1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/spinlock.h> 13 #include <linux/completion.h> 14 #include <linux/buffer_head.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mpage.h> 18 #include <linux/fs.h> 19 #include <linux/writeback.h> 20 #include <linux/swap.h> 21 #include <linux/gfs2_ondisk.h> 22 #include <linux/backing-dev.h> 23 #include <linux/uio.h> 24 #include <trace/events/writeback.h> 25 26 #include "gfs2.h" 27 #include "incore.h" 28 #include "bmap.h" 29 #include "glock.h" 30 #include "inode.h" 31 #include "log.h" 32 #include "meta_io.h" 33 #include "quota.h" 34 #include "trans.h" 35 #include "rgrp.h" 36 #include "super.h" 37 #include "util.h" 38 #include "glops.h" 39 40 41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page, 42 unsigned int from, unsigned int to) 43 { 44 struct buffer_head *head = page_buffers(page); 45 unsigned int bsize = head->b_size; 46 struct buffer_head *bh; 47 unsigned int start, end; 48 49 for (bh = head, start = 0; bh != head || !start; 50 bh = bh->b_this_page, start = end) { 51 end = start + bsize; 52 if (end <= from || start >= to) 53 continue; 54 if (gfs2_is_jdata(ip)) 55 set_buffer_uptodate(bh); 56 gfs2_trans_add_data(ip->i_gl, bh); 57 } 58 } 59 60 /** 61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block 62 * @inode: The inode 63 * @lblock: The block number to look up 64 * @bh_result: The buffer head to return the result in 65 * @create: Non-zero if we may add block to the file 66 * 67 * Returns: errno 68 */ 69 70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock, 71 struct buffer_head *bh_result, int create) 72 { 73 int error; 74 75 error = gfs2_block_map(inode, lblock, bh_result, 0); 76 if (error) 77 return error; 78 if (!buffer_mapped(bh_result)) 79 return -EIO; 80 return 0; 81 } 82 83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock, 84 struct buffer_head *bh_result, int create) 85 { 86 return gfs2_block_map(inode, lblock, bh_result, 0); 87 } 88 89 /** 90 * gfs2_writepage_common - Common bits of writepage 91 * @page: The page to be written 92 * @wbc: The writeback control 93 * 94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error. 95 */ 96 97 static int gfs2_writepage_common(struct page *page, 98 struct writeback_control *wbc) 99 { 100 struct inode *inode = page->mapping->host; 101 struct gfs2_inode *ip = GFS2_I(inode); 102 struct gfs2_sbd *sdp = GFS2_SB(inode); 103 loff_t i_size = i_size_read(inode); 104 pgoff_t end_index = i_size >> PAGE_SHIFT; 105 unsigned offset; 106 107 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 108 goto out; 109 if (current->journal_info) 110 goto redirty; 111 /* Is the page fully outside i_size? (truncate in progress) */ 112 offset = i_size & (PAGE_SIZE-1); 113 if (page->index > end_index || (page->index == end_index && !offset)) { 114 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 115 goto out; 116 } 117 return 1; 118 redirty: 119 redirty_page_for_writepage(wbc, page); 120 out: 121 unlock_page(page); 122 return 0; 123 } 124 125 /** 126 * gfs2_writepage - Write page for writeback mappings 127 * @page: The page 128 * @wbc: The writeback control 129 * 130 */ 131 132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc) 133 { 134 int ret; 135 136 ret = gfs2_writepage_common(page, wbc); 137 if (ret <= 0) 138 return ret; 139 140 return nobh_writepage(page, gfs2_get_block_noalloc, wbc); 141 } 142 143 /* This is the same as calling block_write_full_page, but it also 144 * writes pages outside of i_size 145 */ 146 static int gfs2_write_full_page(struct page *page, get_block_t *get_block, 147 struct writeback_control *wbc) 148 { 149 struct inode * const inode = page->mapping->host; 150 loff_t i_size = i_size_read(inode); 151 const pgoff_t end_index = i_size >> PAGE_SHIFT; 152 unsigned offset; 153 154 /* 155 * The page straddles i_size. It must be zeroed out on each and every 156 * writepage invocation because it may be mmapped. "A file is mapped 157 * in multiples of the page size. For a file that is not a multiple of 158 * the page size, the remaining memory is zeroed when mapped, and 159 * writes to that region are not written out to the file." 160 */ 161 offset = i_size & (PAGE_SIZE-1); 162 if (page->index == end_index && offset) 163 zero_user_segment(page, offset, PAGE_SIZE); 164 165 return __block_write_full_page(inode, page, get_block, wbc, 166 end_buffer_async_write); 167 } 168 169 /** 170 * __gfs2_jdata_writepage - The core of jdata writepage 171 * @page: The page to write 172 * @wbc: The writeback control 173 * 174 * This is shared between writepage and writepages and implements the 175 * core of the writepage operation. If a transaction is required then 176 * PageChecked will have been set and the transaction will have 177 * already been started before this is called. 178 */ 179 180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 181 { 182 struct inode *inode = page->mapping->host; 183 struct gfs2_inode *ip = GFS2_I(inode); 184 struct gfs2_sbd *sdp = GFS2_SB(inode); 185 186 if (PageChecked(page)) { 187 ClearPageChecked(page); 188 if (!page_has_buffers(page)) { 189 create_empty_buffers(page, inode->i_sb->s_blocksize, 190 BIT(BH_Dirty)|BIT(BH_Uptodate)); 191 } 192 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1); 193 } 194 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc); 195 } 196 197 /** 198 * gfs2_jdata_writepage - Write complete page 199 * @page: Page to write 200 * @wbc: The writeback control 201 * 202 * Returns: errno 203 * 204 */ 205 206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 207 { 208 struct inode *inode = page->mapping->host; 209 struct gfs2_inode *ip = GFS2_I(inode); 210 struct gfs2_sbd *sdp = GFS2_SB(inode); 211 int ret; 212 213 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 214 goto out; 215 if (PageChecked(page) || current->journal_info) 216 goto out_ignore; 217 ret = __gfs2_jdata_writepage(page, wbc); 218 return ret; 219 220 out_ignore: 221 redirty_page_for_writepage(wbc, page); 222 out: 223 unlock_page(page); 224 return 0; 225 } 226 227 /** 228 * gfs2_writepages - Write a bunch of dirty pages back to disk 229 * @mapping: The mapping to write 230 * @wbc: Write-back control 231 * 232 * Used for both ordered and writeback modes. 233 */ 234 static int gfs2_writepages(struct address_space *mapping, 235 struct writeback_control *wbc) 236 { 237 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 238 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc); 239 240 /* 241 * Even if we didn't write any pages here, we might still be holding 242 * dirty pages in the ail. We forcibly flush the ail because we don't 243 * want balance_dirty_pages() to loop indefinitely trying to write out 244 * pages held in the ail that it can't find. 245 */ 246 if (ret == 0) 247 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags); 248 249 return ret; 250 } 251 252 /** 253 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages 254 * @mapping: The mapping 255 * @wbc: The writeback control 256 * @pvec: The vector of pages 257 * @nr_pages: The number of pages to write 258 * @end: End position 259 * @done_index: Page index 260 * 261 * Returns: non-zero if loop should terminate, zero otherwise 262 */ 263 264 static int gfs2_write_jdata_pagevec(struct address_space *mapping, 265 struct writeback_control *wbc, 266 struct pagevec *pvec, 267 int nr_pages, pgoff_t end, 268 pgoff_t *done_index) 269 { 270 struct inode *inode = mapping->host; 271 struct gfs2_sbd *sdp = GFS2_SB(inode); 272 unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize); 273 int i; 274 int ret; 275 276 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks); 277 if (ret < 0) 278 return ret; 279 280 for(i = 0; i < nr_pages; i++) { 281 struct page *page = pvec->pages[i]; 282 283 /* 284 * At this point, the page may be truncated or 285 * invalidated (changing page->mapping to NULL), or 286 * even swizzled back from swapper_space to tmpfs file 287 * mapping. However, page->index will not change 288 * because we have a reference on the page. 289 */ 290 if (page->index > end) { 291 /* 292 * can't be range_cyclic (1st pass) because 293 * end == -1 in that case. 294 */ 295 ret = 1; 296 break; 297 } 298 299 *done_index = page->index; 300 301 lock_page(page); 302 303 if (unlikely(page->mapping != mapping)) { 304 continue_unlock: 305 unlock_page(page); 306 continue; 307 } 308 309 if (!PageDirty(page)) { 310 /* someone wrote it for us */ 311 goto continue_unlock; 312 } 313 314 if (PageWriteback(page)) { 315 if (wbc->sync_mode != WB_SYNC_NONE) 316 wait_on_page_writeback(page); 317 else 318 goto continue_unlock; 319 } 320 321 BUG_ON(PageWriteback(page)); 322 if (!clear_page_dirty_for_io(page)) 323 goto continue_unlock; 324 325 trace_wbc_writepage(wbc, inode_to_bdi(inode)); 326 327 ret = __gfs2_jdata_writepage(page, wbc); 328 if (unlikely(ret)) { 329 if (ret == AOP_WRITEPAGE_ACTIVATE) { 330 unlock_page(page); 331 ret = 0; 332 } else { 333 334 /* 335 * done_index is set past this page, 336 * so media errors will not choke 337 * background writeout for the entire 338 * file. This has consequences for 339 * range_cyclic semantics (ie. it may 340 * not be suitable for data integrity 341 * writeout). 342 */ 343 *done_index = page->index + 1; 344 ret = 1; 345 break; 346 } 347 } 348 349 /* 350 * We stop writing back only if we are not doing 351 * integrity sync. In case of integrity sync we have to 352 * keep going until we have written all the pages 353 * we tagged for writeback prior to entering this loop. 354 */ 355 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { 356 ret = 1; 357 break; 358 } 359 360 } 361 gfs2_trans_end(sdp); 362 return ret; 363 } 364 365 /** 366 * gfs2_write_cache_jdata - Like write_cache_pages but different 367 * @mapping: The mapping to write 368 * @wbc: The writeback control 369 * 370 * The reason that we use our own function here is that we need to 371 * start transactions before we grab page locks. This allows us 372 * to get the ordering right. 373 */ 374 375 static int gfs2_write_cache_jdata(struct address_space *mapping, 376 struct writeback_control *wbc) 377 { 378 int ret = 0; 379 int done = 0; 380 struct pagevec pvec; 381 int nr_pages; 382 pgoff_t uninitialized_var(writeback_index); 383 pgoff_t index; 384 pgoff_t end; 385 pgoff_t done_index; 386 int cycled; 387 int range_whole = 0; 388 int tag; 389 390 pagevec_init(&pvec, 0); 391 if (wbc->range_cyclic) { 392 writeback_index = mapping->writeback_index; /* prev offset */ 393 index = writeback_index; 394 if (index == 0) 395 cycled = 1; 396 else 397 cycled = 0; 398 end = -1; 399 } else { 400 index = wbc->range_start >> PAGE_SHIFT; 401 end = wbc->range_end >> PAGE_SHIFT; 402 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 403 range_whole = 1; 404 cycled = 1; /* ignore range_cyclic tests */ 405 } 406 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 407 tag = PAGECACHE_TAG_TOWRITE; 408 else 409 tag = PAGECACHE_TAG_DIRTY; 410 411 retry: 412 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 413 tag_pages_for_writeback(mapping, index, end); 414 done_index = index; 415 while (!done && (index <= end)) { 416 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 417 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 418 if (nr_pages == 0) 419 break; 420 421 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index); 422 if (ret) 423 done = 1; 424 if (ret > 0) 425 ret = 0; 426 pagevec_release(&pvec); 427 cond_resched(); 428 } 429 430 if (!cycled && !done) { 431 /* 432 * range_cyclic: 433 * We hit the last page and there is more work to be done: wrap 434 * back to the start of the file 435 */ 436 cycled = 1; 437 index = 0; 438 end = writeback_index - 1; 439 goto retry; 440 } 441 442 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 443 mapping->writeback_index = done_index; 444 445 return ret; 446 } 447 448 449 /** 450 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk 451 * @mapping: The mapping to write 452 * @wbc: The writeback control 453 * 454 */ 455 456 static int gfs2_jdata_writepages(struct address_space *mapping, 457 struct writeback_control *wbc) 458 { 459 struct gfs2_inode *ip = GFS2_I(mapping->host); 460 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 461 int ret; 462 463 ret = gfs2_write_cache_jdata(mapping, wbc); 464 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) { 465 gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH); 466 ret = gfs2_write_cache_jdata(mapping, wbc); 467 } 468 return ret; 469 } 470 471 /** 472 * stuffed_readpage - Fill in a Linux page with stuffed file data 473 * @ip: the inode 474 * @page: the page 475 * 476 * Returns: errno 477 */ 478 479 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page) 480 { 481 struct buffer_head *dibh; 482 u64 dsize = i_size_read(&ip->i_inode); 483 void *kaddr; 484 int error; 485 486 /* 487 * Due to the order of unstuffing files and ->fault(), we can be 488 * asked for a zero page in the case of a stuffed file being extended, 489 * so we need to supply one here. It doesn't happen often. 490 */ 491 if (unlikely(page->index)) { 492 zero_user(page, 0, PAGE_SIZE); 493 SetPageUptodate(page); 494 return 0; 495 } 496 497 error = gfs2_meta_inode_buffer(ip, &dibh); 498 if (error) 499 return error; 500 501 kaddr = kmap_atomic(page); 502 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode))) 503 dsize = (dibh->b_size - sizeof(struct gfs2_dinode)); 504 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 505 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 506 kunmap_atomic(kaddr); 507 flush_dcache_page(page); 508 brelse(dibh); 509 SetPageUptodate(page); 510 511 return 0; 512 } 513 514 515 /** 516 * __gfs2_readpage - readpage 517 * @file: The file to read a page for 518 * @page: The page to read 519 * 520 * This is the core of gfs2's readpage. Its used by the internal file 521 * reading code as in that case we already hold the glock. Also its 522 * called by gfs2_readpage() once the required lock has been granted. 523 * 524 */ 525 526 static int __gfs2_readpage(void *file, struct page *page) 527 { 528 struct gfs2_inode *ip = GFS2_I(page->mapping->host); 529 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 530 int error; 531 532 if (gfs2_is_stuffed(ip)) { 533 error = stuffed_readpage(ip, page); 534 unlock_page(page); 535 } else { 536 error = mpage_readpage(page, gfs2_block_map); 537 } 538 539 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 540 return -EIO; 541 542 return error; 543 } 544 545 /** 546 * gfs2_readpage - read a page of a file 547 * @file: The file to read 548 * @page: The page of the file 549 * 550 * This deals with the locking required. We have to unlock and 551 * relock the page in order to get the locking in the right 552 * order. 553 */ 554 555 static int gfs2_readpage(struct file *file, struct page *page) 556 { 557 struct address_space *mapping = page->mapping; 558 struct gfs2_inode *ip = GFS2_I(mapping->host); 559 struct gfs2_holder gh; 560 int error; 561 562 unlock_page(page); 563 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 564 error = gfs2_glock_nq(&gh); 565 if (unlikely(error)) 566 goto out; 567 error = AOP_TRUNCATED_PAGE; 568 lock_page(page); 569 if (page->mapping == mapping && !PageUptodate(page)) 570 error = __gfs2_readpage(file, page); 571 else 572 unlock_page(page); 573 gfs2_glock_dq(&gh); 574 out: 575 gfs2_holder_uninit(&gh); 576 if (error && error != AOP_TRUNCATED_PAGE) 577 lock_page(page); 578 return error; 579 } 580 581 /** 582 * gfs2_internal_read - read an internal file 583 * @ip: The gfs2 inode 584 * @buf: The buffer to fill 585 * @pos: The file position 586 * @size: The amount to read 587 * 588 */ 589 590 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos, 591 unsigned size) 592 { 593 struct address_space *mapping = ip->i_inode.i_mapping; 594 unsigned long index = *pos / PAGE_SIZE; 595 unsigned offset = *pos & (PAGE_SIZE - 1); 596 unsigned copied = 0; 597 unsigned amt; 598 struct page *page; 599 void *p; 600 601 do { 602 amt = size - copied; 603 if (offset + size > PAGE_SIZE) 604 amt = PAGE_SIZE - offset; 605 page = read_cache_page(mapping, index, __gfs2_readpage, NULL); 606 if (IS_ERR(page)) 607 return PTR_ERR(page); 608 p = kmap_atomic(page); 609 memcpy(buf + copied, p + offset, amt); 610 kunmap_atomic(p); 611 put_page(page); 612 copied += amt; 613 index++; 614 offset = 0; 615 } while(copied < size); 616 (*pos) += size; 617 return size; 618 } 619 620 /** 621 * gfs2_readpages - Read a bunch of pages at once 622 * @file: The file to read from 623 * @mapping: Address space info 624 * @pages: List of pages to read 625 * @nr_pages: Number of pages to read 626 * 627 * Some notes: 628 * 1. This is only for readahead, so we can simply ignore any things 629 * which are slightly inconvenient (such as locking conflicts between 630 * the page lock and the glock) and return having done no I/O. Its 631 * obviously not something we'd want to do on too regular a basis. 632 * Any I/O we ignore at this time will be done via readpage later. 633 * 2. We don't handle stuffed files here we let readpage do the honours. 634 * 3. mpage_readpages() does most of the heavy lifting in the common case. 635 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places. 636 */ 637 638 static int gfs2_readpages(struct file *file, struct address_space *mapping, 639 struct list_head *pages, unsigned nr_pages) 640 { 641 struct inode *inode = mapping->host; 642 struct gfs2_inode *ip = GFS2_I(inode); 643 struct gfs2_sbd *sdp = GFS2_SB(inode); 644 struct gfs2_holder gh; 645 int ret; 646 647 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 648 ret = gfs2_glock_nq(&gh); 649 if (unlikely(ret)) 650 goto out_uninit; 651 if (!gfs2_is_stuffed(ip)) 652 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map); 653 gfs2_glock_dq(&gh); 654 out_uninit: 655 gfs2_holder_uninit(&gh); 656 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 657 ret = -EIO; 658 return ret; 659 } 660 661 /** 662 * gfs2_write_begin - Begin to write to a file 663 * @file: The file to write to 664 * @mapping: The mapping in which to write 665 * @pos: The file offset at which to start writing 666 * @len: Length of the write 667 * @flags: Various flags 668 * @pagep: Pointer to return the page 669 * @fsdata: Pointer to return fs data (unused by GFS2) 670 * 671 * Returns: errno 672 */ 673 674 static int gfs2_write_begin(struct file *file, struct address_space *mapping, 675 loff_t pos, unsigned len, unsigned flags, 676 struct page **pagep, void **fsdata) 677 { 678 struct gfs2_inode *ip = GFS2_I(mapping->host); 679 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 680 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 681 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 682 unsigned requested = 0; 683 int alloc_required; 684 int error = 0; 685 pgoff_t index = pos >> PAGE_SHIFT; 686 unsigned from = pos & (PAGE_SIZE - 1); 687 struct page *page; 688 689 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 690 error = gfs2_glock_nq(&ip->i_gh); 691 if (unlikely(error)) 692 goto out_uninit; 693 if (&ip->i_inode == sdp->sd_rindex) { 694 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 695 GL_NOCACHE, &m_ip->i_gh); 696 if (unlikely(error)) { 697 gfs2_glock_dq(&ip->i_gh); 698 goto out_uninit; 699 } 700 } 701 702 alloc_required = gfs2_write_alloc_required(ip, pos, len); 703 704 if (alloc_required || gfs2_is_jdata(ip)) 705 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks); 706 707 if (alloc_required) { 708 struct gfs2_alloc_parms ap = { .aflags = 0, }; 709 requested = data_blocks + ind_blocks; 710 ap.target = requested; 711 error = gfs2_quota_lock_check(ip, &ap); 712 if (error) 713 goto out_unlock; 714 715 error = gfs2_inplace_reserve(ip, &ap); 716 if (error) 717 goto out_qunlock; 718 } 719 720 rblocks = RES_DINODE + ind_blocks; 721 if (gfs2_is_jdata(ip)) 722 rblocks += data_blocks ? data_blocks : 1; 723 if (ind_blocks || data_blocks) 724 rblocks += RES_STATFS + RES_QUOTA; 725 if (&ip->i_inode == sdp->sd_rindex) 726 rblocks += 2 * RES_STATFS; 727 if (alloc_required) 728 rblocks += gfs2_rg_blocks(ip, requested); 729 730 error = gfs2_trans_begin(sdp, rblocks, 731 PAGE_SIZE/sdp->sd_sb.sb_bsize); 732 if (error) 733 goto out_trans_fail; 734 735 error = -ENOMEM; 736 flags |= AOP_FLAG_NOFS; 737 page = grab_cache_page_write_begin(mapping, index, flags); 738 *pagep = page; 739 if (unlikely(!page)) 740 goto out_endtrans; 741 742 if (gfs2_is_stuffed(ip)) { 743 error = 0; 744 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) { 745 error = gfs2_unstuff_dinode(ip, page); 746 if (error == 0) 747 goto prepare_write; 748 } else if (!PageUptodate(page)) { 749 error = stuffed_readpage(ip, page); 750 } 751 goto out; 752 } 753 754 prepare_write: 755 error = __block_write_begin(page, from, len, gfs2_block_map); 756 out: 757 if (error == 0) 758 return 0; 759 760 unlock_page(page); 761 put_page(page); 762 763 gfs2_trans_end(sdp); 764 if (pos + len > ip->i_inode.i_size) 765 gfs2_trim_blocks(&ip->i_inode); 766 goto out_trans_fail; 767 768 out_endtrans: 769 gfs2_trans_end(sdp); 770 out_trans_fail: 771 if (alloc_required) { 772 gfs2_inplace_release(ip); 773 out_qunlock: 774 gfs2_quota_unlock(ip); 775 } 776 out_unlock: 777 if (&ip->i_inode == sdp->sd_rindex) { 778 gfs2_glock_dq(&m_ip->i_gh); 779 gfs2_holder_uninit(&m_ip->i_gh); 780 } 781 gfs2_glock_dq(&ip->i_gh); 782 out_uninit: 783 gfs2_holder_uninit(&ip->i_gh); 784 return error; 785 } 786 787 /** 788 * adjust_fs_space - Adjusts the free space available due to gfs2_grow 789 * @inode: the rindex inode 790 */ 791 static void adjust_fs_space(struct inode *inode) 792 { 793 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info; 794 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 795 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); 796 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; 797 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; 798 struct buffer_head *m_bh, *l_bh; 799 u64 fs_total, new_free; 800 801 /* Total up the file system space, according to the latest rindex. */ 802 fs_total = gfs2_ri_total(sdp); 803 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0) 804 return; 805 806 spin_lock(&sdp->sd_statfs_spin); 807 gfs2_statfs_change_in(m_sc, m_bh->b_data + 808 sizeof(struct gfs2_dinode)); 809 if (fs_total > (m_sc->sc_total + l_sc->sc_total)) 810 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total); 811 else 812 new_free = 0; 813 spin_unlock(&sdp->sd_statfs_spin); 814 fs_warn(sdp, "File system extended by %llu blocks.\n", 815 (unsigned long long)new_free); 816 gfs2_statfs_change(sdp, new_free, new_free, 0); 817 818 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0) 819 goto out; 820 update_statfs(sdp, m_bh, l_bh); 821 brelse(l_bh); 822 out: 823 brelse(m_bh); 824 } 825 826 /** 827 * gfs2_stuffed_write_end - Write end for stuffed files 828 * @inode: The inode 829 * @dibh: The buffer_head containing the on-disk inode 830 * @pos: The file position 831 * @len: The length of the write 832 * @copied: How much was actually copied by the VFS 833 * @page: The page 834 * 835 * This copies the data from the page into the inode block after 836 * the inode data structure itself. 837 * 838 * Returns: errno 839 */ 840 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh, 841 loff_t pos, unsigned len, unsigned copied, 842 struct page *page) 843 { 844 struct gfs2_inode *ip = GFS2_I(inode); 845 struct gfs2_sbd *sdp = GFS2_SB(inode); 846 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 847 u64 to = pos + copied; 848 void *kaddr; 849 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode); 850 851 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode))); 852 kaddr = kmap_atomic(page); 853 memcpy(buf + pos, kaddr + pos, copied); 854 flush_dcache_page(page); 855 kunmap_atomic(kaddr); 856 857 WARN_ON(!PageUptodate(page)); 858 unlock_page(page); 859 put_page(page); 860 861 if (copied) { 862 if (inode->i_size < to) 863 i_size_write(inode, to); 864 mark_inode_dirty(inode); 865 } 866 867 if (inode == sdp->sd_rindex) { 868 adjust_fs_space(inode); 869 sdp->sd_rindex_uptodate = 0; 870 } 871 872 brelse(dibh); 873 gfs2_trans_end(sdp); 874 if (inode == sdp->sd_rindex) { 875 gfs2_glock_dq(&m_ip->i_gh); 876 gfs2_holder_uninit(&m_ip->i_gh); 877 } 878 gfs2_glock_dq(&ip->i_gh); 879 gfs2_holder_uninit(&ip->i_gh); 880 return copied; 881 } 882 883 /** 884 * gfs2_write_end 885 * @file: The file to write to 886 * @mapping: The address space to write to 887 * @pos: The file position 888 * @len: The length of the data 889 * @copied: How much was actually copied by the VFS 890 * @page: The page that has been written 891 * @fsdata: The fsdata (unused in GFS2) 892 * 893 * The main write_end function for GFS2. We have a separate one for 894 * stuffed files as they are slightly different, otherwise we just 895 * put our locking around the VFS provided functions. 896 * 897 * Returns: errno 898 */ 899 900 static int gfs2_write_end(struct file *file, struct address_space *mapping, 901 loff_t pos, unsigned len, unsigned copied, 902 struct page *page, void *fsdata) 903 { 904 struct inode *inode = page->mapping->host; 905 struct gfs2_inode *ip = GFS2_I(inode); 906 struct gfs2_sbd *sdp = GFS2_SB(inode); 907 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 908 struct buffer_head *dibh; 909 unsigned int from = pos & (PAGE_SIZE - 1); 910 unsigned int to = from + len; 911 int ret; 912 struct gfs2_trans *tr = current->journal_info; 913 BUG_ON(!tr); 914 915 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL); 916 917 ret = gfs2_meta_inode_buffer(ip, &dibh); 918 if (unlikely(ret)) { 919 unlock_page(page); 920 put_page(page); 921 goto failed; 922 } 923 924 if (gfs2_is_stuffed(ip)) 925 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page); 926 927 if (!gfs2_is_writeback(ip)) 928 gfs2_page_add_databufs(ip, page, from, to); 929 930 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 931 if (tr->tr_num_buf_new) 932 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 933 else 934 gfs2_trans_add_meta(ip->i_gl, dibh); 935 936 937 if (inode == sdp->sd_rindex) { 938 adjust_fs_space(inode); 939 sdp->sd_rindex_uptodate = 0; 940 } 941 942 brelse(dibh); 943 failed: 944 gfs2_trans_end(sdp); 945 gfs2_inplace_release(ip); 946 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 947 gfs2_quota_unlock(ip); 948 if (inode == sdp->sd_rindex) { 949 gfs2_glock_dq(&m_ip->i_gh); 950 gfs2_holder_uninit(&m_ip->i_gh); 951 } 952 gfs2_glock_dq(&ip->i_gh); 953 gfs2_holder_uninit(&ip->i_gh); 954 return ret; 955 } 956 957 /** 958 * gfs2_set_page_dirty - Page dirtying function 959 * @page: The page to dirty 960 * 961 * Returns: 1 if it dirtyed the page, or 0 otherwise 962 */ 963 964 static int gfs2_set_page_dirty(struct page *page) 965 { 966 SetPageChecked(page); 967 return __set_page_dirty_buffers(page); 968 } 969 970 /** 971 * gfs2_bmap - Block map function 972 * @mapping: Address space info 973 * @lblock: The block to map 974 * 975 * Returns: The disk address for the block or 0 on hole or error 976 */ 977 978 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock) 979 { 980 struct gfs2_inode *ip = GFS2_I(mapping->host); 981 struct gfs2_holder i_gh; 982 sector_t dblock = 0; 983 int error; 984 985 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); 986 if (error) 987 return 0; 988 989 if (!gfs2_is_stuffed(ip)) 990 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map); 991 992 gfs2_glock_dq_uninit(&i_gh); 993 994 return dblock; 995 } 996 997 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh) 998 { 999 struct gfs2_bufdata *bd; 1000 1001 lock_buffer(bh); 1002 gfs2_log_lock(sdp); 1003 clear_buffer_dirty(bh); 1004 bd = bh->b_private; 1005 if (bd) { 1006 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh)) 1007 list_del_init(&bd->bd_list); 1008 else 1009 gfs2_remove_from_journal(bh, REMOVE_JDATA); 1010 } 1011 bh->b_bdev = NULL; 1012 clear_buffer_mapped(bh); 1013 clear_buffer_req(bh); 1014 clear_buffer_new(bh); 1015 gfs2_log_unlock(sdp); 1016 unlock_buffer(bh); 1017 } 1018 1019 static void gfs2_invalidatepage(struct page *page, unsigned int offset, 1020 unsigned int length) 1021 { 1022 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 1023 unsigned int stop = offset + length; 1024 int partial_page = (offset || length < PAGE_SIZE); 1025 struct buffer_head *bh, *head; 1026 unsigned long pos = 0; 1027 1028 BUG_ON(!PageLocked(page)); 1029 if (!partial_page) 1030 ClearPageChecked(page); 1031 if (!page_has_buffers(page)) 1032 goto out; 1033 1034 bh = head = page_buffers(page); 1035 do { 1036 if (pos + bh->b_size > stop) 1037 return; 1038 1039 if (offset <= pos) 1040 gfs2_discard(sdp, bh); 1041 pos += bh->b_size; 1042 bh = bh->b_this_page; 1043 } while (bh != head); 1044 out: 1045 if (!partial_page) 1046 try_to_release_page(page, 0); 1047 } 1048 1049 /** 1050 * gfs2_ok_for_dio - check that dio is valid on this file 1051 * @ip: The inode 1052 * @offset: The offset at which we are reading or writing 1053 * 1054 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o) 1055 * 1 (to accept the i/o request) 1056 */ 1057 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset) 1058 { 1059 /* 1060 * Should we return an error here? I can't see that O_DIRECT for 1061 * a stuffed file makes any sense. For now we'll silently fall 1062 * back to buffered I/O 1063 */ 1064 if (gfs2_is_stuffed(ip)) 1065 return 0; 1066 1067 if (offset >= i_size_read(&ip->i_inode)) 1068 return 0; 1069 return 1; 1070 } 1071 1072 1073 1074 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1075 { 1076 struct file *file = iocb->ki_filp; 1077 struct inode *inode = file->f_mapping->host; 1078 struct address_space *mapping = inode->i_mapping; 1079 struct gfs2_inode *ip = GFS2_I(inode); 1080 loff_t offset = iocb->ki_pos; 1081 struct gfs2_holder gh; 1082 int rv; 1083 1084 /* 1085 * Deferred lock, even if its a write, since we do no allocation 1086 * on this path. All we need change is atime, and this lock mode 1087 * ensures that other nodes have flushed their buffered read caches 1088 * (i.e. their page cache entries for this inode). We do not, 1089 * unfortunately have the option of only flushing a range like 1090 * the VFS does. 1091 */ 1092 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 1093 rv = gfs2_glock_nq(&gh); 1094 if (rv) 1095 goto out_uninit; 1096 rv = gfs2_ok_for_dio(ip, offset); 1097 if (rv != 1) 1098 goto out; /* dio not valid, fall back to buffered i/o */ 1099 1100 /* 1101 * Now since we are holding a deferred (CW) lock at this point, you 1102 * might be wondering why this is ever needed. There is a case however 1103 * where we've granted a deferred local lock against a cached exclusive 1104 * glock. That is ok provided all granted local locks are deferred, but 1105 * it also means that it is possible to encounter pages which are 1106 * cached and possibly also mapped. So here we check for that and sort 1107 * them out ahead of the dio. The glock state machine will take care of 1108 * everything else. 1109 * 1110 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in 1111 * the first place, mapping->nr_pages will always be zero. 1112 */ 1113 if (mapping->nrpages) { 1114 loff_t lstart = offset & ~(PAGE_SIZE - 1); 1115 loff_t len = iov_iter_count(iter); 1116 loff_t end = PAGE_ALIGN(offset + len) - 1; 1117 1118 rv = 0; 1119 if (len == 0) 1120 goto out; 1121 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags)) 1122 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len); 1123 rv = filemap_write_and_wait_range(mapping, lstart, end); 1124 if (rv) 1125 goto out; 1126 if (iov_iter_rw(iter) == WRITE) 1127 truncate_inode_pages_range(mapping, lstart, end); 1128 } 1129 1130 rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 1131 gfs2_get_block_direct, NULL, NULL, 0); 1132 out: 1133 gfs2_glock_dq(&gh); 1134 out_uninit: 1135 gfs2_holder_uninit(&gh); 1136 return rv; 1137 } 1138 1139 /** 1140 * gfs2_releasepage - free the metadata associated with a page 1141 * @page: the page that's being released 1142 * @gfp_mask: passed from Linux VFS, ignored by us 1143 * 1144 * Call try_to_free_buffers() if the buffers in this page can be 1145 * released. 1146 * 1147 * Returns: 0 1148 */ 1149 1150 int gfs2_releasepage(struct page *page, gfp_t gfp_mask) 1151 { 1152 struct address_space *mapping = page->mapping; 1153 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 1154 struct buffer_head *bh, *head; 1155 struct gfs2_bufdata *bd; 1156 1157 if (!page_has_buffers(page)) 1158 return 0; 1159 1160 /* 1161 * From xfs_vm_releasepage: mm accommodates an old ext3 case where 1162 * clean pages might not have had the dirty bit cleared. Thus, it can 1163 * send actual dirty pages to ->releasepage() via shrink_active_list(). 1164 * 1165 * As a workaround, we skip pages that contain dirty buffers below. 1166 * Once ->releasepage isn't called on dirty pages anymore, we can warn 1167 * on dirty buffers like we used to here again. 1168 */ 1169 1170 gfs2_log_lock(sdp); 1171 spin_lock(&sdp->sd_ail_lock); 1172 head = bh = page_buffers(page); 1173 do { 1174 if (atomic_read(&bh->b_count)) 1175 goto cannot_release; 1176 bd = bh->b_private; 1177 if (bd && bd->bd_tr) 1178 goto cannot_release; 1179 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh))) 1180 goto cannot_release; 1181 bh = bh->b_this_page; 1182 } while(bh != head); 1183 spin_unlock(&sdp->sd_ail_lock); 1184 1185 head = bh = page_buffers(page); 1186 do { 1187 bd = bh->b_private; 1188 if (bd) { 1189 gfs2_assert_warn(sdp, bd->bd_bh == bh); 1190 if (!list_empty(&bd->bd_list)) 1191 list_del_init(&bd->bd_list); 1192 bd->bd_bh = NULL; 1193 bh->b_private = NULL; 1194 kmem_cache_free(gfs2_bufdata_cachep, bd); 1195 } 1196 1197 bh = bh->b_this_page; 1198 } while (bh != head); 1199 gfs2_log_unlock(sdp); 1200 1201 return try_to_free_buffers(page); 1202 1203 cannot_release: 1204 spin_unlock(&sdp->sd_ail_lock); 1205 gfs2_log_unlock(sdp); 1206 return 0; 1207 } 1208 1209 static const struct address_space_operations gfs2_writeback_aops = { 1210 .writepage = gfs2_writepage, 1211 .writepages = gfs2_writepages, 1212 .readpage = gfs2_readpage, 1213 .readpages = gfs2_readpages, 1214 .write_begin = gfs2_write_begin, 1215 .write_end = gfs2_write_end, 1216 .bmap = gfs2_bmap, 1217 .invalidatepage = gfs2_invalidatepage, 1218 .releasepage = gfs2_releasepage, 1219 .direct_IO = gfs2_direct_IO, 1220 .migratepage = buffer_migrate_page, 1221 .is_partially_uptodate = block_is_partially_uptodate, 1222 .error_remove_page = generic_error_remove_page, 1223 }; 1224 1225 static const struct address_space_operations gfs2_ordered_aops = { 1226 .writepage = gfs2_writepage, 1227 .writepages = gfs2_writepages, 1228 .readpage = gfs2_readpage, 1229 .readpages = gfs2_readpages, 1230 .write_begin = gfs2_write_begin, 1231 .write_end = gfs2_write_end, 1232 .set_page_dirty = gfs2_set_page_dirty, 1233 .bmap = gfs2_bmap, 1234 .invalidatepage = gfs2_invalidatepage, 1235 .releasepage = gfs2_releasepage, 1236 .direct_IO = gfs2_direct_IO, 1237 .migratepage = buffer_migrate_page, 1238 .is_partially_uptodate = block_is_partially_uptodate, 1239 .error_remove_page = generic_error_remove_page, 1240 }; 1241 1242 static const struct address_space_operations gfs2_jdata_aops = { 1243 .writepage = gfs2_jdata_writepage, 1244 .writepages = gfs2_jdata_writepages, 1245 .readpage = gfs2_readpage, 1246 .readpages = gfs2_readpages, 1247 .write_begin = gfs2_write_begin, 1248 .write_end = gfs2_write_end, 1249 .set_page_dirty = gfs2_set_page_dirty, 1250 .bmap = gfs2_bmap, 1251 .invalidatepage = gfs2_invalidatepage, 1252 .releasepage = gfs2_releasepage, 1253 .is_partially_uptodate = block_is_partially_uptodate, 1254 .error_remove_page = generic_error_remove_page, 1255 }; 1256 1257 void gfs2_set_aops(struct inode *inode) 1258 { 1259 struct gfs2_inode *ip = GFS2_I(inode); 1260 1261 if (gfs2_is_writeback(ip)) 1262 inode->i_mapping->a_ops = &gfs2_writeback_aops; 1263 else if (gfs2_is_ordered(ip)) 1264 inode->i_mapping->a_ops = &gfs2_ordered_aops; 1265 else if (gfs2_is_jdata(ip)) 1266 inode->i_mapping->a_ops = &gfs2_jdata_aops; 1267 else 1268 BUG(); 1269 } 1270 1271