do {
1057 		gfs2_log_lock(sdp);
1058 		bd = bh->b_private;
1059 		if (bd) {
1060 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1061 			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1062 			if (!list_empty(&bd->bd_le.le_list)) {
1063 				if (!buffer_pinned(bh))
1064 					list_del_init(&bd->bd_le.le_list);
1065 				else
1066 					bd = NULL;
1067 			}
1068 			if (bd)
1069 				bd->bd_bh = NULL;
1070 			bh->b_private = NULL;
1071 		}
1072 		gfs2_log_unlock(sdp);
1073 		if (bd)
1074 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1075 
1076 		bh = bh->b_this_page;
1077 	} while (bh != head);
1078 
1079 	return try_to_free_buffers(page);
1080 cannot_release:
1081 	gfs2_log_unlock(sdp);
1082 	return 0;
1083 }
1084 
1085 static const struct address_space_operations gfs2_writeback_aops = {
1086 	.writepage = gfs2_writeback_writepage,
1087 	.writepages = gfs2_writeback_writepages,
1088 	.readpage = gfs2_readpage,
1089 	.readpages = gfs2_readpages,
1090 	.sync_page = block_sync_page,
1091 	.write_begin = gfs2_write_begin,
1092 	.write_end = gfs2_write_end,
1093 	.bmap = gfs2_bmap,
1094 	.invalidatepage = gfs2_invalidatepage,
1095 	.releasepage = gfs2_releasepage,
1096 	.direct_IO = gfs2_direct_IO,
1097 	.migratepage = buffer_migrate_page,
1098 	.is_partially_uptodate = block_is_partially_uptodate,
1099 };
1100 
1101 static const struct address_space_operations gfs2_ordered_aops = {
1102 	.writepage = gfs2_ordered_writepage,
1103 	.readpage = gfs2_readpage,
1104 	.readpages = gfs2_readpages,
1105 	.sync_page = block_sync_page,
1106 	.write_begin = gfs2_write_begin,
1107 	.write_end = gfs2_write_end,
1108 	.set_page_dirty = gfs2_set_page_dirty,
1109 	.bmap = gfs2_bmap,
1110 	.invalidatepage = gfs2_invalidatepage,
1111 	.releasepage = gfs2_releasepage,
1112 	.direct_IO = gfs2_direct_IO,
1113 	.migratepage = buffer_migrate_page,
1114 	.is_partially_uptodate = block_is_partially_uptodate,
1115 };
1116 
1117 static const struct address_space_operations gfs2_jdata_aops = {
1118 	.writepage = gfs2_jdata_writepage,
1119 	.writepages = gfs2_jdata_writepages,
1120 	.readpage = gfs2_readpage,
1121 	.readpages = gfs2_readpages,
1122 	.sync_page = block_sync_page,
1123 	.write_begin = gfs2_write_begin,
1124 	.write_end = gfs2_write_end,
1125 	.set_page_dirty = gfs2_set_page_dirty,
1126 	.bmap = gfs2_bmap,
1127 	.invalidatepage = gfs2_invalidatepage,
1128 	.releasepage = gfs2_releasepage,
1129 	.is_partially_uptodate = block_is_partially_uptodate,
1130 };
1131 
1132 void gfs2_set_aops(struct inode *inode)
1133 {
1134 	struct gfs2_inode *ip = GFS2_I(inode);
1135 
1136 	if (gfs2_is_writeback(ip))
1137 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1138 	else if (gfs2_is_ordered(ip))
1139 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1140 	else if (gfs2_is_jdata(ip))
1141 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1142 	else
1143 		BUG();
1144 }
1145 
1146