1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/spinlock.h> 13 #include <linux/completion.h> 14 #include <linux/buffer_head.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mpage.h> 18 #include <linux/fs.h> 19 #include <linux/writeback.h> 20 #include <linux/swap.h> 21 #include <linux/gfs2_ondisk.h> 22 #include <linux/backing-dev.h> 23 #include <linux/aio.h> 24 25 #include "gfs2.h" 26 #include "incore.h" 27 #include "bmap.h" 28 #include "glock.h" 29 #include "inode.h" 30 #include "log.h" 31 #include "meta_io.h" 32 #include "quota.h" 33 #include "trans.h" 34 #include "rgrp.h" 35 #include "super.h" 36 #include "util.h" 37 #include "glops.h" 38 39 40 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page, 41 unsigned int from, unsigned int to) 42 { 43 struct buffer_head *head = page_buffers(page); 44 unsigned int bsize = head->b_size; 45 struct buffer_head *bh; 46 unsigned int start, end; 47 48 for (bh = head, start = 0; bh != head || !start; 49 bh = bh->b_this_page, start = end) { 50 end = start + bsize; 51 if (end <= from || start >= to) 52 continue; 53 if (gfs2_is_jdata(ip)) 54 set_buffer_uptodate(bh); 55 gfs2_trans_add_data(ip->i_gl, bh); 56 } 57 } 58 59 /** 60 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block 61 * @inode: The inode 62 * @lblock: The block number to look up 63 * @bh_result: The buffer head to return the result in 64 * @create: Non-zero if we may add block to the file 65 * 66 * Returns: errno 67 */ 68 69 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock, 70 struct buffer_head *bh_result, int create) 71 { 72 int error; 73 74 error = gfs2_block_map(inode, lblock, bh_result, 0); 75 if (error) 76 return error; 77 if (!buffer_mapped(bh_result)) 78 return -EIO; 79 return 0; 80 } 81 82 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock, 83 struct buffer_head *bh_result, int create) 84 { 85 return gfs2_block_map(inode, lblock, bh_result, 0); 86 } 87 88 /** 89 * gfs2_writepage_common - Common bits of writepage 90 * @page: The page to be written 91 * @wbc: The writeback control 92 * 93 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error. 94 */ 95 96 static int gfs2_writepage_common(struct page *page, 97 struct writeback_control *wbc) 98 { 99 struct inode *inode = page->mapping->host; 100 struct gfs2_inode *ip = GFS2_I(inode); 101 struct gfs2_sbd *sdp = GFS2_SB(inode); 102 loff_t i_size = i_size_read(inode); 103 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 104 unsigned offset; 105 106 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 107 goto out; 108 if (current->journal_info) 109 goto redirty; 110 /* Is the page fully outside i_size? (truncate in progress) */ 111 offset = i_size & (PAGE_CACHE_SIZE-1); 112 if (page->index > end_index || (page->index == end_index && !offset)) { 113 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 114 goto out; 115 } 116 return 1; 117 redirty: 118 redirty_page_for_writepage(wbc, page); 119 out: 120 unlock_page(page); 121 return 0; 122 } 123 124 /** 125 * gfs2_writepage - Write page for writeback mappings 126 * @page: The page 127 * @wbc: The writeback control 128 * 129 */ 130 131 static int gfs2_writepage(struct page *page, struct writeback_control *wbc) 132 { 133 int ret; 134 135 ret = gfs2_writepage_common(page, wbc); 136 if (ret <= 0) 137 return ret; 138 139 return nobh_writepage(page, gfs2_get_block_noalloc, wbc); 140 } 141 142 /** 143 * __gfs2_jdata_writepage - The core of jdata writepage 144 * @page: The page to write 145 * @wbc: The writeback control 146 * 147 * This is shared between writepage and writepages and implements the 148 * core of the writepage operation. If a transaction is required then 149 * PageChecked will have been set and the transaction will have 150 * already been started before this is called. 151 */ 152 153 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 154 { 155 struct inode *inode = page->mapping->host; 156 struct gfs2_inode *ip = GFS2_I(inode); 157 struct gfs2_sbd *sdp = GFS2_SB(inode); 158 159 if (PageChecked(page)) { 160 ClearPageChecked(page); 161 if (!page_has_buffers(page)) { 162 create_empty_buffers(page, inode->i_sb->s_blocksize, 163 (1 << BH_Dirty)|(1 << BH_Uptodate)); 164 } 165 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1); 166 } 167 return block_write_full_page(page, gfs2_get_block_noalloc, wbc); 168 } 169 170 /** 171 * gfs2_jdata_writepage - Write complete page 172 * @page: Page to write 173 * 174 * Returns: errno 175 * 176 */ 177 178 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 179 { 180 struct inode *inode = page->mapping->host; 181 struct gfs2_sbd *sdp = GFS2_SB(inode); 182 int ret; 183 int done_trans = 0; 184 185 if (PageChecked(page)) { 186 if (wbc->sync_mode != WB_SYNC_ALL) 187 goto out_ignore; 188 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0); 189 if (ret) 190 goto out_ignore; 191 done_trans = 1; 192 } 193 ret = gfs2_writepage_common(page, wbc); 194 if (ret > 0) 195 ret = __gfs2_jdata_writepage(page, wbc); 196 if (done_trans) 197 gfs2_trans_end(sdp); 198 return ret; 199 200 out_ignore: 201 redirty_page_for_writepage(wbc, page); 202 unlock_page(page); 203 return 0; 204 } 205 206 /** 207 * gfs2_writepages - Write a bunch of dirty pages back to disk 208 * @mapping: The mapping to write 209 * @wbc: Write-back control 210 * 211 * Used for both ordered and writeback modes. 212 */ 213 static int gfs2_writepages(struct address_space *mapping, 214 struct writeback_control *wbc) 215 { 216 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc); 217 } 218 219 /** 220 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages 221 * @mapping: The mapping 222 * @wbc: The writeback control 223 * @writepage: The writepage function to call for each page 224 * @pvec: The vector of pages 225 * @nr_pages: The number of pages to write 226 * 227 * Returns: non-zero if loop should terminate, zero otherwise 228 */ 229 230 static int gfs2_write_jdata_pagevec(struct address_space *mapping, 231 struct writeback_control *wbc, 232 struct pagevec *pvec, 233 int nr_pages, pgoff_t end) 234 { 235 struct inode *inode = mapping->host; 236 struct gfs2_sbd *sdp = GFS2_SB(inode); 237 loff_t i_size = i_size_read(inode); 238 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 239 unsigned offset = i_size & (PAGE_CACHE_SIZE-1); 240 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize); 241 int i; 242 int ret; 243 244 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks); 245 if (ret < 0) 246 return ret; 247 248 for(i = 0; i < nr_pages; i++) { 249 struct page *page = pvec->pages[i]; 250 251 lock_page(page); 252 253 if (unlikely(page->mapping != mapping)) { 254 unlock_page(page); 255 continue; 256 } 257 258 if (!wbc->range_cyclic && page->index > end) { 259 ret = 1; 260 unlock_page(page); 261 continue; 262 } 263 264 if (wbc->sync_mode != WB_SYNC_NONE) 265 wait_on_page_writeback(page); 266 267 if (PageWriteback(page) || 268 !clear_page_dirty_for_io(page)) { 269 unlock_page(page); 270 continue; 271 } 272 273 /* Is the page fully outside i_size? (truncate in progress) */ 274 if (page->index > end_index || (page->index == end_index && !offset)) { 275 page->mapping->a_ops->invalidatepage(page, 0, 276 PAGE_CACHE_SIZE); 277 unlock_page(page); 278 continue; 279 } 280 281 ret = __gfs2_jdata_writepage(page, wbc); 282 283 if (ret || (--(wbc->nr_to_write) <= 0)) 284 ret = 1; 285 } 286 gfs2_trans_end(sdp); 287 return ret; 288 } 289 290 /** 291 * gfs2_write_cache_jdata - Like write_cache_pages but different 292 * @mapping: The mapping to write 293 * @wbc: The writeback control 294 * @writepage: The writepage function to call 295 * @data: The data to pass to writepage 296 * 297 * The reason that we use our own function here is that we need to 298 * start transactions before we grab page locks. This allows us 299 * to get the ordering right. 300 */ 301 302 static int gfs2_write_cache_jdata(struct address_space *mapping, 303 struct writeback_control *wbc) 304 { 305 int ret = 0; 306 int done = 0; 307 struct pagevec pvec; 308 int nr_pages; 309 pgoff_t index; 310 pgoff_t end; 311 int scanned = 0; 312 int range_whole = 0; 313 314 pagevec_init(&pvec, 0); 315 if (wbc->range_cyclic) { 316 index = mapping->writeback_index; /* Start from prev offset */ 317 end = -1; 318 } else { 319 index = wbc->range_start >> PAGE_CACHE_SHIFT; 320 end = wbc->range_end >> PAGE_CACHE_SHIFT; 321 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 322 range_whole = 1; 323 scanned = 1; 324 } 325 326 retry: 327 while (!done && (index <= end) && 328 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 329 PAGECACHE_TAG_DIRTY, 330 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 331 scanned = 1; 332 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end); 333 if (ret) 334 done = 1; 335 if (ret > 0) 336 ret = 0; 337 338 pagevec_release(&pvec); 339 cond_resched(); 340 } 341 342 if (!scanned && !done) { 343 /* 344 * We hit the last page and there is more work to be done: wrap 345 * back to the start of the file 346 */ 347 scanned = 1; 348 index = 0; 349 goto retry; 350 } 351 352 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 353 mapping->writeback_index = index; 354 return ret; 355 } 356 357 358 /** 359 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk 360 * @mapping: The mapping to write 361 * @wbc: The writeback control 362 * 363 */ 364 365 static int gfs2_jdata_writepages(struct address_space *mapping, 366 struct writeback_control *wbc) 367 { 368 struct gfs2_inode *ip = GFS2_I(mapping->host); 369 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 370 int ret; 371 372 ret = gfs2_write_cache_jdata(mapping, wbc); 373 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) { 374 gfs2_log_flush(sdp, ip->i_gl); 375 ret = gfs2_write_cache_jdata(mapping, wbc); 376 } 377 return ret; 378 } 379 380 /** 381 * stuffed_readpage - Fill in a Linux page with stuffed file data 382 * @ip: the inode 383 * @page: the page 384 * 385 * Returns: errno 386 */ 387 388 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page) 389 { 390 struct buffer_head *dibh; 391 u64 dsize = i_size_read(&ip->i_inode); 392 void *kaddr; 393 int error; 394 395 /* 396 * Due to the order of unstuffing files and ->fault(), we can be 397 * asked for a zero page in the case of a stuffed file being extended, 398 * so we need to supply one here. It doesn't happen often. 399 */ 400 if (unlikely(page->index)) { 401 zero_user(page, 0, PAGE_CACHE_SIZE); 402 SetPageUptodate(page); 403 return 0; 404 } 405 406 error = gfs2_meta_inode_buffer(ip, &dibh); 407 if (error) 408 return error; 409 410 kaddr = kmap_atomic(page); 411 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode))) 412 dsize = (dibh->b_size - sizeof(struct gfs2_dinode)); 413 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 414 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize); 415 kunmap_atomic(kaddr); 416 flush_dcache_page(page); 417 brelse(dibh); 418 SetPageUptodate(page); 419 420 return 0; 421 } 422 423 424 /** 425 * __gfs2_readpage - readpage 426 * @file: The file to read a page for 427 * @page: The page to read 428 * 429 * This is the core of gfs2's readpage. Its used by the internal file 430 * reading code as in that case we already hold the glock. Also its 431 * called by gfs2_readpage() once the required lock has been granted. 432 * 433 */ 434 435 static int __gfs2_readpage(void *file, struct page *page) 436 { 437 struct gfs2_inode *ip = GFS2_I(page->mapping->host); 438 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 439 int error; 440 441 if (gfs2_is_stuffed(ip)) { 442 error = stuffed_readpage(ip, page); 443 unlock_page(page); 444 } else { 445 error = mpage_readpage(page, gfs2_block_map); 446 } 447 448 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 449 return -EIO; 450 451 return error; 452 } 453 454 /** 455 * gfs2_readpage - read a page of a file 456 * @file: The file to read 457 * @page: The page of the file 458 * 459 * This deals with the locking required. We have to unlock and 460 * relock the page in order to get the locking in the right 461 * order. 462 */ 463 464 static int gfs2_readpage(struct file *file, struct page *page) 465 { 466 struct address_space *mapping = page->mapping; 467 struct gfs2_inode *ip = GFS2_I(mapping->host); 468 struct gfs2_holder gh; 469 int error; 470 471 unlock_page(page); 472 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 473 error = gfs2_glock_nq(&gh); 474 if (unlikely(error)) 475 goto out; 476 error = AOP_TRUNCATED_PAGE; 477 lock_page(page); 478 if (page->mapping == mapping && !PageUptodate(page)) 479 error = __gfs2_readpage(file, page); 480 else 481 unlock_page(page); 482 gfs2_glock_dq(&gh); 483 out: 484 gfs2_holder_uninit(&gh); 485 if (error && error != AOP_TRUNCATED_PAGE) 486 lock_page(page); 487 return error; 488 } 489 490 /** 491 * gfs2_internal_read - read an internal file 492 * @ip: The gfs2 inode 493 * @buf: The buffer to fill 494 * @pos: The file position 495 * @size: The amount to read 496 * 497 */ 498 499 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos, 500 unsigned size) 501 { 502 struct address_space *mapping = ip->i_inode.i_mapping; 503 unsigned long index = *pos / PAGE_CACHE_SIZE; 504 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1); 505 unsigned copied = 0; 506 unsigned amt; 507 struct page *page; 508 void *p; 509 510 do { 511 amt = size - copied; 512 if (offset + size > PAGE_CACHE_SIZE) 513 amt = PAGE_CACHE_SIZE - offset; 514 page = read_cache_page(mapping, index, __gfs2_readpage, NULL); 515 if (IS_ERR(page)) 516 return PTR_ERR(page); 517 p = kmap_atomic(page); 518 memcpy(buf + copied, p + offset, amt); 519 kunmap_atomic(p); 520 mark_page_accessed(page); 521 page_cache_release(page); 522 copied += amt; 523 index++; 524 offset = 0; 525 } while(copied < size); 526 (*pos) += size; 527 return size; 528 } 529 530 /** 531 * gfs2_readpages - Read a bunch of pages at once 532 * 533 * Some notes: 534 * 1. This is only for readahead, so we can simply ignore any things 535 * which are slightly inconvenient (such as locking conflicts between 536 * the page lock and the glock) and return having done no I/O. Its 537 * obviously not something we'd want to do on too regular a basis. 538 * Any I/O we ignore at this time will be done via readpage later. 539 * 2. We don't handle stuffed files here we let readpage do the honours. 540 * 3. mpage_readpages() does most of the heavy lifting in the common case. 541 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places. 542 */ 543 544 static int gfs2_readpages(struct file *file, struct address_space *mapping, 545 struct list_head *pages, unsigned nr_pages) 546 { 547 struct inode *inode = mapping->host; 548 struct gfs2_inode *ip = GFS2_I(inode); 549 struct gfs2_sbd *sdp = GFS2_SB(inode); 550 struct gfs2_holder gh; 551 int ret; 552 553 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 554 ret = gfs2_glock_nq(&gh); 555 if (unlikely(ret)) 556 goto out_uninit; 557 if (!gfs2_is_stuffed(ip)) 558 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map); 559 gfs2_glock_dq(&gh); 560 out_uninit: 561 gfs2_holder_uninit(&gh); 562 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 563 ret = -EIO; 564 return ret; 565 } 566 567 /** 568 * gfs2_write_begin - Begin to write to a file 569 * @file: The file to write to 570 * @mapping: The mapping in which to write 571 * @pos: The file offset at which to start writing 572 * @len: Length of the write 573 * @flags: Various flags 574 * @pagep: Pointer to return the page 575 * @fsdata: Pointer to return fs data (unused by GFS2) 576 * 577 * Returns: errno 578 */ 579 580 static int gfs2_write_begin(struct file *file, struct address_space *mapping, 581 loff_t pos, unsigned len, unsigned flags, 582 struct page **pagep, void **fsdata) 583 { 584 struct gfs2_inode *ip = GFS2_I(mapping->host); 585 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 586 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 587 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 588 unsigned requested = 0; 589 int alloc_required; 590 int error = 0; 591 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 592 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 593 struct page *page; 594 595 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 596 error = gfs2_glock_nq(&ip->i_gh); 597 if (unlikely(error)) 598 goto out_uninit; 599 if (&ip->i_inode == sdp->sd_rindex) { 600 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 601 GL_NOCACHE, &m_ip->i_gh); 602 if (unlikely(error)) { 603 gfs2_glock_dq(&ip->i_gh); 604 goto out_uninit; 605 } 606 } 607 608 alloc_required = gfs2_write_alloc_required(ip, pos, len); 609 610 if (alloc_required || gfs2_is_jdata(ip)) 611 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks); 612 613 if (alloc_required) { 614 struct gfs2_alloc_parms ap = { .aflags = 0, }; 615 error = gfs2_quota_lock_check(ip); 616 if (error) 617 goto out_unlock; 618 619 requested = data_blocks + ind_blocks; 620 ap.target = requested; 621 error = gfs2_inplace_reserve(ip, &ap); 622 if (error) 623 goto out_qunlock; 624 } 625 626 rblocks = RES_DINODE + ind_blocks; 627 if (gfs2_is_jdata(ip)) 628 rblocks += data_blocks ? data_blocks : 1; 629 if (ind_blocks || data_blocks) 630 rblocks += RES_STATFS + RES_QUOTA; 631 if (&ip->i_inode == sdp->sd_rindex) 632 rblocks += 2 * RES_STATFS; 633 if (alloc_required) 634 rblocks += gfs2_rg_blocks(ip, requested); 635 636 error = gfs2_trans_begin(sdp, rblocks, 637 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize); 638 if (error) 639 goto out_trans_fail; 640 641 error = -ENOMEM; 642 flags |= AOP_FLAG_NOFS; 643 page = grab_cache_page_write_begin(mapping, index, flags); 644 *pagep = page; 645 if (unlikely(!page)) 646 goto out_endtrans; 647 648 if (gfs2_is_stuffed(ip)) { 649 error = 0; 650 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) { 651 error = gfs2_unstuff_dinode(ip, page); 652 if (error == 0) 653 goto prepare_write; 654 } else if (!PageUptodate(page)) { 655 error = stuffed_readpage(ip, page); 656 } 657 goto out; 658 } 659 660 prepare_write: 661 error = __block_write_begin(page, from, len, gfs2_block_map); 662 out: 663 if (error == 0) 664 return 0; 665 666 unlock_page(page); 667 page_cache_release(page); 668 669 gfs2_trans_end(sdp); 670 if (pos + len > ip->i_inode.i_size) 671 gfs2_trim_blocks(&ip->i_inode); 672 goto out_trans_fail; 673 674 out_endtrans: 675 gfs2_trans_end(sdp); 676 out_trans_fail: 677 if (alloc_required) { 678 gfs2_inplace_release(ip); 679 out_qunlock: 680 gfs2_quota_unlock(ip); 681 } 682 out_unlock: 683 if (&ip->i_inode == sdp->sd_rindex) { 684 gfs2_glock_dq(&m_ip->i_gh); 685 gfs2_holder_uninit(&m_ip->i_gh); 686 } 687 gfs2_glock_dq(&ip->i_gh); 688 out_uninit: 689 gfs2_holder_uninit(&ip->i_gh); 690 return error; 691 } 692 693 /** 694 * adjust_fs_space - Adjusts the free space available due to gfs2_grow 695 * @inode: the rindex inode 696 */ 697 static void adjust_fs_space(struct inode *inode) 698 { 699 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info; 700 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 701 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); 702 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; 703 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; 704 struct buffer_head *m_bh, *l_bh; 705 u64 fs_total, new_free; 706 707 /* Total up the file system space, according to the latest rindex. */ 708 fs_total = gfs2_ri_total(sdp); 709 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0) 710 return; 711 712 spin_lock(&sdp->sd_statfs_spin); 713 gfs2_statfs_change_in(m_sc, m_bh->b_data + 714 sizeof(struct gfs2_dinode)); 715 if (fs_total > (m_sc->sc_total + l_sc->sc_total)) 716 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total); 717 else 718 new_free = 0; 719 spin_unlock(&sdp->sd_statfs_spin); 720 fs_warn(sdp, "File system extended by %llu blocks.\n", 721 (unsigned long long)new_free); 722 gfs2_statfs_change(sdp, new_free, new_free, 0); 723 724 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0) 725 goto out; 726 update_statfs(sdp, m_bh, l_bh); 727 brelse(l_bh); 728 out: 729 brelse(m_bh); 730 } 731 732 /** 733 * gfs2_stuffed_write_end - Write end for stuffed files 734 * @inode: The inode 735 * @dibh: The buffer_head containing the on-disk inode 736 * @pos: The file position 737 * @len: The length of the write 738 * @copied: How much was actually copied by the VFS 739 * @page: The page 740 * 741 * This copies the data from the page into the inode block after 742 * the inode data structure itself. 743 * 744 * Returns: errno 745 */ 746 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh, 747 loff_t pos, unsigned len, unsigned copied, 748 struct page *page) 749 { 750 struct gfs2_inode *ip = GFS2_I(inode); 751 struct gfs2_sbd *sdp = GFS2_SB(inode); 752 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 753 u64 to = pos + copied; 754 void *kaddr; 755 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode); 756 757 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode))); 758 kaddr = kmap_atomic(page); 759 memcpy(buf + pos, kaddr + pos, copied); 760 memset(kaddr + pos + copied, 0, len - copied); 761 flush_dcache_page(page); 762 kunmap_atomic(kaddr); 763 764 if (!PageUptodate(page)) 765 SetPageUptodate(page); 766 unlock_page(page); 767 page_cache_release(page); 768 769 if (copied) { 770 if (inode->i_size < to) 771 i_size_write(inode, to); 772 mark_inode_dirty(inode); 773 } 774 775 if (inode == sdp->sd_rindex) { 776 adjust_fs_space(inode); 777 sdp->sd_rindex_uptodate = 0; 778 } 779 780 brelse(dibh); 781 gfs2_trans_end(sdp); 782 if (inode == sdp->sd_rindex) { 783 gfs2_glock_dq(&m_ip->i_gh); 784 gfs2_holder_uninit(&m_ip->i_gh); 785 } 786 gfs2_glock_dq(&ip->i_gh); 787 gfs2_holder_uninit(&ip->i_gh); 788 return copied; 789 } 790 791 /** 792 * gfs2_write_end 793 * @file: The file to write to 794 * @mapping: The address space to write to 795 * @pos: The file position 796 * @len: The length of the data 797 * @copied: 798 * @page: The page that has been written 799 * @fsdata: The fsdata (unused in GFS2) 800 * 801 * The main write_end function for GFS2. We have a separate one for 802 * stuffed files as they are slightly different, otherwise we just 803 * put our locking around the VFS provided functions. 804 * 805 * Returns: errno 806 */ 807 808 static int gfs2_write_end(struct file *file, struct address_space *mapping, 809 loff_t pos, unsigned len, unsigned copied, 810 struct page *page, void *fsdata) 811 { 812 struct inode *inode = page->mapping->host; 813 struct gfs2_inode *ip = GFS2_I(inode); 814 struct gfs2_sbd *sdp = GFS2_SB(inode); 815 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 816 struct buffer_head *dibh; 817 unsigned int from = pos & (PAGE_CACHE_SIZE - 1); 818 unsigned int to = from + len; 819 int ret; 820 struct gfs2_trans *tr = current->journal_info; 821 BUG_ON(!tr); 822 823 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL); 824 825 ret = gfs2_meta_inode_buffer(ip, &dibh); 826 if (unlikely(ret)) { 827 unlock_page(page); 828 page_cache_release(page); 829 goto failed; 830 } 831 832 if (gfs2_is_stuffed(ip)) 833 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page); 834 835 if (!gfs2_is_writeback(ip)) 836 gfs2_page_add_databufs(ip, page, from, to); 837 838 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 839 if (tr->tr_num_buf_new) 840 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 841 else 842 gfs2_trans_add_meta(ip->i_gl, dibh); 843 844 845 if (inode == sdp->sd_rindex) { 846 adjust_fs_space(inode); 847 sdp->sd_rindex_uptodate = 0; 848 } 849 850 brelse(dibh); 851 failed: 852 gfs2_trans_end(sdp); 853 gfs2_inplace_release(ip); 854 if (ip->i_res->rs_qa_qd_num) 855 gfs2_quota_unlock(ip); 856 if (inode == sdp->sd_rindex) { 857 gfs2_glock_dq(&m_ip->i_gh); 858 gfs2_holder_uninit(&m_ip->i_gh); 859 } 860 gfs2_glock_dq(&ip->i_gh); 861 gfs2_holder_uninit(&ip->i_gh); 862 return ret; 863 } 864 865 /** 866 * gfs2_set_page_dirty - Page dirtying function 867 * @page: The page to dirty 868 * 869 * Returns: 1 if it dirtyed the page, or 0 otherwise 870 */ 871 872 static int gfs2_set_page_dirty(struct page *page) 873 { 874 SetPageChecked(page); 875 return __set_page_dirty_buffers(page); 876 } 877 878 /** 879 * gfs2_bmap - Block map function 880 * @mapping: Address space info 881 * @lblock: The block to map 882 * 883 * Returns: The disk address for the block or 0 on hole or error 884 */ 885 886 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock) 887 { 888 struct gfs2_inode *ip = GFS2_I(mapping->host); 889 struct gfs2_holder i_gh; 890 sector_t dblock = 0; 891 int error; 892 893 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); 894 if (error) 895 return 0; 896 897 if (!gfs2_is_stuffed(ip)) 898 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map); 899 900 gfs2_glock_dq_uninit(&i_gh); 901 902 return dblock; 903 } 904 905 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh) 906 { 907 struct gfs2_bufdata *bd; 908 909 lock_buffer(bh); 910 gfs2_log_lock(sdp); 911 clear_buffer_dirty(bh); 912 bd = bh->b_private; 913 if (bd) { 914 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh)) 915 list_del_init(&bd->bd_list); 916 else 917 gfs2_remove_from_journal(bh, current->journal_info, 0); 918 } 919 bh->b_bdev = NULL; 920 clear_buffer_mapped(bh); 921 clear_buffer_req(bh); 922 clear_buffer_new(bh); 923 gfs2_log_unlock(sdp); 924 unlock_buffer(bh); 925 } 926 927 static void gfs2_invalidatepage(struct page *page, unsigned int offset, 928 unsigned int length) 929 { 930 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 931 unsigned int stop = offset + length; 932 int partial_page = (offset || length < PAGE_CACHE_SIZE); 933 struct buffer_head *bh, *head; 934 unsigned long pos = 0; 935 936 BUG_ON(!PageLocked(page)); 937 if (!partial_page) 938 ClearPageChecked(page); 939 if (!page_has_buffers(page)) 940 goto out; 941 942 bh = head = page_buffers(page); 943 do { 944 if (pos + bh->b_size > stop) 945 return; 946 947 if (offset <= pos) 948 gfs2_discard(sdp, bh); 949 pos += bh->b_size; 950 bh = bh->b_this_page; 951 } while (bh != head); 952 out: 953 if (!partial_page) 954 try_to_release_page(page, 0); 955 } 956 957 /** 958 * gfs2_ok_for_dio - check that dio is valid on this file 959 * @ip: The inode 960 * @rw: READ or WRITE 961 * @offset: The offset at which we are reading or writing 962 * 963 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o) 964 * 1 (to accept the i/o request) 965 */ 966 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset) 967 { 968 /* 969 * Should we return an error here? I can't see that O_DIRECT for 970 * a stuffed file makes any sense. For now we'll silently fall 971 * back to buffered I/O 972 */ 973 if (gfs2_is_stuffed(ip)) 974 return 0; 975 976 if (offset >= i_size_read(&ip->i_inode)) 977 return 0; 978 return 1; 979 } 980 981 982 983 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb, 984 const struct iovec *iov, loff_t offset, 985 unsigned long nr_segs) 986 { 987 struct file *file = iocb->ki_filp; 988 struct inode *inode = file->f_mapping->host; 989 struct address_space *mapping = inode->i_mapping; 990 struct gfs2_inode *ip = GFS2_I(inode); 991 struct gfs2_holder gh; 992 int rv; 993 994 /* 995 * Deferred lock, even if its a write, since we do no allocation 996 * on this path. All we need change is atime, and this lock mode 997 * ensures that other nodes have flushed their buffered read caches 998 * (i.e. their page cache entries for this inode). We do not, 999 * unfortunately have the option of only flushing a range like 1000 * the VFS does. 1001 */ 1002 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 1003 rv = gfs2_glock_nq(&gh); 1004 if (rv) 1005 return rv; 1006 rv = gfs2_ok_for_dio(ip, rw, offset); 1007 if (rv != 1) 1008 goto out; /* dio not valid, fall back to buffered i/o */ 1009 1010 /* 1011 * Now since we are holding a deferred (CW) lock at this point, you 1012 * might be wondering why this is ever needed. There is a case however 1013 * where we've granted a deferred local lock against a cached exclusive 1014 * glock. That is ok provided all granted local locks are deferred, but 1015 * it also means that it is possible to encounter pages which are 1016 * cached and possibly also mapped. So here we check for that and sort 1017 * them out ahead of the dio. The glock state machine will take care of 1018 * everything else. 1019 * 1020 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in 1021 * the first place, mapping->nr_pages will always be zero. 1022 */ 1023 if (mapping->nrpages) { 1024 loff_t lstart = offset & (PAGE_CACHE_SIZE - 1); 1025 loff_t len = iov_length(iov, nr_segs); 1026 loff_t end = PAGE_ALIGN(offset + len) - 1; 1027 1028 rv = 0; 1029 if (len == 0) 1030 goto out; 1031 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags)) 1032 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len); 1033 rv = filemap_write_and_wait_range(mapping, lstart, end); 1034 if (rv) 1035 return rv; 1036 truncate_inode_pages_range(mapping, lstart, end); 1037 } 1038 1039 rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 1040 offset, nr_segs, gfs2_get_block_direct, 1041 NULL, NULL, 0); 1042 out: 1043 gfs2_glock_dq(&gh); 1044 gfs2_holder_uninit(&gh); 1045 return rv; 1046 } 1047 1048 /** 1049 * gfs2_releasepage - free the metadata associated with a page 1050 * @page: the page that's being released 1051 * @gfp_mask: passed from Linux VFS, ignored by us 1052 * 1053 * Call try_to_free_buffers() if the buffers in this page can be 1054 * released. 1055 * 1056 * Returns: 0 1057 */ 1058 1059 int gfs2_releasepage(struct page *page, gfp_t gfp_mask) 1060 { 1061 struct address_space *mapping = page->mapping; 1062 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 1063 struct buffer_head *bh, *head; 1064 struct gfs2_bufdata *bd; 1065 1066 if (!page_has_buffers(page)) 1067 return 0; 1068 1069 gfs2_log_lock(sdp); 1070 spin_lock(&sdp->sd_ail_lock); 1071 head = bh = page_buffers(page); 1072 do { 1073 if (atomic_read(&bh->b_count)) 1074 goto cannot_release; 1075 bd = bh->b_private; 1076 if (bd && bd->bd_tr) 1077 goto cannot_release; 1078 if (buffer_pinned(bh) || buffer_dirty(bh)) 1079 goto not_possible; 1080 bh = bh->b_this_page; 1081 } while(bh != head); 1082 spin_unlock(&sdp->sd_ail_lock); 1083 gfs2_log_unlock(sdp); 1084 1085 head = bh = page_buffers(page); 1086 do { 1087 gfs2_log_lock(sdp); 1088 bd = bh->b_private; 1089 if (bd) { 1090 gfs2_assert_warn(sdp, bd->bd_bh == bh); 1091 if (!list_empty(&bd->bd_list)) { 1092 if (!buffer_pinned(bh)) 1093 list_del_init(&bd->bd_list); 1094 else 1095 bd = NULL; 1096 } 1097 if (bd) 1098 bd->bd_bh = NULL; 1099 bh->b_private = NULL; 1100 } 1101 gfs2_log_unlock(sdp); 1102 if (bd) 1103 kmem_cache_free(gfs2_bufdata_cachep, bd); 1104 1105 bh = bh->b_this_page; 1106 } while (bh != head); 1107 1108 return try_to_free_buffers(page); 1109 1110 not_possible: /* Should never happen */ 1111 WARN_ON(buffer_dirty(bh)); 1112 WARN_ON(buffer_pinned(bh)); 1113 cannot_release: 1114 spin_unlock(&sdp->sd_ail_lock); 1115 gfs2_log_unlock(sdp); 1116 return 0; 1117 } 1118 1119 static const struct address_space_operations gfs2_writeback_aops = { 1120 .writepage = gfs2_writepage, 1121 .writepages = gfs2_writepages, 1122 .readpage = gfs2_readpage, 1123 .readpages = gfs2_readpages, 1124 .write_begin = gfs2_write_begin, 1125 .write_end = gfs2_write_end, 1126 .bmap = gfs2_bmap, 1127 .invalidatepage = gfs2_invalidatepage, 1128 .releasepage = gfs2_releasepage, 1129 .direct_IO = gfs2_direct_IO, 1130 .migratepage = buffer_migrate_page, 1131 .is_partially_uptodate = block_is_partially_uptodate, 1132 .error_remove_page = generic_error_remove_page, 1133 }; 1134 1135 static const struct address_space_operations gfs2_ordered_aops = { 1136 .writepage = gfs2_writepage, 1137 .writepages = gfs2_writepages, 1138 .readpage = gfs2_readpage, 1139 .readpages = gfs2_readpages, 1140 .write_begin = gfs2_write_begin, 1141 .write_end = gfs2_write_end, 1142 .set_page_dirty = gfs2_set_page_dirty, 1143 .bmap = gfs2_bmap, 1144 .invalidatepage = gfs2_invalidatepage, 1145 .releasepage = gfs2_releasepage, 1146 .direct_IO = gfs2_direct_IO, 1147 .migratepage = buffer_migrate_page, 1148 .is_partially_uptodate = block_is_partially_uptodate, 1149 .error_remove_page = generic_error_remove_page, 1150 }; 1151 1152 static const struct address_space_operations gfs2_jdata_aops = { 1153 .writepage = gfs2_jdata_writepage, 1154 .writepages = gfs2_jdata_writepages, 1155 .readpage = gfs2_readpage, 1156 .readpages = gfs2_readpages, 1157 .write_begin = gfs2_write_begin, 1158 .write_end = gfs2_write_end, 1159 .set_page_dirty = gfs2_set_page_dirty, 1160 .bmap = gfs2_bmap, 1161 .invalidatepage = gfs2_invalidatepage, 1162 .releasepage = gfs2_releasepage, 1163 .is_partially_uptodate = block_is_partially_uptodate, 1164 .error_remove_page = generic_error_remove_page, 1165 }; 1166 1167 void gfs2_set_aops(struct inode *inode) 1168 { 1169 struct gfs2_inode *ip = GFS2_I(inode); 1170 1171 if (gfs2_is_writeback(ip)) 1172 inode->i_mapping->a_ops = &gfs2_writeback_aops; 1173 else if (gfs2_is_ordered(ip)) 1174 inode->i_mapping->a_ops = &gfs2_ordered_aops; 1175 else if (gfs2_is_jdata(ip)) 1176 inode->i_mapping->a_ops = &gfs2_jdata_aops; 1177 else 1178 BUG(); 1179 } 1180 1181