xref: /openbmc/linux/fs/gfs2/aops.c (revision 6aa7de05)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39 
40 
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 				   unsigned int from, unsigned int to)
43 {
44 	struct buffer_head *head = page_buffers(page);
45 	unsigned int bsize = head->b_size;
46 	struct buffer_head *bh;
47 	unsigned int start, end;
48 
49 	for (bh = head, start = 0; bh != head || !start;
50 	     bh = bh->b_this_page, start = end) {
51 		end = start + bsize;
52 		if (end <= from || start >= to)
53 			continue;
54 		if (gfs2_is_jdata(ip))
55 			set_buffer_uptodate(bh);
56 		gfs2_trans_add_data(ip->i_gl, bh);
57 	}
58 }
59 
60 /**
61  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62  * @inode: The inode
63  * @lblock: The block number to look up
64  * @bh_result: The buffer head to return the result in
65  * @create: Non-zero if we may add block to the file
66  *
67  * Returns: errno
68  */
69 
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 				  struct buffer_head *bh_result, int create)
72 {
73 	int error;
74 
75 	error = gfs2_block_map(inode, lblock, bh_result, 0);
76 	if (error)
77 		return error;
78 	if (!buffer_mapped(bh_result))
79 		return -EIO;
80 	return 0;
81 }
82 
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 				 struct buffer_head *bh_result, int create)
85 {
86 	return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88 
89 /**
90  * gfs2_writepage_common - Common bits of writepage
91  * @page: The page to be written
92  * @wbc: The writeback control
93  *
94  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95  */
96 
97 static int gfs2_writepage_common(struct page *page,
98 				 struct writeback_control *wbc)
99 {
100 	struct inode *inode = page->mapping->host;
101 	struct gfs2_inode *ip = GFS2_I(inode);
102 	struct gfs2_sbd *sdp = GFS2_SB(inode);
103 	loff_t i_size = i_size_read(inode);
104 	pgoff_t end_index = i_size >> PAGE_SHIFT;
105 	unsigned offset;
106 
107 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108 		goto out;
109 	if (current->journal_info)
110 		goto redirty;
111 	/* Is the page fully outside i_size? (truncate in progress) */
112 	offset = i_size & (PAGE_SIZE-1);
113 	if (page->index > end_index || (page->index == end_index && !offset)) {
114 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
115 		goto out;
116 	}
117 	return 1;
118 redirty:
119 	redirty_page_for_writepage(wbc, page);
120 out:
121 	unlock_page(page);
122 	return 0;
123 }
124 
125 /**
126  * gfs2_writepage - Write page for writeback mappings
127  * @page: The page
128  * @wbc: The writeback control
129  *
130  */
131 
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134 	int ret;
135 
136 	ret = gfs2_writepage_common(page, wbc);
137 	if (ret <= 0)
138 		return ret;
139 
140 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142 
143 /* This is the same as calling block_write_full_page, but it also
144  * writes pages outside of i_size
145  */
146 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
147 				struct writeback_control *wbc)
148 {
149 	struct inode * const inode = page->mapping->host;
150 	loff_t i_size = i_size_read(inode);
151 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
152 	unsigned offset;
153 
154 	/*
155 	 * The page straddles i_size.  It must be zeroed out on each and every
156 	 * writepage invocation because it may be mmapped.  "A file is mapped
157 	 * in multiples of the page size.  For a file that is not a multiple of
158 	 * the  page size, the remaining memory is zeroed when mapped, and
159 	 * writes to that region are not written out to the file."
160 	 */
161 	offset = i_size & (PAGE_SIZE-1);
162 	if (page->index == end_index && offset)
163 		zero_user_segment(page, offset, PAGE_SIZE);
164 
165 	return __block_write_full_page(inode, page, get_block, wbc,
166 				       end_buffer_async_write);
167 }
168 
169 /**
170  * __gfs2_jdata_writepage - The core of jdata writepage
171  * @page: The page to write
172  * @wbc: The writeback control
173  *
174  * This is shared between writepage and writepages and implements the
175  * core of the writepage operation. If a transaction is required then
176  * PageChecked will have been set and the transaction will have
177  * already been started before this is called.
178  */
179 
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 	struct inode *inode = page->mapping->host;
183 	struct gfs2_inode *ip = GFS2_I(inode);
184 	struct gfs2_sbd *sdp = GFS2_SB(inode);
185 
186 	if (PageChecked(page)) {
187 		ClearPageChecked(page);
188 		if (!page_has_buffers(page)) {
189 			create_empty_buffers(page, inode->i_sb->s_blocksize,
190 					     BIT(BH_Dirty)|BIT(BH_Uptodate));
191 		}
192 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193 	}
194 	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196 
197 /**
198  * gfs2_jdata_writepage - Write complete page
199  * @page: Page to write
200  * @wbc: The writeback control
201  *
202  * Returns: errno
203  *
204  */
205 
206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
207 {
208 	struct inode *inode = page->mapping->host;
209 	struct gfs2_inode *ip = GFS2_I(inode);
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 
213 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
214 		goto out;
215 	if (PageChecked(page) || current->journal_info)
216 		goto out_ignore;
217 	ret = __gfs2_jdata_writepage(page, wbc);
218 	return ret;
219 
220 out_ignore:
221 	redirty_page_for_writepage(wbc, page);
222 out:
223 	unlock_page(page);
224 	return 0;
225 }
226 
227 /**
228  * gfs2_writepages - Write a bunch of dirty pages back to disk
229  * @mapping: The mapping to write
230  * @wbc: Write-back control
231  *
232  * Used for both ordered and writeback modes.
233  */
234 static int gfs2_writepages(struct address_space *mapping,
235 			   struct writeback_control *wbc)
236 {
237 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
238 	int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
239 
240 	/*
241 	 * Even if we didn't write any pages here, we might still be holding
242 	 * dirty pages in the ail. We forcibly flush the ail because we don't
243 	 * want balance_dirty_pages() to loop indefinitely trying to write out
244 	 * pages held in the ail that it can't find.
245 	 */
246 	if (ret == 0)
247 		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
248 
249 	return ret;
250 }
251 
252 /**
253  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
254  * @mapping: The mapping
255  * @wbc: The writeback control
256  * @pvec: The vector of pages
257  * @nr_pages: The number of pages to write
258  * @end: End position
259  * @done_index: Page index
260  *
261  * Returns: non-zero if loop should terminate, zero otherwise
262  */
263 
264 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
265 				    struct writeback_control *wbc,
266 				    struct pagevec *pvec,
267 				    int nr_pages, pgoff_t end,
268 				    pgoff_t *done_index)
269 {
270 	struct inode *inode = mapping->host;
271 	struct gfs2_sbd *sdp = GFS2_SB(inode);
272 	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
273 	int i;
274 	int ret;
275 
276 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
277 	if (ret < 0)
278 		return ret;
279 
280 	for(i = 0; i < nr_pages; i++) {
281 		struct page *page = pvec->pages[i];
282 
283 		/*
284 		 * At this point, the page may be truncated or
285 		 * invalidated (changing page->mapping to NULL), or
286 		 * even swizzled back from swapper_space to tmpfs file
287 		 * mapping. However, page->index will not change
288 		 * because we have a reference on the page.
289 		 */
290 		if (page->index > end) {
291 			/*
292 			 * can't be range_cyclic (1st pass) because
293 			 * end == -1 in that case.
294 			 */
295 			ret = 1;
296 			break;
297 		}
298 
299 		*done_index = page->index;
300 
301 		lock_page(page);
302 
303 		if (unlikely(page->mapping != mapping)) {
304 continue_unlock:
305 			unlock_page(page);
306 			continue;
307 		}
308 
309 		if (!PageDirty(page)) {
310 			/* someone wrote it for us */
311 			goto continue_unlock;
312 		}
313 
314 		if (PageWriteback(page)) {
315 			if (wbc->sync_mode != WB_SYNC_NONE)
316 				wait_on_page_writeback(page);
317 			else
318 				goto continue_unlock;
319 		}
320 
321 		BUG_ON(PageWriteback(page));
322 		if (!clear_page_dirty_for_io(page))
323 			goto continue_unlock;
324 
325 		trace_wbc_writepage(wbc, inode_to_bdi(inode));
326 
327 		ret = __gfs2_jdata_writepage(page, wbc);
328 		if (unlikely(ret)) {
329 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
330 				unlock_page(page);
331 				ret = 0;
332 			} else {
333 
334 				/*
335 				 * done_index is set past this page,
336 				 * so media errors will not choke
337 				 * background writeout for the entire
338 				 * file. This has consequences for
339 				 * range_cyclic semantics (ie. it may
340 				 * not be suitable for data integrity
341 				 * writeout).
342 				 */
343 				*done_index = page->index + 1;
344 				ret = 1;
345 				break;
346 			}
347 		}
348 
349 		/*
350 		 * We stop writing back only if we are not doing
351 		 * integrity sync. In case of integrity sync we have to
352 		 * keep going until we have written all the pages
353 		 * we tagged for writeback prior to entering this loop.
354 		 */
355 		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
356 			ret = 1;
357 			break;
358 		}
359 
360 	}
361 	gfs2_trans_end(sdp);
362 	return ret;
363 }
364 
365 /**
366  * gfs2_write_cache_jdata - Like write_cache_pages but different
367  * @mapping: The mapping to write
368  * @wbc: The writeback control
369  *
370  * The reason that we use our own function here is that we need to
371  * start transactions before we grab page locks. This allows us
372  * to get the ordering right.
373  */
374 
375 static int gfs2_write_cache_jdata(struct address_space *mapping,
376 				  struct writeback_control *wbc)
377 {
378 	int ret = 0;
379 	int done = 0;
380 	struct pagevec pvec;
381 	int nr_pages;
382 	pgoff_t uninitialized_var(writeback_index);
383 	pgoff_t index;
384 	pgoff_t end;
385 	pgoff_t done_index;
386 	int cycled;
387 	int range_whole = 0;
388 	int tag;
389 
390 	pagevec_init(&pvec, 0);
391 	if (wbc->range_cyclic) {
392 		writeback_index = mapping->writeback_index; /* prev offset */
393 		index = writeback_index;
394 		if (index == 0)
395 			cycled = 1;
396 		else
397 			cycled = 0;
398 		end = -1;
399 	} else {
400 		index = wbc->range_start >> PAGE_SHIFT;
401 		end = wbc->range_end >> PAGE_SHIFT;
402 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
403 			range_whole = 1;
404 		cycled = 1; /* ignore range_cyclic tests */
405 	}
406 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
407 		tag = PAGECACHE_TAG_TOWRITE;
408 	else
409 		tag = PAGECACHE_TAG_DIRTY;
410 
411 retry:
412 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
413 		tag_pages_for_writeback(mapping, index, end);
414 	done_index = index;
415 	while (!done && (index <= end)) {
416 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
417 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
418 		if (nr_pages == 0)
419 			break;
420 
421 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
422 		if (ret)
423 			done = 1;
424 		if (ret > 0)
425 			ret = 0;
426 		pagevec_release(&pvec);
427 		cond_resched();
428 	}
429 
430 	if (!cycled && !done) {
431 		/*
432 		 * range_cyclic:
433 		 * We hit the last page and there is more work to be done: wrap
434 		 * back to the start of the file
435 		 */
436 		cycled = 1;
437 		index = 0;
438 		end = writeback_index - 1;
439 		goto retry;
440 	}
441 
442 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
443 		mapping->writeback_index = done_index;
444 
445 	return ret;
446 }
447 
448 
449 /**
450  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
451  * @mapping: The mapping to write
452  * @wbc: The writeback control
453  *
454  */
455 
456 static int gfs2_jdata_writepages(struct address_space *mapping,
457 				 struct writeback_control *wbc)
458 {
459 	struct gfs2_inode *ip = GFS2_I(mapping->host);
460 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
461 	int ret;
462 
463 	ret = gfs2_write_cache_jdata(mapping, wbc);
464 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
465 		gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
466 		ret = gfs2_write_cache_jdata(mapping, wbc);
467 	}
468 	return ret;
469 }
470 
471 /**
472  * stuffed_readpage - Fill in a Linux page with stuffed file data
473  * @ip: the inode
474  * @page: the page
475  *
476  * Returns: errno
477  */
478 
479 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
480 {
481 	struct buffer_head *dibh;
482 	u64 dsize = i_size_read(&ip->i_inode);
483 	void *kaddr;
484 	int error;
485 
486 	/*
487 	 * Due to the order of unstuffing files and ->fault(), we can be
488 	 * asked for a zero page in the case of a stuffed file being extended,
489 	 * so we need to supply one here. It doesn't happen often.
490 	 */
491 	if (unlikely(page->index)) {
492 		zero_user(page, 0, PAGE_SIZE);
493 		SetPageUptodate(page);
494 		return 0;
495 	}
496 
497 	error = gfs2_meta_inode_buffer(ip, &dibh);
498 	if (error)
499 		return error;
500 
501 	kaddr = kmap_atomic(page);
502 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
503 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
504 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
505 	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
506 	kunmap_atomic(kaddr);
507 	flush_dcache_page(page);
508 	brelse(dibh);
509 	SetPageUptodate(page);
510 
511 	return 0;
512 }
513 
514 
515 /**
516  * __gfs2_readpage - readpage
517  * @file: The file to read a page for
518  * @page: The page to read
519  *
520  * This is the core of gfs2's readpage. Its used by the internal file
521  * reading code as in that case we already hold the glock. Also its
522  * called by gfs2_readpage() once the required lock has been granted.
523  *
524  */
525 
526 static int __gfs2_readpage(void *file, struct page *page)
527 {
528 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
529 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
530 	int error;
531 
532 	if (gfs2_is_stuffed(ip)) {
533 		error = stuffed_readpage(ip, page);
534 		unlock_page(page);
535 	} else {
536 		error = mpage_readpage(page, gfs2_block_map);
537 	}
538 
539 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
540 		return -EIO;
541 
542 	return error;
543 }
544 
545 /**
546  * gfs2_readpage - read a page of a file
547  * @file: The file to read
548  * @page: The page of the file
549  *
550  * This deals with the locking required. We have to unlock and
551  * relock the page in order to get the locking in the right
552  * order.
553  */
554 
555 static int gfs2_readpage(struct file *file, struct page *page)
556 {
557 	struct address_space *mapping = page->mapping;
558 	struct gfs2_inode *ip = GFS2_I(mapping->host);
559 	struct gfs2_holder gh;
560 	int error;
561 
562 	unlock_page(page);
563 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
564 	error = gfs2_glock_nq(&gh);
565 	if (unlikely(error))
566 		goto out;
567 	error = AOP_TRUNCATED_PAGE;
568 	lock_page(page);
569 	if (page->mapping == mapping && !PageUptodate(page))
570 		error = __gfs2_readpage(file, page);
571 	else
572 		unlock_page(page);
573 	gfs2_glock_dq(&gh);
574 out:
575 	gfs2_holder_uninit(&gh);
576 	if (error && error != AOP_TRUNCATED_PAGE)
577 		lock_page(page);
578 	return error;
579 }
580 
581 /**
582  * gfs2_internal_read - read an internal file
583  * @ip: The gfs2 inode
584  * @buf: The buffer to fill
585  * @pos: The file position
586  * @size: The amount to read
587  *
588  */
589 
590 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
591                        unsigned size)
592 {
593 	struct address_space *mapping = ip->i_inode.i_mapping;
594 	unsigned long index = *pos / PAGE_SIZE;
595 	unsigned offset = *pos & (PAGE_SIZE - 1);
596 	unsigned copied = 0;
597 	unsigned amt;
598 	struct page *page;
599 	void *p;
600 
601 	do {
602 		amt = size - copied;
603 		if (offset + size > PAGE_SIZE)
604 			amt = PAGE_SIZE - offset;
605 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
606 		if (IS_ERR(page))
607 			return PTR_ERR(page);
608 		p = kmap_atomic(page);
609 		memcpy(buf + copied, p + offset, amt);
610 		kunmap_atomic(p);
611 		put_page(page);
612 		copied += amt;
613 		index++;
614 		offset = 0;
615 	} while(copied < size);
616 	(*pos) += size;
617 	return size;
618 }
619 
620 /**
621  * gfs2_readpages - Read a bunch of pages at once
622  * @file: The file to read from
623  * @mapping: Address space info
624  * @pages: List of pages to read
625  * @nr_pages: Number of pages to read
626  *
627  * Some notes:
628  * 1. This is only for readahead, so we can simply ignore any things
629  *    which are slightly inconvenient (such as locking conflicts between
630  *    the page lock and the glock) and return having done no I/O. Its
631  *    obviously not something we'd want to do on too regular a basis.
632  *    Any I/O we ignore at this time will be done via readpage later.
633  * 2. We don't handle stuffed files here we let readpage do the honours.
634  * 3. mpage_readpages() does most of the heavy lifting in the common case.
635  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
636  */
637 
638 static int gfs2_readpages(struct file *file, struct address_space *mapping,
639 			  struct list_head *pages, unsigned nr_pages)
640 {
641 	struct inode *inode = mapping->host;
642 	struct gfs2_inode *ip = GFS2_I(inode);
643 	struct gfs2_sbd *sdp = GFS2_SB(inode);
644 	struct gfs2_holder gh;
645 	int ret;
646 
647 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
648 	ret = gfs2_glock_nq(&gh);
649 	if (unlikely(ret))
650 		goto out_uninit;
651 	if (!gfs2_is_stuffed(ip))
652 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
653 	gfs2_glock_dq(&gh);
654 out_uninit:
655 	gfs2_holder_uninit(&gh);
656 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
657 		ret = -EIO;
658 	return ret;
659 }
660 
661 /**
662  * gfs2_write_begin - Begin to write to a file
663  * @file: The file to write to
664  * @mapping: The mapping in which to write
665  * @pos: The file offset at which to start writing
666  * @len: Length of the write
667  * @flags: Various flags
668  * @pagep: Pointer to return the page
669  * @fsdata: Pointer to return fs data (unused by GFS2)
670  *
671  * Returns: errno
672  */
673 
674 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
675 			    loff_t pos, unsigned len, unsigned flags,
676 			    struct page **pagep, void **fsdata)
677 {
678 	struct gfs2_inode *ip = GFS2_I(mapping->host);
679 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
680 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
681 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
682 	unsigned requested = 0;
683 	int alloc_required;
684 	int error = 0;
685 	pgoff_t index = pos >> PAGE_SHIFT;
686 	unsigned from = pos & (PAGE_SIZE - 1);
687 	struct page *page;
688 
689 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
690 	error = gfs2_glock_nq(&ip->i_gh);
691 	if (unlikely(error))
692 		goto out_uninit;
693 	if (&ip->i_inode == sdp->sd_rindex) {
694 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
695 					   GL_NOCACHE, &m_ip->i_gh);
696 		if (unlikely(error)) {
697 			gfs2_glock_dq(&ip->i_gh);
698 			goto out_uninit;
699 		}
700 	}
701 
702 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
703 
704 	if (alloc_required || gfs2_is_jdata(ip))
705 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
706 
707 	if (alloc_required) {
708 		struct gfs2_alloc_parms ap = { .aflags = 0, };
709 		requested = data_blocks + ind_blocks;
710 		ap.target = requested;
711 		error = gfs2_quota_lock_check(ip, &ap);
712 		if (error)
713 			goto out_unlock;
714 
715 		error = gfs2_inplace_reserve(ip, &ap);
716 		if (error)
717 			goto out_qunlock;
718 	}
719 
720 	rblocks = RES_DINODE + ind_blocks;
721 	if (gfs2_is_jdata(ip))
722 		rblocks += data_blocks ? data_blocks : 1;
723 	if (ind_blocks || data_blocks)
724 		rblocks += RES_STATFS + RES_QUOTA;
725 	if (&ip->i_inode == sdp->sd_rindex)
726 		rblocks += 2 * RES_STATFS;
727 	if (alloc_required)
728 		rblocks += gfs2_rg_blocks(ip, requested);
729 
730 	error = gfs2_trans_begin(sdp, rblocks,
731 				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
732 	if (error)
733 		goto out_trans_fail;
734 
735 	error = -ENOMEM;
736 	flags |= AOP_FLAG_NOFS;
737 	page = grab_cache_page_write_begin(mapping, index, flags);
738 	*pagep = page;
739 	if (unlikely(!page))
740 		goto out_endtrans;
741 
742 	if (gfs2_is_stuffed(ip)) {
743 		error = 0;
744 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
745 			error = gfs2_unstuff_dinode(ip, page);
746 			if (error == 0)
747 				goto prepare_write;
748 		} else if (!PageUptodate(page)) {
749 			error = stuffed_readpage(ip, page);
750 		}
751 		goto out;
752 	}
753 
754 prepare_write:
755 	error = __block_write_begin(page, from, len, gfs2_block_map);
756 out:
757 	if (error == 0)
758 		return 0;
759 
760 	unlock_page(page);
761 	put_page(page);
762 
763 	gfs2_trans_end(sdp);
764 	if (pos + len > ip->i_inode.i_size)
765 		gfs2_trim_blocks(&ip->i_inode);
766 	goto out_trans_fail;
767 
768 out_endtrans:
769 	gfs2_trans_end(sdp);
770 out_trans_fail:
771 	if (alloc_required) {
772 		gfs2_inplace_release(ip);
773 out_qunlock:
774 		gfs2_quota_unlock(ip);
775 	}
776 out_unlock:
777 	if (&ip->i_inode == sdp->sd_rindex) {
778 		gfs2_glock_dq(&m_ip->i_gh);
779 		gfs2_holder_uninit(&m_ip->i_gh);
780 	}
781 	gfs2_glock_dq(&ip->i_gh);
782 out_uninit:
783 	gfs2_holder_uninit(&ip->i_gh);
784 	return error;
785 }
786 
787 /**
788  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
789  * @inode: the rindex inode
790  */
791 static void adjust_fs_space(struct inode *inode)
792 {
793 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
794 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
795 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
796 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
797 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
798 	struct buffer_head *m_bh, *l_bh;
799 	u64 fs_total, new_free;
800 
801 	/* Total up the file system space, according to the latest rindex. */
802 	fs_total = gfs2_ri_total(sdp);
803 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
804 		return;
805 
806 	spin_lock(&sdp->sd_statfs_spin);
807 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
808 			      sizeof(struct gfs2_dinode));
809 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
810 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
811 	else
812 		new_free = 0;
813 	spin_unlock(&sdp->sd_statfs_spin);
814 	fs_warn(sdp, "File system extended by %llu blocks.\n",
815 		(unsigned long long)new_free);
816 	gfs2_statfs_change(sdp, new_free, new_free, 0);
817 
818 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
819 		goto out;
820 	update_statfs(sdp, m_bh, l_bh);
821 	brelse(l_bh);
822 out:
823 	brelse(m_bh);
824 }
825 
826 /**
827  * gfs2_stuffed_write_end - Write end for stuffed files
828  * @inode: The inode
829  * @dibh: The buffer_head containing the on-disk inode
830  * @pos: The file position
831  * @len: The length of the write
832  * @copied: How much was actually copied by the VFS
833  * @page: The page
834  *
835  * This copies the data from the page into the inode block after
836  * the inode data structure itself.
837  *
838  * Returns: errno
839  */
840 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
841 				  loff_t pos, unsigned len, unsigned copied,
842 				  struct page *page)
843 {
844 	struct gfs2_inode *ip = GFS2_I(inode);
845 	struct gfs2_sbd *sdp = GFS2_SB(inode);
846 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
847 	u64 to = pos + copied;
848 	void *kaddr;
849 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
850 
851 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
852 	kaddr = kmap_atomic(page);
853 	memcpy(buf + pos, kaddr + pos, copied);
854 	flush_dcache_page(page);
855 	kunmap_atomic(kaddr);
856 
857 	WARN_ON(!PageUptodate(page));
858 	unlock_page(page);
859 	put_page(page);
860 
861 	if (copied) {
862 		if (inode->i_size < to)
863 			i_size_write(inode, to);
864 		mark_inode_dirty(inode);
865 	}
866 
867 	if (inode == sdp->sd_rindex) {
868 		adjust_fs_space(inode);
869 		sdp->sd_rindex_uptodate = 0;
870 	}
871 
872 	brelse(dibh);
873 	gfs2_trans_end(sdp);
874 	if (inode == sdp->sd_rindex) {
875 		gfs2_glock_dq(&m_ip->i_gh);
876 		gfs2_holder_uninit(&m_ip->i_gh);
877 	}
878 	gfs2_glock_dq(&ip->i_gh);
879 	gfs2_holder_uninit(&ip->i_gh);
880 	return copied;
881 }
882 
883 /**
884  * gfs2_write_end
885  * @file: The file to write to
886  * @mapping: The address space to write to
887  * @pos: The file position
888  * @len: The length of the data
889  * @copied: How much was actually copied by the VFS
890  * @page: The page that has been written
891  * @fsdata: The fsdata (unused in GFS2)
892  *
893  * The main write_end function for GFS2. We have a separate one for
894  * stuffed files as they are slightly different, otherwise we just
895  * put our locking around the VFS provided functions.
896  *
897  * Returns: errno
898  */
899 
900 static int gfs2_write_end(struct file *file, struct address_space *mapping,
901 			  loff_t pos, unsigned len, unsigned copied,
902 			  struct page *page, void *fsdata)
903 {
904 	struct inode *inode = page->mapping->host;
905 	struct gfs2_inode *ip = GFS2_I(inode);
906 	struct gfs2_sbd *sdp = GFS2_SB(inode);
907 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
908 	struct buffer_head *dibh;
909 	unsigned int from = pos & (PAGE_SIZE - 1);
910 	unsigned int to = from + len;
911 	int ret;
912 	struct gfs2_trans *tr = current->journal_info;
913 	BUG_ON(!tr);
914 
915 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
916 
917 	ret = gfs2_meta_inode_buffer(ip, &dibh);
918 	if (unlikely(ret)) {
919 		unlock_page(page);
920 		put_page(page);
921 		goto failed;
922 	}
923 
924 	if (gfs2_is_stuffed(ip))
925 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
926 
927 	if (!gfs2_is_writeback(ip))
928 		gfs2_page_add_databufs(ip, page, from, to);
929 
930 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
931 	if (tr->tr_num_buf_new)
932 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
933 	else
934 		gfs2_trans_add_meta(ip->i_gl, dibh);
935 
936 
937 	if (inode == sdp->sd_rindex) {
938 		adjust_fs_space(inode);
939 		sdp->sd_rindex_uptodate = 0;
940 	}
941 
942 	brelse(dibh);
943 failed:
944 	gfs2_trans_end(sdp);
945 	gfs2_inplace_release(ip);
946 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
947 		gfs2_quota_unlock(ip);
948 	if (inode == sdp->sd_rindex) {
949 		gfs2_glock_dq(&m_ip->i_gh);
950 		gfs2_holder_uninit(&m_ip->i_gh);
951 	}
952 	gfs2_glock_dq(&ip->i_gh);
953 	gfs2_holder_uninit(&ip->i_gh);
954 	return ret;
955 }
956 
957 /**
958  * gfs2_set_page_dirty - Page dirtying function
959  * @page: The page to dirty
960  *
961  * Returns: 1 if it dirtyed the page, or 0 otherwise
962  */
963 
964 static int gfs2_set_page_dirty(struct page *page)
965 {
966 	SetPageChecked(page);
967 	return __set_page_dirty_buffers(page);
968 }
969 
970 /**
971  * gfs2_bmap - Block map function
972  * @mapping: Address space info
973  * @lblock: The block to map
974  *
975  * Returns: The disk address for the block or 0 on hole or error
976  */
977 
978 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
979 {
980 	struct gfs2_inode *ip = GFS2_I(mapping->host);
981 	struct gfs2_holder i_gh;
982 	sector_t dblock = 0;
983 	int error;
984 
985 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
986 	if (error)
987 		return 0;
988 
989 	if (!gfs2_is_stuffed(ip))
990 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
991 
992 	gfs2_glock_dq_uninit(&i_gh);
993 
994 	return dblock;
995 }
996 
997 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
998 {
999 	struct gfs2_bufdata *bd;
1000 
1001 	lock_buffer(bh);
1002 	gfs2_log_lock(sdp);
1003 	clear_buffer_dirty(bh);
1004 	bd = bh->b_private;
1005 	if (bd) {
1006 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
1007 			list_del_init(&bd->bd_list);
1008 		else
1009 			gfs2_remove_from_journal(bh, REMOVE_JDATA);
1010 	}
1011 	bh->b_bdev = NULL;
1012 	clear_buffer_mapped(bh);
1013 	clear_buffer_req(bh);
1014 	clear_buffer_new(bh);
1015 	gfs2_log_unlock(sdp);
1016 	unlock_buffer(bh);
1017 }
1018 
1019 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1020 				unsigned int length)
1021 {
1022 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1023 	unsigned int stop = offset + length;
1024 	int partial_page = (offset || length < PAGE_SIZE);
1025 	struct buffer_head *bh, *head;
1026 	unsigned long pos = 0;
1027 
1028 	BUG_ON(!PageLocked(page));
1029 	if (!partial_page)
1030 		ClearPageChecked(page);
1031 	if (!page_has_buffers(page))
1032 		goto out;
1033 
1034 	bh = head = page_buffers(page);
1035 	do {
1036 		if (pos + bh->b_size > stop)
1037 			return;
1038 
1039 		if (offset <= pos)
1040 			gfs2_discard(sdp, bh);
1041 		pos += bh->b_size;
1042 		bh = bh->b_this_page;
1043 	} while (bh != head);
1044 out:
1045 	if (!partial_page)
1046 		try_to_release_page(page, 0);
1047 }
1048 
1049 /**
1050  * gfs2_ok_for_dio - check that dio is valid on this file
1051  * @ip: The inode
1052  * @offset: The offset at which we are reading or writing
1053  *
1054  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1055  *          1 (to accept the i/o request)
1056  */
1057 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1058 {
1059 	/*
1060 	 * Should we return an error here? I can't see that O_DIRECT for
1061 	 * a stuffed file makes any sense. For now we'll silently fall
1062 	 * back to buffered I/O
1063 	 */
1064 	if (gfs2_is_stuffed(ip))
1065 		return 0;
1066 
1067 	if (offset >= i_size_read(&ip->i_inode))
1068 		return 0;
1069 	return 1;
1070 }
1071 
1072 
1073 
1074 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1075 {
1076 	struct file *file = iocb->ki_filp;
1077 	struct inode *inode = file->f_mapping->host;
1078 	struct address_space *mapping = inode->i_mapping;
1079 	struct gfs2_inode *ip = GFS2_I(inode);
1080 	loff_t offset = iocb->ki_pos;
1081 	struct gfs2_holder gh;
1082 	int rv;
1083 
1084 	/*
1085 	 * Deferred lock, even if its a write, since we do no allocation
1086 	 * on this path. All we need change is atime, and this lock mode
1087 	 * ensures that other nodes have flushed their buffered read caches
1088 	 * (i.e. their page cache entries for this inode). We do not,
1089 	 * unfortunately have the option of only flushing a range like
1090 	 * the VFS does.
1091 	 */
1092 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1093 	rv = gfs2_glock_nq(&gh);
1094 	if (rv)
1095 		goto out_uninit;
1096 	rv = gfs2_ok_for_dio(ip, offset);
1097 	if (rv != 1)
1098 		goto out; /* dio not valid, fall back to buffered i/o */
1099 
1100 	/*
1101 	 * Now since we are holding a deferred (CW) lock at this point, you
1102 	 * might be wondering why this is ever needed. There is a case however
1103 	 * where we've granted a deferred local lock against a cached exclusive
1104 	 * glock. That is ok provided all granted local locks are deferred, but
1105 	 * it also means that it is possible to encounter pages which are
1106 	 * cached and possibly also mapped. So here we check for that and sort
1107 	 * them out ahead of the dio. The glock state machine will take care of
1108 	 * everything else.
1109 	 *
1110 	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1111 	 * the first place, mapping->nr_pages will always be zero.
1112 	 */
1113 	if (mapping->nrpages) {
1114 		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1115 		loff_t len = iov_iter_count(iter);
1116 		loff_t end = PAGE_ALIGN(offset + len) - 1;
1117 
1118 		rv = 0;
1119 		if (len == 0)
1120 			goto out;
1121 		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1122 			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1123 		rv = filemap_write_and_wait_range(mapping, lstart, end);
1124 		if (rv)
1125 			goto out;
1126 		if (iov_iter_rw(iter) == WRITE)
1127 			truncate_inode_pages_range(mapping, lstart, end);
1128 	}
1129 
1130 	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1131 				  gfs2_get_block_direct, NULL, NULL, 0);
1132 out:
1133 	gfs2_glock_dq(&gh);
1134 out_uninit:
1135 	gfs2_holder_uninit(&gh);
1136 	return rv;
1137 }
1138 
1139 /**
1140  * gfs2_releasepage - free the metadata associated with a page
1141  * @page: the page that's being released
1142  * @gfp_mask: passed from Linux VFS, ignored by us
1143  *
1144  * Call try_to_free_buffers() if the buffers in this page can be
1145  * released.
1146  *
1147  * Returns: 0
1148  */
1149 
1150 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1151 {
1152 	struct address_space *mapping = page->mapping;
1153 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1154 	struct buffer_head *bh, *head;
1155 	struct gfs2_bufdata *bd;
1156 
1157 	if (!page_has_buffers(page))
1158 		return 0;
1159 
1160 	/*
1161 	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1162 	 * clean pages might not have had the dirty bit cleared.  Thus, it can
1163 	 * send actual dirty pages to ->releasepage() via shrink_active_list().
1164 	 *
1165 	 * As a workaround, we skip pages that contain dirty buffers below.
1166 	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1167 	 * on dirty buffers like we used to here again.
1168 	 */
1169 
1170 	gfs2_log_lock(sdp);
1171 	spin_lock(&sdp->sd_ail_lock);
1172 	head = bh = page_buffers(page);
1173 	do {
1174 		if (atomic_read(&bh->b_count))
1175 			goto cannot_release;
1176 		bd = bh->b_private;
1177 		if (bd && bd->bd_tr)
1178 			goto cannot_release;
1179 		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1180 			goto cannot_release;
1181 		bh = bh->b_this_page;
1182 	} while(bh != head);
1183 	spin_unlock(&sdp->sd_ail_lock);
1184 
1185 	head = bh = page_buffers(page);
1186 	do {
1187 		bd = bh->b_private;
1188 		if (bd) {
1189 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1190 			if (!list_empty(&bd->bd_list))
1191 				list_del_init(&bd->bd_list);
1192 			bd->bd_bh = NULL;
1193 			bh->b_private = NULL;
1194 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1195 		}
1196 
1197 		bh = bh->b_this_page;
1198 	} while (bh != head);
1199 	gfs2_log_unlock(sdp);
1200 
1201 	return try_to_free_buffers(page);
1202 
1203 cannot_release:
1204 	spin_unlock(&sdp->sd_ail_lock);
1205 	gfs2_log_unlock(sdp);
1206 	return 0;
1207 }
1208 
1209 static const struct address_space_operations gfs2_writeback_aops = {
1210 	.writepage = gfs2_writepage,
1211 	.writepages = gfs2_writepages,
1212 	.readpage = gfs2_readpage,
1213 	.readpages = gfs2_readpages,
1214 	.write_begin = gfs2_write_begin,
1215 	.write_end = gfs2_write_end,
1216 	.bmap = gfs2_bmap,
1217 	.invalidatepage = gfs2_invalidatepage,
1218 	.releasepage = gfs2_releasepage,
1219 	.direct_IO = gfs2_direct_IO,
1220 	.migratepage = buffer_migrate_page,
1221 	.is_partially_uptodate = block_is_partially_uptodate,
1222 	.error_remove_page = generic_error_remove_page,
1223 };
1224 
1225 static const struct address_space_operations gfs2_ordered_aops = {
1226 	.writepage = gfs2_writepage,
1227 	.writepages = gfs2_writepages,
1228 	.readpage = gfs2_readpage,
1229 	.readpages = gfs2_readpages,
1230 	.write_begin = gfs2_write_begin,
1231 	.write_end = gfs2_write_end,
1232 	.set_page_dirty = gfs2_set_page_dirty,
1233 	.bmap = gfs2_bmap,
1234 	.invalidatepage = gfs2_invalidatepage,
1235 	.releasepage = gfs2_releasepage,
1236 	.direct_IO = gfs2_direct_IO,
1237 	.migratepage = buffer_migrate_page,
1238 	.is_partially_uptodate = block_is_partially_uptodate,
1239 	.error_remove_page = generic_error_remove_page,
1240 };
1241 
1242 static const struct address_space_operations gfs2_jdata_aops = {
1243 	.writepage = gfs2_jdata_writepage,
1244 	.writepages = gfs2_jdata_writepages,
1245 	.readpage = gfs2_readpage,
1246 	.readpages = gfs2_readpages,
1247 	.write_begin = gfs2_write_begin,
1248 	.write_end = gfs2_write_end,
1249 	.set_page_dirty = gfs2_set_page_dirty,
1250 	.bmap = gfs2_bmap,
1251 	.invalidatepage = gfs2_invalidatepage,
1252 	.releasepage = gfs2_releasepage,
1253 	.is_partially_uptodate = block_is_partially_uptodate,
1254 	.error_remove_page = generic_error_remove_page,
1255 };
1256 
1257 void gfs2_set_aops(struct inode *inode)
1258 {
1259 	struct gfs2_inode *ip = GFS2_I(inode);
1260 
1261 	if (gfs2_is_writeback(ip))
1262 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1263 	else if (gfs2_is_ordered(ip))
1264 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1265 	else if (gfs2_is_jdata(ip))
1266 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1267 	else
1268 		BUG();
1269 }
1270 
1271