xref: /openbmc/linux/fs/gfs2/aops.c (revision 67fd707f)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39 
40 
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 				   unsigned int from, unsigned int to)
43 {
44 	struct buffer_head *head = page_buffers(page);
45 	unsigned int bsize = head->b_size;
46 	struct buffer_head *bh;
47 	unsigned int start, end;
48 
49 	for (bh = head, start = 0; bh != head || !start;
50 	     bh = bh->b_this_page, start = end) {
51 		end = start + bsize;
52 		if (end <= from || start >= to)
53 			continue;
54 		if (gfs2_is_jdata(ip))
55 			set_buffer_uptodate(bh);
56 		gfs2_trans_add_data(ip->i_gl, bh);
57 	}
58 }
59 
60 /**
61  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62  * @inode: The inode
63  * @lblock: The block number to look up
64  * @bh_result: The buffer head to return the result in
65  * @create: Non-zero if we may add block to the file
66  *
67  * Returns: errno
68  */
69 
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 				  struct buffer_head *bh_result, int create)
72 {
73 	int error;
74 
75 	error = gfs2_block_map(inode, lblock, bh_result, 0);
76 	if (error)
77 		return error;
78 	if (!buffer_mapped(bh_result))
79 		return -EIO;
80 	return 0;
81 }
82 
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 				 struct buffer_head *bh_result, int create)
85 {
86 	return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88 
89 /**
90  * gfs2_writepage_common - Common bits of writepage
91  * @page: The page to be written
92  * @wbc: The writeback control
93  *
94  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95  */
96 
97 static int gfs2_writepage_common(struct page *page,
98 				 struct writeback_control *wbc)
99 {
100 	struct inode *inode = page->mapping->host;
101 	struct gfs2_inode *ip = GFS2_I(inode);
102 	struct gfs2_sbd *sdp = GFS2_SB(inode);
103 	loff_t i_size = i_size_read(inode);
104 	pgoff_t end_index = i_size >> PAGE_SHIFT;
105 	unsigned offset;
106 
107 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108 		goto out;
109 	if (current->journal_info)
110 		goto redirty;
111 	/* Is the page fully outside i_size? (truncate in progress) */
112 	offset = i_size & (PAGE_SIZE-1);
113 	if (page->index > end_index || (page->index == end_index && !offset)) {
114 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
115 		goto out;
116 	}
117 	return 1;
118 redirty:
119 	redirty_page_for_writepage(wbc, page);
120 out:
121 	unlock_page(page);
122 	return 0;
123 }
124 
125 /**
126  * gfs2_writepage - Write page for writeback mappings
127  * @page: The page
128  * @wbc: The writeback control
129  *
130  */
131 
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134 	int ret;
135 
136 	ret = gfs2_writepage_common(page, wbc);
137 	if (ret <= 0)
138 		return ret;
139 
140 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142 
143 /* This is the same as calling block_write_full_page, but it also
144  * writes pages outside of i_size
145  */
146 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
147 				struct writeback_control *wbc)
148 {
149 	struct inode * const inode = page->mapping->host;
150 	loff_t i_size = i_size_read(inode);
151 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
152 	unsigned offset;
153 
154 	/*
155 	 * The page straddles i_size.  It must be zeroed out on each and every
156 	 * writepage invocation because it may be mmapped.  "A file is mapped
157 	 * in multiples of the page size.  For a file that is not a multiple of
158 	 * the  page size, the remaining memory is zeroed when mapped, and
159 	 * writes to that region are not written out to the file."
160 	 */
161 	offset = i_size & (PAGE_SIZE-1);
162 	if (page->index == end_index && offset)
163 		zero_user_segment(page, offset, PAGE_SIZE);
164 
165 	return __block_write_full_page(inode, page, get_block, wbc,
166 				       end_buffer_async_write);
167 }
168 
169 /**
170  * __gfs2_jdata_writepage - The core of jdata writepage
171  * @page: The page to write
172  * @wbc: The writeback control
173  *
174  * This is shared between writepage and writepages and implements the
175  * core of the writepage operation. If a transaction is required then
176  * PageChecked will have been set and the transaction will have
177  * already been started before this is called.
178  */
179 
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 	struct inode *inode = page->mapping->host;
183 	struct gfs2_inode *ip = GFS2_I(inode);
184 	struct gfs2_sbd *sdp = GFS2_SB(inode);
185 
186 	if (PageChecked(page)) {
187 		ClearPageChecked(page);
188 		if (!page_has_buffers(page)) {
189 			create_empty_buffers(page, inode->i_sb->s_blocksize,
190 					     BIT(BH_Dirty)|BIT(BH_Uptodate));
191 		}
192 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193 	}
194 	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196 
197 /**
198  * gfs2_jdata_writepage - Write complete page
199  * @page: Page to write
200  * @wbc: The writeback control
201  *
202  * Returns: errno
203  *
204  */
205 
206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
207 {
208 	struct inode *inode = page->mapping->host;
209 	struct gfs2_inode *ip = GFS2_I(inode);
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 
213 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
214 		goto out;
215 	if (PageChecked(page) || current->journal_info)
216 		goto out_ignore;
217 	ret = __gfs2_jdata_writepage(page, wbc);
218 	return ret;
219 
220 out_ignore:
221 	redirty_page_for_writepage(wbc, page);
222 out:
223 	unlock_page(page);
224 	return 0;
225 }
226 
227 /**
228  * gfs2_writepages - Write a bunch of dirty pages back to disk
229  * @mapping: The mapping to write
230  * @wbc: Write-back control
231  *
232  * Used for both ordered and writeback modes.
233  */
234 static int gfs2_writepages(struct address_space *mapping,
235 			   struct writeback_control *wbc)
236 {
237 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
238 	int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
239 
240 	/*
241 	 * Even if we didn't write any pages here, we might still be holding
242 	 * dirty pages in the ail. We forcibly flush the ail because we don't
243 	 * want balance_dirty_pages() to loop indefinitely trying to write out
244 	 * pages held in the ail that it can't find.
245 	 */
246 	if (ret == 0)
247 		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
248 
249 	return ret;
250 }
251 
252 /**
253  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
254  * @mapping: The mapping
255  * @wbc: The writeback control
256  * @pvec: The vector of pages
257  * @nr_pages: The number of pages to write
258  * @end: End position
259  * @done_index: Page index
260  *
261  * Returns: non-zero if loop should terminate, zero otherwise
262  */
263 
264 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
265 				    struct writeback_control *wbc,
266 				    struct pagevec *pvec,
267 				    int nr_pages, pgoff_t end,
268 				    pgoff_t *done_index)
269 {
270 	struct inode *inode = mapping->host;
271 	struct gfs2_sbd *sdp = GFS2_SB(inode);
272 	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
273 	int i;
274 	int ret;
275 
276 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
277 	if (ret < 0)
278 		return ret;
279 
280 	for(i = 0; i < nr_pages; i++) {
281 		struct page *page = pvec->pages[i];
282 
283 		*done_index = page->index;
284 
285 		lock_page(page);
286 
287 		if (unlikely(page->mapping != mapping)) {
288 continue_unlock:
289 			unlock_page(page);
290 			continue;
291 		}
292 
293 		if (!PageDirty(page)) {
294 			/* someone wrote it for us */
295 			goto continue_unlock;
296 		}
297 
298 		if (PageWriteback(page)) {
299 			if (wbc->sync_mode != WB_SYNC_NONE)
300 				wait_on_page_writeback(page);
301 			else
302 				goto continue_unlock;
303 		}
304 
305 		BUG_ON(PageWriteback(page));
306 		if (!clear_page_dirty_for_io(page))
307 			goto continue_unlock;
308 
309 		trace_wbc_writepage(wbc, inode_to_bdi(inode));
310 
311 		ret = __gfs2_jdata_writepage(page, wbc);
312 		if (unlikely(ret)) {
313 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
314 				unlock_page(page);
315 				ret = 0;
316 			} else {
317 
318 				/*
319 				 * done_index is set past this page,
320 				 * so media errors will not choke
321 				 * background writeout for the entire
322 				 * file. This has consequences for
323 				 * range_cyclic semantics (ie. it may
324 				 * not be suitable for data integrity
325 				 * writeout).
326 				 */
327 				*done_index = page->index + 1;
328 				ret = 1;
329 				break;
330 			}
331 		}
332 
333 		/*
334 		 * We stop writing back only if we are not doing
335 		 * integrity sync. In case of integrity sync we have to
336 		 * keep going until we have written all the pages
337 		 * we tagged for writeback prior to entering this loop.
338 		 */
339 		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
340 			ret = 1;
341 			break;
342 		}
343 
344 	}
345 	gfs2_trans_end(sdp);
346 	return ret;
347 }
348 
349 /**
350  * gfs2_write_cache_jdata - Like write_cache_pages but different
351  * @mapping: The mapping to write
352  * @wbc: The writeback control
353  *
354  * The reason that we use our own function here is that we need to
355  * start transactions before we grab page locks. This allows us
356  * to get the ordering right.
357  */
358 
359 static int gfs2_write_cache_jdata(struct address_space *mapping,
360 				  struct writeback_control *wbc)
361 {
362 	int ret = 0;
363 	int done = 0;
364 	struct pagevec pvec;
365 	int nr_pages;
366 	pgoff_t uninitialized_var(writeback_index);
367 	pgoff_t index;
368 	pgoff_t end;
369 	pgoff_t done_index;
370 	int cycled;
371 	int range_whole = 0;
372 	int tag;
373 
374 	pagevec_init(&pvec, 0);
375 	if (wbc->range_cyclic) {
376 		writeback_index = mapping->writeback_index; /* prev offset */
377 		index = writeback_index;
378 		if (index == 0)
379 			cycled = 1;
380 		else
381 			cycled = 0;
382 		end = -1;
383 	} else {
384 		index = wbc->range_start >> PAGE_SHIFT;
385 		end = wbc->range_end >> PAGE_SHIFT;
386 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
387 			range_whole = 1;
388 		cycled = 1; /* ignore range_cyclic tests */
389 	}
390 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
391 		tag = PAGECACHE_TAG_TOWRITE;
392 	else
393 		tag = PAGECACHE_TAG_DIRTY;
394 
395 retry:
396 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
397 		tag_pages_for_writeback(mapping, index, end);
398 	done_index = index;
399 	while (!done && (index <= end)) {
400 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
401 				tag);
402 		if (nr_pages == 0)
403 			break;
404 
405 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
406 		if (ret)
407 			done = 1;
408 		if (ret > 0)
409 			ret = 0;
410 		pagevec_release(&pvec);
411 		cond_resched();
412 	}
413 
414 	if (!cycled && !done) {
415 		/*
416 		 * range_cyclic:
417 		 * We hit the last page and there is more work to be done: wrap
418 		 * back to the start of the file
419 		 */
420 		cycled = 1;
421 		index = 0;
422 		end = writeback_index - 1;
423 		goto retry;
424 	}
425 
426 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
427 		mapping->writeback_index = done_index;
428 
429 	return ret;
430 }
431 
432 
433 /**
434  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
435  * @mapping: The mapping to write
436  * @wbc: The writeback control
437  *
438  */
439 
440 static int gfs2_jdata_writepages(struct address_space *mapping,
441 				 struct writeback_control *wbc)
442 {
443 	struct gfs2_inode *ip = GFS2_I(mapping->host);
444 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
445 	int ret;
446 
447 	ret = gfs2_write_cache_jdata(mapping, wbc);
448 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
449 		gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
450 		ret = gfs2_write_cache_jdata(mapping, wbc);
451 	}
452 	return ret;
453 }
454 
455 /**
456  * stuffed_readpage - Fill in a Linux page with stuffed file data
457  * @ip: the inode
458  * @page: the page
459  *
460  * Returns: errno
461  */
462 
463 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
464 {
465 	struct buffer_head *dibh;
466 	u64 dsize = i_size_read(&ip->i_inode);
467 	void *kaddr;
468 	int error;
469 
470 	/*
471 	 * Due to the order of unstuffing files and ->fault(), we can be
472 	 * asked for a zero page in the case of a stuffed file being extended,
473 	 * so we need to supply one here. It doesn't happen often.
474 	 */
475 	if (unlikely(page->index)) {
476 		zero_user(page, 0, PAGE_SIZE);
477 		SetPageUptodate(page);
478 		return 0;
479 	}
480 
481 	error = gfs2_meta_inode_buffer(ip, &dibh);
482 	if (error)
483 		return error;
484 
485 	kaddr = kmap_atomic(page);
486 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
487 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
488 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
489 	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
490 	kunmap_atomic(kaddr);
491 	flush_dcache_page(page);
492 	brelse(dibh);
493 	SetPageUptodate(page);
494 
495 	return 0;
496 }
497 
498 
499 /**
500  * __gfs2_readpage - readpage
501  * @file: The file to read a page for
502  * @page: The page to read
503  *
504  * This is the core of gfs2's readpage. Its used by the internal file
505  * reading code as in that case we already hold the glock. Also its
506  * called by gfs2_readpage() once the required lock has been granted.
507  *
508  */
509 
510 static int __gfs2_readpage(void *file, struct page *page)
511 {
512 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
513 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
514 	int error;
515 
516 	if (gfs2_is_stuffed(ip)) {
517 		error = stuffed_readpage(ip, page);
518 		unlock_page(page);
519 	} else {
520 		error = mpage_readpage(page, gfs2_block_map);
521 	}
522 
523 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
524 		return -EIO;
525 
526 	return error;
527 }
528 
529 /**
530  * gfs2_readpage - read a page of a file
531  * @file: The file to read
532  * @page: The page of the file
533  *
534  * This deals with the locking required. We have to unlock and
535  * relock the page in order to get the locking in the right
536  * order.
537  */
538 
539 static int gfs2_readpage(struct file *file, struct page *page)
540 {
541 	struct address_space *mapping = page->mapping;
542 	struct gfs2_inode *ip = GFS2_I(mapping->host);
543 	struct gfs2_holder gh;
544 	int error;
545 
546 	unlock_page(page);
547 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
548 	error = gfs2_glock_nq(&gh);
549 	if (unlikely(error))
550 		goto out;
551 	error = AOP_TRUNCATED_PAGE;
552 	lock_page(page);
553 	if (page->mapping == mapping && !PageUptodate(page))
554 		error = __gfs2_readpage(file, page);
555 	else
556 		unlock_page(page);
557 	gfs2_glock_dq(&gh);
558 out:
559 	gfs2_holder_uninit(&gh);
560 	if (error && error != AOP_TRUNCATED_PAGE)
561 		lock_page(page);
562 	return error;
563 }
564 
565 /**
566  * gfs2_internal_read - read an internal file
567  * @ip: The gfs2 inode
568  * @buf: The buffer to fill
569  * @pos: The file position
570  * @size: The amount to read
571  *
572  */
573 
574 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
575                        unsigned size)
576 {
577 	struct address_space *mapping = ip->i_inode.i_mapping;
578 	unsigned long index = *pos / PAGE_SIZE;
579 	unsigned offset = *pos & (PAGE_SIZE - 1);
580 	unsigned copied = 0;
581 	unsigned amt;
582 	struct page *page;
583 	void *p;
584 
585 	do {
586 		amt = size - copied;
587 		if (offset + size > PAGE_SIZE)
588 			amt = PAGE_SIZE - offset;
589 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
590 		if (IS_ERR(page))
591 			return PTR_ERR(page);
592 		p = kmap_atomic(page);
593 		memcpy(buf + copied, p + offset, amt);
594 		kunmap_atomic(p);
595 		put_page(page);
596 		copied += amt;
597 		index++;
598 		offset = 0;
599 	} while(copied < size);
600 	(*pos) += size;
601 	return size;
602 }
603 
604 /**
605  * gfs2_readpages - Read a bunch of pages at once
606  * @file: The file to read from
607  * @mapping: Address space info
608  * @pages: List of pages to read
609  * @nr_pages: Number of pages to read
610  *
611  * Some notes:
612  * 1. This is only for readahead, so we can simply ignore any things
613  *    which are slightly inconvenient (such as locking conflicts between
614  *    the page lock and the glock) and return having done no I/O. Its
615  *    obviously not something we'd want to do on too regular a basis.
616  *    Any I/O we ignore at this time will be done via readpage later.
617  * 2. We don't handle stuffed files here we let readpage do the honours.
618  * 3. mpage_readpages() does most of the heavy lifting in the common case.
619  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
620  */
621 
622 static int gfs2_readpages(struct file *file, struct address_space *mapping,
623 			  struct list_head *pages, unsigned nr_pages)
624 {
625 	struct inode *inode = mapping->host;
626 	struct gfs2_inode *ip = GFS2_I(inode);
627 	struct gfs2_sbd *sdp = GFS2_SB(inode);
628 	struct gfs2_holder gh;
629 	int ret;
630 
631 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
632 	ret = gfs2_glock_nq(&gh);
633 	if (unlikely(ret))
634 		goto out_uninit;
635 	if (!gfs2_is_stuffed(ip))
636 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
637 	gfs2_glock_dq(&gh);
638 out_uninit:
639 	gfs2_holder_uninit(&gh);
640 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
641 		ret = -EIO;
642 	return ret;
643 }
644 
645 /**
646  * gfs2_write_begin - Begin to write to a file
647  * @file: The file to write to
648  * @mapping: The mapping in which to write
649  * @pos: The file offset at which to start writing
650  * @len: Length of the write
651  * @flags: Various flags
652  * @pagep: Pointer to return the page
653  * @fsdata: Pointer to return fs data (unused by GFS2)
654  *
655  * Returns: errno
656  */
657 
658 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
659 			    loff_t pos, unsigned len, unsigned flags,
660 			    struct page **pagep, void **fsdata)
661 {
662 	struct gfs2_inode *ip = GFS2_I(mapping->host);
663 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
664 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
665 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
666 	unsigned requested = 0;
667 	int alloc_required;
668 	int error = 0;
669 	pgoff_t index = pos >> PAGE_SHIFT;
670 	unsigned from = pos & (PAGE_SIZE - 1);
671 	struct page *page;
672 
673 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
674 	error = gfs2_glock_nq(&ip->i_gh);
675 	if (unlikely(error))
676 		goto out_uninit;
677 	if (&ip->i_inode == sdp->sd_rindex) {
678 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
679 					   GL_NOCACHE, &m_ip->i_gh);
680 		if (unlikely(error)) {
681 			gfs2_glock_dq(&ip->i_gh);
682 			goto out_uninit;
683 		}
684 	}
685 
686 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
687 
688 	if (alloc_required || gfs2_is_jdata(ip))
689 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
690 
691 	if (alloc_required) {
692 		struct gfs2_alloc_parms ap = { .aflags = 0, };
693 		requested = data_blocks + ind_blocks;
694 		ap.target = requested;
695 		error = gfs2_quota_lock_check(ip, &ap);
696 		if (error)
697 			goto out_unlock;
698 
699 		error = gfs2_inplace_reserve(ip, &ap);
700 		if (error)
701 			goto out_qunlock;
702 	}
703 
704 	rblocks = RES_DINODE + ind_blocks;
705 	if (gfs2_is_jdata(ip))
706 		rblocks += data_blocks ? data_blocks : 1;
707 	if (ind_blocks || data_blocks)
708 		rblocks += RES_STATFS + RES_QUOTA;
709 	if (&ip->i_inode == sdp->sd_rindex)
710 		rblocks += 2 * RES_STATFS;
711 	if (alloc_required)
712 		rblocks += gfs2_rg_blocks(ip, requested);
713 
714 	error = gfs2_trans_begin(sdp, rblocks,
715 				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
716 	if (error)
717 		goto out_trans_fail;
718 
719 	error = -ENOMEM;
720 	flags |= AOP_FLAG_NOFS;
721 	page = grab_cache_page_write_begin(mapping, index, flags);
722 	*pagep = page;
723 	if (unlikely(!page))
724 		goto out_endtrans;
725 
726 	if (gfs2_is_stuffed(ip)) {
727 		error = 0;
728 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
729 			error = gfs2_unstuff_dinode(ip, page);
730 			if (error == 0)
731 				goto prepare_write;
732 		} else if (!PageUptodate(page)) {
733 			error = stuffed_readpage(ip, page);
734 		}
735 		goto out;
736 	}
737 
738 prepare_write:
739 	error = __block_write_begin(page, from, len, gfs2_block_map);
740 out:
741 	if (error == 0)
742 		return 0;
743 
744 	unlock_page(page);
745 	put_page(page);
746 
747 	gfs2_trans_end(sdp);
748 	if (pos + len > ip->i_inode.i_size)
749 		gfs2_trim_blocks(&ip->i_inode);
750 	goto out_trans_fail;
751 
752 out_endtrans:
753 	gfs2_trans_end(sdp);
754 out_trans_fail:
755 	if (alloc_required) {
756 		gfs2_inplace_release(ip);
757 out_qunlock:
758 		gfs2_quota_unlock(ip);
759 	}
760 out_unlock:
761 	if (&ip->i_inode == sdp->sd_rindex) {
762 		gfs2_glock_dq(&m_ip->i_gh);
763 		gfs2_holder_uninit(&m_ip->i_gh);
764 	}
765 	gfs2_glock_dq(&ip->i_gh);
766 out_uninit:
767 	gfs2_holder_uninit(&ip->i_gh);
768 	return error;
769 }
770 
771 /**
772  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
773  * @inode: the rindex inode
774  */
775 static void adjust_fs_space(struct inode *inode)
776 {
777 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
778 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
779 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
780 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
781 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
782 	struct buffer_head *m_bh, *l_bh;
783 	u64 fs_total, new_free;
784 
785 	/* Total up the file system space, according to the latest rindex. */
786 	fs_total = gfs2_ri_total(sdp);
787 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
788 		return;
789 
790 	spin_lock(&sdp->sd_statfs_spin);
791 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
792 			      sizeof(struct gfs2_dinode));
793 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
794 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
795 	else
796 		new_free = 0;
797 	spin_unlock(&sdp->sd_statfs_spin);
798 	fs_warn(sdp, "File system extended by %llu blocks.\n",
799 		(unsigned long long)new_free);
800 	gfs2_statfs_change(sdp, new_free, new_free, 0);
801 
802 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
803 		goto out;
804 	update_statfs(sdp, m_bh, l_bh);
805 	brelse(l_bh);
806 out:
807 	brelse(m_bh);
808 }
809 
810 /**
811  * gfs2_stuffed_write_end - Write end for stuffed files
812  * @inode: The inode
813  * @dibh: The buffer_head containing the on-disk inode
814  * @pos: The file position
815  * @len: The length of the write
816  * @copied: How much was actually copied by the VFS
817  * @page: The page
818  *
819  * This copies the data from the page into the inode block after
820  * the inode data structure itself.
821  *
822  * Returns: errno
823  */
824 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
825 				  loff_t pos, unsigned len, unsigned copied,
826 				  struct page *page)
827 {
828 	struct gfs2_inode *ip = GFS2_I(inode);
829 	struct gfs2_sbd *sdp = GFS2_SB(inode);
830 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
831 	u64 to = pos + copied;
832 	void *kaddr;
833 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
834 
835 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
836 	kaddr = kmap_atomic(page);
837 	memcpy(buf + pos, kaddr + pos, copied);
838 	flush_dcache_page(page);
839 	kunmap_atomic(kaddr);
840 
841 	WARN_ON(!PageUptodate(page));
842 	unlock_page(page);
843 	put_page(page);
844 
845 	if (copied) {
846 		if (inode->i_size < to)
847 			i_size_write(inode, to);
848 		mark_inode_dirty(inode);
849 	}
850 
851 	if (inode == sdp->sd_rindex) {
852 		adjust_fs_space(inode);
853 		sdp->sd_rindex_uptodate = 0;
854 	}
855 
856 	brelse(dibh);
857 	gfs2_trans_end(sdp);
858 	if (inode == sdp->sd_rindex) {
859 		gfs2_glock_dq(&m_ip->i_gh);
860 		gfs2_holder_uninit(&m_ip->i_gh);
861 	}
862 	gfs2_glock_dq(&ip->i_gh);
863 	gfs2_holder_uninit(&ip->i_gh);
864 	return copied;
865 }
866 
867 /**
868  * gfs2_write_end
869  * @file: The file to write to
870  * @mapping: The address space to write to
871  * @pos: The file position
872  * @len: The length of the data
873  * @copied: How much was actually copied by the VFS
874  * @page: The page that has been written
875  * @fsdata: The fsdata (unused in GFS2)
876  *
877  * The main write_end function for GFS2. We have a separate one for
878  * stuffed files as they are slightly different, otherwise we just
879  * put our locking around the VFS provided functions.
880  *
881  * Returns: errno
882  */
883 
884 static int gfs2_write_end(struct file *file, struct address_space *mapping,
885 			  loff_t pos, unsigned len, unsigned copied,
886 			  struct page *page, void *fsdata)
887 {
888 	struct inode *inode = page->mapping->host;
889 	struct gfs2_inode *ip = GFS2_I(inode);
890 	struct gfs2_sbd *sdp = GFS2_SB(inode);
891 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
892 	struct buffer_head *dibh;
893 	unsigned int from = pos & (PAGE_SIZE - 1);
894 	unsigned int to = from + len;
895 	int ret;
896 	struct gfs2_trans *tr = current->journal_info;
897 	BUG_ON(!tr);
898 
899 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
900 
901 	ret = gfs2_meta_inode_buffer(ip, &dibh);
902 	if (unlikely(ret)) {
903 		unlock_page(page);
904 		put_page(page);
905 		goto failed;
906 	}
907 
908 	if (gfs2_is_stuffed(ip))
909 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
910 
911 	if (!gfs2_is_writeback(ip))
912 		gfs2_page_add_databufs(ip, page, from, to);
913 
914 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
915 	if (tr->tr_num_buf_new)
916 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
917 	else
918 		gfs2_trans_add_meta(ip->i_gl, dibh);
919 
920 
921 	if (inode == sdp->sd_rindex) {
922 		adjust_fs_space(inode);
923 		sdp->sd_rindex_uptodate = 0;
924 	}
925 
926 	brelse(dibh);
927 failed:
928 	gfs2_trans_end(sdp);
929 	gfs2_inplace_release(ip);
930 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
931 		gfs2_quota_unlock(ip);
932 	if (inode == sdp->sd_rindex) {
933 		gfs2_glock_dq(&m_ip->i_gh);
934 		gfs2_holder_uninit(&m_ip->i_gh);
935 	}
936 	gfs2_glock_dq(&ip->i_gh);
937 	gfs2_holder_uninit(&ip->i_gh);
938 	return ret;
939 }
940 
941 /**
942  * gfs2_set_page_dirty - Page dirtying function
943  * @page: The page to dirty
944  *
945  * Returns: 1 if it dirtyed the page, or 0 otherwise
946  */
947 
948 static int gfs2_set_page_dirty(struct page *page)
949 {
950 	SetPageChecked(page);
951 	return __set_page_dirty_buffers(page);
952 }
953 
954 /**
955  * gfs2_bmap - Block map function
956  * @mapping: Address space info
957  * @lblock: The block to map
958  *
959  * Returns: The disk address for the block or 0 on hole or error
960  */
961 
962 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
963 {
964 	struct gfs2_inode *ip = GFS2_I(mapping->host);
965 	struct gfs2_holder i_gh;
966 	sector_t dblock = 0;
967 	int error;
968 
969 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
970 	if (error)
971 		return 0;
972 
973 	if (!gfs2_is_stuffed(ip))
974 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
975 
976 	gfs2_glock_dq_uninit(&i_gh);
977 
978 	return dblock;
979 }
980 
981 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
982 {
983 	struct gfs2_bufdata *bd;
984 
985 	lock_buffer(bh);
986 	gfs2_log_lock(sdp);
987 	clear_buffer_dirty(bh);
988 	bd = bh->b_private;
989 	if (bd) {
990 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
991 			list_del_init(&bd->bd_list);
992 		else
993 			gfs2_remove_from_journal(bh, REMOVE_JDATA);
994 	}
995 	bh->b_bdev = NULL;
996 	clear_buffer_mapped(bh);
997 	clear_buffer_req(bh);
998 	clear_buffer_new(bh);
999 	gfs2_log_unlock(sdp);
1000 	unlock_buffer(bh);
1001 }
1002 
1003 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1004 				unsigned int length)
1005 {
1006 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1007 	unsigned int stop = offset + length;
1008 	int partial_page = (offset || length < PAGE_SIZE);
1009 	struct buffer_head *bh, *head;
1010 	unsigned long pos = 0;
1011 
1012 	BUG_ON(!PageLocked(page));
1013 	if (!partial_page)
1014 		ClearPageChecked(page);
1015 	if (!page_has_buffers(page))
1016 		goto out;
1017 
1018 	bh = head = page_buffers(page);
1019 	do {
1020 		if (pos + bh->b_size > stop)
1021 			return;
1022 
1023 		if (offset <= pos)
1024 			gfs2_discard(sdp, bh);
1025 		pos += bh->b_size;
1026 		bh = bh->b_this_page;
1027 	} while (bh != head);
1028 out:
1029 	if (!partial_page)
1030 		try_to_release_page(page, 0);
1031 }
1032 
1033 /**
1034  * gfs2_ok_for_dio - check that dio is valid on this file
1035  * @ip: The inode
1036  * @offset: The offset at which we are reading or writing
1037  *
1038  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1039  *          1 (to accept the i/o request)
1040  */
1041 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1042 {
1043 	/*
1044 	 * Should we return an error here? I can't see that O_DIRECT for
1045 	 * a stuffed file makes any sense. For now we'll silently fall
1046 	 * back to buffered I/O
1047 	 */
1048 	if (gfs2_is_stuffed(ip))
1049 		return 0;
1050 
1051 	if (offset >= i_size_read(&ip->i_inode))
1052 		return 0;
1053 	return 1;
1054 }
1055 
1056 
1057 
1058 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1059 {
1060 	struct file *file = iocb->ki_filp;
1061 	struct inode *inode = file->f_mapping->host;
1062 	struct address_space *mapping = inode->i_mapping;
1063 	struct gfs2_inode *ip = GFS2_I(inode);
1064 	loff_t offset = iocb->ki_pos;
1065 	struct gfs2_holder gh;
1066 	int rv;
1067 
1068 	/*
1069 	 * Deferred lock, even if its a write, since we do no allocation
1070 	 * on this path. All we need change is atime, and this lock mode
1071 	 * ensures that other nodes have flushed their buffered read caches
1072 	 * (i.e. their page cache entries for this inode). We do not,
1073 	 * unfortunately have the option of only flushing a range like
1074 	 * the VFS does.
1075 	 */
1076 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1077 	rv = gfs2_glock_nq(&gh);
1078 	if (rv)
1079 		goto out_uninit;
1080 	rv = gfs2_ok_for_dio(ip, offset);
1081 	if (rv != 1)
1082 		goto out; /* dio not valid, fall back to buffered i/o */
1083 
1084 	/*
1085 	 * Now since we are holding a deferred (CW) lock at this point, you
1086 	 * might be wondering why this is ever needed. There is a case however
1087 	 * where we've granted a deferred local lock against a cached exclusive
1088 	 * glock. That is ok provided all granted local locks are deferred, but
1089 	 * it also means that it is possible to encounter pages which are
1090 	 * cached and possibly also mapped. So here we check for that and sort
1091 	 * them out ahead of the dio. The glock state machine will take care of
1092 	 * everything else.
1093 	 *
1094 	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1095 	 * the first place, mapping->nr_pages will always be zero.
1096 	 */
1097 	if (mapping->nrpages) {
1098 		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1099 		loff_t len = iov_iter_count(iter);
1100 		loff_t end = PAGE_ALIGN(offset + len) - 1;
1101 
1102 		rv = 0;
1103 		if (len == 0)
1104 			goto out;
1105 		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1106 			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1107 		rv = filemap_write_and_wait_range(mapping, lstart, end);
1108 		if (rv)
1109 			goto out;
1110 		if (iov_iter_rw(iter) == WRITE)
1111 			truncate_inode_pages_range(mapping, lstart, end);
1112 	}
1113 
1114 	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1115 				  gfs2_get_block_direct, NULL, NULL, 0);
1116 out:
1117 	gfs2_glock_dq(&gh);
1118 out_uninit:
1119 	gfs2_holder_uninit(&gh);
1120 	return rv;
1121 }
1122 
1123 /**
1124  * gfs2_releasepage - free the metadata associated with a page
1125  * @page: the page that's being released
1126  * @gfp_mask: passed from Linux VFS, ignored by us
1127  *
1128  * Call try_to_free_buffers() if the buffers in this page can be
1129  * released.
1130  *
1131  * Returns: 0
1132  */
1133 
1134 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1135 {
1136 	struct address_space *mapping = page->mapping;
1137 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1138 	struct buffer_head *bh, *head;
1139 	struct gfs2_bufdata *bd;
1140 
1141 	if (!page_has_buffers(page))
1142 		return 0;
1143 
1144 	/*
1145 	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1146 	 * clean pages might not have had the dirty bit cleared.  Thus, it can
1147 	 * send actual dirty pages to ->releasepage() via shrink_active_list().
1148 	 *
1149 	 * As a workaround, we skip pages that contain dirty buffers below.
1150 	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1151 	 * on dirty buffers like we used to here again.
1152 	 */
1153 
1154 	gfs2_log_lock(sdp);
1155 	spin_lock(&sdp->sd_ail_lock);
1156 	head = bh = page_buffers(page);
1157 	do {
1158 		if (atomic_read(&bh->b_count))
1159 			goto cannot_release;
1160 		bd = bh->b_private;
1161 		if (bd && bd->bd_tr)
1162 			goto cannot_release;
1163 		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1164 			goto cannot_release;
1165 		bh = bh->b_this_page;
1166 	} while(bh != head);
1167 	spin_unlock(&sdp->sd_ail_lock);
1168 
1169 	head = bh = page_buffers(page);
1170 	do {
1171 		bd = bh->b_private;
1172 		if (bd) {
1173 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1174 			if (!list_empty(&bd->bd_list))
1175 				list_del_init(&bd->bd_list);
1176 			bd->bd_bh = NULL;
1177 			bh->b_private = NULL;
1178 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1179 		}
1180 
1181 		bh = bh->b_this_page;
1182 	} while (bh != head);
1183 	gfs2_log_unlock(sdp);
1184 
1185 	return try_to_free_buffers(page);
1186 
1187 cannot_release:
1188 	spin_unlock(&sdp->sd_ail_lock);
1189 	gfs2_log_unlock(sdp);
1190 	return 0;
1191 }
1192 
1193 static const struct address_space_operations gfs2_writeback_aops = {
1194 	.writepage = gfs2_writepage,
1195 	.writepages = gfs2_writepages,
1196 	.readpage = gfs2_readpage,
1197 	.readpages = gfs2_readpages,
1198 	.write_begin = gfs2_write_begin,
1199 	.write_end = gfs2_write_end,
1200 	.bmap = gfs2_bmap,
1201 	.invalidatepage = gfs2_invalidatepage,
1202 	.releasepage = gfs2_releasepage,
1203 	.direct_IO = gfs2_direct_IO,
1204 	.migratepage = buffer_migrate_page,
1205 	.is_partially_uptodate = block_is_partially_uptodate,
1206 	.error_remove_page = generic_error_remove_page,
1207 };
1208 
1209 static const struct address_space_operations gfs2_ordered_aops = {
1210 	.writepage = gfs2_writepage,
1211 	.writepages = gfs2_writepages,
1212 	.readpage = gfs2_readpage,
1213 	.readpages = gfs2_readpages,
1214 	.write_begin = gfs2_write_begin,
1215 	.write_end = gfs2_write_end,
1216 	.set_page_dirty = gfs2_set_page_dirty,
1217 	.bmap = gfs2_bmap,
1218 	.invalidatepage = gfs2_invalidatepage,
1219 	.releasepage = gfs2_releasepage,
1220 	.direct_IO = gfs2_direct_IO,
1221 	.migratepage = buffer_migrate_page,
1222 	.is_partially_uptodate = block_is_partially_uptodate,
1223 	.error_remove_page = generic_error_remove_page,
1224 };
1225 
1226 static const struct address_space_operations gfs2_jdata_aops = {
1227 	.writepage = gfs2_jdata_writepage,
1228 	.writepages = gfs2_jdata_writepages,
1229 	.readpage = gfs2_readpage,
1230 	.readpages = gfs2_readpages,
1231 	.write_begin = gfs2_write_begin,
1232 	.write_end = gfs2_write_end,
1233 	.set_page_dirty = gfs2_set_page_dirty,
1234 	.bmap = gfs2_bmap,
1235 	.invalidatepage = gfs2_invalidatepage,
1236 	.releasepage = gfs2_releasepage,
1237 	.is_partially_uptodate = block_is_partially_uptodate,
1238 	.error_remove_page = generic_error_remove_page,
1239 };
1240 
1241 void gfs2_set_aops(struct inode *inode)
1242 {
1243 	struct gfs2_inode *ip = GFS2_I(inode);
1244 
1245 	if (gfs2_is_writeback(ip))
1246 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1247 	else if (gfs2_is_ordered(ip))
1248 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1249 	else if (gfs2_is_jdata(ip))
1250 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1251 	else
1252 		BUG();
1253 }
1254 
1255