xref: /openbmc/linux/fs/gfs2/aops.c (revision 9aa01593)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39 
40 
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 				   unsigned int from, unsigned int to)
43 {
44 	struct buffer_head *head = page_buffers(page);
45 	unsigned int bsize = head->b_size;
46 	struct buffer_head *bh;
47 	unsigned int start, end;
48 
49 	for (bh = head, start = 0; bh != head || !start;
50 	     bh = bh->b_this_page, start = end) {
51 		end = start + bsize;
52 		if (end <= from || start >= to)
53 			continue;
54 		if (gfs2_is_jdata(ip))
55 			set_buffer_uptodate(bh);
56 		gfs2_trans_add_data(ip->i_gl, bh);
57 	}
58 }
59 
60 /**
61  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62  * @inode: The inode
63  * @lblock: The block number to look up
64  * @bh_result: The buffer head to return the result in
65  * @create: Non-zero if we may add block to the file
66  *
67  * Returns: errno
68  */
69 
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 				  struct buffer_head *bh_result, int create)
72 {
73 	int error;
74 
75 	error = gfs2_block_map(inode, lblock, bh_result, 0);
76 	if (error)
77 		return error;
78 	if (!buffer_mapped(bh_result))
79 		return -EIO;
80 	return 0;
81 }
82 
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 				 struct buffer_head *bh_result, int create)
85 {
86 	return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88 
89 /**
90  * gfs2_writepage_common - Common bits of writepage
91  * @page: The page to be written
92  * @wbc: The writeback control
93  *
94  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95  */
96 
97 static int gfs2_writepage_common(struct page *page,
98 				 struct writeback_control *wbc)
99 {
100 	struct inode *inode = page->mapping->host;
101 	struct gfs2_inode *ip = GFS2_I(inode);
102 	struct gfs2_sbd *sdp = GFS2_SB(inode);
103 	loff_t i_size = i_size_read(inode);
104 	pgoff_t end_index = i_size >> PAGE_SHIFT;
105 	unsigned offset;
106 
107 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108 		goto out;
109 	if (current->journal_info)
110 		goto redirty;
111 	/* Is the page fully outside i_size? (truncate in progress) */
112 	offset = i_size & (PAGE_SIZE-1);
113 	if (page->index > end_index || (page->index == end_index && !offset)) {
114 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
115 		goto out;
116 	}
117 	return 1;
118 redirty:
119 	redirty_page_for_writepage(wbc, page);
120 out:
121 	unlock_page(page);
122 	return 0;
123 }
124 
125 /**
126  * gfs2_writepage - Write page for writeback mappings
127  * @page: The page
128  * @wbc: The writeback control
129  *
130  */
131 
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134 	int ret;
135 
136 	ret = gfs2_writepage_common(page, wbc);
137 	if (ret <= 0)
138 		return ret;
139 
140 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142 
143 /* This is the same as calling block_write_full_page, but it also
144  * writes pages outside of i_size
145  */
146 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
147 				struct writeback_control *wbc)
148 {
149 	struct inode * const inode = page->mapping->host;
150 	loff_t i_size = i_size_read(inode);
151 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
152 	unsigned offset;
153 
154 	/*
155 	 * The page straddles i_size.  It must be zeroed out on each and every
156 	 * writepage invocation because it may be mmapped.  "A file is mapped
157 	 * in multiples of the page size.  For a file that is not a multiple of
158 	 * the  page size, the remaining memory is zeroed when mapped, and
159 	 * writes to that region are not written out to the file."
160 	 */
161 	offset = i_size & (PAGE_SIZE-1);
162 	if (page->index == end_index && offset)
163 		zero_user_segment(page, offset, PAGE_SIZE);
164 
165 	return __block_write_full_page(inode, page, get_block, wbc,
166 				       end_buffer_async_write);
167 }
168 
169 /**
170  * __gfs2_jdata_writepage - The core of jdata writepage
171  * @page: The page to write
172  * @wbc: The writeback control
173  *
174  * This is shared between writepage and writepages and implements the
175  * core of the writepage operation. If a transaction is required then
176  * PageChecked will have been set and the transaction will have
177  * already been started before this is called.
178  */
179 
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 	struct inode *inode = page->mapping->host;
183 	struct gfs2_inode *ip = GFS2_I(inode);
184 	struct gfs2_sbd *sdp = GFS2_SB(inode);
185 
186 	if (PageChecked(page)) {
187 		ClearPageChecked(page);
188 		if (!page_has_buffers(page)) {
189 			create_empty_buffers(page, inode->i_sb->s_blocksize,
190 					     BIT(BH_Dirty)|BIT(BH_Uptodate));
191 		}
192 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193 	}
194 	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196 
197 /**
198  * gfs2_jdata_writepage - Write complete page
199  * @page: Page to write
200  * @wbc: The writeback control
201  *
202  * Returns: errno
203  *
204  */
205 
206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
207 {
208 	struct inode *inode = page->mapping->host;
209 	struct gfs2_inode *ip = GFS2_I(inode);
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 
213 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
214 		goto out;
215 	if (PageChecked(page) || current->journal_info)
216 		goto out_ignore;
217 	ret = __gfs2_jdata_writepage(page, wbc);
218 	return ret;
219 
220 out_ignore:
221 	redirty_page_for_writepage(wbc, page);
222 out:
223 	unlock_page(page);
224 	return 0;
225 }
226 
227 /**
228  * gfs2_writepages - Write a bunch of dirty pages back to disk
229  * @mapping: The mapping to write
230  * @wbc: Write-back control
231  *
232  * Used for both ordered and writeback modes.
233  */
234 static int gfs2_writepages(struct address_space *mapping,
235 			   struct writeback_control *wbc)
236 {
237 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
238 	int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
239 
240 	/*
241 	 * Even if we didn't write any pages here, we might still be holding
242 	 * dirty pages in the ail. We forcibly flush the ail because we don't
243 	 * want balance_dirty_pages() to loop indefinitely trying to write out
244 	 * pages held in the ail that it can't find.
245 	 */
246 	if (ret == 0)
247 		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
248 
249 	return ret;
250 }
251 
252 /**
253  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
254  * @mapping: The mapping
255  * @wbc: The writeback control
256  * @pvec: The vector of pages
257  * @nr_pages: The number of pages to write
258  * @done_index: Page index
259  *
260  * Returns: non-zero if loop should terminate, zero otherwise
261  */
262 
263 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
264 				    struct writeback_control *wbc,
265 				    struct pagevec *pvec,
266 				    int nr_pages,
267 				    pgoff_t *done_index)
268 {
269 	struct inode *inode = mapping->host;
270 	struct gfs2_sbd *sdp = GFS2_SB(inode);
271 	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
272 	int i;
273 	int ret;
274 
275 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
276 	if (ret < 0)
277 		return ret;
278 
279 	for(i = 0; i < nr_pages; i++) {
280 		struct page *page = pvec->pages[i];
281 
282 		*done_index = page->index;
283 
284 		lock_page(page);
285 
286 		if (unlikely(page->mapping != mapping)) {
287 continue_unlock:
288 			unlock_page(page);
289 			continue;
290 		}
291 
292 		if (!PageDirty(page)) {
293 			/* someone wrote it for us */
294 			goto continue_unlock;
295 		}
296 
297 		if (PageWriteback(page)) {
298 			if (wbc->sync_mode != WB_SYNC_NONE)
299 				wait_on_page_writeback(page);
300 			else
301 				goto continue_unlock;
302 		}
303 
304 		BUG_ON(PageWriteback(page));
305 		if (!clear_page_dirty_for_io(page))
306 			goto continue_unlock;
307 
308 		trace_wbc_writepage(wbc, inode_to_bdi(inode));
309 
310 		ret = __gfs2_jdata_writepage(page, wbc);
311 		if (unlikely(ret)) {
312 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
313 				unlock_page(page);
314 				ret = 0;
315 			} else {
316 
317 				/*
318 				 * done_index is set past this page,
319 				 * so media errors will not choke
320 				 * background writeout for the entire
321 				 * file. This has consequences for
322 				 * range_cyclic semantics (ie. it may
323 				 * not be suitable for data integrity
324 				 * writeout).
325 				 */
326 				*done_index = page->index + 1;
327 				ret = 1;
328 				break;
329 			}
330 		}
331 
332 		/*
333 		 * We stop writing back only if we are not doing
334 		 * integrity sync. In case of integrity sync we have to
335 		 * keep going until we have written all the pages
336 		 * we tagged for writeback prior to entering this loop.
337 		 */
338 		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
339 			ret = 1;
340 			break;
341 		}
342 
343 	}
344 	gfs2_trans_end(sdp);
345 	return ret;
346 }
347 
348 /**
349  * gfs2_write_cache_jdata - Like write_cache_pages but different
350  * @mapping: The mapping to write
351  * @wbc: The writeback control
352  *
353  * The reason that we use our own function here is that we need to
354  * start transactions before we grab page locks. This allows us
355  * to get the ordering right.
356  */
357 
358 static int gfs2_write_cache_jdata(struct address_space *mapping,
359 				  struct writeback_control *wbc)
360 {
361 	int ret = 0;
362 	int done = 0;
363 	struct pagevec pvec;
364 	int nr_pages;
365 	pgoff_t uninitialized_var(writeback_index);
366 	pgoff_t index;
367 	pgoff_t end;
368 	pgoff_t done_index;
369 	int cycled;
370 	int range_whole = 0;
371 	int tag;
372 
373 	pagevec_init(&pvec);
374 	if (wbc->range_cyclic) {
375 		writeback_index = mapping->writeback_index; /* prev offset */
376 		index = writeback_index;
377 		if (index == 0)
378 			cycled = 1;
379 		else
380 			cycled = 0;
381 		end = -1;
382 	} else {
383 		index = wbc->range_start >> PAGE_SHIFT;
384 		end = wbc->range_end >> PAGE_SHIFT;
385 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
386 			range_whole = 1;
387 		cycled = 1; /* ignore range_cyclic tests */
388 	}
389 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
390 		tag = PAGECACHE_TAG_TOWRITE;
391 	else
392 		tag = PAGECACHE_TAG_DIRTY;
393 
394 retry:
395 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
396 		tag_pages_for_writeback(mapping, index, end);
397 	done_index = index;
398 	while (!done && (index <= end)) {
399 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
400 				tag);
401 		if (nr_pages == 0)
402 			break;
403 
404 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
405 		if (ret)
406 			done = 1;
407 		if (ret > 0)
408 			ret = 0;
409 		pagevec_release(&pvec);
410 		cond_resched();
411 	}
412 
413 	if (!cycled && !done) {
414 		/*
415 		 * range_cyclic:
416 		 * We hit the last page and there is more work to be done: wrap
417 		 * back to the start of the file
418 		 */
419 		cycled = 1;
420 		index = 0;
421 		end = writeback_index - 1;
422 		goto retry;
423 	}
424 
425 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
426 		mapping->writeback_index = done_index;
427 
428 	return ret;
429 }
430 
431 
432 /**
433  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
434  * @mapping: The mapping to write
435  * @wbc: The writeback control
436  *
437  */
438 
439 static int gfs2_jdata_writepages(struct address_space *mapping,
440 				 struct writeback_control *wbc)
441 {
442 	struct gfs2_inode *ip = GFS2_I(mapping->host);
443 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
444 	int ret;
445 
446 	ret = gfs2_write_cache_jdata(mapping, wbc);
447 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
448 		gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
449 		ret = gfs2_write_cache_jdata(mapping, wbc);
450 	}
451 	return ret;
452 }
453 
454 /**
455  * stuffed_readpage - Fill in a Linux page with stuffed file data
456  * @ip: the inode
457  * @page: the page
458  *
459  * Returns: errno
460  */
461 
462 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
463 {
464 	struct buffer_head *dibh;
465 	u64 dsize = i_size_read(&ip->i_inode);
466 	void *kaddr;
467 	int error;
468 
469 	/*
470 	 * Due to the order of unstuffing files and ->fault(), we can be
471 	 * asked for a zero page in the case of a stuffed file being extended,
472 	 * so we need to supply one here. It doesn't happen often.
473 	 */
474 	if (unlikely(page->index)) {
475 		zero_user(page, 0, PAGE_SIZE);
476 		SetPageUptodate(page);
477 		return 0;
478 	}
479 
480 	error = gfs2_meta_inode_buffer(ip, &dibh);
481 	if (error)
482 		return error;
483 
484 	kaddr = kmap_atomic(page);
485 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
486 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
487 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
488 	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
489 	kunmap_atomic(kaddr);
490 	flush_dcache_page(page);
491 	brelse(dibh);
492 	SetPageUptodate(page);
493 
494 	return 0;
495 }
496 
497 
498 /**
499  * __gfs2_readpage - readpage
500  * @file: The file to read a page for
501  * @page: The page to read
502  *
503  * This is the core of gfs2's readpage. Its used by the internal file
504  * reading code as in that case we already hold the glock. Also its
505  * called by gfs2_readpage() once the required lock has been granted.
506  *
507  */
508 
509 static int __gfs2_readpage(void *file, struct page *page)
510 {
511 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
512 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
513 	int error;
514 
515 	if (gfs2_is_stuffed(ip)) {
516 		error = stuffed_readpage(ip, page);
517 		unlock_page(page);
518 	} else {
519 		error = mpage_readpage(page, gfs2_block_map);
520 	}
521 
522 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
523 		return -EIO;
524 
525 	return error;
526 }
527 
528 /**
529  * gfs2_readpage - read a page of a file
530  * @file: The file to read
531  * @page: The page of the file
532  *
533  * This deals with the locking required. We have to unlock and
534  * relock the page in order to get the locking in the right
535  * order.
536  */
537 
538 static int gfs2_readpage(struct file *file, struct page *page)
539 {
540 	struct address_space *mapping = page->mapping;
541 	struct gfs2_inode *ip = GFS2_I(mapping->host);
542 	struct gfs2_holder gh;
543 	int error;
544 
545 	unlock_page(page);
546 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
547 	error = gfs2_glock_nq(&gh);
548 	if (unlikely(error))
549 		goto out;
550 	error = AOP_TRUNCATED_PAGE;
551 	lock_page(page);
552 	if (page->mapping == mapping && !PageUptodate(page))
553 		error = __gfs2_readpage(file, page);
554 	else
555 		unlock_page(page);
556 	gfs2_glock_dq(&gh);
557 out:
558 	gfs2_holder_uninit(&gh);
559 	if (error && error != AOP_TRUNCATED_PAGE)
560 		lock_page(page);
561 	return error;
562 }
563 
564 /**
565  * gfs2_internal_read - read an internal file
566  * @ip: The gfs2 inode
567  * @buf: The buffer to fill
568  * @pos: The file position
569  * @size: The amount to read
570  *
571  */
572 
573 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
574                        unsigned size)
575 {
576 	struct address_space *mapping = ip->i_inode.i_mapping;
577 	unsigned long index = *pos / PAGE_SIZE;
578 	unsigned offset = *pos & (PAGE_SIZE - 1);
579 	unsigned copied = 0;
580 	unsigned amt;
581 	struct page *page;
582 	void *p;
583 
584 	do {
585 		amt = size - copied;
586 		if (offset + size > PAGE_SIZE)
587 			amt = PAGE_SIZE - offset;
588 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
589 		if (IS_ERR(page))
590 			return PTR_ERR(page);
591 		p = kmap_atomic(page);
592 		memcpy(buf + copied, p + offset, amt);
593 		kunmap_atomic(p);
594 		put_page(page);
595 		copied += amt;
596 		index++;
597 		offset = 0;
598 	} while(copied < size);
599 	(*pos) += size;
600 	return size;
601 }
602 
603 /**
604  * gfs2_readpages - Read a bunch of pages at once
605  * @file: The file to read from
606  * @mapping: Address space info
607  * @pages: List of pages to read
608  * @nr_pages: Number of pages to read
609  *
610  * Some notes:
611  * 1. This is only for readahead, so we can simply ignore any things
612  *    which are slightly inconvenient (such as locking conflicts between
613  *    the page lock and the glock) and return having done no I/O. Its
614  *    obviously not something we'd want to do on too regular a basis.
615  *    Any I/O we ignore at this time will be done via readpage later.
616  * 2. We don't handle stuffed files here we let readpage do the honours.
617  * 3. mpage_readpages() does most of the heavy lifting in the common case.
618  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
619  */
620 
621 static int gfs2_readpages(struct file *file, struct address_space *mapping,
622 			  struct list_head *pages, unsigned nr_pages)
623 {
624 	struct inode *inode = mapping->host;
625 	struct gfs2_inode *ip = GFS2_I(inode);
626 	struct gfs2_sbd *sdp = GFS2_SB(inode);
627 	struct gfs2_holder gh;
628 	int ret;
629 
630 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
631 	ret = gfs2_glock_nq(&gh);
632 	if (unlikely(ret))
633 		goto out_uninit;
634 	if (!gfs2_is_stuffed(ip))
635 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
636 	gfs2_glock_dq(&gh);
637 out_uninit:
638 	gfs2_holder_uninit(&gh);
639 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
640 		ret = -EIO;
641 	return ret;
642 }
643 
644 /**
645  * gfs2_write_begin - Begin to write to a file
646  * @file: The file to write to
647  * @mapping: The mapping in which to write
648  * @pos: The file offset at which to start writing
649  * @len: Length of the write
650  * @flags: Various flags
651  * @pagep: Pointer to return the page
652  * @fsdata: Pointer to return fs data (unused by GFS2)
653  *
654  * Returns: errno
655  */
656 
657 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
658 			    loff_t pos, unsigned len, unsigned flags,
659 			    struct page **pagep, void **fsdata)
660 {
661 	struct gfs2_inode *ip = GFS2_I(mapping->host);
662 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
663 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
664 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
665 	unsigned requested = 0;
666 	int alloc_required;
667 	int error = 0;
668 	pgoff_t index = pos >> PAGE_SHIFT;
669 	unsigned from = pos & (PAGE_SIZE - 1);
670 	struct page *page;
671 
672 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
673 	error = gfs2_glock_nq(&ip->i_gh);
674 	if (unlikely(error))
675 		goto out_uninit;
676 	if (&ip->i_inode == sdp->sd_rindex) {
677 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
678 					   GL_NOCACHE, &m_ip->i_gh);
679 		if (unlikely(error)) {
680 			gfs2_glock_dq(&ip->i_gh);
681 			goto out_uninit;
682 		}
683 	}
684 
685 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
686 
687 	if (alloc_required || gfs2_is_jdata(ip))
688 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
689 
690 	if (alloc_required) {
691 		struct gfs2_alloc_parms ap = { .aflags = 0, };
692 		requested = data_blocks + ind_blocks;
693 		ap.target = requested;
694 		error = gfs2_quota_lock_check(ip, &ap);
695 		if (error)
696 			goto out_unlock;
697 
698 		error = gfs2_inplace_reserve(ip, &ap);
699 		if (error)
700 			goto out_qunlock;
701 	}
702 
703 	rblocks = RES_DINODE + ind_blocks;
704 	if (gfs2_is_jdata(ip))
705 		rblocks += data_blocks ? data_blocks : 1;
706 	if (ind_blocks || data_blocks)
707 		rblocks += RES_STATFS + RES_QUOTA;
708 	if (&ip->i_inode == sdp->sd_rindex)
709 		rblocks += 2 * RES_STATFS;
710 	if (alloc_required)
711 		rblocks += gfs2_rg_blocks(ip, requested);
712 
713 	error = gfs2_trans_begin(sdp, rblocks,
714 				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
715 	if (error)
716 		goto out_trans_fail;
717 
718 	error = -ENOMEM;
719 	flags |= AOP_FLAG_NOFS;
720 	page = grab_cache_page_write_begin(mapping, index, flags);
721 	*pagep = page;
722 	if (unlikely(!page))
723 		goto out_endtrans;
724 
725 	if (gfs2_is_stuffed(ip)) {
726 		error = 0;
727 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
728 			error = gfs2_unstuff_dinode(ip, page);
729 			if (error == 0)
730 				goto prepare_write;
731 		} else if (!PageUptodate(page)) {
732 			error = stuffed_readpage(ip, page);
733 		}
734 		goto out;
735 	}
736 
737 prepare_write:
738 	error = __block_write_begin(page, from, len, gfs2_block_map);
739 out:
740 	if (error == 0)
741 		return 0;
742 
743 	unlock_page(page);
744 	put_page(page);
745 
746 	gfs2_trans_end(sdp);
747 	if (pos + len > ip->i_inode.i_size)
748 		gfs2_trim_blocks(&ip->i_inode);
749 	goto out_trans_fail;
750 
751 out_endtrans:
752 	gfs2_trans_end(sdp);
753 out_trans_fail:
754 	if (alloc_required) {
755 		gfs2_inplace_release(ip);
756 out_qunlock:
757 		gfs2_quota_unlock(ip);
758 	}
759 out_unlock:
760 	if (&ip->i_inode == sdp->sd_rindex) {
761 		gfs2_glock_dq(&m_ip->i_gh);
762 		gfs2_holder_uninit(&m_ip->i_gh);
763 	}
764 	gfs2_glock_dq(&ip->i_gh);
765 out_uninit:
766 	gfs2_holder_uninit(&ip->i_gh);
767 	return error;
768 }
769 
770 /**
771  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
772  * @inode: the rindex inode
773  */
774 static void adjust_fs_space(struct inode *inode)
775 {
776 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
777 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
778 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
779 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
780 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
781 	struct buffer_head *m_bh, *l_bh;
782 	u64 fs_total, new_free;
783 
784 	/* Total up the file system space, according to the latest rindex. */
785 	fs_total = gfs2_ri_total(sdp);
786 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
787 		return;
788 
789 	spin_lock(&sdp->sd_statfs_spin);
790 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
791 			      sizeof(struct gfs2_dinode));
792 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
793 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
794 	else
795 		new_free = 0;
796 	spin_unlock(&sdp->sd_statfs_spin);
797 	fs_warn(sdp, "File system extended by %llu blocks.\n",
798 		(unsigned long long)new_free);
799 	gfs2_statfs_change(sdp, new_free, new_free, 0);
800 
801 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
802 		goto out;
803 	update_statfs(sdp, m_bh, l_bh);
804 	brelse(l_bh);
805 out:
806 	brelse(m_bh);
807 }
808 
809 /**
810  * gfs2_stuffed_write_end - Write end for stuffed files
811  * @inode: The inode
812  * @dibh: The buffer_head containing the on-disk inode
813  * @pos: The file position
814  * @len: The length of the write
815  * @copied: How much was actually copied by the VFS
816  * @page: The page
817  *
818  * This copies the data from the page into the inode block after
819  * the inode data structure itself.
820  *
821  * Returns: errno
822  */
823 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
824 				  loff_t pos, unsigned len, unsigned copied,
825 				  struct page *page)
826 {
827 	struct gfs2_inode *ip = GFS2_I(inode);
828 	struct gfs2_sbd *sdp = GFS2_SB(inode);
829 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
830 	u64 to = pos + copied;
831 	void *kaddr;
832 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
833 
834 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
835 	kaddr = kmap_atomic(page);
836 	memcpy(buf + pos, kaddr + pos, copied);
837 	flush_dcache_page(page);
838 	kunmap_atomic(kaddr);
839 
840 	WARN_ON(!PageUptodate(page));
841 	unlock_page(page);
842 	put_page(page);
843 
844 	if (copied) {
845 		if (inode->i_size < to)
846 			i_size_write(inode, to);
847 		mark_inode_dirty(inode);
848 	}
849 
850 	if (inode == sdp->sd_rindex) {
851 		adjust_fs_space(inode);
852 		sdp->sd_rindex_uptodate = 0;
853 	}
854 
855 	brelse(dibh);
856 	gfs2_trans_end(sdp);
857 	if (inode == sdp->sd_rindex) {
858 		gfs2_glock_dq(&m_ip->i_gh);
859 		gfs2_holder_uninit(&m_ip->i_gh);
860 	}
861 	gfs2_glock_dq(&ip->i_gh);
862 	gfs2_holder_uninit(&ip->i_gh);
863 	return copied;
864 }
865 
866 /**
867  * gfs2_write_end
868  * @file: The file to write to
869  * @mapping: The address space to write to
870  * @pos: The file position
871  * @len: The length of the data
872  * @copied: How much was actually copied by the VFS
873  * @page: The page that has been written
874  * @fsdata: The fsdata (unused in GFS2)
875  *
876  * The main write_end function for GFS2. We have a separate one for
877  * stuffed files as they are slightly different, otherwise we just
878  * put our locking around the VFS provided functions.
879  *
880  * Returns: errno
881  */
882 
883 static int gfs2_write_end(struct file *file, struct address_space *mapping,
884 			  loff_t pos, unsigned len, unsigned copied,
885 			  struct page *page, void *fsdata)
886 {
887 	struct inode *inode = page->mapping->host;
888 	struct gfs2_inode *ip = GFS2_I(inode);
889 	struct gfs2_sbd *sdp = GFS2_SB(inode);
890 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
891 	struct buffer_head *dibh;
892 	unsigned int from = pos & (PAGE_SIZE - 1);
893 	unsigned int to = from + len;
894 	int ret;
895 	struct gfs2_trans *tr = current->journal_info;
896 	BUG_ON(!tr);
897 
898 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
899 
900 	ret = gfs2_meta_inode_buffer(ip, &dibh);
901 	if (unlikely(ret)) {
902 		unlock_page(page);
903 		put_page(page);
904 		goto failed;
905 	}
906 
907 	if (gfs2_is_stuffed(ip))
908 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
909 
910 	if (!gfs2_is_writeback(ip))
911 		gfs2_page_add_databufs(ip, page, from, to);
912 
913 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
914 	if (tr->tr_num_buf_new)
915 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
916 	else
917 		gfs2_trans_add_meta(ip->i_gl, dibh);
918 
919 
920 	if (inode == sdp->sd_rindex) {
921 		adjust_fs_space(inode);
922 		sdp->sd_rindex_uptodate = 0;
923 	}
924 
925 	brelse(dibh);
926 failed:
927 	gfs2_trans_end(sdp);
928 	gfs2_inplace_release(ip);
929 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
930 		gfs2_quota_unlock(ip);
931 	if (inode == sdp->sd_rindex) {
932 		gfs2_glock_dq(&m_ip->i_gh);
933 		gfs2_holder_uninit(&m_ip->i_gh);
934 	}
935 	gfs2_glock_dq(&ip->i_gh);
936 	gfs2_holder_uninit(&ip->i_gh);
937 	return ret;
938 }
939 
940 /**
941  * gfs2_set_page_dirty - Page dirtying function
942  * @page: The page to dirty
943  *
944  * Returns: 1 if it dirtyed the page, or 0 otherwise
945  */
946 
947 static int gfs2_set_page_dirty(struct page *page)
948 {
949 	SetPageChecked(page);
950 	return __set_page_dirty_buffers(page);
951 }
952 
953 /**
954  * gfs2_bmap - Block map function
955  * @mapping: Address space info
956  * @lblock: The block to map
957  *
958  * Returns: The disk address for the block or 0 on hole or error
959  */
960 
961 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
962 {
963 	struct gfs2_inode *ip = GFS2_I(mapping->host);
964 	struct gfs2_holder i_gh;
965 	sector_t dblock = 0;
966 	int error;
967 
968 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
969 	if (error)
970 		return 0;
971 
972 	if (!gfs2_is_stuffed(ip))
973 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
974 
975 	gfs2_glock_dq_uninit(&i_gh);
976 
977 	return dblock;
978 }
979 
980 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
981 {
982 	struct gfs2_bufdata *bd;
983 
984 	lock_buffer(bh);
985 	gfs2_log_lock(sdp);
986 	clear_buffer_dirty(bh);
987 	bd = bh->b_private;
988 	if (bd) {
989 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
990 			list_del_init(&bd->bd_list);
991 		else
992 			gfs2_remove_from_journal(bh, REMOVE_JDATA);
993 	}
994 	bh->b_bdev = NULL;
995 	clear_buffer_mapped(bh);
996 	clear_buffer_req(bh);
997 	clear_buffer_new(bh);
998 	gfs2_log_unlock(sdp);
999 	unlock_buffer(bh);
1000 }
1001 
1002 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1003 				unsigned int length)
1004 {
1005 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1006 	unsigned int stop = offset + length;
1007 	int partial_page = (offset || length < PAGE_SIZE);
1008 	struct buffer_head *bh, *head;
1009 	unsigned long pos = 0;
1010 
1011 	BUG_ON(!PageLocked(page));
1012 	if (!partial_page)
1013 		ClearPageChecked(page);
1014 	if (!page_has_buffers(page))
1015 		goto out;
1016 
1017 	bh = head = page_buffers(page);
1018 	do {
1019 		if (pos + bh->b_size > stop)
1020 			return;
1021 
1022 		if (offset <= pos)
1023 			gfs2_discard(sdp, bh);
1024 		pos += bh->b_size;
1025 		bh = bh->b_this_page;
1026 	} while (bh != head);
1027 out:
1028 	if (!partial_page)
1029 		try_to_release_page(page, 0);
1030 }
1031 
1032 /**
1033  * gfs2_ok_for_dio - check that dio is valid on this file
1034  * @ip: The inode
1035  * @offset: The offset at which we are reading or writing
1036  *
1037  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1038  *          1 (to accept the i/o request)
1039  */
1040 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1041 {
1042 	/*
1043 	 * Should we return an error here? I can't see that O_DIRECT for
1044 	 * a stuffed file makes any sense. For now we'll silently fall
1045 	 * back to buffered I/O
1046 	 */
1047 	if (gfs2_is_stuffed(ip))
1048 		return 0;
1049 
1050 	if (offset >= i_size_read(&ip->i_inode))
1051 		return 0;
1052 	return 1;
1053 }
1054 
1055 
1056 
1057 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1058 {
1059 	struct file *file = iocb->ki_filp;
1060 	struct inode *inode = file->f_mapping->host;
1061 	struct address_space *mapping = inode->i_mapping;
1062 	struct gfs2_inode *ip = GFS2_I(inode);
1063 	loff_t offset = iocb->ki_pos;
1064 	struct gfs2_holder gh;
1065 	int rv;
1066 
1067 	/*
1068 	 * Deferred lock, even if its a write, since we do no allocation
1069 	 * on this path. All we need change is atime, and this lock mode
1070 	 * ensures that other nodes have flushed their buffered read caches
1071 	 * (i.e. their page cache entries for this inode). We do not,
1072 	 * unfortunately have the option of only flushing a range like
1073 	 * the VFS does.
1074 	 */
1075 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1076 	rv = gfs2_glock_nq(&gh);
1077 	if (rv)
1078 		goto out_uninit;
1079 	rv = gfs2_ok_for_dio(ip, offset);
1080 	if (rv != 1)
1081 		goto out; /* dio not valid, fall back to buffered i/o */
1082 
1083 	/*
1084 	 * Now since we are holding a deferred (CW) lock at this point, you
1085 	 * might be wondering why this is ever needed. There is a case however
1086 	 * where we've granted a deferred local lock against a cached exclusive
1087 	 * glock. That is ok provided all granted local locks are deferred, but
1088 	 * it also means that it is possible to encounter pages which are
1089 	 * cached and possibly also mapped. So here we check for that and sort
1090 	 * them out ahead of the dio. The glock state machine will take care of
1091 	 * everything else.
1092 	 *
1093 	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1094 	 * the first place, mapping->nr_pages will always be zero.
1095 	 */
1096 	if (mapping->nrpages) {
1097 		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1098 		loff_t len = iov_iter_count(iter);
1099 		loff_t end = PAGE_ALIGN(offset + len) - 1;
1100 
1101 		rv = 0;
1102 		if (len == 0)
1103 			goto out;
1104 		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1105 			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1106 		rv = filemap_write_and_wait_range(mapping, lstart, end);
1107 		if (rv)
1108 			goto out;
1109 		if (iov_iter_rw(iter) == WRITE)
1110 			truncate_inode_pages_range(mapping, lstart, end);
1111 	}
1112 
1113 	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1114 				  gfs2_get_block_direct, NULL, NULL, 0);
1115 out:
1116 	gfs2_glock_dq(&gh);
1117 out_uninit:
1118 	gfs2_holder_uninit(&gh);
1119 	return rv;
1120 }
1121 
1122 /**
1123  * gfs2_releasepage - free the metadata associated with a page
1124  * @page: the page that's being released
1125  * @gfp_mask: passed from Linux VFS, ignored by us
1126  *
1127  * Call try_to_free_buffers() if the buffers in this page can be
1128  * released.
1129  *
1130  * Returns: 0
1131  */
1132 
1133 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1134 {
1135 	struct address_space *mapping = page->mapping;
1136 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1137 	struct buffer_head *bh, *head;
1138 	struct gfs2_bufdata *bd;
1139 
1140 	if (!page_has_buffers(page))
1141 		return 0;
1142 
1143 	/*
1144 	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1145 	 * clean pages might not have had the dirty bit cleared.  Thus, it can
1146 	 * send actual dirty pages to ->releasepage() via shrink_active_list().
1147 	 *
1148 	 * As a workaround, we skip pages that contain dirty buffers below.
1149 	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1150 	 * on dirty buffers like we used to here again.
1151 	 */
1152 
1153 	gfs2_log_lock(sdp);
1154 	spin_lock(&sdp->sd_ail_lock);
1155 	head = bh = page_buffers(page);
1156 	do {
1157 		if (atomic_read(&bh->b_count))
1158 			goto cannot_release;
1159 		bd = bh->b_private;
1160 		if (bd && bd->bd_tr)
1161 			goto cannot_release;
1162 		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1163 			goto cannot_release;
1164 		bh = bh->b_this_page;
1165 	} while(bh != head);
1166 	spin_unlock(&sdp->sd_ail_lock);
1167 
1168 	head = bh = page_buffers(page);
1169 	do {
1170 		bd = bh->b_private;
1171 		if (bd) {
1172 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1173 			if (!list_empty(&bd->bd_list))
1174 				list_del_init(&bd->bd_list);
1175 			bd->bd_bh = NULL;
1176 			bh->b_private = NULL;
1177 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1178 		}
1179 
1180 		bh = bh->b_this_page;
1181 	} while (bh != head);
1182 	gfs2_log_unlock(sdp);
1183 
1184 	return try_to_free_buffers(page);
1185 
1186 cannot_release:
1187 	spin_unlock(&sdp->sd_ail_lock);
1188 	gfs2_log_unlock(sdp);
1189 	return 0;
1190 }
1191 
1192 static const struct address_space_operations gfs2_writeback_aops = {
1193 	.writepage = gfs2_writepage,
1194 	.writepages = gfs2_writepages,
1195 	.readpage = gfs2_readpage,
1196 	.readpages = gfs2_readpages,
1197 	.write_begin = gfs2_write_begin,
1198 	.write_end = gfs2_write_end,
1199 	.bmap = gfs2_bmap,
1200 	.invalidatepage = gfs2_invalidatepage,
1201 	.releasepage = gfs2_releasepage,
1202 	.direct_IO = gfs2_direct_IO,
1203 	.migratepage = buffer_migrate_page,
1204 	.is_partially_uptodate = block_is_partially_uptodate,
1205 	.error_remove_page = generic_error_remove_page,
1206 };
1207 
1208 static const struct address_space_operations gfs2_ordered_aops = {
1209 	.writepage = gfs2_writepage,
1210 	.writepages = gfs2_writepages,
1211 	.readpage = gfs2_readpage,
1212 	.readpages = gfs2_readpages,
1213 	.write_begin = gfs2_write_begin,
1214 	.write_end = gfs2_write_end,
1215 	.set_page_dirty = gfs2_set_page_dirty,
1216 	.bmap = gfs2_bmap,
1217 	.invalidatepage = gfs2_invalidatepage,
1218 	.releasepage = gfs2_releasepage,
1219 	.direct_IO = gfs2_direct_IO,
1220 	.migratepage = buffer_migrate_page,
1221 	.is_partially_uptodate = block_is_partially_uptodate,
1222 	.error_remove_page = generic_error_remove_page,
1223 };
1224 
1225 static const struct address_space_operations gfs2_jdata_aops = {
1226 	.writepage = gfs2_jdata_writepage,
1227 	.writepages = gfs2_jdata_writepages,
1228 	.readpage = gfs2_readpage,
1229 	.readpages = gfs2_readpages,
1230 	.write_begin = gfs2_write_begin,
1231 	.write_end = gfs2_write_end,
1232 	.set_page_dirty = gfs2_set_page_dirty,
1233 	.bmap = gfs2_bmap,
1234 	.invalidatepage = gfs2_invalidatepage,
1235 	.releasepage = gfs2_releasepage,
1236 	.is_partially_uptodate = block_is_partially_uptodate,
1237 	.error_remove_page = generic_error_remove_page,
1238 };
1239 
1240 void gfs2_set_aops(struct inode *inode)
1241 {
1242 	struct gfs2_inode *ip = GFS2_I(inode);
1243 
1244 	if (gfs2_is_writeback(ip))
1245 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1246 	else if (gfs2_is_ordered(ip))
1247 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1248 	else if (gfs2_is_jdata(ip))
1249 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1250 	else
1251 		BUG();
1252 }
1253 
1254