xref: /openbmc/linux/fs/gfs2/aops.c (revision 602c89d2)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 
38 
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 				   unsigned int from, unsigned int to)
41 {
42 	struct buffer_head *head = page_buffers(page);
43 	unsigned int bsize = head->b_size;
44 	struct buffer_head *bh;
45 	unsigned int start, end;
46 
47 	for (bh = head, start = 0; bh != head || !start;
48 	     bh = bh->b_this_page, start = end) {
49 		end = start + bsize;
50 		if (end <= from || start >= to)
51 			continue;
52 		if (gfs2_is_jdata(ip))
53 			set_buffer_uptodate(bh);
54 		gfs2_trans_add_bh(ip->i_gl, bh, 0);
55 	}
56 }
57 
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67 
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 				  struct buffer_head *bh_result, int create)
70 {
71 	int error;
72 
73 	error = gfs2_block_map(inode, lblock, bh_result, 0);
74 	if (error)
75 		return error;
76 	if (!buffer_mapped(bh_result))
77 		return -EIO;
78 	return 0;
79 }
80 
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 				 struct buffer_head *bh_result, int create)
83 {
84 	return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86 
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94 
95 static int gfs2_writepage_common(struct page *page,
96 				 struct writeback_control *wbc)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct gfs2_inode *ip = GFS2_I(inode);
100 	struct gfs2_sbd *sdp = GFS2_SB(inode);
101 	loff_t i_size = i_size_read(inode);
102 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 	unsigned offset;
104 
105 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 		goto out;
107 	if (current->journal_info)
108 		goto redirty;
109 	/* Is the page fully outside i_size? (truncate in progress) */
110 	offset = i_size & (PAGE_CACHE_SIZE-1);
111 	if (page->index > end_index || (page->index == end_index && !offset)) {
112 		page->mapping->a_ops->invalidatepage(page, 0);
113 		goto out;
114 	}
115 	return 1;
116 redirty:
117 	redirty_page_for_writepage(wbc, page);
118 out:
119 	unlock_page(page);
120 	return 0;
121 }
122 
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129 
130 static int gfs2_writeback_writepage(struct page *page,
131 				    struct writeback_control *wbc)
132 {
133 	int ret;
134 
135 	ret = gfs2_writepage_common(page, wbc);
136 	if (ret <= 0)
137 		return ret;
138 
139 	ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
140 	if (ret == -EAGAIN)
141 		ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
142 	return ret;
143 }
144 
145 /**
146  * gfs2_ordered_writepage - Write page for ordered data files
147  * @page: The page to write
148  * @wbc: The writeback control
149  *
150  */
151 
152 static int gfs2_ordered_writepage(struct page *page,
153 				  struct writeback_control *wbc)
154 {
155 	struct inode *inode = page->mapping->host;
156 	struct gfs2_inode *ip = GFS2_I(inode);
157 	int ret;
158 
159 	ret = gfs2_writepage_common(page, wbc);
160 	if (ret <= 0)
161 		return ret;
162 
163 	if (!page_has_buffers(page)) {
164 		create_empty_buffers(page, inode->i_sb->s_blocksize,
165 				     (1 << BH_Dirty)|(1 << BH_Uptodate));
166 	}
167 	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
168 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170 
171 /**
172  * __gfs2_jdata_writepage - The core of jdata writepage
173  * @page: The page to write
174  * @wbc: The writeback control
175  *
176  * This is shared between writepage and writepages and implements the
177  * core of the writepage operation. If a transaction is required then
178  * PageChecked will have been set and the transaction will have
179  * already been started before this is called.
180  */
181 
182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
183 {
184 	struct inode *inode = page->mapping->host;
185 	struct gfs2_inode *ip = GFS2_I(inode);
186 	struct gfs2_sbd *sdp = GFS2_SB(inode);
187 
188 	if (PageChecked(page)) {
189 		ClearPageChecked(page);
190 		if (!page_has_buffers(page)) {
191 			create_empty_buffers(page, inode->i_sb->s_blocksize,
192 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
193 		}
194 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
195 	}
196 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
197 }
198 
199 /**
200  * gfs2_jdata_writepage - Write complete page
201  * @page: Page to write
202  *
203  * Returns: errno
204  *
205  */
206 
207 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
208 {
209 	struct inode *inode = page->mapping->host;
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 	int done_trans = 0;
213 
214 	if (PageChecked(page)) {
215 		if (wbc->sync_mode != WB_SYNC_ALL)
216 			goto out_ignore;
217 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
218 		if (ret)
219 			goto out_ignore;
220 		done_trans = 1;
221 	}
222 	ret = gfs2_writepage_common(page, wbc);
223 	if (ret > 0)
224 		ret = __gfs2_jdata_writepage(page, wbc);
225 	if (done_trans)
226 		gfs2_trans_end(sdp);
227 	return ret;
228 
229 out_ignore:
230 	redirty_page_for_writepage(wbc, page);
231 	unlock_page(page);
232 	return 0;
233 }
234 
235 /**
236  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
237  * @mapping: The mapping to write
238  * @wbc: Write-back control
239  *
240  * For the data=writeback case we can already ignore buffer heads
241  * and write whole extents at once. This is a big reduction in the
242  * number of I/O requests we send and the bmap calls we make in this case.
243  */
244 static int gfs2_writeback_writepages(struct address_space *mapping,
245 				     struct writeback_control *wbc)
246 {
247 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
248 }
249 
250 /**
251  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252  * @mapping: The mapping
253  * @wbc: The writeback control
254  * @writepage: The writepage function to call for each page
255  * @pvec: The vector of pages
256  * @nr_pages: The number of pages to write
257  *
258  * Returns: non-zero if loop should terminate, zero otherwise
259  */
260 
261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262 				    struct writeback_control *wbc,
263 				    struct pagevec *pvec,
264 				    int nr_pages, pgoff_t end)
265 {
266 	struct inode *inode = mapping->host;
267 	struct gfs2_sbd *sdp = GFS2_SB(inode);
268 	loff_t i_size = i_size_read(inode);
269 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
270 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
271 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
272 	int i;
273 	int ret;
274 
275 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
276 	if (ret < 0)
277 		return ret;
278 
279 	for(i = 0; i < nr_pages; i++) {
280 		struct page *page = pvec->pages[i];
281 
282 		lock_page(page);
283 
284 		if (unlikely(page->mapping != mapping)) {
285 			unlock_page(page);
286 			continue;
287 		}
288 
289 		if (!wbc->range_cyclic && page->index > end) {
290 			ret = 1;
291 			unlock_page(page);
292 			continue;
293 		}
294 
295 		if (wbc->sync_mode != WB_SYNC_NONE)
296 			wait_on_page_writeback(page);
297 
298 		if (PageWriteback(page) ||
299 		    !clear_page_dirty_for_io(page)) {
300 			unlock_page(page);
301 			continue;
302 		}
303 
304 		/* Is the page fully outside i_size? (truncate in progress) */
305 		if (page->index > end_index || (page->index == end_index && !offset)) {
306 			page->mapping->a_ops->invalidatepage(page, 0);
307 			unlock_page(page);
308 			continue;
309 		}
310 
311 		ret = __gfs2_jdata_writepage(page, wbc);
312 
313 		if (ret || (--(wbc->nr_to_write) <= 0))
314 			ret = 1;
315 	}
316 	gfs2_trans_end(sdp);
317 	return ret;
318 }
319 
320 /**
321  * gfs2_write_cache_jdata - Like write_cache_pages but different
322  * @mapping: The mapping to write
323  * @wbc: The writeback control
324  * @writepage: The writepage function to call
325  * @data: The data to pass to writepage
326  *
327  * The reason that we use our own function here is that we need to
328  * start transactions before we grab page locks. This allows us
329  * to get the ordering right.
330  */
331 
332 static int gfs2_write_cache_jdata(struct address_space *mapping,
333 				  struct writeback_control *wbc)
334 {
335 	int ret = 0;
336 	int done = 0;
337 	struct pagevec pvec;
338 	int nr_pages;
339 	pgoff_t index;
340 	pgoff_t end;
341 	int scanned = 0;
342 	int range_whole = 0;
343 
344 	pagevec_init(&pvec, 0);
345 	if (wbc->range_cyclic) {
346 		index = mapping->writeback_index; /* Start from prev offset */
347 		end = -1;
348 	} else {
349 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
350 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
351 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
352 			range_whole = 1;
353 		scanned = 1;
354 	}
355 
356 retry:
357 	 while (!done && (index <= end) &&
358 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 					       PAGECACHE_TAG_DIRTY,
360 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
361 		scanned = 1;
362 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
363 		if (ret)
364 			done = 1;
365 		if (ret > 0)
366 			ret = 0;
367 
368 		pagevec_release(&pvec);
369 		cond_resched();
370 	}
371 
372 	if (!scanned && !done) {
373 		/*
374 		 * We hit the last page and there is more work to be done: wrap
375 		 * back to the start of the file
376 		 */
377 		scanned = 1;
378 		index = 0;
379 		goto retry;
380 	}
381 
382 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
383 		mapping->writeback_index = index;
384 	return ret;
385 }
386 
387 
388 /**
389  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
390  * @mapping: The mapping to write
391  * @wbc: The writeback control
392  *
393  */
394 
395 static int gfs2_jdata_writepages(struct address_space *mapping,
396 				 struct writeback_control *wbc)
397 {
398 	struct gfs2_inode *ip = GFS2_I(mapping->host);
399 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
400 	int ret;
401 
402 	ret = gfs2_write_cache_jdata(mapping, wbc);
403 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
404 		gfs2_log_flush(sdp, ip->i_gl);
405 		ret = gfs2_write_cache_jdata(mapping, wbc);
406 	}
407 	return ret;
408 }
409 
410 /**
411  * stuffed_readpage - Fill in a Linux page with stuffed file data
412  * @ip: the inode
413  * @page: the page
414  *
415  * Returns: errno
416  */
417 
418 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
419 {
420 	struct buffer_head *dibh;
421 	u64 dsize = i_size_read(&ip->i_inode);
422 	void *kaddr;
423 	int error;
424 
425 	/*
426 	 * Due to the order of unstuffing files and ->fault(), we can be
427 	 * asked for a zero page in the case of a stuffed file being extended,
428 	 * so we need to supply one here. It doesn't happen often.
429 	 */
430 	if (unlikely(page->index)) {
431 		zero_user(page, 0, PAGE_CACHE_SIZE);
432 		SetPageUptodate(page);
433 		return 0;
434 	}
435 
436 	error = gfs2_meta_inode_buffer(ip, &dibh);
437 	if (error)
438 		return error;
439 
440 	kaddr = kmap_atomic(page, KM_USER0);
441 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
442 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
443 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
444 	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
445 	kunmap_atomic(kaddr, KM_USER0);
446 	flush_dcache_page(page);
447 	brelse(dibh);
448 	SetPageUptodate(page);
449 
450 	return 0;
451 }
452 
453 
454 /**
455  * __gfs2_readpage - readpage
456  * @file: The file to read a page for
457  * @page: The page to read
458  *
459  * This is the core of gfs2's readpage. Its used by the internal file
460  * reading code as in that case we already hold the glock. Also its
461  * called by gfs2_readpage() once the required lock has been granted.
462  *
463  */
464 
465 static int __gfs2_readpage(void *file, struct page *page)
466 {
467 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
468 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
469 	int error;
470 
471 	if (gfs2_is_stuffed(ip)) {
472 		error = stuffed_readpage(ip, page);
473 		unlock_page(page);
474 	} else {
475 		error = mpage_readpage(page, gfs2_block_map);
476 	}
477 
478 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
479 		return -EIO;
480 
481 	return error;
482 }
483 
484 /**
485  * gfs2_readpage - read a page of a file
486  * @file: The file to read
487  * @page: The page of the file
488  *
489  * This deals with the locking required. We have to unlock and
490  * relock the page in order to get the locking in the right
491  * order.
492  */
493 
494 static int gfs2_readpage(struct file *file, struct page *page)
495 {
496 	struct address_space *mapping = page->mapping;
497 	struct gfs2_inode *ip = GFS2_I(mapping->host);
498 	struct gfs2_holder gh;
499 	int error;
500 
501 	unlock_page(page);
502 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
503 	error = gfs2_glock_nq(&gh);
504 	if (unlikely(error))
505 		goto out;
506 	error = AOP_TRUNCATED_PAGE;
507 	lock_page(page);
508 	if (page->mapping == mapping && !PageUptodate(page))
509 		error = __gfs2_readpage(file, page);
510 	else
511 		unlock_page(page);
512 	gfs2_glock_dq(&gh);
513 out:
514 	gfs2_holder_uninit(&gh);
515 	if (error && error != AOP_TRUNCATED_PAGE)
516 		lock_page(page);
517 	return error;
518 }
519 
520 /**
521  * gfs2_internal_read - read an internal file
522  * @ip: The gfs2 inode
523  * @ra_state: The readahead state (or NULL for no readahead)
524  * @buf: The buffer to fill
525  * @pos: The file position
526  * @size: The amount to read
527  *
528  */
529 
530 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
531                        char *buf, loff_t *pos, unsigned size)
532 {
533 	struct address_space *mapping = ip->i_inode.i_mapping;
534 	unsigned long index = *pos / PAGE_CACHE_SIZE;
535 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
536 	unsigned copied = 0;
537 	unsigned amt;
538 	struct page *page;
539 	void *p;
540 
541 	do {
542 		amt = size - copied;
543 		if (offset + size > PAGE_CACHE_SIZE)
544 			amt = PAGE_CACHE_SIZE - offset;
545 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
546 		if (IS_ERR(page))
547 			return PTR_ERR(page);
548 		p = kmap_atomic(page, KM_USER0);
549 		memcpy(buf + copied, p + offset, amt);
550 		kunmap_atomic(p, KM_USER0);
551 		mark_page_accessed(page);
552 		page_cache_release(page);
553 		copied += amt;
554 		index++;
555 		offset = 0;
556 	} while(copied < size);
557 	(*pos) += size;
558 	return size;
559 }
560 
561 /**
562  * gfs2_readpages - Read a bunch of pages at once
563  *
564  * Some notes:
565  * 1. This is only for readahead, so we can simply ignore any things
566  *    which are slightly inconvenient (such as locking conflicts between
567  *    the page lock and the glock) and return having done no I/O. Its
568  *    obviously not something we'd want to do on too regular a basis.
569  *    Any I/O we ignore at this time will be done via readpage later.
570  * 2. We don't handle stuffed files here we let readpage do the honours.
571  * 3. mpage_readpages() does most of the heavy lifting in the common case.
572  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
573  */
574 
575 static int gfs2_readpages(struct file *file, struct address_space *mapping,
576 			  struct list_head *pages, unsigned nr_pages)
577 {
578 	struct inode *inode = mapping->host;
579 	struct gfs2_inode *ip = GFS2_I(inode);
580 	struct gfs2_sbd *sdp = GFS2_SB(inode);
581 	struct gfs2_holder gh;
582 	int ret;
583 
584 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
585 	ret = gfs2_glock_nq(&gh);
586 	if (unlikely(ret))
587 		goto out_uninit;
588 	if (!gfs2_is_stuffed(ip))
589 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
590 	gfs2_glock_dq(&gh);
591 out_uninit:
592 	gfs2_holder_uninit(&gh);
593 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
594 		ret = -EIO;
595 	return ret;
596 }
597 
598 /**
599  * gfs2_write_begin - Begin to write to a file
600  * @file: The file to write to
601  * @mapping: The mapping in which to write
602  * @pos: The file offset at which to start writing
603  * @len: Length of the write
604  * @flags: Various flags
605  * @pagep: Pointer to return the page
606  * @fsdata: Pointer to return fs data (unused by GFS2)
607  *
608  * Returns: errno
609  */
610 
611 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
612 			    loff_t pos, unsigned len, unsigned flags,
613 			    struct page **pagep, void **fsdata)
614 {
615 	struct gfs2_inode *ip = GFS2_I(mapping->host);
616 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
617 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
618 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
619 	int alloc_required;
620 	int error = 0;
621 	struct gfs2_alloc *al;
622 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
623 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
624 	unsigned to = from + len;
625 	struct page *page;
626 
627 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
628 	error = gfs2_glock_nq(&ip->i_gh);
629 	if (unlikely(error))
630 		goto out_uninit;
631 	if (&ip->i_inode == sdp->sd_rindex) {
632 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
633 					   GL_NOCACHE, &m_ip->i_gh);
634 		if (unlikely(error)) {
635 			gfs2_glock_dq(&ip->i_gh);
636 			goto out_uninit;
637 		}
638 	}
639 
640 	error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
641 	if (error)
642 		goto out_unlock;
643 
644 	if (alloc_required || gfs2_is_jdata(ip))
645 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
646 
647 	if (alloc_required) {
648 		al = gfs2_alloc_get(ip);
649 		if (!al) {
650 			error = -ENOMEM;
651 			goto out_unlock;
652 		}
653 
654 		error = gfs2_quota_lock_check(ip);
655 		if (error)
656 			goto out_alloc_put;
657 
658 		al->al_requested = data_blocks + ind_blocks;
659 		error = gfs2_inplace_reserve(ip);
660 		if (error)
661 			goto out_qunlock;
662 	}
663 
664 	rblocks = RES_DINODE + ind_blocks;
665 	if (gfs2_is_jdata(ip))
666 		rblocks += data_blocks ? data_blocks : 1;
667 	if (ind_blocks || data_blocks)
668 		rblocks += RES_STATFS + RES_QUOTA;
669 	if (&ip->i_inode == sdp->sd_rindex)
670 		rblocks += 2 * RES_STATFS;
671 
672 	error = gfs2_trans_begin(sdp, rblocks,
673 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
674 	if (error)
675 		goto out_trans_fail;
676 
677 	error = -ENOMEM;
678 	flags |= AOP_FLAG_NOFS;
679 	page = grab_cache_page_write_begin(mapping, index, flags);
680 	*pagep = page;
681 	if (unlikely(!page))
682 		goto out_endtrans;
683 
684 	if (gfs2_is_stuffed(ip)) {
685 		error = 0;
686 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
687 			error = gfs2_unstuff_dinode(ip, page);
688 			if (error == 0)
689 				goto prepare_write;
690 		} else if (!PageUptodate(page)) {
691 			error = stuffed_readpage(ip, page);
692 		}
693 		goto out;
694 	}
695 
696 prepare_write:
697 	error = block_prepare_write(page, from, to, gfs2_block_map);
698 out:
699 	if (error == 0)
700 		return 0;
701 
702 	page_cache_release(page);
703 	if (pos + len > ip->i_inode.i_size)
704 		vmtruncate(&ip->i_inode, ip->i_inode.i_size);
705 out_endtrans:
706 	gfs2_trans_end(sdp);
707 out_trans_fail:
708 	if (alloc_required) {
709 		gfs2_inplace_release(ip);
710 out_qunlock:
711 		gfs2_quota_unlock(ip);
712 out_alloc_put:
713 		gfs2_alloc_put(ip);
714 	}
715 out_unlock:
716 	if (&ip->i_inode == sdp->sd_rindex) {
717 		gfs2_glock_dq(&m_ip->i_gh);
718 		gfs2_holder_uninit(&m_ip->i_gh);
719 	}
720 	gfs2_glock_dq(&ip->i_gh);
721 out_uninit:
722 	gfs2_holder_uninit(&ip->i_gh);
723 	return error;
724 }
725 
726 /**
727  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
728  * @inode: the rindex inode
729  */
730 static void adjust_fs_space(struct inode *inode)
731 {
732 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
733 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
734 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
735 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
736 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
737 	struct buffer_head *m_bh, *l_bh;
738 	u64 fs_total, new_free;
739 
740 	/* Total up the file system space, according to the latest rindex. */
741 	fs_total = gfs2_ri_total(sdp);
742 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
743 		return;
744 
745 	spin_lock(&sdp->sd_statfs_spin);
746 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
747 			      sizeof(struct gfs2_dinode));
748 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
749 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
750 	else
751 		new_free = 0;
752 	spin_unlock(&sdp->sd_statfs_spin);
753 	fs_warn(sdp, "File system extended by %llu blocks.\n",
754 		(unsigned long long)new_free);
755 	gfs2_statfs_change(sdp, new_free, new_free, 0);
756 
757 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
758 		goto out;
759 	update_statfs(sdp, m_bh, l_bh);
760 	brelse(l_bh);
761 out:
762 	brelse(m_bh);
763 }
764 
765 /**
766  * gfs2_stuffed_write_end - Write end for stuffed files
767  * @inode: The inode
768  * @dibh: The buffer_head containing the on-disk inode
769  * @pos: The file position
770  * @len: The length of the write
771  * @copied: How much was actually copied by the VFS
772  * @page: The page
773  *
774  * This copies the data from the page into the inode block after
775  * the inode data structure itself.
776  *
777  * Returns: errno
778  */
779 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
780 				  loff_t pos, unsigned len, unsigned copied,
781 				  struct page *page)
782 {
783 	struct gfs2_inode *ip = GFS2_I(inode);
784 	struct gfs2_sbd *sdp = GFS2_SB(inode);
785 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
786 	u64 to = pos + copied;
787 	void *kaddr;
788 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
789 	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
790 
791 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
792 	kaddr = kmap_atomic(page, KM_USER0);
793 	memcpy(buf + pos, kaddr + pos, copied);
794 	memset(kaddr + pos + copied, 0, len - copied);
795 	flush_dcache_page(page);
796 	kunmap_atomic(kaddr, KM_USER0);
797 
798 	if (!PageUptodate(page))
799 		SetPageUptodate(page);
800 	unlock_page(page);
801 	page_cache_release(page);
802 
803 	if (copied) {
804 		if (inode->i_size < to) {
805 			i_size_write(inode, to);
806 			ip->i_disksize = inode->i_size;
807 		}
808 		gfs2_dinode_out(ip, di);
809 		mark_inode_dirty(inode);
810 	}
811 
812 	if (inode == sdp->sd_rindex) {
813 		adjust_fs_space(inode);
814 		ip->i_gh.gh_flags |= GL_NOCACHE;
815 	}
816 
817 	brelse(dibh);
818 	gfs2_trans_end(sdp);
819 	if (inode == sdp->sd_rindex) {
820 		gfs2_glock_dq(&m_ip->i_gh);
821 		gfs2_holder_uninit(&m_ip->i_gh);
822 	}
823 	gfs2_glock_dq(&ip->i_gh);
824 	gfs2_holder_uninit(&ip->i_gh);
825 	return copied;
826 }
827 
828 /**
829  * gfs2_write_end
830  * @file: The file to write to
831  * @mapping: The address space to write to
832  * @pos: The file position
833  * @len: The length of the data
834  * @copied:
835  * @page: The page that has been written
836  * @fsdata: The fsdata (unused in GFS2)
837  *
838  * The main write_end function for GFS2. We have a separate one for
839  * stuffed files as they are slightly different, otherwise we just
840  * put our locking around the VFS provided functions.
841  *
842  * Returns: errno
843  */
844 
845 static int gfs2_write_end(struct file *file, struct address_space *mapping,
846 			  loff_t pos, unsigned len, unsigned copied,
847 			  struct page *page, void *fsdata)
848 {
849 	struct inode *inode = page->mapping->host;
850 	struct gfs2_inode *ip = GFS2_I(inode);
851 	struct gfs2_sbd *sdp = GFS2_SB(inode);
852 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
853 	struct buffer_head *dibh;
854 	struct gfs2_alloc *al = ip->i_alloc;
855 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
856 	unsigned int to = from + len;
857 	int ret;
858 
859 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
860 
861 	ret = gfs2_meta_inode_buffer(ip, &dibh);
862 	if (unlikely(ret)) {
863 		unlock_page(page);
864 		page_cache_release(page);
865 		goto failed;
866 	}
867 
868 	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
869 
870 	if (gfs2_is_stuffed(ip))
871 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
872 
873 	if (!gfs2_is_writeback(ip))
874 		gfs2_page_add_databufs(ip, page, from, to);
875 
876 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
877 	if (ret > 0) {
878 		if (inode->i_size > ip->i_disksize)
879 			ip->i_disksize = inode->i_size;
880 		gfs2_dinode_out(ip, dibh->b_data);
881 		mark_inode_dirty(inode);
882 	}
883 
884 	if (inode == sdp->sd_rindex) {
885 		adjust_fs_space(inode);
886 		ip->i_gh.gh_flags |= GL_NOCACHE;
887 	}
888 
889 	brelse(dibh);
890 	gfs2_trans_end(sdp);
891 failed:
892 	if (al) {
893 		gfs2_inplace_release(ip);
894 		gfs2_quota_unlock(ip);
895 		gfs2_alloc_put(ip);
896 	}
897 	if (inode == sdp->sd_rindex) {
898 		gfs2_glock_dq(&m_ip->i_gh);
899 		gfs2_holder_uninit(&m_ip->i_gh);
900 	}
901 	gfs2_glock_dq(&ip->i_gh);
902 	gfs2_holder_uninit(&ip->i_gh);
903 	return ret;
904 }
905 
906 /**
907  * gfs2_set_page_dirty - Page dirtying function
908  * @page: The page to dirty
909  *
910  * Returns: 1 if it dirtyed the page, or 0 otherwise
911  */
912 
913 static int gfs2_set_page_dirty(struct page *page)
914 {
915 	SetPageChecked(page);
916 	return __set_page_dirty_buffers(page);
917 }
918 
919 /**
920  * gfs2_bmap - Block map function
921  * @mapping: Address space info
922  * @lblock: The block to map
923  *
924  * Returns: The disk address for the block or 0 on hole or error
925  */
926 
927 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
928 {
929 	struct gfs2_inode *ip = GFS2_I(mapping->host);
930 	struct gfs2_holder i_gh;
931 	sector_t dblock = 0;
932 	int error;
933 
934 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
935 	if (error)
936 		return 0;
937 
938 	if (!gfs2_is_stuffed(ip))
939 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
940 
941 	gfs2_glock_dq_uninit(&i_gh);
942 
943 	return dblock;
944 }
945 
946 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
947 {
948 	struct gfs2_bufdata *bd;
949 
950 	lock_buffer(bh);
951 	gfs2_log_lock(sdp);
952 	clear_buffer_dirty(bh);
953 	bd = bh->b_private;
954 	if (bd) {
955 		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
956 			list_del_init(&bd->bd_le.le_list);
957 		else
958 			gfs2_remove_from_journal(bh, current->journal_info, 0);
959 	}
960 	bh->b_bdev = NULL;
961 	clear_buffer_mapped(bh);
962 	clear_buffer_req(bh);
963 	clear_buffer_new(bh);
964 	gfs2_log_unlock(sdp);
965 	unlock_buffer(bh);
966 }
967 
968 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
969 {
970 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
971 	struct buffer_head *bh, *head;
972 	unsigned long pos = 0;
973 
974 	BUG_ON(!PageLocked(page));
975 	if (offset == 0)
976 		ClearPageChecked(page);
977 	if (!page_has_buffers(page))
978 		goto out;
979 
980 	bh = head = page_buffers(page);
981 	do {
982 		if (offset <= pos)
983 			gfs2_discard(sdp, bh);
984 		pos += bh->b_size;
985 		bh = bh->b_this_page;
986 	} while (bh != head);
987 out:
988 	if (offset == 0)
989 		try_to_release_page(page, 0);
990 }
991 
992 /**
993  * gfs2_ok_for_dio - check that dio is valid on this file
994  * @ip: The inode
995  * @rw: READ or WRITE
996  * @offset: The offset at which we are reading or writing
997  *
998  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
999  *          1 (to accept the i/o request)
1000  */
1001 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1002 {
1003 	/*
1004 	 * Should we return an error here? I can't see that O_DIRECT for
1005 	 * a stuffed file makes any sense. For now we'll silently fall
1006 	 * back to buffered I/O
1007 	 */
1008 	if (gfs2_is_stuffed(ip))
1009 		return 0;
1010 
1011 	if (offset >= i_size_read(&ip->i_inode))
1012 		return 0;
1013 	return 1;
1014 }
1015 
1016 
1017 
1018 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1019 			      const struct iovec *iov, loff_t offset,
1020 			      unsigned long nr_segs)
1021 {
1022 	struct file *file = iocb->ki_filp;
1023 	struct inode *inode = file->f_mapping->host;
1024 	struct gfs2_inode *ip = GFS2_I(inode);
1025 	struct gfs2_holder gh;
1026 	int rv;
1027 
1028 	/*
1029 	 * Deferred lock, even if its a write, since we do no allocation
1030 	 * on this path. All we need change is atime, and this lock mode
1031 	 * ensures that other nodes have flushed their buffered read caches
1032 	 * (i.e. their page cache entries for this inode). We do not,
1033 	 * unfortunately have the option of only flushing a range like
1034 	 * the VFS does.
1035 	 */
1036 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1037 	rv = gfs2_glock_nq(&gh);
1038 	if (rv)
1039 		return rv;
1040 	rv = gfs2_ok_for_dio(ip, rw, offset);
1041 	if (rv != 1)
1042 		goto out; /* dio not valid, fall back to buffered i/o */
1043 
1044 	rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1045 					   iov, offset, nr_segs,
1046 					   gfs2_get_block_direct, NULL);
1047 out:
1048 	gfs2_glock_dq_m(1, &gh);
1049 	gfs2_holder_uninit(&gh);
1050 	return rv;
1051 }
1052 
1053 /**
1054  * gfs2_releasepage - free the metadata associated with a page
1055  * @page: the page that's being released
1056  * @gfp_mask: passed from Linux VFS, ignored by us
1057  *
1058  * Call try_to_free_buffers() if the buffers in this page can be
1059  * released.
1060  *
1061  * Returns: 0
1062  */
1063 
1064 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1065 {
1066 	struct address_space *mapping = page->mapping;
1067 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1068 	struct buffer_head *bh, *head;
1069 	struct gfs2_bufdata *bd;
1070 
1071 	if (!page_has_buffers(page))
1072 		return 0;
1073 
1074 	gfs2_log_lock(sdp);
1075 	head = bh = page_buffers(page);
1076 	do {
1077 		if (atomic_read(&bh->b_count))
1078 			goto cannot_release;
1079 		bd = bh->b_private;
1080 		if (bd && bd->bd_ail)
1081 			goto cannot_release;
1082 		gfs2_assert_warn(sdp, !buffer_pinned(bh));
1083 		gfs2_assert_warn(sdp, !buffer_dirty(bh));
1084 		bh = bh->b_this_page;
1085 	} while(bh != head);
1086 	gfs2_log_unlock(sdp);
1087 
1088 	head = bh = page_buffers(page);
1089 	do {
1090 		gfs2_log_lock(sdp);
1091 		bd = bh->b_private;
1092 		if (bd) {
1093 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1094 			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1095 			if (!list_empty(&bd->bd_le.le_list)) {
1096 				if (!buffer_pinned(bh))
1097 					list_del_init(&bd->bd_le.le_list);
1098 				else
1099 					bd = NULL;
1100 			}
1101 			if (bd)
1102 				bd->bd_bh = NULL;
1103 			bh->b_private = NULL;
1104 		}
1105 		gfs2_log_unlock(sdp);
1106 		if (bd)
1107 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1108 
1109 		bh = bh->b_this_page;
1110 	} while (bh != head);
1111 
1112 	return try_to_free_buffers(page);
1113 cannot_release:
1114 	gfs2_log_unlock(sdp);
1115 	return 0;
1116 }
1117 
1118 static const struct address_space_operations gfs2_writeback_aops = {
1119 	.writepage = gfs2_writeback_writepage,
1120 	.writepages = gfs2_writeback_writepages,
1121 	.readpage = gfs2_readpage,
1122 	.readpages = gfs2_readpages,
1123 	.sync_page = block_sync_page,
1124 	.write_begin = gfs2_write_begin,
1125 	.write_end = gfs2_write_end,
1126 	.bmap = gfs2_bmap,
1127 	.invalidatepage = gfs2_invalidatepage,
1128 	.releasepage = gfs2_releasepage,
1129 	.direct_IO = gfs2_direct_IO,
1130 	.migratepage = buffer_migrate_page,
1131 	.is_partially_uptodate = block_is_partially_uptodate,
1132 	.error_remove_page = generic_error_remove_page,
1133 };
1134 
1135 static const struct address_space_operations gfs2_ordered_aops = {
1136 	.writepage = gfs2_ordered_writepage,
1137 	.readpage = gfs2_readpage,
1138 	.readpages = gfs2_readpages,
1139 	.sync_page = block_sync_page,
1140 	.write_begin = gfs2_write_begin,
1141 	.write_end = gfs2_write_end,
1142 	.set_page_dirty = gfs2_set_page_dirty,
1143 	.bmap = gfs2_bmap,
1144 	.invalidatepage = gfs2_invalidatepage,
1145 	.releasepage = gfs2_releasepage,
1146 	.direct_IO = gfs2_direct_IO,
1147 	.migratepage = buffer_migrate_page,
1148 	.is_partially_uptodate = block_is_partially_uptodate,
1149 	.error_remove_page = generic_error_remove_page,
1150 };
1151 
1152 static const struct address_space_operations gfs2_jdata_aops = {
1153 	.writepage = gfs2_jdata_writepage,
1154 	.writepages = gfs2_jdata_writepages,
1155 	.readpage = gfs2_readpage,
1156 	.readpages = gfs2_readpages,
1157 	.sync_page = block_sync_page,
1158 	.write_begin = gfs2_write_begin,
1159 	.write_end = gfs2_write_end,
1160 	.set_page_dirty = gfs2_set_page_dirty,
1161 	.bmap = gfs2_bmap,
1162 	.invalidatepage = gfs2_invalidatepage,
1163 	.releasepage = gfs2_releasepage,
1164 	.is_partially_uptodate = block_is_partially_uptodate,
1165 	.error_remove_page = generic_error_remove_page,
1166 };
1167 
1168 void gfs2_set_aops(struct inode *inode)
1169 {
1170 	struct gfs2_inode *ip = GFS2_I(inode);
1171 
1172 	if (gfs2_is_writeback(ip))
1173 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1174 	else if (gfs2_is_ordered(ip))
1175 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1176 	else if (gfs2_is_jdata(ip))
1177 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1178 	else
1179 		BUG();
1180 }
1181 
1182