1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/spinlock.h> 13 #include <linux/completion.h> 14 #include <linux/buffer_head.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mpage.h> 18 #include <linux/fs.h> 19 #include <linux/writeback.h> 20 #include <linux/swap.h> 21 #include <linux/gfs2_ondisk.h> 22 #include <linux/backing-dev.h> 23 #include <linux/uio.h> 24 #include <trace/events/writeback.h> 25 #include <linux/sched/signal.h> 26 27 #include "gfs2.h" 28 #include "incore.h" 29 #include "bmap.h" 30 #include "glock.h" 31 #include "inode.h" 32 #include "log.h" 33 #include "meta_io.h" 34 #include "quota.h" 35 #include "trans.h" 36 #include "rgrp.h" 37 #include "super.h" 38 #include "util.h" 39 #include "glops.h" 40 #include "aops.h" 41 42 43 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page, 44 unsigned int from, unsigned int len) 45 { 46 struct buffer_head *head = page_buffers(page); 47 unsigned int bsize = head->b_size; 48 struct buffer_head *bh; 49 unsigned int to = from + len; 50 unsigned int start, end; 51 52 for (bh = head, start = 0; bh != head || !start; 53 bh = bh->b_this_page, start = end) { 54 end = start + bsize; 55 if (end <= from) 56 continue; 57 if (start >= to) 58 break; 59 set_buffer_uptodate(bh); 60 gfs2_trans_add_data(ip->i_gl, bh); 61 } 62 } 63 64 /** 65 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block 66 * @inode: The inode 67 * @lblock: The block number to look up 68 * @bh_result: The buffer head to return the result in 69 * @create: Non-zero if we may add block to the file 70 * 71 * Returns: errno 72 */ 73 74 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock, 75 struct buffer_head *bh_result, int create) 76 { 77 int error; 78 79 error = gfs2_block_map(inode, lblock, bh_result, 0); 80 if (error) 81 return error; 82 if (!buffer_mapped(bh_result)) 83 return -EIO; 84 return 0; 85 } 86 87 /** 88 * gfs2_writepage_common - Common bits of writepage 89 * @page: The page to be written 90 * @wbc: The writeback control 91 * 92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error. 93 */ 94 95 static int gfs2_writepage_common(struct page *page, 96 struct writeback_control *wbc) 97 { 98 struct inode *inode = page->mapping->host; 99 struct gfs2_inode *ip = GFS2_I(inode); 100 struct gfs2_sbd *sdp = GFS2_SB(inode); 101 loff_t i_size = i_size_read(inode); 102 pgoff_t end_index = i_size >> PAGE_SHIFT; 103 unsigned offset; 104 105 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 106 goto out; 107 if (current->journal_info) 108 goto redirty; 109 /* Is the page fully outside i_size? (truncate in progress) */ 110 offset = i_size & (PAGE_SIZE-1); 111 if (page->index > end_index || (page->index == end_index && !offset)) { 112 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 113 goto out; 114 } 115 return 1; 116 redirty: 117 redirty_page_for_writepage(wbc, page); 118 out: 119 unlock_page(page); 120 return 0; 121 } 122 123 /** 124 * gfs2_writepage - Write page for writeback mappings 125 * @page: The page 126 * @wbc: The writeback control 127 * 128 */ 129 130 static int gfs2_writepage(struct page *page, struct writeback_control *wbc) 131 { 132 int ret; 133 134 ret = gfs2_writepage_common(page, wbc); 135 if (ret <= 0) 136 return ret; 137 138 return nobh_writepage(page, gfs2_get_block_noalloc, wbc); 139 } 140 141 /* This is the same as calling block_write_full_page, but it also 142 * writes pages outside of i_size 143 */ 144 static int gfs2_write_full_page(struct page *page, get_block_t *get_block, 145 struct writeback_control *wbc) 146 { 147 struct inode * const inode = page->mapping->host; 148 loff_t i_size = i_size_read(inode); 149 const pgoff_t end_index = i_size >> PAGE_SHIFT; 150 unsigned offset; 151 152 /* 153 * The page straddles i_size. It must be zeroed out on each and every 154 * writepage invocation because it may be mmapped. "A file is mapped 155 * in multiples of the page size. For a file that is not a multiple of 156 * the page size, the remaining memory is zeroed when mapped, and 157 * writes to that region are not written out to the file." 158 */ 159 offset = i_size & (PAGE_SIZE-1); 160 if (page->index == end_index && offset) 161 zero_user_segment(page, offset, PAGE_SIZE); 162 163 return __block_write_full_page(inode, page, get_block, wbc, 164 end_buffer_async_write); 165 } 166 167 /** 168 * __gfs2_jdata_writepage - The core of jdata writepage 169 * @page: The page to write 170 * @wbc: The writeback control 171 * 172 * This is shared between writepage and writepages and implements the 173 * core of the writepage operation. If a transaction is required then 174 * PageChecked will have been set and the transaction will have 175 * already been started before this is called. 176 */ 177 178 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 179 { 180 struct inode *inode = page->mapping->host; 181 struct gfs2_inode *ip = GFS2_I(inode); 182 struct gfs2_sbd *sdp = GFS2_SB(inode); 183 184 if (PageChecked(page)) { 185 ClearPageChecked(page); 186 if (!page_has_buffers(page)) { 187 create_empty_buffers(page, inode->i_sb->s_blocksize, 188 BIT(BH_Dirty)|BIT(BH_Uptodate)); 189 } 190 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize); 191 } 192 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc); 193 } 194 195 /** 196 * gfs2_jdata_writepage - Write complete page 197 * @page: Page to write 198 * @wbc: The writeback control 199 * 200 * Returns: errno 201 * 202 */ 203 204 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 205 { 206 struct inode *inode = page->mapping->host; 207 struct gfs2_inode *ip = GFS2_I(inode); 208 struct gfs2_sbd *sdp = GFS2_SB(inode); 209 int ret; 210 211 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 212 goto out; 213 if (PageChecked(page) || current->journal_info) 214 goto out_ignore; 215 ret = __gfs2_jdata_writepage(page, wbc); 216 return ret; 217 218 out_ignore: 219 redirty_page_for_writepage(wbc, page); 220 out: 221 unlock_page(page); 222 return 0; 223 } 224 225 /** 226 * gfs2_writepages - Write a bunch of dirty pages back to disk 227 * @mapping: The mapping to write 228 * @wbc: Write-back control 229 * 230 * Used for both ordered and writeback modes. 231 */ 232 static int gfs2_writepages(struct address_space *mapping, 233 struct writeback_control *wbc) 234 { 235 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 236 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc); 237 238 /* 239 * Even if we didn't write any pages here, we might still be holding 240 * dirty pages in the ail. We forcibly flush the ail because we don't 241 * want balance_dirty_pages() to loop indefinitely trying to write out 242 * pages held in the ail that it can't find. 243 */ 244 if (ret == 0) 245 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags); 246 247 return ret; 248 } 249 250 /** 251 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages 252 * @mapping: The mapping 253 * @wbc: The writeback control 254 * @pvec: The vector of pages 255 * @nr_pages: The number of pages to write 256 * @done_index: Page index 257 * 258 * Returns: non-zero if loop should terminate, zero otherwise 259 */ 260 261 static int gfs2_write_jdata_pagevec(struct address_space *mapping, 262 struct writeback_control *wbc, 263 struct pagevec *pvec, 264 int nr_pages, 265 pgoff_t *done_index) 266 { 267 struct inode *inode = mapping->host; 268 struct gfs2_sbd *sdp = GFS2_SB(inode); 269 unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize); 270 int i; 271 int ret; 272 273 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks); 274 if (ret < 0) 275 return ret; 276 277 for(i = 0; i < nr_pages; i++) { 278 struct page *page = pvec->pages[i]; 279 280 *done_index = page->index; 281 282 lock_page(page); 283 284 if (unlikely(page->mapping != mapping)) { 285 continue_unlock: 286 unlock_page(page); 287 continue; 288 } 289 290 if (!PageDirty(page)) { 291 /* someone wrote it for us */ 292 goto continue_unlock; 293 } 294 295 if (PageWriteback(page)) { 296 if (wbc->sync_mode != WB_SYNC_NONE) 297 wait_on_page_writeback(page); 298 else 299 goto continue_unlock; 300 } 301 302 BUG_ON(PageWriteback(page)); 303 if (!clear_page_dirty_for_io(page)) 304 goto continue_unlock; 305 306 trace_wbc_writepage(wbc, inode_to_bdi(inode)); 307 308 ret = __gfs2_jdata_writepage(page, wbc); 309 if (unlikely(ret)) { 310 if (ret == AOP_WRITEPAGE_ACTIVATE) { 311 unlock_page(page); 312 ret = 0; 313 } else { 314 315 /* 316 * done_index is set past this page, 317 * so media errors will not choke 318 * background writeout for the entire 319 * file. This has consequences for 320 * range_cyclic semantics (ie. it may 321 * not be suitable for data integrity 322 * writeout). 323 */ 324 *done_index = page->index + 1; 325 ret = 1; 326 break; 327 } 328 } 329 330 /* 331 * We stop writing back only if we are not doing 332 * integrity sync. In case of integrity sync we have to 333 * keep going until we have written all the pages 334 * we tagged for writeback prior to entering this loop. 335 */ 336 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { 337 ret = 1; 338 break; 339 } 340 341 } 342 gfs2_trans_end(sdp); 343 return ret; 344 } 345 346 /** 347 * gfs2_write_cache_jdata - Like write_cache_pages but different 348 * @mapping: The mapping to write 349 * @wbc: The writeback control 350 * 351 * The reason that we use our own function here is that we need to 352 * start transactions before we grab page locks. This allows us 353 * to get the ordering right. 354 */ 355 356 static int gfs2_write_cache_jdata(struct address_space *mapping, 357 struct writeback_control *wbc) 358 { 359 int ret = 0; 360 int done = 0; 361 struct pagevec pvec; 362 int nr_pages; 363 pgoff_t uninitialized_var(writeback_index); 364 pgoff_t index; 365 pgoff_t end; 366 pgoff_t done_index; 367 int cycled; 368 int range_whole = 0; 369 xa_mark_t tag; 370 371 pagevec_init(&pvec); 372 if (wbc->range_cyclic) { 373 writeback_index = mapping->writeback_index; /* prev offset */ 374 index = writeback_index; 375 if (index == 0) 376 cycled = 1; 377 else 378 cycled = 0; 379 end = -1; 380 } else { 381 index = wbc->range_start >> PAGE_SHIFT; 382 end = wbc->range_end >> PAGE_SHIFT; 383 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 384 range_whole = 1; 385 cycled = 1; /* ignore range_cyclic tests */ 386 } 387 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 388 tag = PAGECACHE_TAG_TOWRITE; 389 else 390 tag = PAGECACHE_TAG_DIRTY; 391 392 retry: 393 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 394 tag_pages_for_writeback(mapping, index, end); 395 done_index = index; 396 while (!done && (index <= end)) { 397 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 398 tag); 399 if (nr_pages == 0) 400 break; 401 402 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index); 403 if (ret) 404 done = 1; 405 if (ret > 0) 406 ret = 0; 407 pagevec_release(&pvec); 408 cond_resched(); 409 } 410 411 if (!cycled && !done) { 412 /* 413 * range_cyclic: 414 * We hit the last page and there is more work to be done: wrap 415 * back to the start of the file 416 */ 417 cycled = 1; 418 index = 0; 419 end = writeback_index - 1; 420 goto retry; 421 } 422 423 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 424 mapping->writeback_index = done_index; 425 426 return ret; 427 } 428 429 430 /** 431 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk 432 * @mapping: The mapping to write 433 * @wbc: The writeback control 434 * 435 */ 436 437 static int gfs2_jdata_writepages(struct address_space *mapping, 438 struct writeback_control *wbc) 439 { 440 struct gfs2_inode *ip = GFS2_I(mapping->host); 441 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 442 int ret; 443 444 ret = gfs2_write_cache_jdata(mapping, wbc); 445 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) { 446 gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL | 447 GFS2_LFC_JDATA_WPAGES); 448 ret = gfs2_write_cache_jdata(mapping, wbc); 449 } 450 return ret; 451 } 452 453 /** 454 * stuffed_readpage - Fill in a Linux page with stuffed file data 455 * @ip: the inode 456 * @page: the page 457 * 458 * Returns: errno 459 */ 460 461 int stuffed_readpage(struct gfs2_inode *ip, struct page *page) 462 { 463 struct buffer_head *dibh; 464 u64 dsize = i_size_read(&ip->i_inode); 465 void *kaddr; 466 int error; 467 468 /* 469 * Due to the order of unstuffing files and ->fault(), we can be 470 * asked for a zero page in the case of a stuffed file being extended, 471 * so we need to supply one here. It doesn't happen often. 472 */ 473 if (unlikely(page->index)) { 474 zero_user(page, 0, PAGE_SIZE); 475 SetPageUptodate(page); 476 return 0; 477 } 478 479 error = gfs2_meta_inode_buffer(ip, &dibh); 480 if (error) 481 return error; 482 483 kaddr = kmap_atomic(page); 484 if (dsize > gfs2_max_stuffed_size(ip)) 485 dsize = gfs2_max_stuffed_size(ip); 486 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 487 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 488 kunmap_atomic(kaddr); 489 flush_dcache_page(page); 490 brelse(dibh); 491 SetPageUptodate(page); 492 493 return 0; 494 } 495 496 497 /** 498 * __gfs2_readpage - readpage 499 * @file: The file to read a page for 500 * @page: The page to read 501 * 502 * This is the core of gfs2's readpage. It's used by the internal file 503 * reading code as in that case we already hold the glock. Also it's 504 * called by gfs2_readpage() once the required lock has been granted. 505 */ 506 507 static int __gfs2_readpage(void *file, struct page *page) 508 { 509 struct gfs2_inode *ip = GFS2_I(page->mapping->host); 510 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 511 512 int error; 513 514 if (i_blocksize(page->mapping->host) == PAGE_SIZE && 515 !page_has_buffers(page)) { 516 error = iomap_readpage(page, &gfs2_iomap_ops); 517 } else if (gfs2_is_stuffed(ip)) { 518 error = stuffed_readpage(ip, page); 519 unlock_page(page); 520 } else { 521 error = mpage_readpage(page, gfs2_block_map); 522 } 523 524 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 525 return -EIO; 526 527 return error; 528 } 529 530 /** 531 * gfs2_readpage - read a page of a file 532 * @file: The file to read 533 * @page: The page of the file 534 * 535 * This deals with the locking required. We have to unlock and 536 * relock the page in order to get the locking in the right 537 * order. 538 */ 539 540 static int gfs2_readpage(struct file *file, struct page *page) 541 { 542 struct address_space *mapping = page->mapping; 543 struct gfs2_inode *ip = GFS2_I(mapping->host); 544 struct gfs2_holder gh; 545 int error; 546 547 unlock_page(page); 548 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 549 error = gfs2_glock_nq(&gh); 550 if (unlikely(error)) 551 goto out; 552 error = AOP_TRUNCATED_PAGE; 553 lock_page(page); 554 if (page->mapping == mapping && !PageUptodate(page)) 555 error = __gfs2_readpage(file, page); 556 else 557 unlock_page(page); 558 gfs2_glock_dq(&gh); 559 out: 560 gfs2_holder_uninit(&gh); 561 if (error && error != AOP_TRUNCATED_PAGE) 562 lock_page(page); 563 return error; 564 } 565 566 /** 567 * gfs2_internal_read - read an internal file 568 * @ip: The gfs2 inode 569 * @buf: The buffer to fill 570 * @pos: The file position 571 * @size: The amount to read 572 * 573 */ 574 575 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos, 576 unsigned size) 577 { 578 struct address_space *mapping = ip->i_inode.i_mapping; 579 unsigned long index = *pos / PAGE_SIZE; 580 unsigned offset = *pos & (PAGE_SIZE - 1); 581 unsigned copied = 0; 582 unsigned amt; 583 struct page *page; 584 void *p; 585 586 do { 587 amt = size - copied; 588 if (offset + size > PAGE_SIZE) 589 amt = PAGE_SIZE - offset; 590 page = read_cache_page(mapping, index, __gfs2_readpage, NULL); 591 if (IS_ERR(page)) 592 return PTR_ERR(page); 593 p = kmap_atomic(page); 594 memcpy(buf + copied, p + offset, amt); 595 kunmap_atomic(p); 596 put_page(page); 597 copied += amt; 598 index++; 599 offset = 0; 600 } while(copied < size); 601 (*pos) += size; 602 return size; 603 } 604 605 /** 606 * gfs2_readpages - Read a bunch of pages at once 607 * @file: The file to read from 608 * @mapping: Address space info 609 * @pages: List of pages to read 610 * @nr_pages: Number of pages to read 611 * 612 * Some notes: 613 * 1. This is only for readahead, so we can simply ignore any things 614 * which are slightly inconvenient (such as locking conflicts between 615 * the page lock and the glock) and return having done no I/O. Its 616 * obviously not something we'd want to do on too regular a basis. 617 * Any I/O we ignore at this time will be done via readpage later. 618 * 2. We don't handle stuffed files here we let readpage do the honours. 619 * 3. mpage_readpages() does most of the heavy lifting in the common case. 620 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places. 621 */ 622 623 static int gfs2_readpages(struct file *file, struct address_space *mapping, 624 struct list_head *pages, unsigned nr_pages) 625 { 626 struct inode *inode = mapping->host; 627 struct gfs2_inode *ip = GFS2_I(inode); 628 struct gfs2_sbd *sdp = GFS2_SB(inode); 629 struct gfs2_holder gh; 630 int ret; 631 632 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 633 ret = gfs2_glock_nq(&gh); 634 if (unlikely(ret)) 635 goto out_uninit; 636 if (!gfs2_is_stuffed(ip)) 637 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map); 638 gfs2_glock_dq(&gh); 639 out_uninit: 640 gfs2_holder_uninit(&gh); 641 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 642 ret = -EIO; 643 return ret; 644 } 645 646 /** 647 * adjust_fs_space - Adjusts the free space available due to gfs2_grow 648 * @inode: the rindex inode 649 */ 650 void adjust_fs_space(struct inode *inode) 651 { 652 struct gfs2_sbd *sdp = GFS2_SB(inode); 653 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 654 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); 655 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; 656 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; 657 struct buffer_head *m_bh, *l_bh; 658 u64 fs_total, new_free; 659 660 if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0) 661 return; 662 663 /* Total up the file system space, according to the latest rindex. */ 664 fs_total = gfs2_ri_total(sdp); 665 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0) 666 goto out; 667 668 spin_lock(&sdp->sd_statfs_spin); 669 gfs2_statfs_change_in(m_sc, m_bh->b_data + 670 sizeof(struct gfs2_dinode)); 671 if (fs_total > (m_sc->sc_total + l_sc->sc_total)) 672 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total); 673 else 674 new_free = 0; 675 spin_unlock(&sdp->sd_statfs_spin); 676 fs_warn(sdp, "File system extended by %llu blocks.\n", 677 (unsigned long long)new_free); 678 gfs2_statfs_change(sdp, new_free, new_free, 0); 679 680 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0) 681 goto out2; 682 update_statfs(sdp, m_bh, l_bh); 683 brelse(l_bh); 684 out2: 685 brelse(m_bh); 686 out: 687 sdp->sd_rindex_uptodate = 0; 688 gfs2_trans_end(sdp); 689 } 690 691 /** 692 * gfs2_stuffed_write_end - Write end for stuffed files 693 * @inode: The inode 694 * @dibh: The buffer_head containing the on-disk inode 695 * @pos: The file position 696 * @copied: How much was actually copied by the VFS 697 * @page: The page 698 * 699 * This copies the data from the page into the inode block after 700 * the inode data structure itself. 701 * 702 * Returns: copied bytes or errno 703 */ 704 int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh, 705 loff_t pos, unsigned copied, 706 struct page *page) 707 { 708 struct gfs2_inode *ip = GFS2_I(inode); 709 u64 to = pos + copied; 710 void *kaddr; 711 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode); 712 713 BUG_ON(pos + copied > gfs2_max_stuffed_size(ip)); 714 715 kaddr = kmap_atomic(page); 716 memcpy(buf + pos, kaddr + pos, copied); 717 flush_dcache_page(page); 718 kunmap_atomic(kaddr); 719 720 WARN_ON(!PageUptodate(page)); 721 unlock_page(page); 722 put_page(page); 723 724 if (copied) { 725 if (inode->i_size < to) 726 i_size_write(inode, to); 727 mark_inode_dirty(inode); 728 } 729 return copied; 730 } 731 732 /** 733 * jdata_set_page_dirty - Page dirtying function 734 * @page: The page to dirty 735 * 736 * Returns: 1 if it dirtyed the page, or 0 otherwise 737 */ 738 739 static int jdata_set_page_dirty(struct page *page) 740 { 741 SetPageChecked(page); 742 return __set_page_dirty_buffers(page); 743 } 744 745 /** 746 * gfs2_bmap - Block map function 747 * @mapping: Address space info 748 * @lblock: The block to map 749 * 750 * Returns: The disk address for the block or 0 on hole or error 751 */ 752 753 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock) 754 { 755 struct gfs2_inode *ip = GFS2_I(mapping->host); 756 struct gfs2_holder i_gh; 757 sector_t dblock = 0; 758 int error; 759 760 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); 761 if (error) 762 return 0; 763 764 if (!gfs2_is_stuffed(ip)) 765 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map); 766 767 gfs2_glock_dq_uninit(&i_gh); 768 769 return dblock; 770 } 771 772 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh) 773 { 774 struct gfs2_bufdata *bd; 775 776 lock_buffer(bh); 777 gfs2_log_lock(sdp); 778 clear_buffer_dirty(bh); 779 bd = bh->b_private; 780 if (bd) { 781 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh)) 782 list_del_init(&bd->bd_list); 783 else 784 gfs2_remove_from_journal(bh, REMOVE_JDATA); 785 } 786 bh->b_bdev = NULL; 787 clear_buffer_mapped(bh); 788 clear_buffer_req(bh); 789 clear_buffer_new(bh); 790 gfs2_log_unlock(sdp); 791 unlock_buffer(bh); 792 } 793 794 static void gfs2_invalidatepage(struct page *page, unsigned int offset, 795 unsigned int length) 796 { 797 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 798 unsigned int stop = offset + length; 799 int partial_page = (offset || length < PAGE_SIZE); 800 struct buffer_head *bh, *head; 801 unsigned long pos = 0; 802 803 BUG_ON(!PageLocked(page)); 804 if (!partial_page) 805 ClearPageChecked(page); 806 if (!page_has_buffers(page)) 807 goto out; 808 809 bh = head = page_buffers(page); 810 do { 811 if (pos + bh->b_size > stop) 812 return; 813 814 if (offset <= pos) 815 gfs2_discard(sdp, bh); 816 pos += bh->b_size; 817 bh = bh->b_this_page; 818 } while (bh != head); 819 out: 820 if (!partial_page) 821 try_to_release_page(page, 0); 822 } 823 824 /** 825 * gfs2_releasepage - free the metadata associated with a page 826 * @page: the page that's being released 827 * @gfp_mask: passed from Linux VFS, ignored by us 828 * 829 * Calls try_to_free_buffers() to free the buffers and put the page if the 830 * buffers can be released. 831 * 832 * Returns: 1 if the page was put or else 0 833 */ 834 835 int gfs2_releasepage(struct page *page, gfp_t gfp_mask) 836 { 837 struct address_space *mapping = page->mapping; 838 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 839 struct buffer_head *bh, *head; 840 struct gfs2_bufdata *bd; 841 842 if (!page_has_buffers(page)) 843 return 0; 844 845 /* 846 * From xfs_vm_releasepage: mm accommodates an old ext3 case where 847 * clean pages might not have had the dirty bit cleared. Thus, it can 848 * send actual dirty pages to ->releasepage() via shrink_active_list(). 849 * 850 * As a workaround, we skip pages that contain dirty buffers below. 851 * Once ->releasepage isn't called on dirty pages anymore, we can warn 852 * on dirty buffers like we used to here again. 853 */ 854 855 gfs2_log_lock(sdp); 856 spin_lock(&sdp->sd_ail_lock); 857 head = bh = page_buffers(page); 858 do { 859 if (atomic_read(&bh->b_count)) 860 goto cannot_release; 861 bd = bh->b_private; 862 if (bd && bd->bd_tr) 863 goto cannot_release; 864 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh))) 865 goto cannot_release; 866 bh = bh->b_this_page; 867 } while(bh != head); 868 spin_unlock(&sdp->sd_ail_lock); 869 870 head = bh = page_buffers(page); 871 do { 872 bd = bh->b_private; 873 if (bd) { 874 gfs2_assert_warn(sdp, bd->bd_bh == bh); 875 if (!list_empty(&bd->bd_list)) 876 list_del_init(&bd->bd_list); 877 bd->bd_bh = NULL; 878 bh->b_private = NULL; 879 kmem_cache_free(gfs2_bufdata_cachep, bd); 880 } 881 882 bh = bh->b_this_page; 883 } while (bh != head); 884 gfs2_log_unlock(sdp); 885 886 return try_to_free_buffers(page); 887 888 cannot_release: 889 spin_unlock(&sdp->sd_ail_lock); 890 gfs2_log_unlock(sdp); 891 return 0; 892 } 893 894 static const struct address_space_operations gfs2_writeback_aops = { 895 .writepage = gfs2_writepage, 896 .writepages = gfs2_writepages, 897 .readpage = gfs2_readpage, 898 .readpages = gfs2_readpages, 899 .bmap = gfs2_bmap, 900 .invalidatepage = gfs2_invalidatepage, 901 .releasepage = gfs2_releasepage, 902 .direct_IO = noop_direct_IO, 903 .migratepage = buffer_migrate_page, 904 .is_partially_uptodate = block_is_partially_uptodate, 905 .error_remove_page = generic_error_remove_page, 906 }; 907 908 static const struct address_space_operations gfs2_ordered_aops = { 909 .writepage = gfs2_writepage, 910 .writepages = gfs2_writepages, 911 .readpage = gfs2_readpage, 912 .readpages = gfs2_readpages, 913 .set_page_dirty = __set_page_dirty_buffers, 914 .bmap = gfs2_bmap, 915 .invalidatepage = gfs2_invalidatepage, 916 .releasepage = gfs2_releasepage, 917 .direct_IO = noop_direct_IO, 918 .migratepage = buffer_migrate_page, 919 .is_partially_uptodate = block_is_partially_uptodate, 920 .error_remove_page = generic_error_remove_page, 921 }; 922 923 static const struct address_space_operations gfs2_jdata_aops = { 924 .writepage = gfs2_jdata_writepage, 925 .writepages = gfs2_jdata_writepages, 926 .readpage = gfs2_readpage, 927 .readpages = gfs2_readpages, 928 .set_page_dirty = jdata_set_page_dirty, 929 .bmap = gfs2_bmap, 930 .invalidatepage = gfs2_invalidatepage, 931 .releasepage = gfs2_releasepage, 932 .is_partially_uptodate = block_is_partially_uptodate, 933 .error_remove_page = generic_error_remove_page, 934 }; 935 936 void gfs2_set_aops(struct inode *inode) 937 { 938 struct gfs2_inode *ip = GFS2_I(inode); 939 struct gfs2_sbd *sdp = GFS2_SB(inode); 940 941 if (gfs2_is_jdata(ip)) 942 inode->i_mapping->a_ops = &gfs2_jdata_aops; 943 else if (gfs2_is_writeback(sdp)) 944 inode->i_mapping->a_ops = &gfs2_writeback_aops; 945 else if (gfs2_is_ordered(sdp)) 946 inode->i_mapping->a_ops = &gfs2_ordered_aops; 947 else 948 BUG(); 949 } 950