xref: /openbmc/linux/fs/gfs2/aops.c (revision 805c0907)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39 
40 
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 				   unsigned int from, unsigned int len)
43 {
44 	struct buffer_head *head = page_buffers(page);
45 	unsigned int bsize = head->b_size;
46 	struct buffer_head *bh;
47 	unsigned int to = from + len;
48 	unsigned int start, end;
49 
50 	for (bh = head, start = 0; bh != head || !start;
51 	     bh = bh->b_this_page, start = end) {
52 		end = start + bsize;
53 		if (end <= from)
54 			continue;
55 		if (start >= to)
56 			break;
57 		if (gfs2_is_jdata(ip))
58 			set_buffer_uptodate(bh);
59 		gfs2_trans_add_data(ip->i_gl, bh);
60 	}
61 }
62 
63 /**
64  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
65  * @inode: The inode
66  * @lblock: The block number to look up
67  * @bh_result: The buffer head to return the result in
68  * @create: Non-zero if we may add block to the file
69  *
70  * Returns: errno
71  */
72 
73 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
74 				  struct buffer_head *bh_result, int create)
75 {
76 	int error;
77 
78 	error = gfs2_block_map(inode, lblock, bh_result, 0);
79 	if (error)
80 		return error;
81 	if (!buffer_mapped(bh_result))
82 		return -EIO;
83 	return 0;
84 }
85 
86 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
87 				 struct buffer_head *bh_result, int create)
88 {
89 	return gfs2_block_map(inode, lblock, bh_result, 0);
90 }
91 
92 /**
93  * gfs2_writepage_common - Common bits of writepage
94  * @page: The page to be written
95  * @wbc: The writeback control
96  *
97  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
98  */
99 
100 static int gfs2_writepage_common(struct page *page,
101 				 struct writeback_control *wbc)
102 {
103 	struct inode *inode = page->mapping->host;
104 	struct gfs2_inode *ip = GFS2_I(inode);
105 	struct gfs2_sbd *sdp = GFS2_SB(inode);
106 	loff_t i_size = i_size_read(inode);
107 	pgoff_t end_index = i_size >> PAGE_SHIFT;
108 	unsigned offset;
109 
110 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
111 		goto out;
112 	if (current->journal_info)
113 		goto redirty;
114 	/* Is the page fully outside i_size? (truncate in progress) */
115 	offset = i_size & (PAGE_SIZE-1);
116 	if (page->index > end_index || (page->index == end_index && !offset)) {
117 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
118 		goto out;
119 	}
120 	return 1;
121 redirty:
122 	redirty_page_for_writepage(wbc, page);
123 out:
124 	unlock_page(page);
125 	return 0;
126 }
127 
128 /**
129  * gfs2_writepage - Write page for writeback mappings
130  * @page: The page
131  * @wbc: The writeback control
132  *
133  */
134 
135 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
136 {
137 	int ret;
138 
139 	ret = gfs2_writepage_common(page, wbc);
140 	if (ret <= 0)
141 		return ret;
142 
143 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
144 }
145 
146 /* This is the same as calling block_write_full_page, but it also
147  * writes pages outside of i_size
148  */
149 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
150 				struct writeback_control *wbc)
151 {
152 	struct inode * const inode = page->mapping->host;
153 	loff_t i_size = i_size_read(inode);
154 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
155 	unsigned offset;
156 
157 	/*
158 	 * The page straddles i_size.  It must be zeroed out on each and every
159 	 * writepage invocation because it may be mmapped.  "A file is mapped
160 	 * in multiples of the page size.  For a file that is not a multiple of
161 	 * the  page size, the remaining memory is zeroed when mapped, and
162 	 * writes to that region are not written out to the file."
163 	 */
164 	offset = i_size & (PAGE_SIZE-1);
165 	if (page->index == end_index && offset)
166 		zero_user_segment(page, offset, PAGE_SIZE);
167 
168 	return __block_write_full_page(inode, page, get_block, wbc,
169 				       end_buffer_async_write);
170 }
171 
172 /**
173  * __gfs2_jdata_writepage - The core of jdata writepage
174  * @page: The page to write
175  * @wbc: The writeback control
176  *
177  * This is shared between writepage and writepages and implements the
178  * core of the writepage operation. If a transaction is required then
179  * PageChecked will have been set and the transaction will have
180  * already been started before this is called.
181  */
182 
183 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
184 {
185 	struct inode *inode = page->mapping->host;
186 	struct gfs2_inode *ip = GFS2_I(inode);
187 	struct gfs2_sbd *sdp = GFS2_SB(inode);
188 
189 	if (PageChecked(page)) {
190 		ClearPageChecked(page);
191 		if (!page_has_buffers(page)) {
192 			create_empty_buffers(page, inode->i_sb->s_blocksize,
193 					     BIT(BH_Dirty)|BIT(BH_Uptodate));
194 		}
195 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize);
196 	}
197 	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
198 }
199 
200 /**
201  * gfs2_jdata_writepage - Write complete page
202  * @page: Page to write
203  * @wbc: The writeback control
204  *
205  * Returns: errno
206  *
207  */
208 
209 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
210 {
211 	struct inode *inode = page->mapping->host;
212 	struct gfs2_inode *ip = GFS2_I(inode);
213 	struct gfs2_sbd *sdp = GFS2_SB(inode);
214 	int ret;
215 
216 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
217 		goto out;
218 	if (PageChecked(page) || current->journal_info)
219 		goto out_ignore;
220 	ret = __gfs2_jdata_writepage(page, wbc);
221 	return ret;
222 
223 out_ignore:
224 	redirty_page_for_writepage(wbc, page);
225 out:
226 	unlock_page(page);
227 	return 0;
228 }
229 
230 /**
231  * gfs2_writepages - Write a bunch of dirty pages back to disk
232  * @mapping: The mapping to write
233  * @wbc: Write-back control
234  *
235  * Used for both ordered and writeback modes.
236  */
237 static int gfs2_writepages(struct address_space *mapping,
238 			   struct writeback_control *wbc)
239 {
240 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
241 	int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
242 
243 	/*
244 	 * Even if we didn't write any pages here, we might still be holding
245 	 * dirty pages in the ail. We forcibly flush the ail because we don't
246 	 * want balance_dirty_pages() to loop indefinitely trying to write out
247 	 * pages held in the ail that it can't find.
248 	 */
249 	if (ret == 0)
250 		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
251 
252 	return ret;
253 }
254 
255 /**
256  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
257  * @mapping: The mapping
258  * @wbc: The writeback control
259  * @pvec: The vector of pages
260  * @nr_pages: The number of pages to write
261  * @done_index: Page index
262  *
263  * Returns: non-zero if loop should terminate, zero otherwise
264  */
265 
266 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
267 				    struct writeback_control *wbc,
268 				    struct pagevec *pvec,
269 				    int nr_pages,
270 				    pgoff_t *done_index)
271 {
272 	struct inode *inode = mapping->host;
273 	struct gfs2_sbd *sdp = GFS2_SB(inode);
274 	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
275 	int i;
276 	int ret;
277 
278 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
279 	if (ret < 0)
280 		return ret;
281 
282 	for(i = 0; i < nr_pages; i++) {
283 		struct page *page = pvec->pages[i];
284 
285 		*done_index = page->index;
286 
287 		lock_page(page);
288 
289 		if (unlikely(page->mapping != mapping)) {
290 continue_unlock:
291 			unlock_page(page);
292 			continue;
293 		}
294 
295 		if (!PageDirty(page)) {
296 			/* someone wrote it for us */
297 			goto continue_unlock;
298 		}
299 
300 		if (PageWriteback(page)) {
301 			if (wbc->sync_mode != WB_SYNC_NONE)
302 				wait_on_page_writeback(page);
303 			else
304 				goto continue_unlock;
305 		}
306 
307 		BUG_ON(PageWriteback(page));
308 		if (!clear_page_dirty_for_io(page))
309 			goto continue_unlock;
310 
311 		trace_wbc_writepage(wbc, inode_to_bdi(inode));
312 
313 		ret = __gfs2_jdata_writepage(page, wbc);
314 		if (unlikely(ret)) {
315 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
316 				unlock_page(page);
317 				ret = 0;
318 			} else {
319 
320 				/*
321 				 * done_index is set past this page,
322 				 * so media errors will not choke
323 				 * background writeout for the entire
324 				 * file. This has consequences for
325 				 * range_cyclic semantics (ie. it may
326 				 * not be suitable for data integrity
327 				 * writeout).
328 				 */
329 				*done_index = page->index + 1;
330 				ret = 1;
331 				break;
332 			}
333 		}
334 
335 		/*
336 		 * We stop writing back only if we are not doing
337 		 * integrity sync. In case of integrity sync we have to
338 		 * keep going until we have written all the pages
339 		 * we tagged for writeback prior to entering this loop.
340 		 */
341 		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
342 			ret = 1;
343 			break;
344 		}
345 
346 	}
347 	gfs2_trans_end(sdp);
348 	return ret;
349 }
350 
351 /**
352  * gfs2_write_cache_jdata - Like write_cache_pages but different
353  * @mapping: The mapping to write
354  * @wbc: The writeback control
355  *
356  * The reason that we use our own function here is that we need to
357  * start transactions before we grab page locks. This allows us
358  * to get the ordering right.
359  */
360 
361 static int gfs2_write_cache_jdata(struct address_space *mapping,
362 				  struct writeback_control *wbc)
363 {
364 	int ret = 0;
365 	int done = 0;
366 	struct pagevec pvec;
367 	int nr_pages;
368 	pgoff_t uninitialized_var(writeback_index);
369 	pgoff_t index;
370 	pgoff_t end;
371 	pgoff_t done_index;
372 	int cycled;
373 	int range_whole = 0;
374 	int tag;
375 
376 	pagevec_init(&pvec);
377 	if (wbc->range_cyclic) {
378 		writeback_index = mapping->writeback_index; /* prev offset */
379 		index = writeback_index;
380 		if (index == 0)
381 			cycled = 1;
382 		else
383 			cycled = 0;
384 		end = -1;
385 	} else {
386 		index = wbc->range_start >> PAGE_SHIFT;
387 		end = wbc->range_end >> PAGE_SHIFT;
388 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
389 			range_whole = 1;
390 		cycled = 1; /* ignore range_cyclic tests */
391 	}
392 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
393 		tag = PAGECACHE_TAG_TOWRITE;
394 	else
395 		tag = PAGECACHE_TAG_DIRTY;
396 
397 retry:
398 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
399 		tag_pages_for_writeback(mapping, index, end);
400 	done_index = index;
401 	while (!done && (index <= end)) {
402 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
403 				tag);
404 		if (nr_pages == 0)
405 			break;
406 
407 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
408 		if (ret)
409 			done = 1;
410 		if (ret > 0)
411 			ret = 0;
412 		pagevec_release(&pvec);
413 		cond_resched();
414 	}
415 
416 	if (!cycled && !done) {
417 		/*
418 		 * range_cyclic:
419 		 * We hit the last page and there is more work to be done: wrap
420 		 * back to the start of the file
421 		 */
422 		cycled = 1;
423 		index = 0;
424 		end = writeback_index - 1;
425 		goto retry;
426 	}
427 
428 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
429 		mapping->writeback_index = done_index;
430 
431 	return ret;
432 }
433 
434 
435 /**
436  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
437  * @mapping: The mapping to write
438  * @wbc: The writeback control
439  *
440  */
441 
442 static int gfs2_jdata_writepages(struct address_space *mapping,
443 				 struct writeback_control *wbc)
444 {
445 	struct gfs2_inode *ip = GFS2_I(mapping->host);
446 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
447 	int ret;
448 
449 	ret = gfs2_write_cache_jdata(mapping, wbc);
450 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
451 		gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
452 			       GFS2_LFC_JDATA_WPAGES);
453 		ret = gfs2_write_cache_jdata(mapping, wbc);
454 	}
455 	return ret;
456 }
457 
458 /**
459  * stuffed_readpage - Fill in a Linux page with stuffed file data
460  * @ip: the inode
461  * @page: the page
462  *
463  * Returns: errno
464  */
465 
466 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
467 {
468 	struct buffer_head *dibh;
469 	u64 dsize = i_size_read(&ip->i_inode);
470 	void *kaddr;
471 	int error;
472 
473 	/*
474 	 * Due to the order of unstuffing files and ->fault(), we can be
475 	 * asked for a zero page in the case of a stuffed file being extended,
476 	 * so we need to supply one here. It doesn't happen often.
477 	 */
478 	if (unlikely(page->index)) {
479 		zero_user(page, 0, PAGE_SIZE);
480 		SetPageUptodate(page);
481 		return 0;
482 	}
483 
484 	error = gfs2_meta_inode_buffer(ip, &dibh);
485 	if (error)
486 		return error;
487 
488 	kaddr = kmap_atomic(page);
489 	if (dsize > gfs2_max_stuffed_size(ip))
490 		dsize = gfs2_max_stuffed_size(ip);
491 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
492 	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
493 	kunmap_atomic(kaddr);
494 	flush_dcache_page(page);
495 	brelse(dibh);
496 	SetPageUptodate(page);
497 
498 	return 0;
499 }
500 
501 
502 /**
503  * __gfs2_readpage - readpage
504  * @file: The file to read a page for
505  * @page: The page to read
506  *
507  * This is the core of gfs2's readpage. It's used by the internal file
508  * reading code as in that case we already hold the glock. Also it's
509  * called by gfs2_readpage() once the required lock has been granted.
510  */
511 
512 static int __gfs2_readpage(void *file, struct page *page)
513 {
514 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
515 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
516 	int error;
517 
518 	if (gfs2_is_stuffed(ip)) {
519 		error = stuffed_readpage(ip, page);
520 		unlock_page(page);
521 	} else {
522 		error = mpage_readpage(page, gfs2_block_map);
523 	}
524 
525 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
526 		return -EIO;
527 
528 	return error;
529 }
530 
531 /**
532  * gfs2_readpage - read a page of a file
533  * @file: The file to read
534  * @page: The page of the file
535  *
536  * This deals with the locking required. We have to unlock and
537  * relock the page in order to get the locking in the right
538  * order.
539  */
540 
541 static int gfs2_readpage(struct file *file, struct page *page)
542 {
543 	struct address_space *mapping = page->mapping;
544 	struct gfs2_inode *ip = GFS2_I(mapping->host);
545 	struct gfs2_holder gh;
546 	int error;
547 
548 	unlock_page(page);
549 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
550 	error = gfs2_glock_nq(&gh);
551 	if (unlikely(error))
552 		goto out;
553 	error = AOP_TRUNCATED_PAGE;
554 	lock_page(page);
555 	if (page->mapping == mapping && !PageUptodate(page))
556 		error = __gfs2_readpage(file, page);
557 	else
558 		unlock_page(page);
559 	gfs2_glock_dq(&gh);
560 out:
561 	gfs2_holder_uninit(&gh);
562 	if (error && error != AOP_TRUNCATED_PAGE)
563 		lock_page(page);
564 	return error;
565 }
566 
567 /**
568  * gfs2_internal_read - read an internal file
569  * @ip: The gfs2 inode
570  * @buf: The buffer to fill
571  * @pos: The file position
572  * @size: The amount to read
573  *
574  */
575 
576 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
577                        unsigned size)
578 {
579 	struct address_space *mapping = ip->i_inode.i_mapping;
580 	unsigned long index = *pos / PAGE_SIZE;
581 	unsigned offset = *pos & (PAGE_SIZE - 1);
582 	unsigned copied = 0;
583 	unsigned amt;
584 	struct page *page;
585 	void *p;
586 
587 	do {
588 		amt = size - copied;
589 		if (offset + size > PAGE_SIZE)
590 			amt = PAGE_SIZE - offset;
591 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
592 		if (IS_ERR(page))
593 			return PTR_ERR(page);
594 		p = kmap_atomic(page);
595 		memcpy(buf + copied, p + offset, amt);
596 		kunmap_atomic(p);
597 		put_page(page);
598 		copied += amt;
599 		index++;
600 		offset = 0;
601 	} while(copied < size);
602 	(*pos) += size;
603 	return size;
604 }
605 
606 /**
607  * gfs2_readpages - Read a bunch of pages at once
608  * @file: The file to read from
609  * @mapping: Address space info
610  * @pages: List of pages to read
611  * @nr_pages: Number of pages to read
612  *
613  * Some notes:
614  * 1. This is only for readahead, so we can simply ignore any things
615  *    which are slightly inconvenient (such as locking conflicts between
616  *    the page lock and the glock) and return having done no I/O. Its
617  *    obviously not something we'd want to do on too regular a basis.
618  *    Any I/O we ignore at this time will be done via readpage later.
619  * 2. We don't handle stuffed files here we let readpage do the honours.
620  * 3. mpage_readpages() does most of the heavy lifting in the common case.
621  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
622  */
623 
624 static int gfs2_readpages(struct file *file, struct address_space *mapping,
625 			  struct list_head *pages, unsigned nr_pages)
626 {
627 	struct inode *inode = mapping->host;
628 	struct gfs2_inode *ip = GFS2_I(inode);
629 	struct gfs2_sbd *sdp = GFS2_SB(inode);
630 	struct gfs2_holder gh;
631 	int ret;
632 
633 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
634 	ret = gfs2_glock_nq(&gh);
635 	if (unlikely(ret))
636 		goto out_uninit;
637 	if (!gfs2_is_stuffed(ip))
638 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
639 	gfs2_glock_dq(&gh);
640 out_uninit:
641 	gfs2_holder_uninit(&gh);
642 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
643 		ret = -EIO;
644 	return ret;
645 }
646 
647 /**
648  * gfs2_write_begin - Begin to write to a file
649  * @file: The file to write to
650  * @mapping: The mapping in which to write
651  * @pos: The file offset at which to start writing
652  * @len: Length of the write
653  * @flags: Various flags
654  * @pagep: Pointer to return the page
655  * @fsdata: Pointer to return fs data (unused by GFS2)
656  *
657  * Returns: errno
658  */
659 
660 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
661 			    loff_t pos, unsigned len, unsigned flags,
662 			    struct page **pagep, void **fsdata)
663 {
664 	struct gfs2_inode *ip = GFS2_I(mapping->host);
665 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
666 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
667 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
668 	unsigned requested = 0;
669 	int alloc_required;
670 	int error = 0;
671 	pgoff_t index = pos >> PAGE_SHIFT;
672 	unsigned from = pos & (PAGE_SIZE - 1);
673 	struct page *page;
674 
675 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
676 	error = gfs2_glock_nq(&ip->i_gh);
677 	if (unlikely(error))
678 		goto out_uninit;
679 	if (&ip->i_inode == sdp->sd_rindex) {
680 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
681 					   GL_NOCACHE, &m_ip->i_gh);
682 		if (unlikely(error)) {
683 			gfs2_glock_dq(&ip->i_gh);
684 			goto out_uninit;
685 		}
686 	}
687 
688 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
689 
690 	if (alloc_required || gfs2_is_jdata(ip))
691 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
692 
693 	if (alloc_required) {
694 		struct gfs2_alloc_parms ap = { .aflags = 0, };
695 		requested = data_blocks + ind_blocks;
696 		ap.target = requested;
697 		error = gfs2_quota_lock_check(ip, &ap);
698 		if (error)
699 			goto out_unlock;
700 
701 		error = gfs2_inplace_reserve(ip, &ap);
702 		if (error)
703 			goto out_qunlock;
704 	}
705 
706 	rblocks = RES_DINODE + ind_blocks;
707 	if (gfs2_is_jdata(ip))
708 		rblocks += data_blocks ? data_blocks : 1;
709 	if (ind_blocks || data_blocks)
710 		rblocks += RES_STATFS + RES_QUOTA;
711 	if (&ip->i_inode == sdp->sd_rindex)
712 		rblocks += 2 * RES_STATFS;
713 	if (alloc_required)
714 		rblocks += gfs2_rg_blocks(ip, requested);
715 
716 	error = gfs2_trans_begin(sdp, rblocks,
717 				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
718 	if (error)
719 		goto out_trans_fail;
720 
721 	error = -ENOMEM;
722 	flags |= AOP_FLAG_NOFS;
723 	page = grab_cache_page_write_begin(mapping, index, flags);
724 	*pagep = page;
725 	if (unlikely(!page))
726 		goto out_endtrans;
727 
728 	if (gfs2_is_stuffed(ip)) {
729 		error = 0;
730 		if (pos + len > gfs2_max_stuffed_size(ip)) {
731 			error = gfs2_unstuff_dinode(ip, page);
732 			if (error == 0)
733 				goto prepare_write;
734 		} else if (!PageUptodate(page)) {
735 			error = stuffed_readpage(ip, page);
736 		}
737 		goto out;
738 	}
739 
740 prepare_write:
741 	error = __block_write_begin(page, from, len, gfs2_block_map);
742 out:
743 	if (error == 0)
744 		return 0;
745 
746 	unlock_page(page);
747 	put_page(page);
748 
749 	gfs2_trans_end(sdp);
750 	if (pos + len > ip->i_inode.i_size)
751 		gfs2_trim_blocks(&ip->i_inode);
752 	goto out_trans_fail;
753 
754 out_endtrans:
755 	gfs2_trans_end(sdp);
756 out_trans_fail:
757 	if (alloc_required) {
758 		gfs2_inplace_release(ip);
759 out_qunlock:
760 		gfs2_quota_unlock(ip);
761 	}
762 out_unlock:
763 	if (&ip->i_inode == sdp->sd_rindex) {
764 		gfs2_glock_dq(&m_ip->i_gh);
765 		gfs2_holder_uninit(&m_ip->i_gh);
766 	}
767 	gfs2_glock_dq(&ip->i_gh);
768 out_uninit:
769 	gfs2_holder_uninit(&ip->i_gh);
770 	return error;
771 }
772 
773 /**
774  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
775  * @inode: the rindex inode
776  */
777 static void adjust_fs_space(struct inode *inode)
778 {
779 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
780 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
781 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
782 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
783 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
784 	struct buffer_head *m_bh, *l_bh;
785 	u64 fs_total, new_free;
786 
787 	/* Total up the file system space, according to the latest rindex. */
788 	fs_total = gfs2_ri_total(sdp);
789 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
790 		return;
791 
792 	spin_lock(&sdp->sd_statfs_spin);
793 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
794 			      sizeof(struct gfs2_dinode));
795 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
796 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
797 	else
798 		new_free = 0;
799 	spin_unlock(&sdp->sd_statfs_spin);
800 	fs_warn(sdp, "File system extended by %llu blocks.\n",
801 		(unsigned long long)new_free);
802 	gfs2_statfs_change(sdp, new_free, new_free, 0);
803 
804 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
805 		goto out;
806 	update_statfs(sdp, m_bh, l_bh);
807 	brelse(l_bh);
808 out:
809 	brelse(m_bh);
810 }
811 
812 /**
813  * gfs2_stuffed_write_end - Write end for stuffed files
814  * @inode: The inode
815  * @dibh: The buffer_head containing the on-disk inode
816  * @pos: The file position
817  * @len: The length of the write
818  * @copied: How much was actually copied by the VFS
819  * @page: The page
820  *
821  * This copies the data from the page into the inode block after
822  * the inode data structure itself.
823  *
824  * Returns: errno
825  */
826 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
827 				  loff_t pos, unsigned len, unsigned copied,
828 				  struct page *page)
829 {
830 	struct gfs2_inode *ip = GFS2_I(inode);
831 	struct gfs2_sbd *sdp = GFS2_SB(inode);
832 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
833 	u64 to = pos + copied;
834 	void *kaddr;
835 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
836 
837 	BUG_ON(pos + len > gfs2_max_stuffed_size(ip));
838 
839 	kaddr = kmap_atomic(page);
840 	memcpy(buf + pos, kaddr + pos, copied);
841 	flush_dcache_page(page);
842 	kunmap_atomic(kaddr);
843 
844 	WARN_ON(!PageUptodate(page));
845 	unlock_page(page);
846 	put_page(page);
847 
848 	if (copied) {
849 		if (inode->i_size < to)
850 			i_size_write(inode, to);
851 		mark_inode_dirty(inode);
852 	}
853 
854 	if (inode == sdp->sd_rindex) {
855 		adjust_fs_space(inode);
856 		sdp->sd_rindex_uptodate = 0;
857 	}
858 
859 	brelse(dibh);
860 	gfs2_trans_end(sdp);
861 	if (inode == sdp->sd_rindex) {
862 		gfs2_glock_dq(&m_ip->i_gh);
863 		gfs2_holder_uninit(&m_ip->i_gh);
864 	}
865 	gfs2_glock_dq(&ip->i_gh);
866 	gfs2_holder_uninit(&ip->i_gh);
867 	return copied;
868 }
869 
870 /**
871  * gfs2_write_end
872  * @file: The file to write to
873  * @mapping: The address space to write to
874  * @pos: The file position
875  * @len: The length of the data
876  * @copied: How much was actually copied by the VFS
877  * @page: The page that has been written
878  * @fsdata: The fsdata (unused in GFS2)
879  *
880  * The main write_end function for GFS2. We have a separate one for
881  * stuffed files as they are slightly different, otherwise we just
882  * put our locking around the VFS provided functions.
883  *
884  * Returns: errno
885  */
886 
887 static int gfs2_write_end(struct file *file, struct address_space *mapping,
888 			  loff_t pos, unsigned len, unsigned copied,
889 			  struct page *page, void *fsdata)
890 {
891 	struct inode *inode = page->mapping->host;
892 	struct gfs2_inode *ip = GFS2_I(inode);
893 	struct gfs2_sbd *sdp = GFS2_SB(inode);
894 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
895 	struct buffer_head *dibh;
896 	int ret;
897 	struct gfs2_trans *tr = current->journal_info;
898 	BUG_ON(!tr);
899 
900 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
901 
902 	ret = gfs2_meta_inode_buffer(ip, &dibh);
903 	if (unlikely(ret)) {
904 		unlock_page(page);
905 		put_page(page);
906 		goto failed;
907 	}
908 
909 	if (gfs2_is_stuffed(ip))
910 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
911 
912 	if (!gfs2_is_writeback(ip))
913 		gfs2_page_add_databufs(ip, page, pos & ~PAGE_MASK, len);
914 
915 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
916 	if (tr->tr_num_buf_new)
917 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
918 	else
919 		gfs2_trans_add_meta(ip->i_gl, dibh);
920 
921 
922 	if (inode == sdp->sd_rindex) {
923 		adjust_fs_space(inode);
924 		sdp->sd_rindex_uptodate = 0;
925 	}
926 
927 	brelse(dibh);
928 failed:
929 	gfs2_trans_end(sdp);
930 	gfs2_inplace_release(ip);
931 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
932 		gfs2_quota_unlock(ip);
933 	if (inode == sdp->sd_rindex) {
934 		gfs2_glock_dq(&m_ip->i_gh);
935 		gfs2_holder_uninit(&m_ip->i_gh);
936 	}
937 	gfs2_glock_dq(&ip->i_gh);
938 	gfs2_holder_uninit(&ip->i_gh);
939 	return ret;
940 }
941 
942 /**
943  * gfs2_set_page_dirty - Page dirtying function
944  * @page: The page to dirty
945  *
946  * Returns: 1 if it dirtyed the page, or 0 otherwise
947  */
948 
949 static int gfs2_set_page_dirty(struct page *page)
950 {
951 	SetPageChecked(page);
952 	return __set_page_dirty_buffers(page);
953 }
954 
955 /**
956  * gfs2_bmap - Block map function
957  * @mapping: Address space info
958  * @lblock: The block to map
959  *
960  * Returns: The disk address for the block or 0 on hole or error
961  */
962 
963 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
964 {
965 	struct gfs2_inode *ip = GFS2_I(mapping->host);
966 	struct gfs2_holder i_gh;
967 	sector_t dblock = 0;
968 	int error;
969 
970 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
971 	if (error)
972 		return 0;
973 
974 	if (!gfs2_is_stuffed(ip))
975 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
976 
977 	gfs2_glock_dq_uninit(&i_gh);
978 
979 	return dblock;
980 }
981 
982 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
983 {
984 	struct gfs2_bufdata *bd;
985 
986 	lock_buffer(bh);
987 	gfs2_log_lock(sdp);
988 	clear_buffer_dirty(bh);
989 	bd = bh->b_private;
990 	if (bd) {
991 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
992 			list_del_init(&bd->bd_list);
993 		else
994 			gfs2_remove_from_journal(bh, REMOVE_JDATA);
995 	}
996 	bh->b_bdev = NULL;
997 	clear_buffer_mapped(bh);
998 	clear_buffer_req(bh);
999 	clear_buffer_new(bh);
1000 	gfs2_log_unlock(sdp);
1001 	unlock_buffer(bh);
1002 }
1003 
1004 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1005 				unsigned int length)
1006 {
1007 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1008 	unsigned int stop = offset + length;
1009 	int partial_page = (offset || length < PAGE_SIZE);
1010 	struct buffer_head *bh, *head;
1011 	unsigned long pos = 0;
1012 
1013 	BUG_ON(!PageLocked(page));
1014 	if (!partial_page)
1015 		ClearPageChecked(page);
1016 	if (!page_has_buffers(page))
1017 		goto out;
1018 
1019 	bh = head = page_buffers(page);
1020 	do {
1021 		if (pos + bh->b_size > stop)
1022 			return;
1023 
1024 		if (offset <= pos)
1025 			gfs2_discard(sdp, bh);
1026 		pos += bh->b_size;
1027 		bh = bh->b_this_page;
1028 	} while (bh != head);
1029 out:
1030 	if (!partial_page)
1031 		try_to_release_page(page, 0);
1032 }
1033 
1034 /**
1035  * gfs2_ok_for_dio - check that dio is valid on this file
1036  * @ip: The inode
1037  * @offset: The offset at which we are reading or writing
1038  *
1039  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1040  *          1 (to accept the i/o request)
1041  */
1042 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1043 {
1044 	/*
1045 	 * Should we return an error here? I can't see that O_DIRECT for
1046 	 * a stuffed file makes any sense. For now we'll silently fall
1047 	 * back to buffered I/O
1048 	 */
1049 	if (gfs2_is_stuffed(ip))
1050 		return 0;
1051 
1052 	if (offset >= i_size_read(&ip->i_inode))
1053 		return 0;
1054 	return 1;
1055 }
1056 
1057 
1058 
1059 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1060 {
1061 	struct file *file = iocb->ki_filp;
1062 	struct inode *inode = file->f_mapping->host;
1063 	struct address_space *mapping = inode->i_mapping;
1064 	struct gfs2_inode *ip = GFS2_I(inode);
1065 	loff_t offset = iocb->ki_pos;
1066 	struct gfs2_holder gh;
1067 	int rv;
1068 
1069 	/*
1070 	 * Deferred lock, even if its a write, since we do no allocation
1071 	 * on this path. All we need change is atime, and this lock mode
1072 	 * ensures that other nodes have flushed their buffered read caches
1073 	 * (i.e. their page cache entries for this inode). We do not,
1074 	 * unfortunately have the option of only flushing a range like
1075 	 * the VFS does.
1076 	 */
1077 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1078 	rv = gfs2_glock_nq(&gh);
1079 	if (rv)
1080 		goto out_uninit;
1081 	rv = gfs2_ok_for_dio(ip, offset);
1082 	if (rv != 1)
1083 		goto out; /* dio not valid, fall back to buffered i/o */
1084 
1085 	/*
1086 	 * Now since we are holding a deferred (CW) lock at this point, you
1087 	 * might be wondering why this is ever needed. There is a case however
1088 	 * where we've granted a deferred local lock against a cached exclusive
1089 	 * glock. That is ok provided all granted local locks are deferred, but
1090 	 * it also means that it is possible to encounter pages which are
1091 	 * cached and possibly also mapped. So here we check for that and sort
1092 	 * them out ahead of the dio. The glock state machine will take care of
1093 	 * everything else.
1094 	 *
1095 	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1096 	 * the first place, mapping->nr_pages will always be zero.
1097 	 */
1098 	if (mapping->nrpages) {
1099 		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1100 		loff_t len = iov_iter_count(iter);
1101 		loff_t end = PAGE_ALIGN(offset + len) - 1;
1102 
1103 		rv = 0;
1104 		if (len == 0)
1105 			goto out;
1106 		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1107 			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1108 		rv = filemap_write_and_wait_range(mapping, lstart, end);
1109 		if (rv)
1110 			goto out;
1111 		if (iov_iter_rw(iter) == WRITE)
1112 			truncate_inode_pages_range(mapping, lstart, end);
1113 	}
1114 
1115 	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1116 				  gfs2_get_block_direct, NULL, NULL, 0);
1117 out:
1118 	gfs2_glock_dq(&gh);
1119 out_uninit:
1120 	gfs2_holder_uninit(&gh);
1121 	return rv;
1122 }
1123 
1124 /**
1125  * gfs2_releasepage - free the metadata associated with a page
1126  * @page: the page that's being released
1127  * @gfp_mask: passed from Linux VFS, ignored by us
1128  *
1129  * Call try_to_free_buffers() if the buffers in this page can be
1130  * released.
1131  *
1132  * Returns: 0
1133  */
1134 
1135 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1136 {
1137 	struct address_space *mapping = page->mapping;
1138 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1139 	struct buffer_head *bh, *head;
1140 	struct gfs2_bufdata *bd;
1141 
1142 	if (!page_has_buffers(page))
1143 		return 0;
1144 
1145 	/*
1146 	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1147 	 * clean pages might not have had the dirty bit cleared.  Thus, it can
1148 	 * send actual dirty pages to ->releasepage() via shrink_active_list().
1149 	 *
1150 	 * As a workaround, we skip pages that contain dirty buffers below.
1151 	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1152 	 * on dirty buffers like we used to here again.
1153 	 */
1154 
1155 	gfs2_log_lock(sdp);
1156 	spin_lock(&sdp->sd_ail_lock);
1157 	head = bh = page_buffers(page);
1158 	do {
1159 		if (atomic_read(&bh->b_count))
1160 			goto cannot_release;
1161 		bd = bh->b_private;
1162 		if (bd && bd->bd_tr)
1163 			goto cannot_release;
1164 		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1165 			goto cannot_release;
1166 		bh = bh->b_this_page;
1167 	} while(bh != head);
1168 	spin_unlock(&sdp->sd_ail_lock);
1169 
1170 	head = bh = page_buffers(page);
1171 	do {
1172 		bd = bh->b_private;
1173 		if (bd) {
1174 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1175 			if (!list_empty(&bd->bd_list))
1176 				list_del_init(&bd->bd_list);
1177 			bd->bd_bh = NULL;
1178 			bh->b_private = NULL;
1179 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1180 		}
1181 
1182 		bh = bh->b_this_page;
1183 	} while (bh != head);
1184 	gfs2_log_unlock(sdp);
1185 
1186 	return try_to_free_buffers(page);
1187 
1188 cannot_release:
1189 	spin_unlock(&sdp->sd_ail_lock);
1190 	gfs2_log_unlock(sdp);
1191 	return 0;
1192 }
1193 
1194 static const struct address_space_operations gfs2_writeback_aops = {
1195 	.writepage = gfs2_writepage,
1196 	.writepages = gfs2_writepages,
1197 	.readpage = gfs2_readpage,
1198 	.readpages = gfs2_readpages,
1199 	.write_begin = gfs2_write_begin,
1200 	.write_end = gfs2_write_end,
1201 	.bmap = gfs2_bmap,
1202 	.invalidatepage = gfs2_invalidatepage,
1203 	.releasepage = gfs2_releasepage,
1204 	.direct_IO = gfs2_direct_IO,
1205 	.migratepage = buffer_migrate_page,
1206 	.is_partially_uptodate = block_is_partially_uptodate,
1207 	.error_remove_page = generic_error_remove_page,
1208 };
1209 
1210 static const struct address_space_operations gfs2_ordered_aops = {
1211 	.writepage = gfs2_writepage,
1212 	.writepages = gfs2_writepages,
1213 	.readpage = gfs2_readpage,
1214 	.readpages = gfs2_readpages,
1215 	.write_begin = gfs2_write_begin,
1216 	.write_end = gfs2_write_end,
1217 	.set_page_dirty = gfs2_set_page_dirty,
1218 	.bmap = gfs2_bmap,
1219 	.invalidatepage = gfs2_invalidatepage,
1220 	.releasepage = gfs2_releasepage,
1221 	.direct_IO = gfs2_direct_IO,
1222 	.migratepage = buffer_migrate_page,
1223 	.is_partially_uptodate = block_is_partially_uptodate,
1224 	.error_remove_page = generic_error_remove_page,
1225 };
1226 
1227 static const struct address_space_operations gfs2_jdata_aops = {
1228 	.writepage = gfs2_jdata_writepage,
1229 	.writepages = gfs2_jdata_writepages,
1230 	.readpage = gfs2_readpage,
1231 	.readpages = gfs2_readpages,
1232 	.write_begin = gfs2_write_begin,
1233 	.write_end = gfs2_write_end,
1234 	.set_page_dirty = gfs2_set_page_dirty,
1235 	.bmap = gfs2_bmap,
1236 	.invalidatepage = gfs2_invalidatepage,
1237 	.releasepage = gfs2_releasepage,
1238 	.is_partially_uptodate = block_is_partially_uptodate,
1239 	.error_remove_page = generic_error_remove_page,
1240 };
1241 
1242 void gfs2_set_aops(struct inode *inode)
1243 {
1244 	struct gfs2_inode *ip = GFS2_I(inode);
1245 
1246 	if (gfs2_is_writeback(ip))
1247 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1248 	else if (gfs2_is_ordered(ip))
1249 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1250 	else if (gfs2_is_jdata(ip))
1251 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1252 	else
1253 		BUG();
1254 }
1255 
1256