xref: /openbmc/linux/fs/gfs2/aops.c (revision 9db115a0)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39 
40 
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 				   unsigned int from, unsigned int to)
43 {
44 	struct buffer_head *head = page_buffers(page);
45 	unsigned int bsize = head->b_size;
46 	struct buffer_head *bh;
47 	unsigned int start, end;
48 
49 	for (bh = head, start = 0; bh != head || !start;
50 	     bh = bh->b_this_page, start = end) {
51 		end = start + bsize;
52 		if (end <= from || start >= to)
53 			continue;
54 		if (gfs2_is_jdata(ip))
55 			set_buffer_uptodate(bh);
56 		gfs2_trans_add_data(ip->i_gl, bh);
57 	}
58 }
59 
60 /**
61  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62  * @inode: The inode
63  * @lblock: The block number to look up
64  * @bh_result: The buffer head to return the result in
65  * @create: Non-zero if we may add block to the file
66  *
67  * Returns: errno
68  */
69 
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 				  struct buffer_head *bh_result, int create)
72 {
73 	int error;
74 
75 	error = gfs2_block_map(inode, lblock, bh_result, 0);
76 	if (error)
77 		return error;
78 	if (!buffer_mapped(bh_result))
79 		return -EIO;
80 	return 0;
81 }
82 
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 				 struct buffer_head *bh_result, int create)
85 {
86 	return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88 
89 /**
90  * gfs2_writepage_common - Common bits of writepage
91  * @page: The page to be written
92  * @wbc: The writeback control
93  *
94  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95  */
96 
97 static int gfs2_writepage_common(struct page *page,
98 				 struct writeback_control *wbc)
99 {
100 	struct inode *inode = page->mapping->host;
101 	struct gfs2_inode *ip = GFS2_I(inode);
102 	struct gfs2_sbd *sdp = GFS2_SB(inode);
103 	loff_t i_size = i_size_read(inode);
104 	pgoff_t end_index = i_size >> PAGE_SHIFT;
105 	unsigned offset;
106 
107 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108 		goto out;
109 	if (current->journal_info)
110 		goto redirty;
111 	/* Is the page fully outside i_size? (truncate in progress) */
112 	offset = i_size & (PAGE_SIZE-1);
113 	if (page->index > end_index || (page->index == end_index && !offset)) {
114 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
115 		goto out;
116 	}
117 	return 1;
118 redirty:
119 	redirty_page_for_writepage(wbc, page);
120 out:
121 	unlock_page(page);
122 	return 0;
123 }
124 
125 /**
126  * gfs2_writepage - Write page for writeback mappings
127  * @page: The page
128  * @wbc: The writeback control
129  *
130  */
131 
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134 	int ret;
135 
136 	ret = gfs2_writepage_common(page, wbc);
137 	if (ret <= 0)
138 		return ret;
139 
140 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142 
143 /* This is the same as calling block_write_full_page, but it also
144  * writes pages outside of i_size
145  */
146 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
147 				struct writeback_control *wbc)
148 {
149 	struct inode * const inode = page->mapping->host;
150 	loff_t i_size = i_size_read(inode);
151 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
152 	unsigned offset;
153 
154 	/*
155 	 * The page straddles i_size.  It must be zeroed out on each and every
156 	 * writepage invocation because it may be mmapped.  "A file is mapped
157 	 * in multiples of the page size.  For a file that is not a multiple of
158 	 * the  page size, the remaining memory is zeroed when mapped, and
159 	 * writes to that region are not written out to the file."
160 	 */
161 	offset = i_size & (PAGE_SIZE-1);
162 	if (page->index == end_index && offset)
163 		zero_user_segment(page, offset, PAGE_SIZE);
164 
165 	return __block_write_full_page(inode, page, get_block, wbc,
166 				       end_buffer_async_write);
167 }
168 
169 /**
170  * __gfs2_jdata_writepage - The core of jdata writepage
171  * @page: The page to write
172  * @wbc: The writeback control
173  *
174  * This is shared between writepage and writepages and implements the
175  * core of the writepage operation. If a transaction is required then
176  * PageChecked will have been set and the transaction will have
177  * already been started before this is called.
178  */
179 
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 	struct inode *inode = page->mapping->host;
183 	struct gfs2_inode *ip = GFS2_I(inode);
184 	struct gfs2_sbd *sdp = GFS2_SB(inode);
185 
186 	if (PageChecked(page)) {
187 		ClearPageChecked(page);
188 		if (!page_has_buffers(page)) {
189 			create_empty_buffers(page, inode->i_sb->s_blocksize,
190 					     BIT(BH_Dirty)|BIT(BH_Uptodate));
191 		}
192 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193 	}
194 	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196 
197 /**
198  * gfs2_jdata_writepage - Write complete page
199  * @page: Page to write
200  * @wbc: The writeback control
201  *
202  * Returns: errno
203  *
204  */
205 
206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
207 {
208 	struct inode *inode = page->mapping->host;
209 	struct gfs2_inode *ip = GFS2_I(inode);
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 
213 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
214 		goto out;
215 	if (PageChecked(page) || current->journal_info)
216 		goto out_ignore;
217 	ret = __gfs2_jdata_writepage(page, wbc);
218 	return ret;
219 
220 out_ignore:
221 	redirty_page_for_writepage(wbc, page);
222 out:
223 	unlock_page(page);
224 	return 0;
225 }
226 
227 /**
228  * gfs2_writepages - Write a bunch of dirty pages back to disk
229  * @mapping: The mapping to write
230  * @wbc: Write-back control
231  *
232  * Used for both ordered and writeback modes.
233  */
234 static int gfs2_writepages(struct address_space *mapping,
235 			   struct writeback_control *wbc)
236 {
237 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
238 	int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
239 
240 	/*
241 	 * Even if we didn't write any pages here, we might still be holding
242 	 * dirty pages in the ail. We forcibly flush the ail because we don't
243 	 * want balance_dirty_pages() to loop indefinitely trying to write out
244 	 * pages held in the ail that it can't find.
245 	 */
246 	if (ret == 0)
247 		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
248 
249 	return ret;
250 }
251 
252 /**
253  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
254  * @mapping: The mapping
255  * @wbc: The writeback control
256  * @pvec: The vector of pages
257  * @nr_pages: The number of pages to write
258  * @done_index: Page index
259  *
260  * Returns: non-zero if loop should terminate, zero otherwise
261  */
262 
263 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
264 				    struct writeback_control *wbc,
265 				    struct pagevec *pvec,
266 				    int nr_pages,
267 				    pgoff_t *done_index)
268 {
269 	struct inode *inode = mapping->host;
270 	struct gfs2_sbd *sdp = GFS2_SB(inode);
271 	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
272 	int i;
273 	int ret;
274 
275 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
276 	if (ret < 0)
277 		return ret;
278 
279 	for(i = 0; i < nr_pages; i++) {
280 		struct page *page = pvec->pages[i];
281 
282 		*done_index = page->index;
283 
284 		lock_page(page);
285 
286 		if (unlikely(page->mapping != mapping)) {
287 continue_unlock:
288 			unlock_page(page);
289 			continue;
290 		}
291 
292 		if (!PageDirty(page)) {
293 			/* someone wrote it for us */
294 			goto continue_unlock;
295 		}
296 
297 		if (PageWriteback(page)) {
298 			if (wbc->sync_mode != WB_SYNC_NONE)
299 				wait_on_page_writeback(page);
300 			else
301 				goto continue_unlock;
302 		}
303 
304 		BUG_ON(PageWriteback(page));
305 		if (!clear_page_dirty_for_io(page))
306 			goto continue_unlock;
307 
308 		trace_wbc_writepage(wbc, inode_to_bdi(inode));
309 
310 		ret = __gfs2_jdata_writepage(page, wbc);
311 		if (unlikely(ret)) {
312 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
313 				unlock_page(page);
314 				ret = 0;
315 			} else {
316 
317 				/*
318 				 * done_index is set past this page,
319 				 * so media errors will not choke
320 				 * background writeout for the entire
321 				 * file. This has consequences for
322 				 * range_cyclic semantics (ie. it may
323 				 * not be suitable for data integrity
324 				 * writeout).
325 				 */
326 				*done_index = page->index + 1;
327 				ret = 1;
328 				break;
329 			}
330 		}
331 
332 		/*
333 		 * We stop writing back only if we are not doing
334 		 * integrity sync. In case of integrity sync we have to
335 		 * keep going until we have written all the pages
336 		 * we tagged for writeback prior to entering this loop.
337 		 */
338 		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
339 			ret = 1;
340 			break;
341 		}
342 
343 	}
344 	gfs2_trans_end(sdp);
345 	return ret;
346 }
347 
348 /**
349  * gfs2_write_cache_jdata - Like write_cache_pages but different
350  * @mapping: The mapping to write
351  * @wbc: The writeback control
352  *
353  * The reason that we use our own function here is that we need to
354  * start transactions before we grab page locks. This allows us
355  * to get the ordering right.
356  */
357 
358 static int gfs2_write_cache_jdata(struct address_space *mapping,
359 				  struct writeback_control *wbc)
360 {
361 	int ret = 0;
362 	int done = 0;
363 	struct pagevec pvec;
364 	int nr_pages;
365 	pgoff_t uninitialized_var(writeback_index);
366 	pgoff_t index;
367 	pgoff_t end;
368 	pgoff_t done_index;
369 	int cycled;
370 	int range_whole = 0;
371 	int tag;
372 
373 	pagevec_init(&pvec);
374 	if (wbc->range_cyclic) {
375 		writeback_index = mapping->writeback_index; /* prev offset */
376 		index = writeback_index;
377 		if (index == 0)
378 			cycled = 1;
379 		else
380 			cycled = 0;
381 		end = -1;
382 	} else {
383 		index = wbc->range_start >> PAGE_SHIFT;
384 		end = wbc->range_end >> PAGE_SHIFT;
385 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
386 			range_whole = 1;
387 		cycled = 1; /* ignore range_cyclic tests */
388 	}
389 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
390 		tag = PAGECACHE_TAG_TOWRITE;
391 	else
392 		tag = PAGECACHE_TAG_DIRTY;
393 
394 retry:
395 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
396 		tag_pages_for_writeback(mapping, index, end);
397 	done_index = index;
398 	while (!done && (index <= end)) {
399 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
400 				tag);
401 		if (nr_pages == 0)
402 			break;
403 
404 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
405 		if (ret)
406 			done = 1;
407 		if (ret > 0)
408 			ret = 0;
409 		pagevec_release(&pvec);
410 		cond_resched();
411 	}
412 
413 	if (!cycled && !done) {
414 		/*
415 		 * range_cyclic:
416 		 * We hit the last page and there is more work to be done: wrap
417 		 * back to the start of the file
418 		 */
419 		cycled = 1;
420 		index = 0;
421 		end = writeback_index - 1;
422 		goto retry;
423 	}
424 
425 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
426 		mapping->writeback_index = done_index;
427 
428 	return ret;
429 }
430 
431 
432 /**
433  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
434  * @mapping: The mapping to write
435  * @wbc: The writeback control
436  *
437  */
438 
439 static int gfs2_jdata_writepages(struct address_space *mapping,
440 				 struct writeback_control *wbc)
441 {
442 	struct gfs2_inode *ip = GFS2_I(mapping->host);
443 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
444 	int ret;
445 
446 	ret = gfs2_write_cache_jdata(mapping, wbc);
447 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
448 		gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
449 		ret = gfs2_write_cache_jdata(mapping, wbc);
450 	}
451 	return ret;
452 }
453 
454 /**
455  * stuffed_readpage - Fill in a Linux page with stuffed file data
456  * @ip: the inode
457  * @page: the page
458  *
459  * Returns: errno
460  */
461 
462 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
463 {
464 	struct buffer_head *dibh;
465 	u64 dsize = i_size_read(&ip->i_inode);
466 	void *kaddr;
467 	int error;
468 
469 	/*
470 	 * Due to the order of unstuffing files and ->fault(), we can be
471 	 * asked for a zero page in the case of a stuffed file being extended,
472 	 * so we need to supply one here. It doesn't happen often.
473 	 */
474 	if (unlikely(page->index)) {
475 		zero_user(page, 0, PAGE_SIZE);
476 		SetPageUptodate(page);
477 		return 0;
478 	}
479 
480 	error = gfs2_meta_inode_buffer(ip, &dibh);
481 	if (error)
482 		return error;
483 
484 	kaddr = kmap_atomic(page);
485 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
486 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
487 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
488 	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
489 	kunmap_atomic(kaddr);
490 	flush_dcache_page(page);
491 	brelse(dibh);
492 	SetPageUptodate(page);
493 
494 	return 0;
495 }
496 
497 
498 /**
499  * __gfs2_readpage - readpage
500  * @file: The file to read a page for
501  * @page: The page to read
502  *
503  * This is the core of gfs2's readpage. It's used by the internal file
504  * reading code as in that case we already hold the glock. Also it's
505  * called by gfs2_readpage() once the required lock has been granted.
506  */
507 
508 static int __gfs2_readpage(void *file, struct page *page)
509 {
510 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
511 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
512 	int error;
513 
514 	if (gfs2_is_stuffed(ip)) {
515 		error = stuffed_readpage(ip, page);
516 		unlock_page(page);
517 	} else {
518 		error = mpage_readpage(page, gfs2_block_map);
519 	}
520 
521 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
522 		return -EIO;
523 
524 	return error;
525 }
526 
527 /**
528  * gfs2_readpage - read a page of a file
529  * @file: The file to read
530  * @page: The page of the file
531  *
532  * This deals with the locking required. We have to unlock and
533  * relock the page in order to get the locking in the right
534  * order.
535  */
536 
537 static int gfs2_readpage(struct file *file, struct page *page)
538 {
539 	struct address_space *mapping = page->mapping;
540 	struct gfs2_inode *ip = GFS2_I(mapping->host);
541 	struct gfs2_holder gh;
542 	int error;
543 
544 	unlock_page(page);
545 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
546 	error = gfs2_glock_nq(&gh);
547 	if (unlikely(error))
548 		goto out;
549 	error = AOP_TRUNCATED_PAGE;
550 	lock_page(page);
551 	if (page->mapping == mapping && !PageUptodate(page))
552 		error = __gfs2_readpage(file, page);
553 	else
554 		unlock_page(page);
555 	gfs2_glock_dq(&gh);
556 out:
557 	gfs2_holder_uninit(&gh);
558 	if (error && error != AOP_TRUNCATED_PAGE)
559 		lock_page(page);
560 	return error;
561 }
562 
563 /**
564  * gfs2_internal_read - read an internal file
565  * @ip: The gfs2 inode
566  * @buf: The buffer to fill
567  * @pos: The file position
568  * @size: The amount to read
569  *
570  */
571 
572 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
573                        unsigned size)
574 {
575 	struct address_space *mapping = ip->i_inode.i_mapping;
576 	unsigned long index = *pos / PAGE_SIZE;
577 	unsigned offset = *pos & (PAGE_SIZE - 1);
578 	unsigned copied = 0;
579 	unsigned amt;
580 	struct page *page;
581 	void *p;
582 
583 	do {
584 		amt = size - copied;
585 		if (offset + size > PAGE_SIZE)
586 			amt = PAGE_SIZE - offset;
587 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
588 		if (IS_ERR(page))
589 			return PTR_ERR(page);
590 		p = kmap_atomic(page);
591 		memcpy(buf + copied, p + offset, amt);
592 		kunmap_atomic(p);
593 		put_page(page);
594 		copied += amt;
595 		index++;
596 		offset = 0;
597 	} while(copied < size);
598 	(*pos) += size;
599 	return size;
600 }
601 
602 /**
603  * gfs2_readpages - Read a bunch of pages at once
604  * @file: The file to read from
605  * @mapping: Address space info
606  * @pages: List of pages to read
607  * @nr_pages: Number of pages to read
608  *
609  * Some notes:
610  * 1. This is only for readahead, so we can simply ignore any things
611  *    which are slightly inconvenient (such as locking conflicts between
612  *    the page lock and the glock) and return having done no I/O. Its
613  *    obviously not something we'd want to do on too regular a basis.
614  *    Any I/O we ignore at this time will be done via readpage later.
615  * 2. We don't handle stuffed files here we let readpage do the honours.
616  * 3. mpage_readpages() does most of the heavy lifting in the common case.
617  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
618  */
619 
620 static int gfs2_readpages(struct file *file, struct address_space *mapping,
621 			  struct list_head *pages, unsigned nr_pages)
622 {
623 	struct inode *inode = mapping->host;
624 	struct gfs2_inode *ip = GFS2_I(inode);
625 	struct gfs2_sbd *sdp = GFS2_SB(inode);
626 	struct gfs2_holder gh;
627 	int ret;
628 
629 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
630 	ret = gfs2_glock_nq(&gh);
631 	if (unlikely(ret))
632 		goto out_uninit;
633 	if (!gfs2_is_stuffed(ip))
634 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
635 	gfs2_glock_dq(&gh);
636 out_uninit:
637 	gfs2_holder_uninit(&gh);
638 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
639 		ret = -EIO;
640 	return ret;
641 }
642 
643 /**
644  * gfs2_write_begin - Begin to write to a file
645  * @file: The file to write to
646  * @mapping: The mapping in which to write
647  * @pos: The file offset at which to start writing
648  * @len: Length of the write
649  * @flags: Various flags
650  * @pagep: Pointer to return the page
651  * @fsdata: Pointer to return fs data (unused by GFS2)
652  *
653  * Returns: errno
654  */
655 
656 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
657 			    loff_t pos, unsigned len, unsigned flags,
658 			    struct page **pagep, void **fsdata)
659 {
660 	struct gfs2_inode *ip = GFS2_I(mapping->host);
661 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
662 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
663 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
664 	unsigned requested = 0;
665 	int alloc_required;
666 	int error = 0;
667 	pgoff_t index = pos >> PAGE_SHIFT;
668 	unsigned from = pos & (PAGE_SIZE - 1);
669 	struct page *page;
670 
671 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
672 	error = gfs2_glock_nq(&ip->i_gh);
673 	if (unlikely(error))
674 		goto out_uninit;
675 	if (&ip->i_inode == sdp->sd_rindex) {
676 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
677 					   GL_NOCACHE, &m_ip->i_gh);
678 		if (unlikely(error)) {
679 			gfs2_glock_dq(&ip->i_gh);
680 			goto out_uninit;
681 		}
682 	}
683 
684 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
685 
686 	if (alloc_required || gfs2_is_jdata(ip))
687 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
688 
689 	if (alloc_required) {
690 		struct gfs2_alloc_parms ap = { .aflags = 0, };
691 		requested = data_blocks + ind_blocks;
692 		ap.target = requested;
693 		error = gfs2_quota_lock_check(ip, &ap);
694 		if (error)
695 			goto out_unlock;
696 
697 		error = gfs2_inplace_reserve(ip, &ap);
698 		if (error)
699 			goto out_qunlock;
700 	}
701 
702 	rblocks = RES_DINODE + ind_blocks;
703 	if (gfs2_is_jdata(ip))
704 		rblocks += data_blocks ? data_blocks : 1;
705 	if (ind_blocks || data_blocks)
706 		rblocks += RES_STATFS + RES_QUOTA;
707 	if (&ip->i_inode == sdp->sd_rindex)
708 		rblocks += 2 * RES_STATFS;
709 	if (alloc_required)
710 		rblocks += gfs2_rg_blocks(ip, requested);
711 
712 	error = gfs2_trans_begin(sdp, rblocks,
713 				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
714 	if (error)
715 		goto out_trans_fail;
716 
717 	error = -ENOMEM;
718 	flags |= AOP_FLAG_NOFS;
719 	page = grab_cache_page_write_begin(mapping, index, flags);
720 	*pagep = page;
721 	if (unlikely(!page))
722 		goto out_endtrans;
723 
724 	if (gfs2_is_stuffed(ip)) {
725 		error = 0;
726 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
727 			error = gfs2_unstuff_dinode(ip, page);
728 			if (error == 0)
729 				goto prepare_write;
730 		} else if (!PageUptodate(page)) {
731 			error = stuffed_readpage(ip, page);
732 		}
733 		goto out;
734 	}
735 
736 prepare_write:
737 	error = __block_write_begin(page, from, len, gfs2_block_map);
738 out:
739 	if (error == 0)
740 		return 0;
741 
742 	unlock_page(page);
743 	put_page(page);
744 
745 	gfs2_trans_end(sdp);
746 	if (pos + len > ip->i_inode.i_size)
747 		gfs2_trim_blocks(&ip->i_inode);
748 	goto out_trans_fail;
749 
750 out_endtrans:
751 	gfs2_trans_end(sdp);
752 out_trans_fail:
753 	if (alloc_required) {
754 		gfs2_inplace_release(ip);
755 out_qunlock:
756 		gfs2_quota_unlock(ip);
757 	}
758 out_unlock:
759 	if (&ip->i_inode == sdp->sd_rindex) {
760 		gfs2_glock_dq(&m_ip->i_gh);
761 		gfs2_holder_uninit(&m_ip->i_gh);
762 	}
763 	gfs2_glock_dq(&ip->i_gh);
764 out_uninit:
765 	gfs2_holder_uninit(&ip->i_gh);
766 	return error;
767 }
768 
769 /**
770  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
771  * @inode: the rindex inode
772  */
773 static void adjust_fs_space(struct inode *inode)
774 {
775 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
776 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
777 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
778 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
779 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
780 	struct buffer_head *m_bh, *l_bh;
781 	u64 fs_total, new_free;
782 
783 	/* Total up the file system space, according to the latest rindex. */
784 	fs_total = gfs2_ri_total(sdp);
785 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
786 		return;
787 
788 	spin_lock(&sdp->sd_statfs_spin);
789 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
790 			      sizeof(struct gfs2_dinode));
791 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
792 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
793 	else
794 		new_free = 0;
795 	spin_unlock(&sdp->sd_statfs_spin);
796 	fs_warn(sdp, "File system extended by %llu blocks.\n",
797 		(unsigned long long)new_free);
798 	gfs2_statfs_change(sdp, new_free, new_free, 0);
799 
800 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
801 		goto out;
802 	update_statfs(sdp, m_bh, l_bh);
803 	brelse(l_bh);
804 out:
805 	brelse(m_bh);
806 }
807 
808 /**
809  * gfs2_stuffed_write_end - Write end for stuffed files
810  * @inode: The inode
811  * @dibh: The buffer_head containing the on-disk inode
812  * @pos: The file position
813  * @len: The length of the write
814  * @copied: How much was actually copied by the VFS
815  * @page: The page
816  *
817  * This copies the data from the page into the inode block after
818  * the inode data structure itself.
819  *
820  * Returns: errno
821  */
822 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
823 				  loff_t pos, unsigned len, unsigned copied,
824 				  struct page *page)
825 {
826 	struct gfs2_inode *ip = GFS2_I(inode);
827 	struct gfs2_sbd *sdp = GFS2_SB(inode);
828 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
829 	u64 to = pos + copied;
830 	void *kaddr;
831 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
832 
833 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
834 	kaddr = kmap_atomic(page);
835 	memcpy(buf + pos, kaddr + pos, copied);
836 	flush_dcache_page(page);
837 	kunmap_atomic(kaddr);
838 
839 	WARN_ON(!PageUptodate(page));
840 	unlock_page(page);
841 	put_page(page);
842 
843 	if (copied) {
844 		if (inode->i_size < to)
845 			i_size_write(inode, to);
846 		mark_inode_dirty(inode);
847 	}
848 
849 	if (inode == sdp->sd_rindex) {
850 		adjust_fs_space(inode);
851 		sdp->sd_rindex_uptodate = 0;
852 	}
853 
854 	brelse(dibh);
855 	gfs2_trans_end(sdp);
856 	if (inode == sdp->sd_rindex) {
857 		gfs2_glock_dq(&m_ip->i_gh);
858 		gfs2_holder_uninit(&m_ip->i_gh);
859 	}
860 	gfs2_glock_dq(&ip->i_gh);
861 	gfs2_holder_uninit(&ip->i_gh);
862 	return copied;
863 }
864 
865 /**
866  * gfs2_write_end
867  * @file: The file to write to
868  * @mapping: The address space to write to
869  * @pos: The file position
870  * @len: The length of the data
871  * @copied: How much was actually copied by the VFS
872  * @page: The page that has been written
873  * @fsdata: The fsdata (unused in GFS2)
874  *
875  * The main write_end function for GFS2. We have a separate one for
876  * stuffed files as they are slightly different, otherwise we just
877  * put our locking around the VFS provided functions.
878  *
879  * Returns: errno
880  */
881 
882 static int gfs2_write_end(struct file *file, struct address_space *mapping,
883 			  loff_t pos, unsigned len, unsigned copied,
884 			  struct page *page, void *fsdata)
885 {
886 	struct inode *inode = page->mapping->host;
887 	struct gfs2_inode *ip = GFS2_I(inode);
888 	struct gfs2_sbd *sdp = GFS2_SB(inode);
889 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
890 	struct buffer_head *dibh;
891 	unsigned int from = pos & (PAGE_SIZE - 1);
892 	unsigned int to = from + len;
893 	int ret;
894 	struct gfs2_trans *tr = current->journal_info;
895 	BUG_ON(!tr);
896 
897 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
898 
899 	ret = gfs2_meta_inode_buffer(ip, &dibh);
900 	if (unlikely(ret)) {
901 		unlock_page(page);
902 		put_page(page);
903 		goto failed;
904 	}
905 
906 	if (gfs2_is_stuffed(ip))
907 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
908 
909 	if (!gfs2_is_writeback(ip))
910 		gfs2_page_add_databufs(ip, page, from, to);
911 
912 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
913 	if (tr->tr_num_buf_new)
914 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
915 	else
916 		gfs2_trans_add_meta(ip->i_gl, dibh);
917 
918 
919 	if (inode == sdp->sd_rindex) {
920 		adjust_fs_space(inode);
921 		sdp->sd_rindex_uptodate = 0;
922 	}
923 
924 	brelse(dibh);
925 failed:
926 	gfs2_trans_end(sdp);
927 	gfs2_inplace_release(ip);
928 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
929 		gfs2_quota_unlock(ip);
930 	if (inode == sdp->sd_rindex) {
931 		gfs2_glock_dq(&m_ip->i_gh);
932 		gfs2_holder_uninit(&m_ip->i_gh);
933 	}
934 	gfs2_glock_dq(&ip->i_gh);
935 	gfs2_holder_uninit(&ip->i_gh);
936 	return ret;
937 }
938 
939 /**
940  * gfs2_set_page_dirty - Page dirtying function
941  * @page: The page to dirty
942  *
943  * Returns: 1 if it dirtyed the page, or 0 otherwise
944  */
945 
946 static int gfs2_set_page_dirty(struct page *page)
947 {
948 	SetPageChecked(page);
949 	return __set_page_dirty_buffers(page);
950 }
951 
952 /**
953  * gfs2_bmap - Block map function
954  * @mapping: Address space info
955  * @lblock: The block to map
956  *
957  * Returns: The disk address for the block or 0 on hole or error
958  */
959 
960 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
961 {
962 	struct gfs2_inode *ip = GFS2_I(mapping->host);
963 	struct gfs2_holder i_gh;
964 	sector_t dblock = 0;
965 	int error;
966 
967 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
968 	if (error)
969 		return 0;
970 
971 	if (!gfs2_is_stuffed(ip))
972 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
973 
974 	gfs2_glock_dq_uninit(&i_gh);
975 
976 	return dblock;
977 }
978 
979 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
980 {
981 	struct gfs2_bufdata *bd;
982 
983 	lock_buffer(bh);
984 	gfs2_log_lock(sdp);
985 	clear_buffer_dirty(bh);
986 	bd = bh->b_private;
987 	if (bd) {
988 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
989 			list_del_init(&bd->bd_list);
990 		else
991 			gfs2_remove_from_journal(bh, REMOVE_JDATA);
992 	}
993 	bh->b_bdev = NULL;
994 	clear_buffer_mapped(bh);
995 	clear_buffer_req(bh);
996 	clear_buffer_new(bh);
997 	gfs2_log_unlock(sdp);
998 	unlock_buffer(bh);
999 }
1000 
1001 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1002 				unsigned int length)
1003 {
1004 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1005 	unsigned int stop = offset + length;
1006 	int partial_page = (offset || length < PAGE_SIZE);
1007 	struct buffer_head *bh, *head;
1008 	unsigned long pos = 0;
1009 
1010 	BUG_ON(!PageLocked(page));
1011 	if (!partial_page)
1012 		ClearPageChecked(page);
1013 	if (!page_has_buffers(page))
1014 		goto out;
1015 
1016 	bh = head = page_buffers(page);
1017 	do {
1018 		if (pos + bh->b_size > stop)
1019 			return;
1020 
1021 		if (offset <= pos)
1022 			gfs2_discard(sdp, bh);
1023 		pos += bh->b_size;
1024 		bh = bh->b_this_page;
1025 	} while (bh != head);
1026 out:
1027 	if (!partial_page)
1028 		try_to_release_page(page, 0);
1029 }
1030 
1031 /**
1032  * gfs2_ok_for_dio - check that dio is valid on this file
1033  * @ip: The inode
1034  * @offset: The offset at which we are reading or writing
1035  *
1036  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1037  *          1 (to accept the i/o request)
1038  */
1039 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1040 {
1041 	/*
1042 	 * Should we return an error here? I can't see that O_DIRECT for
1043 	 * a stuffed file makes any sense. For now we'll silently fall
1044 	 * back to buffered I/O
1045 	 */
1046 	if (gfs2_is_stuffed(ip))
1047 		return 0;
1048 
1049 	if (offset >= i_size_read(&ip->i_inode))
1050 		return 0;
1051 	return 1;
1052 }
1053 
1054 
1055 
1056 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1057 {
1058 	struct file *file = iocb->ki_filp;
1059 	struct inode *inode = file->f_mapping->host;
1060 	struct address_space *mapping = inode->i_mapping;
1061 	struct gfs2_inode *ip = GFS2_I(inode);
1062 	loff_t offset = iocb->ki_pos;
1063 	struct gfs2_holder gh;
1064 	int rv;
1065 
1066 	/*
1067 	 * Deferred lock, even if its a write, since we do no allocation
1068 	 * on this path. All we need change is atime, and this lock mode
1069 	 * ensures that other nodes have flushed their buffered read caches
1070 	 * (i.e. their page cache entries for this inode). We do not,
1071 	 * unfortunately have the option of only flushing a range like
1072 	 * the VFS does.
1073 	 */
1074 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1075 	rv = gfs2_glock_nq(&gh);
1076 	if (rv)
1077 		goto out_uninit;
1078 	rv = gfs2_ok_for_dio(ip, offset);
1079 	if (rv != 1)
1080 		goto out; /* dio not valid, fall back to buffered i/o */
1081 
1082 	/*
1083 	 * Now since we are holding a deferred (CW) lock at this point, you
1084 	 * might be wondering why this is ever needed. There is a case however
1085 	 * where we've granted a deferred local lock against a cached exclusive
1086 	 * glock. That is ok provided all granted local locks are deferred, but
1087 	 * it also means that it is possible to encounter pages which are
1088 	 * cached and possibly also mapped. So here we check for that and sort
1089 	 * them out ahead of the dio. The glock state machine will take care of
1090 	 * everything else.
1091 	 *
1092 	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1093 	 * the first place, mapping->nr_pages will always be zero.
1094 	 */
1095 	if (mapping->nrpages) {
1096 		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1097 		loff_t len = iov_iter_count(iter);
1098 		loff_t end = PAGE_ALIGN(offset + len) - 1;
1099 
1100 		rv = 0;
1101 		if (len == 0)
1102 			goto out;
1103 		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1104 			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1105 		rv = filemap_write_and_wait_range(mapping, lstart, end);
1106 		if (rv)
1107 			goto out;
1108 		if (iov_iter_rw(iter) == WRITE)
1109 			truncate_inode_pages_range(mapping, lstart, end);
1110 	}
1111 
1112 	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1113 				  gfs2_get_block_direct, NULL, NULL, 0);
1114 out:
1115 	gfs2_glock_dq(&gh);
1116 out_uninit:
1117 	gfs2_holder_uninit(&gh);
1118 	return rv;
1119 }
1120 
1121 /**
1122  * gfs2_releasepage - free the metadata associated with a page
1123  * @page: the page that's being released
1124  * @gfp_mask: passed from Linux VFS, ignored by us
1125  *
1126  * Call try_to_free_buffers() if the buffers in this page can be
1127  * released.
1128  *
1129  * Returns: 0
1130  */
1131 
1132 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1133 {
1134 	struct address_space *mapping = page->mapping;
1135 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1136 	struct buffer_head *bh, *head;
1137 	struct gfs2_bufdata *bd;
1138 
1139 	if (!page_has_buffers(page))
1140 		return 0;
1141 
1142 	/*
1143 	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1144 	 * clean pages might not have had the dirty bit cleared.  Thus, it can
1145 	 * send actual dirty pages to ->releasepage() via shrink_active_list().
1146 	 *
1147 	 * As a workaround, we skip pages that contain dirty buffers below.
1148 	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1149 	 * on dirty buffers like we used to here again.
1150 	 */
1151 
1152 	gfs2_log_lock(sdp);
1153 	spin_lock(&sdp->sd_ail_lock);
1154 	head = bh = page_buffers(page);
1155 	do {
1156 		if (atomic_read(&bh->b_count))
1157 			goto cannot_release;
1158 		bd = bh->b_private;
1159 		if (bd && bd->bd_tr)
1160 			goto cannot_release;
1161 		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1162 			goto cannot_release;
1163 		bh = bh->b_this_page;
1164 	} while(bh != head);
1165 	spin_unlock(&sdp->sd_ail_lock);
1166 
1167 	head = bh = page_buffers(page);
1168 	do {
1169 		bd = bh->b_private;
1170 		if (bd) {
1171 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1172 			if (!list_empty(&bd->bd_list))
1173 				list_del_init(&bd->bd_list);
1174 			bd->bd_bh = NULL;
1175 			bh->b_private = NULL;
1176 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1177 		}
1178 
1179 		bh = bh->b_this_page;
1180 	} while (bh != head);
1181 	gfs2_log_unlock(sdp);
1182 
1183 	return try_to_free_buffers(page);
1184 
1185 cannot_release:
1186 	spin_unlock(&sdp->sd_ail_lock);
1187 	gfs2_log_unlock(sdp);
1188 	return 0;
1189 }
1190 
1191 static const struct address_space_operations gfs2_writeback_aops = {
1192 	.writepage = gfs2_writepage,
1193 	.writepages = gfs2_writepages,
1194 	.readpage = gfs2_readpage,
1195 	.readpages = gfs2_readpages,
1196 	.write_begin = gfs2_write_begin,
1197 	.write_end = gfs2_write_end,
1198 	.bmap = gfs2_bmap,
1199 	.invalidatepage = gfs2_invalidatepage,
1200 	.releasepage = gfs2_releasepage,
1201 	.direct_IO = gfs2_direct_IO,
1202 	.migratepage = buffer_migrate_page,
1203 	.is_partially_uptodate = block_is_partially_uptodate,
1204 	.error_remove_page = generic_error_remove_page,
1205 };
1206 
1207 static const struct address_space_operations gfs2_ordered_aops = {
1208 	.writepage = gfs2_writepage,
1209 	.writepages = gfs2_writepages,
1210 	.readpage = gfs2_readpage,
1211 	.readpages = gfs2_readpages,
1212 	.write_begin = gfs2_write_begin,
1213 	.write_end = gfs2_write_end,
1214 	.set_page_dirty = gfs2_set_page_dirty,
1215 	.bmap = gfs2_bmap,
1216 	.invalidatepage = gfs2_invalidatepage,
1217 	.releasepage = gfs2_releasepage,
1218 	.direct_IO = gfs2_direct_IO,
1219 	.migratepage = buffer_migrate_page,
1220 	.is_partially_uptodate = block_is_partially_uptodate,
1221 	.error_remove_page = generic_error_remove_page,
1222 };
1223 
1224 static const struct address_space_operations gfs2_jdata_aops = {
1225 	.writepage = gfs2_jdata_writepage,
1226 	.writepages = gfs2_jdata_writepages,
1227 	.readpage = gfs2_readpage,
1228 	.readpages = gfs2_readpages,
1229 	.write_begin = gfs2_write_begin,
1230 	.write_end = gfs2_write_end,
1231 	.set_page_dirty = gfs2_set_page_dirty,
1232 	.bmap = gfs2_bmap,
1233 	.invalidatepage = gfs2_invalidatepage,
1234 	.releasepage = gfs2_releasepage,
1235 	.is_partially_uptodate = block_is_partially_uptodate,
1236 	.error_remove_page = generic_error_remove_page,
1237 };
1238 
1239 void gfs2_set_aops(struct inode *inode)
1240 {
1241 	struct gfs2_inode *ip = GFS2_I(inode);
1242 
1243 	if (gfs2_is_writeback(ip))
1244 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1245 	else if (gfs2_is_ordered(ip))
1246 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1247 	else if (gfs2_is_jdata(ip))
1248 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1249 	else
1250 		BUG();
1251 }
1252 
1253