1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/slab.h> 9 #include <linux/spinlock.h> 10 #include <linux/completion.h> 11 #include <linux/buffer_head.h> 12 #include <linux/pagemap.h> 13 #include <linux/pagevec.h> 14 #include <linux/mpage.h> 15 #include <linux/fs.h> 16 #include <linux/writeback.h> 17 #include <linux/swap.h> 18 #include <linux/gfs2_ondisk.h> 19 #include <linux/backing-dev.h> 20 #include <linux/uio.h> 21 #include <trace/events/writeback.h> 22 #include <linux/sched/signal.h> 23 24 #include "gfs2.h" 25 #include "incore.h" 26 #include "bmap.h" 27 #include "glock.h" 28 #include "inode.h" 29 #include "log.h" 30 #include "meta_io.h" 31 #include "quota.h" 32 #include "trans.h" 33 #include "rgrp.h" 34 #include "super.h" 35 #include "util.h" 36 #include "glops.h" 37 #include "aops.h" 38 39 40 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page, 41 unsigned int from, unsigned int len) 42 { 43 struct buffer_head *head = page_buffers(page); 44 unsigned int bsize = head->b_size; 45 struct buffer_head *bh; 46 unsigned int to = from + len; 47 unsigned int start, end; 48 49 for (bh = head, start = 0; bh != head || !start; 50 bh = bh->b_this_page, start = end) { 51 end = start + bsize; 52 if (end <= from) 53 continue; 54 if (start >= to) 55 break; 56 set_buffer_uptodate(bh); 57 gfs2_trans_add_data(ip->i_gl, bh); 58 } 59 } 60 61 /** 62 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block 63 * @inode: The inode 64 * @lblock: The block number to look up 65 * @bh_result: The buffer head to return the result in 66 * @create: Non-zero if we may add block to the file 67 * 68 * Returns: errno 69 */ 70 71 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock, 72 struct buffer_head *bh_result, int create) 73 { 74 int error; 75 76 error = gfs2_block_map(inode, lblock, bh_result, 0); 77 if (error) 78 return error; 79 if (!buffer_mapped(bh_result)) 80 return -EIO; 81 return 0; 82 } 83 84 /** 85 * gfs2_writepage - Write page for writeback mappings 86 * @page: The page 87 * @wbc: The writeback control 88 */ 89 static int gfs2_writepage(struct page *page, struct writeback_control *wbc) 90 { 91 struct inode *inode = page->mapping->host; 92 struct gfs2_inode *ip = GFS2_I(inode); 93 struct gfs2_sbd *sdp = GFS2_SB(inode); 94 loff_t i_size = i_size_read(inode); 95 pgoff_t end_index = i_size >> PAGE_SHIFT; 96 unsigned offset; 97 98 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 99 goto out; 100 if (current->journal_info) 101 goto redirty; 102 /* Is the page fully outside i_size? (truncate in progress) */ 103 offset = i_size & (PAGE_SIZE-1); 104 if (page->index > end_index || (page->index == end_index && !offset)) { 105 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 106 goto out; 107 } 108 109 return nobh_writepage(page, gfs2_get_block_noalloc, wbc); 110 111 redirty: 112 redirty_page_for_writepage(wbc, page); 113 out: 114 unlock_page(page); 115 return 0; 116 } 117 118 /* This is the same as calling block_write_full_page, but it also 119 * writes pages outside of i_size 120 */ 121 static int gfs2_write_full_page(struct page *page, get_block_t *get_block, 122 struct writeback_control *wbc) 123 { 124 struct inode * const inode = page->mapping->host; 125 loff_t i_size = i_size_read(inode); 126 const pgoff_t end_index = i_size >> PAGE_SHIFT; 127 unsigned offset; 128 129 /* 130 * The page straddles i_size. It must be zeroed out on each and every 131 * writepage invocation because it may be mmapped. "A file is mapped 132 * in multiples of the page size. For a file that is not a multiple of 133 * the page size, the remaining memory is zeroed when mapped, and 134 * writes to that region are not written out to the file." 135 */ 136 offset = i_size & (PAGE_SIZE - 1); 137 if (page->index == end_index && offset) 138 zero_user_segment(page, offset, PAGE_SIZE); 139 140 return __block_write_full_page(inode, page, get_block, wbc, 141 end_buffer_async_write); 142 } 143 144 /** 145 * __gfs2_jdata_writepage - The core of jdata writepage 146 * @page: The page to write 147 * @wbc: The writeback control 148 * 149 * This is shared between writepage and writepages and implements the 150 * core of the writepage operation. If a transaction is required then 151 * PageChecked will have been set and the transaction will have 152 * already been started before this is called. 153 */ 154 155 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 156 { 157 struct inode *inode = page->mapping->host; 158 struct gfs2_inode *ip = GFS2_I(inode); 159 struct gfs2_sbd *sdp = GFS2_SB(inode); 160 161 if (PageChecked(page)) { 162 ClearPageChecked(page); 163 if (!page_has_buffers(page)) { 164 create_empty_buffers(page, inode->i_sb->s_blocksize, 165 BIT(BH_Dirty)|BIT(BH_Uptodate)); 166 } 167 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize); 168 } 169 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc); 170 } 171 172 /** 173 * gfs2_jdata_writepage - Write complete page 174 * @page: Page to write 175 * @wbc: The writeback control 176 * 177 * Returns: errno 178 * 179 */ 180 181 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 182 { 183 struct inode *inode = page->mapping->host; 184 struct gfs2_inode *ip = GFS2_I(inode); 185 struct gfs2_sbd *sdp = GFS2_SB(inode); 186 187 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 188 goto out; 189 if (PageChecked(page) || current->journal_info) 190 goto out_ignore; 191 return __gfs2_jdata_writepage(page, wbc); 192 193 out_ignore: 194 redirty_page_for_writepage(wbc, page); 195 out: 196 unlock_page(page); 197 return 0; 198 } 199 200 /** 201 * gfs2_writepages - Write a bunch of dirty pages back to disk 202 * @mapping: The mapping to write 203 * @wbc: Write-back control 204 * 205 * Used for both ordered and writeback modes. 206 */ 207 static int gfs2_writepages(struct address_space *mapping, 208 struct writeback_control *wbc) 209 { 210 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 211 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc); 212 213 /* 214 * Even if we didn't write any pages here, we might still be holding 215 * dirty pages in the ail. We forcibly flush the ail because we don't 216 * want balance_dirty_pages() to loop indefinitely trying to write out 217 * pages held in the ail that it can't find. 218 */ 219 if (ret == 0) 220 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags); 221 222 return ret; 223 } 224 225 /** 226 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages 227 * @mapping: The mapping 228 * @wbc: The writeback control 229 * @pvec: The vector of pages 230 * @nr_pages: The number of pages to write 231 * @done_index: Page index 232 * 233 * Returns: non-zero if loop should terminate, zero otherwise 234 */ 235 236 static int gfs2_write_jdata_pagevec(struct address_space *mapping, 237 struct writeback_control *wbc, 238 struct pagevec *pvec, 239 int nr_pages, 240 pgoff_t *done_index) 241 { 242 struct inode *inode = mapping->host; 243 struct gfs2_sbd *sdp = GFS2_SB(inode); 244 unsigned nrblocks = nr_pages * (PAGE_SIZE >> inode->i_blkbits); 245 int i; 246 int ret; 247 248 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks); 249 if (ret < 0) 250 return ret; 251 252 for(i = 0; i < nr_pages; i++) { 253 struct page *page = pvec->pages[i]; 254 255 *done_index = page->index; 256 257 lock_page(page); 258 259 if (unlikely(page->mapping != mapping)) { 260 continue_unlock: 261 unlock_page(page); 262 continue; 263 } 264 265 if (!PageDirty(page)) { 266 /* someone wrote it for us */ 267 goto continue_unlock; 268 } 269 270 if (PageWriteback(page)) { 271 if (wbc->sync_mode != WB_SYNC_NONE) 272 wait_on_page_writeback(page); 273 else 274 goto continue_unlock; 275 } 276 277 BUG_ON(PageWriteback(page)); 278 if (!clear_page_dirty_for_io(page)) 279 goto continue_unlock; 280 281 trace_wbc_writepage(wbc, inode_to_bdi(inode)); 282 283 ret = __gfs2_jdata_writepage(page, wbc); 284 if (unlikely(ret)) { 285 if (ret == AOP_WRITEPAGE_ACTIVATE) { 286 unlock_page(page); 287 ret = 0; 288 } else { 289 290 /* 291 * done_index is set past this page, 292 * so media errors will not choke 293 * background writeout for the entire 294 * file. This has consequences for 295 * range_cyclic semantics (ie. it may 296 * not be suitable for data integrity 297 * writeout). 298 */ 299 *done_index = page->index + 1; 300 ret = 1; 301 break; 302 } 303 } 304 305 /* 306 * We stop writing back only if we are not doing 307 * integrity sync. In case of integrity sync we have to 308 * keep going until we have written all the pages 309 * we tagged for writeback prior to entering this loop. 310 */ 311 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { 312 ret = 1; 313 break; 314 } 315 316 } 317 gfs2_trans_end(sdp); 318 return ret; 319 } 320 321 /** 322 * gfs2_write_cache_jdata - Like write_cache_pages but different 323 * @mapping: The mapping to write 324 * @wbc: The writeback control 325 * 326 * The reason that we use our own function here is that we need to 327 * start transactions before we grab page locks. This allows us 328 * to get the ordering right. 329 */ 330 331 static int gfs2_write_cache_jdata(struct address_space *mapping, 332 struct writeback_control *wbc) 333 { 334 int ret = 0; 335 int done = 0; 336 struct pagevec pvec; 337 int nr_pages; 338 pgoff_t uninitialized_var(writeback_index); 339 pgoff_t index; 340 pgoff_t end; 341 pgoff_t done_index; 342 int cycled; 343 int range_whole = 0; 344 xa_mark_t tag; 345 346 pagevec_init(&pvec); 347 if (wbc->range_cyclic) { 348 writeback_index = mapping->writeback_index; /* prev offset */ 349 index = writeback_index; 350 if (index == 0) 351 cycled = 1; 352 else 353 cycled = 0; 354 end = -1; 355 } else { 356 index = wbc->range_start >> PAGE_SHIFT; 357 end = wbc->range_end >> PAGE_SHIFT; 358 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 359 range_whole = 1; 360 cycled = 1; /* ignore range_cyclic tests */ 361 } 362 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 363 tag = PAGECACHE_TAG_TOWRITE; 364 else 365 tag = PAGECACHE_TAG_DIRTY; 366 367 retry: 368 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 369 tag_pages_for_writeback(mapping, index, end); 370 done_index = index; 371 while (!done && (index <= end)) { 372 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 373 tag); 374 if (nr_pages == 0) 375 break; 376 377 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index); 378 if (ret) 379 done = 1; 380 if (ret > 0) 381 ret = 0; 382 pagevec_release(&pvec); 383 cond_resched(); 384 } 385 386 if (!cycled && !done) { 387 /* 388 * range_cyclic: 389 * We hit the last page and there is more work to be done: wrap 390 * back to the start of the file 391 */ 392 cycled = 1; 393 index = 0; 394 end = writeback_index - 1; 395 goto retry; 396 } 397 398 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 399 mapping->writeback_index = done_index; 400 401 return ret; 402 } 403 404 405 /** 406 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk 407 * @mapping: The mapping to write 408 * @wbc: The writeback control 409 * 410 */ 411 412 static int gfs2_jdata_writepages(struct address_space *mapping, 413 struct writeback_control *wbc) 414 { 415 struct gfs2_inode *ip = GFS2_I(mapping->host); 416 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 417 int ret; 418 419 ret = gfs2_write_cache_jdata(mapping, wbc); 420 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) { 421 gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL | 422 GFS2_LFC_JDATA_WPAGES); 423 ret = gfs2_write_cache_jdata(mapping, wbc); 424 } 425 return ret; 426 } 427 428 /** 429 * stuffed_readpage - Fill in a Linux page with stuffed file data 430 * @ip: the inode 431 * @page: the page 432 * 433 * Returns: errno 434 */ 435 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page) 436 { 437 struct buffer_head *dibh; 438 u64 dsize = i_size_read(&ip->i_inode); 439 void *kaddr; 440 int error; 441 442 /* 443 * Due to the order of unstuffing files and ->fault(), we can be 444 * asked for a zero page in the case of a stuffed file being extended, 445 * so we need to supply one here. It doesn't happen often. 446 */ 447 if (unlikely(page->index)) { 448 zero_user(page, 0, PAGE_SIZE); 449 SetPageUptodate(page); 450 return 0; 451 } 452 453 error = gfs2_meta_inode_buffer(ip, &dibh); 454 if (error) 455 return error; 456 457 kaddr = kmap_atomic(page); 458 if (dsize > gfs2_max_stuffed_size(ip)) 459 dsize = gfs2_max_stuffed_size(ip); 460 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 461 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 462 kunmap_atomic(kaddr); 463 flush_dcache_page(page); 464 brelse(dibh); 465 SetPageUptodate(page); 466 467 return 0; 468 } 469 470 471 /** 472 * __gfs2_readpage - readpage 473 * @file: The file to read a page for 474 * @page: The page to read 475 * 476 * This is the core of gfs2's readpage. It's used by the internal file 477 * reading code as in that case we already hold the glock. Also it's 478 * called by gfs2_readpage() once the required lock has been granted. 479 */ 480 481 static int __gfs2_readpage(void *file, struct page *page) 482 { 483 struct gfs2_inode *ip = GFS2_I(page->mapping->host); 484 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 485 486 int error; 487 488 if (i_blocksize(page->mapping->host) == PAGE_SIZE && 489 !page_has_buffers(page)) { 490 error = iomap_readpage(page, &gfs2_iomap_ops); 491 } else if (gfs2_is_stuffed(ip)) { 492 error = stuffed_readpage(ip, page); 493 unlock_page(page); 494 } else { 495 error = mpage_readpage(page, gfs2_block_map); 496 } 497 498 if (unlikely(gfs2_withdrawn(sdp))) 499 return -EIO; 500 501 return error; 502 } 503 504 /** 505 * gfs2_readpage - read a page of a file 506 * @file: The file to read 507 * @page: The page of the file 508 * 509 * This deals with the locking required. We have to unlock and 510 * relock the page in order to get the locking in the right 511 * order. 512 */ 513 514 static int gfs2_readpage(struct file *file, struct page *page) 515 { 516 struct address_space *mapping = page->mapping; 517 struct gfs2_inode *ip = GFS2_I(mapping->host); 518 struct gfs2_holder gh; 519 int error; 520 521 unlock_page(page); 522 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 523 error = gfs2_glock_nq(&gh); 524 if (unlikely(error)) 525 goto out; 526 error = AOP_TRUNCATED_PAGE; 527 lock_page(page); 528 if (page->mapping == mapping && !PageUptodate(page)) 529 error = __gfs2_readpage(file, page); 530 else 531 unlock_page(page); 532 gfs2_glock_dq(&gh); 533 out: 534 gfs2_holder_uninit(&gh); 535 if (error && error != AOP_TRUNCATED_PAGE) 536 lock_page(page); 537 return error; 538 } 539 540 /** 541 * gfs2_internal_read - read an internal file 542 * @ip: The gfs2 inode 543 * @buf: The buffer to fill 544 * @pos: The file position 545 * @size: The amount to read 546 * 547 */ 548 549 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos, 550 unsigned size) 551 { 552 struct address_space *mapping = ip->i_inode.i_mapping; 553 unsigned long index = *pos >> PAGE_SHIFT; 554 unsigned offset = *pos & (PAGE_SIZE - 1); 555 unsigned copied = 0; 556 unsigned amt; 557 struct page *page; 558 void *p; 559 560 do { 561 amt = size - copied; 562 if (offset + size > PAGE_SIZE) 563 amt = PAGE_SIZE - offset; 564 page = read_cache_page(mapping, index, __gfs2_readpage, NULL); 565 if (IS_ERR(page)) 566 return PTR_ERR(page); 567 p = kmap_atomic(page); 568 memcpy(buf + copied, p + offset, amt); 569 kunmap_atomic(p); 570 put_page(page); 571 copied += amt; 572 index++; 573 offset = 0; 574 } while(copied < size); 575 (*pos) += size; 576 return size; 577 } 578 579 /** 580 * gfs2_readahead - Read a bunch of pages at once 581 * @file: The file to read from 582 * @mapping: Address space info 583 * @pages: List of pages to read 584 * @nr_pages: Number of pages to read 585 * 586 * Some notes: 587 * 1. This is only for readahead, so we can simply ignore any things 588 * which are slightly inconvenient (such as locking conflicts between 589 * the page lock and the glock) and return having done no I/O. Its 590 * obviously not something we'd want to do on too regular a basis. 591 * Any I/O we ignore at this time will be done via readpage later. 592 * 2. We don't handle stuffed files here we let readpage do the honours. 593 * 3. mpage_readahead() does most of the heavy lifting in the common case. 594 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places. 595 */ 596 597 static void gfs2_readahead(struct readahead_control *rac) 598 { 599 struct inode *inode = rac->mapping->host; 600 struct gfs2_inode *ip = GFS2_I(inode); 601 struct gfs2_holder gh; 602 603 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 604 if (gfs2_glock_nq(&gh)) 605 goto out_uninit; 606 if (!gfs2_is_stuffed(ip)) 607 mpage_readahead(rac, gfs2_block_map); 608 gfs2_glock_dq(&gh); 609 out_uninit: 610 gfs2_holder_uninit(&gh); 611 } 612 613 /** 614 * adjust_fs_space - Adjusts the free space available due to gfs2_grow 615 * @inode: the rindex inode 616 */ 617 void adjust_fs_space(struct inode *inode) 618 { 619 struct gfs2_sbd *sdp = GFS2_SB(inode); 620 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 621 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); 622 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; 623 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; 624 struct buffer_head *m_bh, *l_bh; 625 u64 fs_total, new_free; 626 627 if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0) 628 return; 629 630 /* Total up the file system space, according to the latest rindex. */ 631 fs_total = gfs2_ri_total(sdp); 632 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0) 633 goto out; 634 635 spin_lock(&sdp->sd_statfs_spin); 636 gfs2_statfs_change_in(m_sc, m_bh->b_data + 637 sizeof(struct gfs2_dinode)); 638 if (fs_total > (m_sc->sc_total + l_sc->sc_total)) 639 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total); 640 else 641 new_free = 0; 642 spin_unlock(&sdp->sd_statfs_spin); 643 fs_warn(sdp, "File system extended by %llu blocks.\n", 644 (unsigned long long)new_free); 645 gfs2_statfs_change(sdp, new_free, new_free, 0); 646 647 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0) 648 goto out2; 649 update_statfs(sdp, m_bh, l_bh); 650 brelse(l_bh); 651 out2: 652 brelse(m_bh); 653 out: 654 sdp->sd_rindex_uptodate = 0; 655 gfs2_trans_end(sdp); 656 } 657 658 /** 659 * jdata_set_page_dirty - Page dirtying function 660 * @page: The page to dirty 661 * 662 * Returns: 1 if it dirtyed the page, or 0 otherwise 663 */ 664 665 static int jdata_set_page_dirty(struct page *page) 666 { 667 SetPageChecked(page); 668 return __set_page_dirty_buffers(page); 669 } 670 671 /** 672 * gfs2_bmap - Block map function 673 * @mapping: Address space info 674 * @lblock: The block to map 675 * 676 * Returns: The disk address for the block or 0 on hole or error 677 */ 678 679 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock) 680 { 681 struct gfs2_inode *ip = GFS2_I(mapping->host); 682 struct gfs2_holder i_gh; 683 sector_t dblock = 0; 684 int error; 685 686 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); 687 if (error) 688 return 0; 689 690 if (!gfs2_is_stuffed(ip)) 691 dblock = iomap_bmap(mapping, lblock, &gfs2_iomap_ops); 692 693 gfs2_glock_dq_uninit(&i_gh); 694 695 return dblock; 696 } 697 698 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh) 699 { 700 struct gfs2_bufdata *bd; 701 702 lock_buffer(bh); 703 gfs2_log_lock(sdp); 704 clear_buffer_dirty(bh); 705 bd = bh->b_private; 706 if (bd) { 707 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh)) 708 list_del_init(&bd->bd_list); 709 else 710 gfs2_remove_from_journal(bh, REMOVE_JDATA); 711 } 712 bh->b_bdev = NULL; 713 clear_buffer_mapped(bh); 714 clear_buffer_req(bh); 715 clear_buffer_new(bh); 716 gfs2_log_unlock(sdp); 717 unlock_buffer(bh); 718 } 719 720 static void gfs2_invalidatepage(struct page *page, unsigned int offset, 721 unsigned int length) 722 { 723 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 724 unsigned int stop = offset + length; 725 int partial_page = (offset || length < PAGE_SIZE); 726 struct buffer_head *bh, *head; 727 unsigned long pos = 0; 728 729 BUG_ON(!PageLocked(page)); 730 if (!partial_page) 731 ClearPageChecked(page); 732 if (!page_has_buffers(page)) 733 goto out; 734 735 bh = head = page_buffers(page); 736 do { 737 if (pos + bh->b_size > stop) 738 return; 739 740 if (offset <= pos) 741 gfs2_discard(sdp, bh); 742 pos += bh->b_size; 743 bh = bh->b_this_page; 744 } while (bh != head); 745 out: 746 if (!partial_page) 747 try_to_release_page(page, 0); 748 } 749 750 /** 751 * gfs2_releasepage - free the metadata associated with a page 752 * @page: the page that's being released 753 * @gfp_mask: passed from Linux VFS, ignored by us 754 * 755 * Calls try_to_free_buffers() to free the buffers and put the page if the 756 * buffers can be released. 757 * 758 * Returns: 1 if the page was put or else 0 759 */ 760 761 int gfs2_releasepage(struct page *page, gfp_t gfp_mask) 762 { 763 struct address_space *mapping = page->mapping; 764 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 765 struct buffer_head *bh, *head; 766 struct gfs2_bufdata *bd; 767 768 if (!page_has_buffers(page)) 769 return 0; 770 771 /* 772 * From xfs_vm_releasepage: mm accommodates an old ext3 case where 773 * clean pages might not have had the dirty bit cleared. Thus, it can 774 * send actual dirty pages to ->releasepage() via shrink_active_list(). 775 * 776 * As a workaround, we skip pages that contain dirty buffers below. 777 * Once ->releasepage isn't called on dirty pages anymore, we can warn 778 * on dirty buffers like we used to here again. 779 */ 780 781 gfs2_log_lock(sdp); 782 spin_lock(&sdp->sd_ail_lock); 783 head = bh = page_buffers(page); 784 do { 785 if (atomic_read(&bh->b_count)) 786 goto cannot_release; 787 bd = bh->b_private; 788 if (bd && bd->bd_tr) 789 goto cannot_release; 790 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh))) 791 goto cannot_release; 792 bh = bh->b_this_page; 793 } while(bh != head); 794 spin_unlock(&sdp->sd_ail_lock); 795 796 head = bh = page_buffers(page); 797 do { 798 bd = bh->b_private; 799 if (bd) { 800 gfs2_assert_warn(sdp, bd->bd_bh == bh); 801 bd->bd_bh = NULL; 802 bh->b_private = NULL; 803 /* 804 * The bd may still be queued as a revoke, in which 805 * case we must not dequeue nor free it. 806 */ 807 if (!bd->bd_blkno && !list_empty(&bd->bd_list)) 808 list_del_init(&bd->bd_list); 809 if (list_empty(&bd->bd_list)) 810 kmem_cache_free(gfs2_bufdata_cachep, bd); 811 } 812 813 bh = bh->b_this_page; 814 } while (bh != head); 815 gfs2_log_unlock(sdp); 816 817 return try_to_free_buffers(page); 818 819 cannot_release: 820 spin_unlock(&sdp->sd_ail_lock); 821 gfs2_log_unlock(sdp); 822 return 0; 823 } 824 825 static const struct address_space_operations gfs2_aops = { 826 .writepage = gfs2_writepage, 827 .writepages = gfs2_writepages, 828 .readpage = gfs2_readpage, 829 .readahead = gfs2_readahead, 830 .bmap = gfs2_bmap, 831 .invalidatepage = gfs2_invalidatepage, 832 .releasepage = gfs2_releasepage, 833 .direct_IO = noop_direct_IO, 834 .migratepage = buffer_migrate_page, 835 .is_partially_uptodate = block_is_partially_uptodate, 836 .error_remove_page = generic_error_remove_page, 837 }; 838 839 static const struct address_space_operations gfs2_jdata_aops = { 840 .writepage = gfs2_jdata_writepage, 841 .writepages = gfs2_jdata_writepages, 842 .readpage = gfs2_readpage, 843 .readahead = gfs2_readahead, 844 .set_page_dirty = jdata_set_page_dirty, 845 .bmap = gfs2_bmap, 846 .invalidatepage = gfs2_invalidatepage, 847 .releasepage = gfs2_releasepage, 848 .is_partially_uptodate = block_is_partially_uptodate, 849 .error_remove_page = generic_error_remove_page, 850 }; 851 852 void gfs2_set_aops(struct inode *inode) 853 { 854 if (gfs2_is_jdata(GFS2_I(inode))) 855 inode->i_mapping->a_ops = &gfs2_jdata_aops; 856 else 857 inode->i_mapping->a_ops = &gfs2_aops; 858 } 859