xref: /openbmc/linux/fs/gfs2/aops.c (revision aa1d19f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/spinlock.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/pagevec.h>
14 #include <linux/mpage.h>
15 #include <linux/fs.h>
16 #include <linux/writeback.h>
17 #include <linux/swap.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/backing-dev.h>
20 #include <linux/uio.h>
21 #include <trace/events/writeback.h>
22 #include <linux/sched/signal.h>
23 
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 #include "aops.h"
38 
39 
40 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
41 			    unsigned int from, unsigned int len)
42 {
43 	struct buffer_head *head = page_buffers(page);
44 	unsigned int bsize = head->b_size;
45 	struct buffer_head *bh;
46 	unsigned int to = from + len;
47 	unsigned int start, end;
48 
49 	for (bh = head, start = 0; bh != head || !start;
50 	     bh = bh->b_this_page, start = end) {
51 		end = start + bsize;
52 		if (end <= from)
53 			continue;
54 		if (start >= to)
55 			break;
56 		set_buffer_uptodate(bh);
57 		gfs2_trans_add_data(ip->i_gl, bh);
58 	}
59 }
60 
61 /**
62  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
63  * @inode: The inode
64  * @lblock: The block number to look up
65  * @bh_result: The buffer head to return the result in
66  * @create: Non-zero if we may add block to the file
67  *
68  * Returns: errno
69  */
70 
71 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
72 				  struct buffer_head *bh_result, int create)
73 {
74 	int error;
75 
76 	error = gfs2_block_map(inode, lblock, bh_result, 0);
77 	if (error)
78 		return error;
79 	if (!buffer_mapped(bh_result))
80 		return -EIO;
81 	return 0;
82 }
83 
84 /**
85  * gfs2_writepage_common - Common bits of writepage
86  * @page: The page to be written
87  * @wbc: The writeback control
88  *
89  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
90  */
91 
92 static int gfs2_writepage_common(struct page *page,
93 				 struct writeback_control *wbc)
94 {
95 	struct inode *inode = page->mapping->host;
96 	struct gfs2_inode *ip = GFS2_I(inode);
97 	struct gfs2_sbd *sdp = GFS2_SB(inode);
98 	loff_t i_size = i_size_read(inode);
99 	pgoff_t end_index = i_size >> PAGE_SHIFT;
100 	unsigned offset;
101 
102 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
103 		goto out;
104 	if (current->journal_info)
105 		goto redirty;
106 	/* Is the page fully outside i_size? (truncate in progress) */
107 	offset = i_size & (PAGE_SIZE-1);
108 	if (page->index > end_index || (page->index == end_index && !offset)) {
109 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
110 		goto out;
111 	}
112 	return 1;
113 redirty:
114 	redirty_page_for_writepage(wbc, page);
115 out:
116 	unlock_page(page);
117 	return 0;
118 }
119 
120 /**
121  * gfs2_writepage - Write page for writeback mappings
122  * @page: The page
123  * @wbc: The writeback control
124  *
125  */
126 
127 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
128 {
129 	int ret;
130 
131 	ret = gfs2_writepage_common(page, wbc);
132 	if (ret <= 0)
133 		return ret;
134 
135 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
136 }
137 
138 /* This is the same as calling block_write_full_page, but it also
139  * writes pages outside of i_size
140  */
141 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
142 				struct writeback_control *wbc)
143 {
144 	struct inode * const inode = page->mapping->host;
145 	loff_t i_size = i_size_read(inode);
146 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
147 	unsigned offset;
148 
149 	/*
150 	 * The page straddles i_size.  It must be zeroed out on each and every
151 	 * writepage invocation because it may be mmapped.  "A file is mapped
152 	 * in multiples of the page size.  For a file that is not a multiple of
153 	 * the  page size, the remaining memory is zeroed when mapped, and
154 	 * writes to that region are not written out to the file."
155 	 */
156 	offset = i_size & (PAGE_SIZE-1);
157 	if (page->index == end_index && offset)
158 		zero_user_segment(page, offset, PAGE_SIZE);
159 
160 	return __block_write_full_page(inode, page, get_block, wbc,
161 				       end_buffer_async_write);
162 }
163 
164 /**
165  * __gfs2_jdata_writepage - The core of jdata writepage
166  * @page: The page to write
167  * @wbc: The writeback control
168  *
169  * This is shared between writepage and writepages and implements the
170  * core of the writepage operation. If a transaction is required then
171  * PageChecked will have been set and the transaction will have
172  * already been started before this is called.
173  */
174 
175 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
176 {
177 	struct inode *inode = page->mapping->host;
178 	struct gfs2_inode *ip = GFS2_I(inode);
179 	struct gfs2_sbd *sdp = GFS2_SB(inode);
180 
181 	if (PageChecked(page)) {
182 		ClearPageChecked(page);
183 		if (!page_has_buffers(page)) {
184 			create_empty_buffers(page, inode->i_sb->s_blocksize,
185 					     BIT(BH_Dirty)|BIT(BH_Uptodate));
186 		}
187 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize);
188 	}
189 	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
190 }
191 
192 /**
193  * gfs2_jdata_writepage - Write complete page
194  * @page: Page to write
195  * @wbc: The writeback control
196  *
197  * Returns: errno
198  *
199  */
200 
201 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
202 {
203 	struct inode *inode = page->mapping->host;
204 	struct gfs2_inode *ip = GFS2_I(inode);
205 	struct gfs2_sbd *sdp = GFS2_SB(inode);
206 	int ret;
207 
208 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
209 		goto out;
210 	if (PageChecked(page) || current->journal_info)
211 		goto out_ignore;
212 	ret = __gfs2_jdata_writepage(page, wbc);
213 	return ret;
214 
215 out_ignore:
216 	redirty_page_for_writepage(wbc, page);
217 out:
218 	unlock_page(page);
219 	return 0;
220 }
221 
222 /**
223  * gfs2_writepages - Write a bunch of dirty pages back to disk
224  * @mapping: The mapping to write
225  * @wbc: Write-back control
226  *
227  * Used for both ordered and writeback modes.
228  */
229 static int gfs2_writepages(struct address_space *mapping,
230 			   struct writeback_control *wbc)
231 {
232 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
233 	int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
234 
235 	/*
236 	 * Even if we didn't write any pages here, we might still be holding
237 	 * dirty pages in the ail. We forcibly flush the ail because we don't
238 	 * want balance_dirty_pages() to loop indefinitely trying to write out
239 	 * pages held in the ail that it can't find.
240 	 */
241 	if (ret == 0)
242 		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
243 
244 	return ret;
245 }
246 
247 /**
248  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
249  * @mapping: The mapping
250  * @wbc: The writeback control
251  * @pvec: The vector of pages
252  * @nr_pages: The number of pages to write
253  * @done_index: Page index
254  *
255  * Returns: non-zero if loop should terminate, zero otherwise
256  */
257 
258 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
259 				    struct writeback_control *wbc,
260 				    struct pagevec *pvec,
261 				    int nr_pages,
262 				    pgoff_t *done_index)
263 {
264 	struct inode *inode = mapping->host;
265 	struct gfs2_sbd *sdp = GFS2_SB(inode);
266 	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
267 	int i;
268 	int ret;
269 
270 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
271 	if (ret < 0)
272 		return ret;
273 
274 	for(i = 0; i < nr_pages; i++) {
275 		struct page *page = pvec->pages[i];
276 
277 		*done_index = page->index;
278 
279 		lock_page(page);
280 
281 		if (unlikely(page->mapping != mapping)) {
282 continue_unlock:
283 			unlock_page(page);
284 			continue;
285 		}
286 
287 		if (!PageDirty(page)) {
288 			/* someone wrote it for us */
289 			goto continue_unlock;
290 		}
291 
292 		if (PageWriteback(page)) {
293 			if (wbc->sync_mode != WB_SYNC_NONE)
294 				wait_on_page_writeback(page);
295 			else
296 				goto continue_unlock;
297 		}
298 
299 		BUG_ON(PageWriteback(page));
300 		if (!clear_page_dirty_for_io(page))
301 			goto continue_unlock;
302 
303 		trace_wbc_writepage(wbc, inode_to_bdi(inode));
304 
305 		ret = __gfs2_jdata_writepage(page, wbc);
306 		if (unlikely(ret)) {
307 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
308 				unlock_page(page);
309 				ret = 0;
310 			} else {
311 
312 				/*
313 				 * done_index is set past this page,
314 				 * so media errors will not choke
315 				 * background writeout for the entire
316 				 * file. This has consequences for
317 				 * range_cyclic semantics (ie. it may
318 				 * not be suitable for data integrity
319 				 * writeout).
320 				 */
321 				*done_index = page->index + 1;
322 				ret = 1;
323 				break;
324 			}
325 		}
326 
327 		/*
328 		 * We stop writing back only if we are not doing
329 		 * integrity sync. In case of integrity sync we have to
330 		 * keep going until we have written all the pages
331 		 * we tagged for writeback prior to entering this loop.
332 		 */
333 		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
334 			ret = 1;
335 			break;
336 		}
337 
338 	}
339 	gfs2_trans_end(sdp);
340 	return ret;
341 }
342 
343 /**
344  * gfs2_write_cache_jdata - Like write_cache_pages but different
345  * @mapping: The mapping to write
346  * @wbc: The writeback control
347  *
348  * The reason that we use our own function here is that we need to
349  * start transactions before we grab page locks. This allows us
350  * to get the ordering right.
351  */
352 
353 static int gfs2_write_cache_jdata(struct address_space *mapping,
354 				  struct writeback_control *wbc)
355 {
356 	int ret = 0;
357 	int done = 0;
358 	struct pagevec pvec;
359 	int nr_pages;
360 	pgoff_t uninitialized_var(writeback_index);
361 	pgoff_t index;
362 	pgoff_t end;
363 	pgoff_t done_index;
364 	int cycled;
365 	int range_whole = 0;
366 	xa_mark_t tag;
367 
368 	pagevec_init(&pvec);
369 	if (wbc->range_cyclic) {
370 		writeback_index = mapping->writeback_index; /* prev offset */
371 		index = writeback_index;
372 		if (index == 0)
373 			cycled = 1;
374 		else
375 			cycled = 0;
376 		end = -1;
377 	} else {
378 		index = wbc->range_start >> PAGE_SHIFT;
379 		end = wbc->range_end >> PAGE_SHIFT;
380 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
381 			range_whole = 1;
382 		cycled = 1; /* ignore range_cyclic tests */
383 	}
384 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
385 		tag = PAGECACHE_TAG_TOWRITE;
386 	else
387 		tag = PAGECACHE_TAG_DIRTY;
388 
389 retry:
390 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
391 		tag_pages_for_writeback(mapping, index, end);
392 	done_index = index;
393 	while (!done && (index <= end)) {
394 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
395 				tag);
396 		if (nr_pages == 0)
397 			break;
398 
399 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
400 		if (ret)
401 			done = 1;
402 		if (ret > 0)
403 			ret = 0;
404 		pagevec_release(&pvec);
405 		cond_resched();
406 	}
407 
408 	if (!cycled && !done) {
409 		/*
410 		 * range_cyclic:
411 		 * We hit the last page and there is more work to be done: wrap
412 		 * back to the start of the file
413 		 */
414 		cycled = 1;
415 		index = 0;
416 		end = writeback_index - 1;
417 		goto retry;
418 	}
419 
420 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
421 		mapping->writeback_index = done_index;
422 
423 	return ret;
424 }
425 
426 
427 /**
428  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
429  * @mapping: The mapping to write
430  * @wbc: The writeback control
431  *
432  */
433 
434 static int gfs2_jdata_writepages(struct address_space *mapping,
435 				 struct writeback_control *wbc)
436 {
437 	struct gfs2_inode *ip = GFS2_I(mapping->host);
438 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
439 	int ret;
440 
441 	ret = gfs2_write_cache_jdata(mapping, wbc);
442 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
443 		gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
444 			       GFS2_LFC_JDATA_WPAGES);
445 		ret = gfs2_write_cache_jdata(mapping, wbc);
446 	}
447 	return ret;
448 }
449 
450 /**
451  * stuffed_readpage - Fill in a Linux page with stuffed file data
452  * @ip: the inode
453  * @page: the page
454  *
455  * Returns: errno
456  */
457 
458 int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
459 {
460 	struct buffer_head *dibh;
461 	u64 dsize = i_size_read(&ip->i_inode);
462 	void *kaddr;
463 	int error;
464 
465 	/*
466 	 * Due to the order of unstuffing files and ->fault(), we can be
467 	 * asked for a zero page in the case of a stuffed file being extended,
468 	 * so we need to supply one here. It doesn't happen often.
469 	 */
470 	if (unlikely(page->index)) {
471 		zero_user(page, 0, PAGE_SIZE);
472 		SetPageUptodate(page);
473 		return 0;
474 	}
475 
476 	error = gfs2_meta_inode_buffer(ip, &dibh);
477 	if (error)
478 		return error;
479 
480 	kaddr = kmap_atomic(page);
481 	if (dsize > gfs2_max_stuffed_size(ip))
482 		dsize = gfs2_max_stuffed_size(ip);
483 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
484 	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
485 	kunmap_atomic(kaddr);
486 	flush_dcache_page(page);
487 	brelse(dibh);
488 	SetPageUptodate(page);
489 
490 	return 0;
491 }
492 
493 
494 /**
495  * __gfs2_readpage - readpage
496  * @file: The file to read a page for
497  * @page: The page to read
498  *
499  * This is the core of gfs2's readpage. It's used by the internal file
500  * reading code as in that case we already hold the glock. Also it's
501  * called by gfs2_readpage() once the required lock has been granted.
502  */
503 
504 static int __gfs2_readpage(void *file, struct page *page)
505 {
506 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
507 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
508 
509 	int error;
510 
511 	if (i_blocksize(page->mapping->host) == PAGE_SIZE &&
512 	    !page_has_buffers(page)) {
513 		error = iomap_readpage(page, &gfs2_iomap_ops);
514 	} else if (gfs2_is_stuffed(ip)) {
515 		error = stuffed_readpage(ip, page);
516 		unlock_page(page);
517 	} else {
518 		error = mpage_readpage(page, gfs2_block_map);
519 	}
520 
521 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
522 		return -EIO;
523 
524 	return error;
525 }
526 
527 /**
528  * gfs2_readpage - read a page of a file
529  * @file: The file to read
530  * @page: The page of the file
531  *
532  * This deals with the locking required. We have to unlock and
533  * relock the page in order to get the locking in the right
534  * order.
535  */
536 
537 static int gfs2_readpage(struct file *file, struct page *page)
538 {
539 	struct address_space *mapping = page->mapping;
540 	struct gfs2_inode *ip = GFS2_I(mapping->host);
541 	struct gfs2_holder gh;
542 	int error;
543 
544 	unlock_page(page);
545 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
546 	error = gfs2_glock_nq(&gh);
547 	if (unlikely(error))
548 		goto out;
549 	error = AOP_TRUNCATED_PAGE;
550 	lock_page(page);
551 	if (page->mapping == mapping && !PageUptodate(page))
552 		error = __gfs2_readpage(file, page);
553 	else
554 		unlock_page(page);
555 	gfs2_glock_dq(&gh);
556 out:
557 	gfs2_holder_uninit(&gh);
558 	if (error && error != AOP_TRUNCATED_PAGE)
559 		lock_page(page);
560 	return error;
561 }
562 
563 /**
564  * gfs2_internal_read - read an internal file
565  * @ip: The gfs2 inode
566  * @buf: The buffer to fill
567  * @pos: The file position
568  * @size: The amount to read
569  *
570  */
571 
572 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
573                        unsigned size)
574 {
575 	struct address_space *mapping = ip->i_inode.i_mapping;
576 	unsigned long index = *pos / PAGE_SIZE;
577 	unsigned offset = *pos & (PAGE_SIZE - 1);
578 	unsigned copied = 0;
579 	unsigned amt;
580 	struct page *page;
581 	void *p;
582 
583 	do {
584 		amt = size - copied;
585 		if (offset + size > PAGE_SIZE)
586 			amt = PAGE_SIZE - offset;
587 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
588 		if (IS_ERR(page))
589 			return PTR_ERR(page);
590 		p = kmap_atomic(page);
591 		memcpy(buf + copied, p + offset, amt);
592 		kunmap_atomic(p);
593 		put_page(page);
594 		copied += amt;
595 		index++;
596 		offset = 0;
597 	} while(copied < size);
598 	(*pos) += size;
599 	return size;
600 }
601 
602 /**
603  * gfs2_readpages - Read a bunch of pages at once
604  * @file: The file to read from
605  * @mapping: Address space info
606  * @pages: List of pages to read
607  * @nr_pages: Number of pages to read
608  *
609  * Some notes:
610  * 1. This is only for readahead, so we can simply ignore any things
611  *    which are slightly inconvenient (such as locking conflicts between
612  *    the page lock and the glock) and return having done no I/O. Its
613  *    obviously not something we'd want to do on too regular a basis.
614  *    Any I/O we ignore at this time will be done via readpage later.
615  * 2. We don't handle stuffed files here we let readpage do the honours.
616  * 3. mpage_readpages() does most of the heavy lifting in the common case.
617  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
618  */
619 
620 static int gfs2_readpages(struct file *file, struct address_space *mapping,
621 			  struct list_head *pages, unsigned nr_pages)
622 {
623 	struct inode *inode = mapping->host;
624 	struct gfs2_inode *ip = GFS2_I(inode);
625 	struct gfs2_sbd *sdp = GFS2_SB(inode);
626 	struct gfs2_holder gh;
627 	int ret;
628 
629 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
630 	ret = gfs2_glock_nq(&gh);
631 	if (unlikely(ret))
632 		goto out_uninit;
633 	if (!gfs2_is_stuffed(ip))
634 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
635 	gfs2_glock_dq(&gh);
636 out_uninit:
637 	gfs2_holder_uninit(&gh);
638 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
639 		ret = -EIO;
640 	return ret;
641 }
642 
643 /**
644  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
645  * @inode: the rindex inode
646  */
647 void adjust_fs_space(struct inode *inode)
648 {
649 	struct gfs2_sbd *sdp = GFS2_SB(inode);
650 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
651 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
652 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
653 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
654 	struct buffer_head *m_bh, *l_bh;
655 	u64 fs_total, new_free;
656 
657 	if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0)
658 		return;
659 
660 	/* Total up the file system space, according to the latest rindex. */
661 	fs_total = gfs2_ri_total(sdp);
662 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
663 		goto out;
664 
665 	spin_lock(&sdp->sd_statfs_spin);
666 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
667 			      sizeof(struct gfs2_dinode));
668 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
669 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
670 	else
671 		new_free = 0;
672 	spin_unlock(&sdp->sd_statfs_spin);
673 	fs_warn(sdp, "File system extended by %llu blocks.\n",
674 		(unsigned long long)new_free);
675 	gfs2_statfs_change(sdp, new_free, new_free, 0);
676 
677 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
678 		goto out2;
679 	update_statfs(sdp, m_bh, l_bh);
680 	brelse(l_bh);
681 out2:
682 	brelse(m_bh);
683 out:
684 	sdp->sd_rindex_uptodate = 0;
685 	gfs2_trans_end(sdp);
686 }
687 
688 /**
689  * gfs2_stuffed_write_end - Write end for stuffed files
690  * @inode: The inode
691  * @dibh: The buffer_head containing the on-disk inode
692  * @pos: The file position
693  * @copied: How much was actually copied by the VFS
694  * @page: The page
695  *
696  * This copies the data from the page into the inode block after
697  * the inode data structure itself.
698  *
699  * Returns: copied bytes or errno
700  */
701 int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
702 			   loff_t pos, unsigned copied,
703 			   struct page *page)
704 {
705 	struct gfs2_inode *ip = GFS2_I(inode);
706 	u64 to = pos + copied;
707 	void *kaddr;
708 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
709 
710 	BUG_ON(pos + copied > gfs2_max_stuffed_size(ip));
711 
712 	kaddr = kmap_atomic(page);
713 	memcpy(buf + pos, kaddr + pos, copied);
714 	flush_dcache_page(page);
715 	kunmap_atomic(kaddr);
716 
717 	WARN_ON(!PageUptodate(page));
718 	unlock_page(page);
719 	put_page(page);
720 
721 	if (copied) {
722 		if (inode->i_size < to)
723 			i_size_write(inode, to);
724 		mark_inode_dirty(inode);
725 	}
726 	return copied;
727 }
728 
729 /**
730  * jdata_set_page_dirty - Page dirtying function
731  * @page: The page to dirty
732  *
733  * Returns: 1 if it dirtyed the page, or 0 otherwise
734  */
735 
736 static int jdata_set_page_dirty(struct page *page)
737 {
738 	SetPageChecked(page);
739 	return __set_page_dirty_buffers(page);
740 }
741 
742 /**
743  * gfs2_bmap - Block map function
744  * @mapping: Address space info
745  * @lblock: The block to map
746  *
747  * Returns: The disk address for the block or 0 on hole or error
748  */
749 
750 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
751 {
752 	struct gfs2_inode *ip = GFS2_I(mapping->host);
753 	struct gfs2_holder i_gh;
754 	sector_t dblock = 0;
755 	int error;
756 
757 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
758 	if (error)
759 		return 0;
760 
761 	if (!gfs2_is_stuffed(ip))
762 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
763 
764 	gfs2_glock_dq_uninit(&i_gh);
765 
766 	return dblock;
767 }
768 
769 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
770 {
771 	struct gfs2_bufdata *bd;
772 
773 	lock_buffer(bh);
774 	gfs2_log_lock(sdp);
775 	clear_buffer_dirty(bh);
776 	bd = bh->b_private;
777 	if (bd) {
778 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
779 			list_del_init(&bd->bd_list);
780 		else
781 			gfs2_remove_from_journal(bh, REMOVE_JDATA);
782 	}
783 	bh->b_bdev = NULL;
784 	clear_buffer_mapped(bh);
785 	clear_buffer_req(bh);
786 	clear_buffer_new(bh);
787 	gfs2_log_unlock(sdp);
788 	unlock_buffer(bh);
789 }
790 
791 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
792 				unsigned int length)
793 {
794 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
795 	unsigned int stop = offset + length;
796 	int partial_page = (offset || length < PAGE_SIZE);
797 	struct buffer_head *bh, *head;
798 	unsigned long pos = 0;
799 
800 	BUG_ON(!PageLocked(page));
801 	if (!partial_page)
802 		ClearPageChecked(page);
803 	if (!page_has_buffers(page))
804 		goto out;
805 
806 	bh = head = page_buffers(page);
807 	do {
808 		if (pos + bh->b_size > stop)
809 			return;
810 
811 		if (offset <= pos)
812 			gfs2_discard(sdp, bh);
813 		pos += bh->b_size;
814 		bh = bh->b_this_page;
815 	} while (bh != head);
816 out:
817 	if (!partial_page)
818 		try_to_release_page(page, 0);
819 }
820 
821 /**
822  * gfs2_releasepage - free the metadata associated with a page
823  * @page: the page that's being released
824  * @gfp_mask: passed from Linux VFS, ignored by us
825  *
826  * Calls try_to_free_buffers() to free the buffers and put the page if the
827  * buffers can be released.
828  *
829  * Returns: 1 if the page was put or else 0
830  */
831 
832 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
833 {
834 	struct address_space *mapping = page->mapping;
835 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
836 	struct buffer_head *bh, *head;
837 	struct gfs2_bufdata *bd;
838 
839 	if (!page_has_buffers(page))
840 		return 0;
841 
842 	/*
843 	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
844 	 * clean pages might not have had the dirty bit cleared.  Thus, it can
845 	 * send actual dirty pages to ->releasepage() via shrink_active_list().
846 	 *
847 	 * As a workaround, we skip pages that contain dirty buffers below.
848 	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
849 	 * on dirty buffers like we used to here again.
850 	 */
851 
852 	gfs2_log_lock(sdp);
853 	spin_lock(&sdp->sd_ail_lock);
854 	head = bh = page_buffers(page);
855 	do {
856 		if (atomic_read(&bh->b_count))
857 			goto cannot_release;
858 		bd = bh->b_private;
859 		if (bd && bd->bd_tr)
860 			goto cannot_release;
861 		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
862 			goto cannot_release;
863 		bh = bh->b_this_page;
864 	} while(bh != head);
865 	spin_unlock(&sdp->sd_ail_lock);
866 
867 	head = bh = page_buffers(page);
868 	do {
869 		bd = bh->b_private;
870 		if (bd) {
871 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
872 			if (!list_empty(&bd->bd_list))
873 				list_del_init(&bd->bd_list);
874 			bd->bd_bh = NULL;
875 			bh->b_private = NULL;
876 			kmem_cache_free(gfs2_bufdata_cachep, bd);
877 		}
878 
879 		bh = bh->b_this_page;
880 	} while (bh != head);
881 	gfs2_log_unlock(sdp);
882 
883 	return try_to_free_buffers(page);
884 
885 cannot_release:
886 	spin_unlock(&sdp->sd_ail_lock);
887 	gfs2_log_unlock(sdp);
888 	return 0;
889 }
890 
891 static const struct address_space_operations gfs2_writeback_aops = {
892 	.writepage = gfs2_writepage,
893 	.writepages = gfs2_writepages,
894 	.readpage = gfs2_readpage,
895 	.readpages = gfs2_readpages,
896 	.bmap = gfs2_bmap,
897 	.invalidatepage = gfs2_invalidatepage,
898 	.releasepage = gfs2_releasepage,
899 	.direct_IO = noop_direct_IO,
900 	.migratepage = buffer_migrate_page,
901 	.is_partially_uptodate = block_is_partially_uptodate,
902 	.error_remove_page = generic_error_remove_page,
903 };
904 
905 static const struct address_space_operations gfs2_ordered_aops = {
906 	.writepage = gfs2_writepage,
907 	.writepages = gfs2_writepages,
908 	.readpage = gfs2_readpage,
909 	.readpages = gfs2_readpages,
910 	.set_page_dirty = __set_page_dirty_buffers,
911 	.bmap = gfs2_bmap,
912 	.invalidatepage = gfs2_invalidatepage,
913 	.releasepage = gfs2_releasepage,
914 	.direct_IO = noop_direct_IO,
915 	.migratepage = buffer_migrate_page,
916 	.is_partially_uptodate = block_is_partially_uptodate,
917 	.error_remove_page = generic_error_remove_page,
918 };
919 
920 static const struct address_space_operations gfs2_jdata_aops = {
921 	.writepage = gfs2_jdata_writepage,
922 	.writepages = gfs2_jdata_writepages,
923 	.readpage = gfs2_readpage,
924 	.readpages = gfs2_readpages,
925 	.set_page_dirty = jdata_set_page_dirty,
926 	.bmap = gfs2_bmap,
927 	.invalidatepage = gfs2_invalidatepage,
928 	.releasepage = gfs2_releasepage,
929 	.is_partially_uptodate = block_is_partially_uptodate,
930 	.error_remove_page = generic_error_remove_page,
931 };
932 
933 void gfs2_set_aops(struct inode *inode)
934 {
935 	struct gfs2_inode *ip = GFS2_I(inode);
936 	struct gfs2_sbd *sdp = GFS2_SB(inode);
937 
938 	if (gfs2_is_jdata(ip))
939 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
940 	else if (gfs2_is_writeback(sdp))
941 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
942 	else if (gfs2_is_ordered(sdp))
943 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
944 	else
945 		BUG();
946 }
947