xref: /openbmc/linux/fs/gfs2/aops.c (revision 930beb5a)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/aio.h>
24 
25 #include "gfs2.h"
26 #include "incore.h"
27 #include "bmap.h"
28 #include "glock.h"
29 #include "inode.h"
30 #include "log.h"
31 #include "meta_io.h"
32 #include "quota.h"
33 #include "trans.h"
34 #include "rgrp.h"
35 #include "super.h"
36 #include "util.h"
37 #include "glops.h"
38 
39 
40 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
41 				   unsigned int from, unsigned int to)
42 {
43 	struct buffer_head *head = page_buffers(page);
44 	unsigned int bsize = head->b_size;
45 	struct buffer_head *bh;
46 	unsigned int start, end;
47 
48 	for (bh = head, start = 0; bh != head || !start;
49 	     bh = bh->b_this_page, start = end) {
50 		end = start + bsize;
51 		if (end <= from || start >= to)
52 			continue;
53 		if (gfs2_is_jdata(ip))
54 			set_buffer_uptodate(bh);
55 		gfs2_trans_add_data(ip->i_gl, bh);
56 	}
57 }
58 
59 /**
60  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
61  * @inode: The inode
62  * @lblock: The block number to look up
63  * @bh_result: The buffer head to return the result in
64  * @create: Non-zero if we may add block to the file
65  *
66  * Returns: errno
67  */
68 
69 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
70 				  struct buffer_head *bh_result, int create)
71 {
72 	int error;
73 
74 	error = gfs2_block_map(inode, lblock, bh_result, 0);
75 	if (error)
76 		return error;
77 	if (!buffer_mapped(bh_result))
78 		return -EIO;
79 	return 0;
80 }
81 
82 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
83 				 struct buffer_head *bh_result, int create)
84 {
85 	return gfs2_block_map(inode, lblock, bh_result, 0);
86 }
87 
88 /**
89  * gfs2_writepage_common - Common bits of writepage
90  * @page: The page to be written
91  * @wbc: The writeback control
92  *
93  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
94  */
95 
96 static int gfs2_writepage_common(struct page *page,
97 				 struct writeback_control *wbc)
98 {
99 	struct inode *inode = page->mapping->host;
100 	struct gfs2_inode *ip = GFS2_I(inode);
101 	struct gfs2_sbd *sdp = GFS2_SB(inode);
102 	loff_t i_size = i_size_read(inode);
103 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
104 	unsigned offset;
105 
106 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
107 		goto out;
108 	if (current->journal_info)
109 		goto redirty;
110 	/* Is the page fully outside i_size? (truncate in progress) */
111 	offset = i_size & (PAGE_CACHE_SIZE-1);
112 	if (page->index > end_index || (page->index == end_index && !offset)) {
113 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
114 		goto out;
115 	}
116 	return 1;
117 redirty:
118 	redirty_page_for_writepage(wbc, page);
119 out:
120 	unlock_page(page);
121 	return 0;
122 }
123 
124 /**
125  * gfs2_writepage - Write page for writeback mappings
126  * @page: The page
127  * @wbc: The writeback control
128  *
129  */
130 
131 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
132 {
133 	int ret;
134 
135 	ret = gfs2_writepage_common(page, wbc);
136 	if (ret <= 0)
137 		return ret;
138 
139 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
140 }
141 
142 /**
143  * __gfs2_jdata_writepage - The core of jdata writepage
144  * @page: The page to write
145  * @wbc: The writeback control
146  *
147  * This is shared between writepage and writepages and implements the
148  * core of the writepage operation. If a transaction is required then
149  * PageChecked will have been set and the transaction will have
150  * already been started before this is called.
151  */
152 
153 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
154 {
155 	struct inode *inode = page->mapping->host;
156 	struct gfs2_inode *ip = GFS2_I(inode);
157 	struct gfs2_sbd *sdp = GFS2_SB(inode);
158 
159 	if (PageChecked(page)) {
160 		ClearPageChecked(page);
161 		if (!page_has_buffers(page)) {
162 			create_empty_buffers(page, inode->i_sb->s_blocksize,
163 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
164 		}
165 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
166 	}
167 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
168 }
169 
170 /**
171  * gfs2_jdata_writepage - Write complete page
172  * @page: Page to write
173  *
174  * Returns: errno
175  *
176  */
177 
178 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
179 {
180 	struct inode *inode = page->mapping->host;
181 	struct gfs2_sbd *sdp = GFS2_SB(inode);
182 	int ret;
183 	int done_trans = 0;
184 
185 	if (PageChecked(page)) {
186 		if (wbc->sync_mode != WB_SYNC_ALL)
187 			goto out_ignore;
188 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
189 		if (ret)
190 			goto out_ignore;
191 		done_trans = 1;
192 	}
193 	ret = gfs2_writepage_common(page, wbc);
194 	if (ret > 0)
195 		ret = __gfs2_jdata_writepage(page, wbc);
196 	if (done_trans)
197 		gfs2_trans_end(sdp);
198 	return ret;
199 
200 out_ignore:
201 	redirty_page_for_writepage(wbc, page);
202 	unlock_page(page);
203 	return 0;
204 }
205 
206 /**
207  * gfs2_writepages - Write a bunch of dirty pages back to disk
208  * @mapping: The mapping to write
209  * @wbc: Write-back control
210  *
211  * Used for both ordered and writeback modes.
212  */
213 static int gfs2_writepages(struct address_space *mapping,
214 			   struct writeback_control *wbc)
215 {
216 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
217 }
218 
219 /**
220  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
221  * @mapping: The mapping
222  * @wbc: The writeback control
223  * @writepage: The writepage function to call for each page
224  * @pvec: The vector of pages
225  * @nr_pages: The number of pages to write
226  *
227  * Returns: non-zero if loop should terminate, zero otherwise
228  */
229 
230 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
231 				    struct writeback_control *wbc,
232 				    struct pagevec *pvec,
233 				    int nr_pages, pgoff_t end)
234 {
235 	struct inode *inode = mapping->host;
236 	struct gfs2_sbd *sdp = GFS2_SB(inode);
237 	loff_t i_size = i_size_read(inode);
238 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
239 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
240 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
241 	int i;
242 	int ret;
243 
244 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
245 	if (ret < 0)
246 		return ret;
247 
248 	for(i = 0; i < nr_pages; i++) {
249 		struct page *page = pvec->pages[i];
250 
251 		lock_page(page);
252 
253 		if (unlikely(page->mapping != mapping)) {
254 			unlock_page(page);
255 			continue;
256 		}
257 
258 		if (!wbc->range_cyclic && page->index > end) {
259 			ret = 1;
260 			unlock_page(page);
261 			continue;
262 		}
263 
264 		if (wbc->sync_mode != WB_SYNC_NONE)
265 			wait_on_page_writeback(page);
266 
267 		if (PageWriteback(page) ||
268 		    !clear_page_dirty_for_io(page)) {
269 			unlock_page(page);
270 			continue;
271 		}
272 
273 		/* Is the page fully outside i_size? (truncate in progress) */
274 		if (page->index > end_index || (page->index == end_index && !offset)) {
275 			page->mapping->a_ops->invalidatepage(page, 0,
276 							     PAGE_CACHE_SIZE);
277 			unlock_page(page);
278 			continue;
279 		}
280 
281 		ret = __gfs2_jdata_writepage(page, wbc);
282 
283 		if (ret || (--(wbc->nr_to_write) <= 0))
284 			ret = 1;
285 	}
286 	gfs2_trans_end(sdp);
287 	return ret;
288 }
289 
290 /**
291  * gfs2_write_cache_jdata - Like write_cache_pages but different
292  * @mapping: The mapping to write
293  * @wbc: The writeback control
294  * @writepage: The writepage function to call
295  * @data: The data to pass to writepage
296  *
297  * The reason that we use our own function here is that we need to
298  * start transactions before we grab page locks. This allows us
299  * to get the ordering right.
300  */
301 
302 static int gfs2_write_cache_jdata(struct address_space *mapping,
303 				  struct writeback_control *wbc)
304 {
305 	int ret = 0;
306 	int done = 0;
307 	struct pagevec pvec;
308 	int nr_pages;
309 	pgoff_t index;
310 	pgoff_t end;
311 	int scanned = 0;
312 	int range_whole = 0;
313 
314 	pagevec_init(&pvec, 0);
315 	if (wbc->range_cyclic) {
316 		index = mapping->writeback_index; /* Start from prev offset */
317 		end = -1;
318 	} else {
319 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
320 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
321 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
322 			range_whole = 1;
323 		scanned = 1;
324 	}
325 
326 retry:
327 	 while (!done && (index <= end) &&
328 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
329 					       PAGECACHE_TAG_DIRTY,
330 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
331 		scanned = 1;
332 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
333 		if (ret)
334 			done = 1;
335 		if (ret > 0)
336 			ret = 0;
337 
338 		pagevec_release(&pvec);
339 		cond_resched();
340 	}
341 
342 	if (!scanned && !done) {
343 		/*
344 		 * We hit the last page and there is more work to be done: wrap
345 		 * back to the start of the file
346 		 */
347 		scanned = 1;
348 		index = 0;
349 		goto retry;
350 	}
351 
352 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
353 		mapping->writeback_index = index;
354 	return ret;
355 }
356 
357 
358 /**
359  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
360  * @mapping: The mapping to write
361  * @wbc: The writeback control
362  *
363  */
364 
365 static int gfs2_jdata_writepages(struct address_space *mapping,
366 				 struct writeback_control *wbc)
367 {
368 	struct gfs2_inode *ip = GFS2_I(mapping->host);
369 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
370 	int ret;
371 
372 	ret = gfs2_write_cache_jdata(mapping, wbc);
373 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
374 		gfs2_log_flush(sdp, ip->i_gl);
375 		ret = gfs2_write_cache_jdata(mapping, wbc);
376 	}
377 	return ret;
378 }
379 
380 /**
381  * stuffed_readpage - Fill in a Linux page with stuffed file data
382  * @ip: the inode
383  * @page: the page
384  *
385  * Returns: errno
386  */
387 
388 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
389 {
390 	struct buffer_head *dibh;
391 	u64 dsize = i_size_read(&ip->i_inode);
392 	void *kaddr;
393 	int error;
394 
395 	/*
396 	 * Due to the order of unstuffing files and ->fault(), we can be
397 	 * asked for a zero page in the case of a stuffed file being extended,
398 	 * so we need to supply one here. It doesn't happen often.
399 	 */
400 	if (unlikely(page->index)) {
401 		zero_user(page, 0, PAGE_CACHE_SIZE);
402 		SetPageUptodate(page);
403 		return 0;
404 	}
405 
406 	error = gfs2_meta_inode_buffer(ip, &dibh);
407 	if (error)
408 		return error;
409 
410 	kaddr = kmap_atomic(page);
411 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
412 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
413 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
414 	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
415 	kunmap_atomic(kaddr);
416 	flush_dcache_page(page);
417 	brelse(dibh);
418 	SetPageUptodate(page);
419 
420 	return 0;
421 }
422 
423 
424 /**
425  * __gfs2_readpage - readpage
426  * @file: The file to read a page for
427  * @page: The page to read
428  *
429  * This is the core of gfs2's readpage. Its used by the internal file
430  * reading code as in that case we already hold the glock. Also its
431  * called by gfs2_readpage() once the required lock has been granted.
432  *
433  */
434 
435 static int __gfs2_readpage(void *file, struct page *page)
436 {
437 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
438 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
439 	int error;
440 
441 	if (gfs2_is_stuffed(ip)) {
442 		error = stuffed_readpage(ip, page);
443 		unlock_page(page);
444 	} else {
445 		error = mpage_readpage(page, gfs2_block_map);
446 	}
447 
448 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
449 		return -EIO;
450 
451 	return error;
452 }
453 
454 /**
455  * gfs2_readpage - read a page of a file
456  * @file: The file to read
457  * @page: The page of the file
458  *
459  * This deals with the locking required. We have to unlock and
460  * relock the page in order to get the locking in the right
461  * order.
462  */
463 
464 static int gfs2_readpage(struct file *file, struct page *page)
465 {
466 	struct address_space *mapping = page->mapping;
467 	struct gfs2_inode *ip = GFS2_I(mapping->host);
468 	struct gfs2_holder gh;
469 	int error;
470 
471 	unlock_page(page);
472 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
473 	error = gfs2_glock_nq(&gh);
474 	if (unlikely(error))
475 		goto out;
476 	error = AOP_TRUNCATED_PAGE;
477 	lock_page(page);
478 	if (page->mapping == mapping && !PageUptodate(page))
479 		error = __gfs2_readpage(file, page);
480 	else
481 		unlock_page(page);
482 	gfs2_glock_dq(&gh);
483 out:
484 	gfs2_holder_uninit(&gh);
485 	if (error && error != AOP_TRUNCATED_PAGE)
486 		lock_page(page);
487 	return error;
488 }
489 
490 /**
491  * gfs2_internal_read - read an internal file
492  * @ip: The gfs2 inode
493  * @buf: The buffer to fill
494  * @pos: The file position
495  * @size: The amount to read
496  *
497  */
498 
499 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
500                        unsigned size)
501 {
502 	struct address_space *mapping = ip->i_inode.i_mapping;
503 	unsigned long index = *pos / PAGE_CACHE_SIZE;
504 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
505 	unsigned copied = 0;
506 	unsigned amt;
507 	struct page *page;
508 	void *p;
509 
510 	do {
511 		amt = size - copied;
512 		if (offset + size > PAGE_CACHE_SIZE)
513 			amt = PAGE_CACHE_SIZE - offset;
514 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
515 		if (IS_ERR(page))
516 			return PTR_ERR(page);
517 		p = kmap_atomic(page);
518 		memcpy(buf + copied, p + offset, amt);
519 		kunmap_atomic(p);
520 		mark_page_accessed(page);
521 		page_cache_release(page);
522 		copied += amt;
523 		index++;
524 		offset = 0;
525 	} while(copied < size);
526 	(*pos) += size;
527 	return size;
528 }
529 
530 /**
531  * gfs2_readpages - Read a bunch of pages at once
532  *
533  * Some notes:
534  * 1. This is only for readahead, so we can simply ignore any things
535  *    which are slightly inconvenient (such as locking conflicts between
536  *    the page lock and the glock) and return having done no I/O. Its
537  *    obviously not something we'd want to do on too regular a basis.
538  *    Any I/O we ignore at this time will be done via readpage later.
539  * 2. We don't handle stuffed files here we let readpage do the honours.
540  * 3. mpage_readpages() does most of the heavy lifting in the common case.
541  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
542  */
543 
544 static int gfs2_readpages(struct file *file, struct address_space *mapping,
545 			  struct list_head *pages, unsigned nr_pages)
546 {
547 	struct inode *inode = mapping->host;
548 	struct gfs2_inode *ip = GFS2_I(inode);
549 	struct gfs2_sbd *sdp = GFS2_SB(inode);
550 	struct gfs2_holder gh;
551 	int ret;
552 
553 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
554 	ret = gfs2_glock_nq(&gh);
555 	if (unlikely(ret))
556 		goto out_uninit;
557 	if (!gfs2_is_stuffed(ip))
558 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
559 	gfs2_glock_dq(&gh);
560 out_uninit:
561 	gfs2_holder_uninit(&gh);
562 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
563 		ret = -EIO;
564 	return ret;
565 }
566 
567 /**
568  * gfs2_write_begin - Begin to write to a file
569  * @file: The file to write to
570  * @mapping: The mapping in which to write
571  * @pos: The file offset at which to start writing
572  * @len: Length of the write
573  * @flags: Various flags
574  * @pagep: Pointer to return the page
575  * @fsdata: Pointer to return fs data (unused by GFS2)
576  *
577  * Returns: errno
578  */
579 
580 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
581 			    loff_t pos, unsigned len, unsigned flags,
582 			    struct page **pagep, void **fsdata)
583 {
584 	struct gfs2_inode *ip = GFS2_I(mapping->host);
585 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
586 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
587 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
588 	unsigned requested = 0;
589 	int alloc_required;
590 	int error = 0;
591 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
592 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
593 	struct page *page;
594 
595 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
596 	error = gfs2_glock_nq(&ip->i_gh);
597 	if (unlikely(error))
598 		goto out_uninit;
599 	if (&ip->i_inode == sdp->sd_rindex) {
600 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
601 					   GL_NOCACHE, &m_ip->i_gh);
602 		if (unlikely(error)) {
603 			gfs2_glock_dq(&ip->i_gh);
604 			goto out_uninit;
605 		}
606 	}
607 
608 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
609 
610 	if (alloc_required || gfs2_is_jdata(ip))
611 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
612 
613 	if (alloc_required) {
614 		struct gfs2_alloc_parms ap = { .aflags = 0, };
615 		error = gfs2_quota_lock_check(ip);
616 		if (error)
617 			goto out_unlock;
618 
619 		requested = data_blocks + ind_blocks;
620 		ap.target = requested;
621 		error = gfs2_inplace_reserve(ip, &ap);
622 		if (error)
623 			goto out_qunlock;
624 	}
625 
626 	rblocks = RES_DINODE + ind_blocks;
627 	if (gfs2_is_jdata(ip))
628 		rblocks += data_blocks ? data_blocks : 1;
629 	if (ind_blocks || data_blocks)
630 		rblocks += RES_STATFS + RES_QUOTA;
631 	if (&ip->i_inode == sdp->sd_rindex)
632 		rblocks += 2 * RES_STATFS;
633 	if (alloc_required)
634 		rblocks += gfs2_rg_blocks(ip, requested);
635 
636 	error = gfs2_trans_begin(sdp, rblocks,
637 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
638 	if (error)
639 		goto out_trans_fail;
640 
641 	error = -ENOMEM;
642 	flags |= AOP_FLAG_NOFS;
643 	page = grab_cache_page_write_begin(mapping, index, flags);
644 	*pagep = page;
645 	if (unlikely(!page))
646 		goto out_endtrans;
647 
648 	if (gfs2_is_stuffed(ip)) {
649 		error = 0;
650 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
651 			error = gfs2_unstuff_dinode(ip, page);
652 			if (error == 0)
653 				goto prepare_write;
654 		} else if (!PageUptodate(page)) {
655 			error = stuffed_readpage(ip, page);
656 		}
657 		goto out;
658 	}
659 
660 prepare_write:
661 	error = __block_write_begin(page, from, len, gfs2_block_map);
662 out:
663 	if (error == 0)
664 		return 0;
665 
666 	unlock_page(page);
667 	page_cache_release(page);
668 
669 	gfs2_trans_end(sdp);
670 	if (pos + len > ip->i_inode.i_size)
671 		gfs2_trim_blocks(&ip->i_inode);
672 	goto out_trans_fail;
673 
674 out_endtrans:
675 	gfs2_trans_end(sdp);
676 out_trans_fail:
677 	if (alloc_required) {
678 		gfs2_inplace_release(ip);
679 out_qunlock:
680 		gfs2_quota_unlock(ip);
681 	}
682 out_unlock:
683 	if (&ip->i_inode == sdp->sd_rindex) {
684 		gfs2_glock_dq(&m_ip->i_gh);
685 		gfs2_holder_uninit(&m_ip->i_gh);
686 	}
687 	gfs2_glock_dq(&ip->i_gh);
688 out_uninit:
689 	gfs2_holder_uninit(&ip->i_gh);
690 	return error;
691 }
692 
693 /**
694  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
695  * @inode: the rindex inode
696  */
697 static void adjust_fs_space(struct inode *inode)
698 {
699 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
700 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
701 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
702 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
703 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
704 	struct buffer_head *m_bh, *l_bh;
705 	u64 fs_total, new_free;
706 
707 	/* Total up the file system space, according to the latest rindex. */
708 	fs_total = gfs2_ri_total(sdp);
709 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
710 		return;
711 
712 	spin_lock(&sdp->sd_statfs_spin);
713 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
714 			      sizeof(struct gfs2_dinode));
715 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
716 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
717 	else
718 		new_free = 0;
719 	spin_unlock(&sdp->sd_statfs_spin);
720 	fs_warn(sdp, "File system extended by %llu blocks.\n",
721 		(unsigned long long)new_free);
722 	gfs2_statfs_change(sdp, new_free, new_free, 0);
723 
724 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
725 		goto out;
726 	update_statfs(sdp, m_bh, l_bh);
727 	brelse(l_bh);
728 out:
729 	brelse(m_bh);
730 }
731 
732 /**
733  * gfs2_stuffed_write_end - Write end for stuffed files
734  * @inode: The inode
735  * @dibh: The buffer_head containing the on-disk inode
736  * @pos: The file position
737  * @len: The length of the write
738  * @copied: How much was actually copied by the VFS
739  * @page: The page
740  *
741  * This copies the data from the page into the inode block after
742  * the inode data structure itself.
743  *
744  * Returns: errno
745  */
746 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
747 				  loff_t pos, unsigned len, unsigned copied,
748 				  struct page *page)
749 {
750 	struct gfs2_inode *ip = GFS2_I(inode);
751 	struct gfs2_sbd *sdp = GFS2_SB(inode);
752 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
753 	u64 to = pos + copied;
754 	void *kaddr;
755 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
756 
757 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
758 	kaddr = kmap_atomic(page);
759 	memcpy(buf + pos, kaddr + pos, copied);
760 	memset(kaddr + pos + copied, 0, len - copied);
761 	flush_dcache_page(page);
762 	kunmap_atomic(kaddr);
763 
764 	if (!PageUptodate(page))
765 		SetPageUptodate(page);
766 	unlock_page(page);
767 	page_cache_release(page);
768 
769 	if (copied) {
770 		if (inode->i_size < to)
771 			i_size_write(inode, to);
772 		mark_inode_dirty(inode);
773 	}
774 
775 	if (inode == sdp->sd_rindex) {
776 		adjust_fs_space(inode);
777 		sdp->sd_rindex_uptodate = 0;
778 	}
779 
780 	brelse(dibh);
781 	gfs2_trans_end(sdp);
782 	if (inode == sdp->sd_rindex) {
783 		gfs2_glock_dq(&m_ip->i_gh);
784 		gfs2_holder_uninit(&m_ip->i_gh);
785 	}
786 	gfs2_glock_dq(&ip->i_gh);
787 	gfs2_holder_uninit(&ip->i_gh);
788 	return copied;
789 }
790 
791 /**
792  * gfs2_write_end
793  * @file: The file to write to
794  * @mapping: The address space to write to
795  * @pos: The file position
796  * @len: The length of the data
797  * @copied:
798  * @page: The page that has been written
799  * @fsdata: The fsdata (unused in GFS2)
800  *
801  * The main write_end function for GFS2. We have a separate one for
802  * stuffed files as they are slightly different, otherwise we just
803  * put our locking around the VFS provided functions.
804  *
805  * Returns: errno
806  */
807 
808 static int gfs2_write_end(struct file *file, struct address_space *mapping,
809 			  loff_t pos, unsigned len, unsigned copied,
810 			  struct page *page, void *fsdata)
811 {
812 	struct inode *inode = page->mapping->host;
813 	struct gfs2_inode *ip = GFS2_I(inode);
814 	struct gfs2_sbd *sdp = GFS2_SB(inode);
815 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
816 	struct buffer_head *dibh;
817 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
818 	unsigned int to = from + len;
819 	int ret;
820 	struct gfs2_trans *tr = current->journal_info;
821 	BUG_ON(!tr);
822 
823 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
824 
825 	ret = gfs2_meta_inode_buffer(ip, &dibh);
826 	if (unlikely(ret)) {
827 		unlock_page(page);
828 		page_cache_release(page);
829 		goto failed;
830 	}
831 
832 	if (gfs2_is_stuffed(ip))
833 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
834 
835 	if (!gfs2_is_writeback(ip))
836 		gfs2_page_add_databufs(ip, page, from, to);
837 
838 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
839 	if (tr->tr_num_buf_new)
840 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
841 	else
842 		gfs2_trans_add_meta(ip->i_gl, dibh);
843 
844 
845 	if (inode == sdp->sd_rindex) {
846 		adjust_fs_space(inode);
847 		sdp->sd_rindex_uptodate = 0;
848 	}
849 
850 	brelse(dibh);
851 failed:
852 	gfs2_trans_end(sdp);
853 	gfs2_inplace_release(ip);
854 	if (ip->i_res->rs_qa_qd_num)
855 		gfs2_quota_unlock(ip);
856 	if (inode == sdp->sd_rindex) {
857 		gfs2_glock_dq(&m_ip->i_gh);
858 		gfs2_holder_uninit(&m_ip->i_gh);
859 	}
860 	gfs2_glock_dq(&ip->i_gh);
861 	gfs2_holder_uninit(&ip->i_gh);
862 	return ret;
863 }
864 
865 /**
866  * gfs2_set_page_dirty - Page dirtying function
867  * @page: The page to dirty
868  *
869  * Returns: 1 if it dirtyed the page, or 0 otherwise
870  */
871 
872 static int gfs2_set_page_dirty(struct page *page)
873 {
874 	SetPageChecked(page);
875 	return __set_page_dirty_buffers(page);
876 }
877 
878 /**
879  * gfs2_bmap - Block map function
880  * @mapping: Address space info
881  * @lblock: The block to map
882  *
883  * Returns: The disk address for the block or 0 on hole or error
884  */
885 
886 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
887 {
888 	struct gfs2_inode *ip = GFS2_I(mapping->host);
889 	struct gfs2_holder i_gh;
890 	sector_t dblock = 0;
891 	int error;
892 
893 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
894 	if (error)
895 		return 0;
896 
897 	if (!gfs2_is_stuffed(ip))
898 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
899 
900 	gfs2_glock_dq_uninit(&i_gh);
901 
902 	return dblock;
903 }
904 
905 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
906 {
907 	struct gfs2_bufdata *bd;
908 
909 	lock_buffer(bh);
910 	gfs2_log_lock(sdp);
911 	clear_buffer_dirty(bh);
912 	bd = bh->b_private;
913 	if (bd) {
914 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
915 			list_del_init(&bd->bd_list);
916 		else
917 			gfs2_remove_from_journal(bh, current->journal_info, 0);
918 	}
919 	bh->b_bdev = NULL;
920 	clear_buffer_mapped(bh);
921 	clear_buffer_req(bh);
922 	clear_buffer_new(bh);
923 	gfs2_log_unlock(sdp);
924 	unlock_buffer(bh);
925 }
926 
927 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
928 				unsigned int length)
929 {
930 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
931 	unsigned int stop = offset + length;
932 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
933 	struct buffer_head *bh, *head;
934 	unsigned long pos = 0;
935 
936 	BUG_ON(!PageLocked(page));
937 	if (!partial_page)
938 		ClearPageChecked(page);
939 	if (!page_has_buffers(page))
940 		goto out;
941 
942 	bh = head = page_buffers(page);
943 	do {
944 		if (pos + bh->b_size > stop)
945 			return;
946 
947 		if (offset <= pos)
948 			gfs2_discard(sdp, bh);
949 		pos += bh->b_size;
950 		bh = bh->b_this_page;
951 	} while (bh != head);
952 out:
953 	if (!partial_page)
954 		try_to_release_page(page, 0);
955 }
956 
957 /**
958  * gfs2_ok_for_dio - check that dio is valid on this file
959  * @ip: The inode
960  * @rw: READ or WRITE
961  * @offset: The offset at which we are reading or writing
962  *
963  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
964  *          1 (to accept the i/o request)
965  */
966 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
967 {
968 	/*
969 	 * Should we return an error here? I can't see that O_DIRECT for
970 	 * a stuffed file makes any sense. For now we'll silently fall
971 	 * back to buffered I/O
972 	 */
973 	if (gfs2_is_stuffed(ip))
974 		return 0;
975 
976 	if (offset >= i_size_read(&ip->i_inode))
977 		return 0;
978 	return 1;
979 }
980 
981 
982 
983 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
984 			      const struct iovec *iov, loff_t offset,
985 			      unsigned long nr_segs)
986 {
987 	struct file *file = iocb->ki_filp;
988 	struct inode *inode = file->f_mapping->host;
989 	struct address_space *mapping = inode->i_mapping;
990 	struct gfs2_inode *ip = GFS2_I(inode);
991 	struct gfs2_holder gh;
992 	int rv;
993 
994 	/*
995 	 * Deferred lock, even if its a write, since we do no allocation
996 	 * on this path. All we need change is atime, and this lock mode
997 	 * ensures that other nodes have flushed their buffered read caches
998 	 * (i.e. their page cache entries for this inode). We do not,
999 	 * unfortunately have the option of only flushing a range like
1000 	 * the VFS does.
1001 	 */
1002 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1003 	rv = gfs2_glock_nq(&gh);
1004 	if (rv)
1005 		return rv;
1006 	rv = gfs2_ok_for_dio(ip, rw, offset);
1007 	if (rv != 1)
1008 		goto out; /* dio not valid, fall back to buffered i/o */
1009 
1010 	/*
1011 	 * Now since we are holding a deferred (CW) lock at this point, you
1012 	 * might be wondering why this is ever needed. There is a case however
1013 	 * where we've granted a deferred local lock against a cached exclusive
1014 	 * glock. That is ok provided all granted local locks are deferred, but
1015 	 * it also means that it is possible to encounter pages which are
1016 	 * cached and possibly also mapped. So here we check for that and sort
1017 	 * them out ahead of the dio. The glock state machine will take care of
1018 	 * everything else.
1019 	 *
1020 	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1021 	 * the first place, mapping->nr_pages will always be zero.
1022 	 */
1023 	if (mapping->nrpages) {
1024 		loff_t lstart = offset & (PAGE_CACHE_SIZE - 1);
1025 		loff_t len = iov_length(iov, nr_segs);
1026 		loff_t end = PAGE_ALIGN(offset + len) - 1;
1027 
1028 		rv = 0;
1029 		if (len == 0)
1030 			goto out;
1031 		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1032 			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1033 		rv = filemap_write_and_wait_range(mapping, lstart, end);
1034 		if (rv)
1035 			return rv;
1036 		truncate_inode_pages_range(mapping, lstart, end);
1037 	}
1038 
1039 	rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1040 				  offset, nr_segs, gfs2_get_block_direct,
1041 				  NULL, NULL, 0);
1042 out:
1043 	gfs2_glock_dq(&gh);
1044 	gfs2_holder_uninit(&gh);
1045 	return rv;
1046 }
1047 
1048 /**
1049  * gfs2_releasepage - free the metadata associated with a page
1050  * @page: the page that's being released
1051  * @gfp_mask: passed from Linux VFS, ignored by us
1052  *
1053  * Call try_to_free_buffers() if the buffers in this page can be
1054  * released.
1055  *
1056  * Returns: 0
1057  */
1058 
1059 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1060 {
1061 	struct address_space *mapping = page->mapping;
1062 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1063 	struct buffer_head *bh, *head;
1064 	struct gfs2_bufdata *bd;
1065 
1066 	if (!page_has_buffers(page))
1067 		return 0;
1068 
1069 	gfs2_log_lock(sdp);
1070 	spin_lock(&sdp->sd_ail_lock);
1071 	head = bh = page_buffers(page);
1072 	do {
1073 		if (atomic_read(&bh->b_count))
1074 			goto cannot_release;
1075 		bd = bh->b_private;
1076 		if (bd && bd->bd_tr)
1077 			goto cannot_release;
1078 		if (buffer_pinned(bh) || buffer_dirty(bh))
1079 			goto not_possible;
1080 		bh = bh->b_this_page;
1081 	} while(bh != head);
1082 	spin_unlock(&sdp->sd_ail_lock);
1083 	gfs2_log_unlock(sdp);
1084 
1085 	head = bh = page_buffers(page);
1086 	do {
1087 		gfs2_log_lock(sdp);
1088 		bd = bh->b_private;
1089 		if (bd) {
1090 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1091 			if (!list_empty(&bd->bd_list)) {
1092 				if (!buffer_pinned(bh))
1093 					list_del_init(&bd->bd_list);
1094 				else
1095 					bd = NULL;
1096 			}
1097 			if (bd)
1098 				bd->bd_bh = NULL;
1099 			bh->b_private = NULL;
1100 		}
1101 		gfs2_log_unlock(sdp);
1102 		if (bd)
1103 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1104 
1105 		bh = bh->b_this_page;
1106 	} while (bh != head);
1107 
1108 	return try_to_free_buffers(page);
1109 
1110 not_possible: /* Should never happen */
1111 	WARN_ON(buffer_dirty(bh));
1112 	WARN_ON(buffer_pinned(bh));
1113 cannot_release:
1114 	spin_unlock(&sdp->sd_ail_lock);
1115 	gfs2_log_unlock(sdp);
1116 	return 0;
1117 }
1118 
1119 static const struct address_space_operations gfs2_writeback_aops = {
1120 	.writepage = gfs2_writepage,
1121 	.writepages = gfs2_writepages,
1122 	.readpage = gfs2_readpage,
1123 	.readpages = gfs2_readpages,
1124 	.write_begin = gfs2_write_begin,
1125 	.write_end = gfs2_write_end,
1126 	.bmap = gfs2_bmap,
1127 	.invalidatepage = gfs2_invalidatepage,
1128 	.releasepage = gfs2_releasepage,
1129 	.direct_IO = gfs2_direct_IO,
1130 	.migratepage = buffer_migrate_page,
1131 	.is_partially_uptodate = block_is_partially_uptodate,
1132 	.error_remove_page = generic_error_remove_page,
1133 };
1134 
1135 static const struct address_space_operations gfs2_ordered_aops = {
1136 	.writepage = gfs2_writepage,
1137 	.writepages = gfs2_writepages,
1138 	.readpage = gfs2_readpage,
1139 	.readpages = gfs2_readpages,
1140 	.write_begin = gfs2_write_begin,
1141 	.write_end = gfs2_write_end,
1142 	.set_page_dirty = gfs2_set_page_dirty,
1143 	.bmap = gfs2_bmap,
1144 	.invalidatepage = gfs2_invalidatepage,
1145 	.releasepage = gfs2_releasepage,
1146 	.direct_IO = gfs2_direct_IO,
1147 	.migratepage = buffer_migrate_page,
1148 	.is_partially_uptodate = block_is_partially_uptodate,
1149 	.error_remove_page = generic_error_remove_page,
1150 };
1151 
1152 static const struct address_space_operations gfs2_jdata_aops = {
1153 	.writepage = gfs2_jdata_writepage,
1154 	.writepages = gfs2_jdata_writepages,
1155 	.readpage = gfs2_readpage,
1156 	.readpages = gfs2_readpages,
1157 	.write_begin = gfs2_write_begin,
1158 	.write_end = gfs2_write_end,
1159 	.set_page_dirty = gfs2_set_page_dirty,
1160 	.bmap = gfs2_bmap,
1161 	.invalidatepage = gfs2_invalidatepage,
1162 	.releasepage = gfs2_releasepage,
1163 	.is_partially_uptodate = block_is_partially_uptodate,
1164 	.error_remove_page = generic_error_remove_page,
1165 };
1166 
1167 void gfs2_set_aops(struct inode *inode)
1168 {
1169 	struct gfs2_inode *ip = GFS2_I(inode);
1170 
1171 	if (gfs2_is_writeback(ip))
1172 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1173 	else if (gfs2_is_ordered(ip))
1174 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1175 	else if (gfs2_is_jdata(ip))
1176 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1177 	else
1178 		BUG();
1179 }
1180 
1181