xref: /openbmc/linux/fs/gfs2/aops.c (revision 4beec1d7)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39 
40 
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 				   unsigned int from, unsigned int to)
43 {
44 	struct buffer_head *head = page_buffers(page);
45 	unsigned int bsize = head->b_size;
46 	struct buffer_head *bh;
47 	unsigned int start, end;
48 
49 	for (bh = head, start = 0; bh != head || !start;
50 	     bh = bh->b_this_page, start = end) {
51 		end = start + bsize;
52 		if (end <= from || start >= to)
53 			continue;
54 		if (gfs2_is_jdata(ip))
55 			set_buffer_uptodate(bh);
56 		gfs2_trans_add_data(ip->i_gl, bh);
57 	}
58 }
59 
60 /**
61  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62  * @inode: The inode
63  * @lblock: The block number to look up
64  * @bh_result: The buffer head to return the result in
65  * @create: Non-zero if we may add block to the file
66  *
67  * Returns: errno
68  */
69 
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 				  struct buffer_head *bh_result, int create)
72 {
73 	int error;
74 
75 	error = gfs2_block_map(inode, lblock, bh_result, 0);
76 	if (error)
77 		return error;
78 	if (!buffer_mapped(bh_result))
79 		return -EIO;
80 	return 0;
81 }
82 
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 				 struct buffer_head *bh_result, int create)
85 {
86 	return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88 
89 /**
90  * gfs2_writepage_common - Common bits of writepage
91  * @page: The page to be written
92  * @wbc: The writeback control
93  *
94  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95  */
96 
97 static int gfs2_writepage_common(struct page *page,
98 				 struct writeback_control *wbc)
99 {
100 	struct inode *inode = page->mapping->host;
101 	struct gfs2_inode *ip = GFS2_I(inode);
102 	struct gfs2_sbd *sdp = GFS2_SB(inode);
103 	loff_t i_size = i_size_read(inode);
104 	pgoff_t end_index = i_size >> PAGE_SHIFT;
105 	unsigned offset;
106 
107 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108 		goto out;
109 	if (current->journal_info)
110 		goto redirty;
111 	/* Is the page fully outside i_size? (truncate in progress) */
112 	offset = i_size & (PAGE_SIZE-1);
113 	if (page->index > end_index || (page->index == end_index && !offset)) {
114 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
115 		goto out;
116 	}
117 	return 1;
118 redirty:
119 	redirty_page_for_writepage(wbc, page);
120 out:
121 	unlock_page(page);
122 	return 0;
123 }
124 
125 /**
126  * gfs2_writepage - Write page for writeback mappings
127  * @page: The page
128  * @wbc: The writeback control
129  *
130  */
131 
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134 	int ret;
135 
136 	ret = gfs2_writepage_common(page, wbc);
137 	if (ret <= 0)
138 		return ret;
139 
140 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142 
143 /* This is the same as calling block_write_full_page, but it also
144  * writes pages outside of i_size
145  */
146 int gfs2_write_full_page(struct page *page, get_block_t *get_block,
147 			 struct writeback_control *wbc)
148 {
149 	struct inode * const inode = page->mapping->host;
150 	loff_t i_size = i_size_read(inode);
151 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
152 	unsigned offset;
153 
154 	/*
155 	 * The page straddles i_size.  It must be zeroed out on each and every
156 	 * writepage invocation because it may be mmapped.  "A file is mapped
157 	 * in multiples of the page size.  For a file that is not a multiple of
158 	 * the  page size, the remaining memory is zeroed when mapped, and
159 	 * writes to that region are not written out to the file."
160 	 */
161 	offset = i_size & (PAGE_SIZE-1);
162 	if (page->index == end_index && offset)
163 		zero_user_segment(page, offset, PAGE_SIZE);
164 
165 	return __block_write_full_page(inode, page, get_block, wbc,
166 				       end_buffer_async_write);
167 }
168 
169 /**
170  * __gfs2_jdata_writepage - The core of jdata writepage
171  * @page: The page to write
172  * @wbc: The writeback control
173  *
174  * This is shared between writepage and writepages and implements the
175  * core of the writepage operation. If a transaction is required then
176  * PageChecked will have been set and the transaction will have
177  * already been started before this is called.
178  */
179 
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 	struct inode *inode = page->mapping->host;
183 	struct gfs2_inode *ip = GFS2_I(inode);
184 	struct gfs2_sbd *sdp = GFS2_SB(inode);
185 
186 	if (PageChecked(page)) {
187 		ClearPageChecked(page);
188 		if (!page_has_buffers(page)) {
189 			create_empty_buffers(page, inode->i_sb->s_blocksize,
190 					     BIT(BH_Dirty)|BIT(BH_Uptodate));
191 		}
192 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193 	}
194 	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196 
197 /**
198  * gfs2_jdata_writepage - Write complete page
199  * @page: Page to write
200  * @wbc: The writeback control
201  *
202  * Returns: errno
203  *
204  */
205 
206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
207 {
208 	struct inode *inode = page->mapping->host;
209 	struct gfs2_inode *ip = GFS2_I(inode);
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 
213 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
214 		goto out;
215 	if (PageChecked(page) || current->journal_info)
216 		goto out_ignore;
217 	ret = __gfs2_jdata_writepage(page, wbc);
218 	return ret;
219 
220 out_ignore:
221 	redirty_page_for_writepage(wbc, page);
222 out:
223 	unlock_page(page);
224 	return 0;
225 }
226 
227 /**
228  * gfs2_writepages - Write a bunch of dirty pages back to disk
229  * @mapping: The mapping to write
230  * @wbc: Write-back control
231  *
232  * Used for both ordered and writeback modes.
233  */
234 static int gfs2_writepages(struct address_space *mapping,
235 			   struct writeback_control *wbc)
236 {
237 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
238 }
239 
240 /**
241  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
242  * @mapping: The mapping
243  * @wbc: The writeback control
244  * @pvec: The vector of pages
245  * @nr_pages: The number of pages to write
246  * @end: End position
247  * @done_index: Page index
248  *
249  * Returns: non-zero if loop should terminate, zero otherwise
250  */
251 
252 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
253 				    struct writeback_control *wbc,
254 				    struct pagevec *pvec,
255 				    int nr_pages, pgoff_t end,
256 				    pgoff_t *done_index)
257 {
258 	struct inode *inode = mapping->host;
259 	struct gfs2_sbd *sdp = GFS2_SB(inode);
260 	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
261 	int i;
262 	int ret;
263 
264 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
265 	if (ret < 0)
266 		return ret;
267 
268 	for(i = 0; i < nr_pages; i++) {
269 		struct page *page = pvec->pages[i];
270 
271 		/*
272 		 * At this point, the page may be truncated or
273 		 * invalidated (changing page->mapping to NULL), or
274 		 * even swizzled back from swapper_space to tmpfs file
275 		 * mapping. However, page->index will not change
276 		 * because we have a reference on the page.
277 		 */
278 		if (page->index > end) {
279 			/*
280 			 * can't be range_cyclic (1st pass) because
281 			 * end == -1 in that case.
282 			 */
283 			ret = 1;
284 			break;
285 		}
286 
287 		*done_index = page->index;
288 
289 		lock_page(page);
290 
291 		if (unlikely(page->mapping != mapping)) {
292 continue_unlock:
293 			unlock_page(page);
294 			continue;
295 		}
296 
297 		if (!PageDirty(page)) {
298 			/* someone wrote it for us */
299 			goto continue_unlock;
300 		}
301 
302 		if (PageWriteback(page)) {
303 			if (wbc->sync_mode != WB_SYNC_NONE)
304 				wait_on_page_writeback(page);
305 			else
306 				goto continue_unlock;
307 		}
308 
309 		BUG_ON(PageWriteback(page));
310 		if (!clear_page_dirty_for_io(page))
311 			goto continue_unlock;
312 
313 		trace_wbc_writepage(wbc, inode_to_bdi(inode));
314 
315 		ret = __gfs2_jdata_writepage(page, wbc);
316 		if (unlikely(ret)) {
317 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
318 				unlock_page(page);
319 				ret = 0;
320 			} else {
321 
322 				/*
323 				 * done_index is set past this page,
324 				 * so media errors will not choke
325 				 * background writeout for the entire
326 				 * file. This has consequences for
327 				 * range_cyclic semantics (ie. it may
328 				 * not be suitable for data integrity
329 				 * writeout).
330 				 */
331 				*done_index = page->index + 1;
332 				ret = 1;
333 				break;
334 			}
335 		}
336 
337 		/*
338 		 * We stop writing back only if we are not doing
339 		 * integrity sync. In case of integrity sync we have to
340 		 * keep going until we have written all the pages
341 		 * we tagged for writeback prior to entering this loop.
342 		 */
343 		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
344 			ret = 1;
345 			break;
346 		}
347 
348 	}
349 	gfs2_trans_end(sdp);
350 	return ret;
351 }
352 
353 /**
354  * gfs2_write_cache_jdata - Like write_cache_pages but different
355  * @mapping: The mapping to write
356  * @wbc: The writeback control
357  *
358  * The reason that we use our own function here is that we need to
359  * start transactions before we grab page locks. This allows us
360  * to get the ordering right.
361  */
362 
363 static int gfs2_write_cache_jdata(struct address_space *mapping,
364 				  struct writeback_control *wbc)
365 {
366 	int ret = 0;
367 	int done = 0;
368 	struct pagevec pvec;
369 	int nr_pages;
370 	pgoff_t uninitialized_var(writeback_index);
371 	pgoff_t index;
372 	pgoff_t end;
373 	pgoff_t done_index;
374 	int cycled;
375 	int range_whole = 0;
376 	int tag;
377 
378 	pagevec_init(&pvec, 0);
379 	if (wbc->range_cyclic) {
380 		writeback_index = mapping->writeback_index; /* prev offset */
381 		index = writeback_index;
382 		if (index == 0)
383 			cycled = 1;
384 		else
385 			cycled = 0;
386 		end = -1;
387 	} else {
388 		index = wbc->range_start >> PAGE_SHIFT;
389 		end = wbc->range_end >> PAGE_SHIFT;
390 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
391 			range_whole = 1;
392 		cycled = 1; /* ignore range_cyclic tests */
393 	}
394 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
395 		tag = PAGECACHE_TAG_TOWRITE;
396 	else
397 		tag = PAGECACHE_TAG_DIRTY;
398 
399 retry:
400 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
401 		tag_pages_for_writeback(mapping, index, end);
402 	done_index = index;
403 	while (!done && (index <= end)) {
404 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
405 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
406 		if (nr_pages == 0)
407 			break;
408 
409 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
410 		if (ret)
411 			done = 1;
412 		if (ret > 0)
413 			ret = 0;
414 		pagevec_release(&pvec);
415 		cond_resched();
416 	}
417 
418 	if (!cycled && !done) {
419 		/*
420 		 * range_cyclic:
421 		 * We hit the last page and there is more work to be done: wrap
422 		 * back to the start of the file
423 		 */
424 		cycled = 1;
425 		index = 0;
426 		end = writeback_index - 1;
427 		goto retry;
428 	}
429 
430 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
431 		mapping->writeback_index = done_index;
432 
433 	return ret;
434 }
435 
436 
437 /**
438  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
439  * @mapping: The mapping to write
440  * @wbc: The writeback control
441  *
442  */
443 
444 static int gfs2_jdata_writepages(struct address_space *mapping,
445 				 struct writeback_control *wbc)
446 {
447 	struct gfs2_inode *ip = GFS2_I(mapping->host);
448 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
449 	int ret;
450 
451 	ret = gfs2_write_cache_jdata(mapping, wbc);
452 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
453 		gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
454 		ret = gfs2_write_cache_jdata(mapping, wbc);
455 	}
456 	return ret;
457 }
458 
459 /**
460  * stuffed_readpage - Fill in a Linux page with stuffed file data
461  * @ip: the inode
462  * @page: the page
463  *
464  * Returns: errno
465  */
466 
467 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
468 {
469 	struct buffer_head *dibh;
470 	u64 dsize = i_size_read(&ip->i_inode);
471 	void *kaddr;
472 	int error;
473 
474 	/*
475 	 * Due to the order of unstuffing files and ->fault(), we can be
476 	 * asked for a zero page in the case of a stuffed file being extended,
477 	 * so we need to supply one here. It doesn't happen often.
478 	 */
479 	if (unlikely(page->index)) {
480 		zero_user(page, 0, PAGE_SIZE);
481 		SetPageUptodate(page);
482 		return 0;
483 	}
484 
485 	error = gfs2_meta_inode_buffer(ip, &dibh);
486 	if (error)
487 		return error;
488 
489 	kaddr = kmap_atomic(page);
490 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
491 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
492 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
493 	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
494 	kunmap_atomic(kaddr);
495 	flush_dcache_page(page);
496 	brelse(dibh);
497 	SetPageUptodate(page);
498 
499 	return 0;
500 }
501 
502 
503 /**
504  * __gfs2_readpage - readpage
505  * @file: The file to read a page for
506  * @page: The page to read
507  *
508  * This is the core of gfs2's readpage. Its used by the internal file
509  * reading code as in that case we already hold the glock. Also its
510  * called by gfs2_readpage() once the required lock has been granted.
511  *
512  */
513 
514 static int __gfs2_readpage(void *file, struct page *page)
515 {
516 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
517 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
518 	int error;
519 
520 	if (gfs2_is_stuffed(ip)) {
521 		error = stuffed_readpage(ip, page);
522 		unlock_page(page);
523 	} else {
524 		error = mpage_readpage(page, gfs2_block_map);
525 	}
526 
527 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
528 		return -EIO;
529 
530 	return error;
531 }
532 
533 /**
534  * gfs2_readpage - read a page of a file
535  * @file: The file to read
536  * @page: The page of the file
537  *
538  * This deals with the locking required. We have to unlock and
539  * relock the page in order to get the locking in the right
540  * order.
541  */
542 
543 static int gfs2_readpage(struct file *file, struct page *page)
544 {
545 	struct address_space *mapping = page->mapping;
546 	struct gfs2_inode *ip = GFS2_I(mapping->host);
547 	struct gfs2_holder gh;
548 	int error;
549 
550 	unlock_page(page);
551 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
552 	error = gfs2_glock_nq(&gh);
553 	if (unlikely(error))
554 		goto out;
555 	error = AOP_TRUNCATED_PAGE;
556 	lock_page(page);
557 	if (page->mapping == mapping && !PageUptodate(page))
558 		error = __gfs2_readpage(file, page);
559 	else
560 		unlock_page(page);
561 	gfs2_glock_dq(&gh);
562 out:
563 	gfs2_holder_uninit(&gh);
564 	if (error && error != AOP_TRUNCATED_PAGE)
565 		lock_page(page);
566 	return error;
567 }
568 
569 /**
570  * gfs2_internal_read - read an internal file
571  * @ip: The gfs2 inode
572  * @buf: The buffer to fill
573  * @pos: The file position
574  * @size: The amount to read
575  *
576  */
577 
578 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
579                        unsigned size)
580 {
581 	struct address_space *mapping = ip->i_inode.i_mapping;
582 	unsigned long index = *pos / PAGE_SIZE;
583 	unsigned offset = *pos & (PAGE_SIZE - 1);
584 	unsigned copied = 0;
585 	unsigned amt;
586 	struct page *page;
587 	void *p;
588 
589 	do {
590 		amt = size - copied;
591 		if (offset + size > PAGE_SIZE)
592 			amt = PAGE_SIZE - offset;
593 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
594 		if (IS_ERR(page))
595 			return PTR_ERR(page);
596 		p = kmap_atomic(page);
597 		memcpy(buf + copied, p + offset, amt);
598 		kunmap_atomic(p);
599 		put_page(page);
600 		copied += amt;
601 		index++;
602 		offset = 0;
603 	} while(copied < size);
604 	(*pos) += size;
605 	return size;
606 }
607 
608 /**
609  * gfs2_readpages - Read a bunch of pages at once
610  * @file: The file to read from
611  * @mapping: Address space info
612  * @pages: List of pages to read
613  * @nr_pages: Number of pages to read
614  *
615  * Some notes:
616  * 1. This is only for readahead, so we can simply ignore any things
617  *    which are slightly inconvenient (such as locking conflicts between
618  *    the page lock and the glock) and return having done no I/O. Its
619  *    obviously not something we'd want to do on too regular a basis.
620  *    Any I/O we ignore at this time will be done via readpage later.
621  * 2. We don't handle stuffed files here we let readpage do the honours.
622  * 3. mpage_readpages() does most of the heavy lifting in the common case.
623  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
624  */
625 
626 static int gfs2_readpages(struct file *file, struct address_space *mapping,
627 			  struct list_head *pages, unsigned nr_pages)
628 {
629 	struct inode *inode = mapping->host;
630 	struct gfs2_inode *ip = GFS2_I(inode);
631 	struct gfs2_sbd *sdp = GFS2_SB(inode);
632 	struct gfs2_holder gh;
633 	int ret;
634 
635 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
636 	ret = gfs2_glock_nq(&gh);
637 	if (unlikely(ret))
638 		goto out_uninit;
639 	if (!gfs2_is_stuffed(ip))
640 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
641 	gfs2_glock_dq(&gh);
642 out_uninit:
643 	gfs2_holder_uninit(&gh);
644 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
645 		ret = -EIO;
646 	return ret;
647 }
648 
649 /**
650  * gfs2_write_begin - Begin to write to a file
651  * @file: The file to write to
652  * @mapping: The mapping in which to write
653  * @pos: The file offset at which to start writing
654  * @len: Length of the write
655  * @flags: Various flags
656  * @pagep: Pointer to return the page
657  * @fsdata: Pointer to return fs data (unused by GFS2)
658  *
659  * Returns: errno
660  */
661 
662 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
663 			    loff_t pos, unsigned len, unsigned flags,
664 			    struct page **pagep, void **fsdata)
665 {
666 	struct gfs2_inode *ip = GFS2_I(mapping->host);
667 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
668 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
669 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
670 	unsigned requested = 0;
671 	int alloc_required;
672 	int error = 0;
673 	pgoff_t index = pos >> PAGE_SHIFT;
674 	unsigned from = pos & (PAGE_SIZE - 1);
675 	struct page *page;
676 
677 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
678 	error = gfs2_glock_nq(&ip->i_gh);
679 	if (unlikely(error))
680 		goto out_uninit;
681 	if (&ip->i_inode == sdp->sd_rindex) {
682 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
683 					   GL_NOCACHE, &m_ip->i_gh);
684 		if (unlikely(error)) {
685 			gfs2_glock_dq(&ip->i_gh);
686 			goto out_uninit;
687 		}
688 	}
689 
690 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
691 
692 	if (alloc_required || gfs2_is_jdata(ip))
693 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
694 
695 	if (alloc_required) {
696 		struct gfs2_alloc_parms ap = { .aflags = 0, };
697 		requested = data_blocks + ind_blocks;
698 		ap.target = requested;
699 		error = gfs2_quota_lock_check(ip, &ap);
700 		if (error)
701 			goto out_unlock;
702 
703 		error = gfs2_inplace_reserve(ip, &ap);
704 		if (error)
705 			goto out_qunlock;
706 	}
707 
708 	rblocks = RES_DINODE + ind_blocks;
709 	if (gfs2_is_jdata(ip))
710 		rblocks += data_blocks ? data_blocks : 1;
711 	if (ind_blocks || data_blocks)
712 		rblocks += RES_STATFS + RES_QUOTA;
713 	if (&ip->i_inode == sdp->sd_rindex)
714 		rblocks += 2 * RES_STATFS;
715 	if (alloc_required)
716 		rblocks += gfs2_rg_blocks(ip, requested);
717 
718 	error = gfs2_trans_begin(sdp, rblocks,
719 				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
720 	if (error)
721 		goto out_trans_fail;
722 
723 	error = -ENOMEM;
724 	flags |= AOP_FLAG_NOFS;
725 	page = grab_cache_page_write_begin(mapping, index, flags);
726 	*pagep = page;
727 	if (unlikely(!page))
728 		goto out_endtrans;
729 
730 	if (gfs2_is_stuffed(ip)) {
731 		error = 0;
732 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
733 			error = gfs2_unstuff_dinode(ip, page);
734 			if (error == 0)
735 				goto prepare_write;
736 		} else if (!PageUptodate(page)) {
737 			error = stuffed_readpage(ip, page);
738 		}
739 		goto out;
740 	}
741 
742 prepare_write:
743 	error = __block_write_begin(page, from, len, gfs2_block_map);
744 out:
745 	if (error == 0)
746 		return 0;
747 
748 	unlock_page(page);
749 	put_page(page);
750 
751 	gfs2_trans_end(sdp);
752 	if (pos + len > ip->i_inode.i_size)
753 		gfs2_trim_blocks(&ip->i_inode);
754 	goto out_trans_fail;
755 
756 out_endtrans:
757 	gfs2_trans_end(sdp);
758 out_trans_fail:
759 	if (alloc_required) {
760 		gfs2_inplace_release(ip);
761 out_qunlock:
762 		gfs2_quota_unlock(ip);
763 	}
764 out_unlock:
765 	if (&ip->i_inode == sdp->sd_rindex) {
766 		gfs2_glock_dq(&m_ip->i_gh);
767 		gfs2_holder_uninit(&m_ip->i_gh);
768 	}
769 	gfs2_glock_dq(&ip->i_gh);
770 out_uninit:
771 	gfs2_holder_uninit(&ip->i_gh);
772 	return error;
773 }
774 
775 /**
776  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
777  * @inode: the rindex inode
778  */
779 static void adjust_fs_space(struct inode *inode)
780 {
781 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
782 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
783 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
784 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
785 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
786 	struct buffer_head *m_bh, *l_bh;
787 	u64 fs_total, new_free;
788 
789 	/* Total up the file system space, according to the latest rindex. */
790 	fs_total = gfs2_ri_total(sdp);
791 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
792 		return;
793 
794 	spin_lock(&sdp->sd_statfs_spin);
795 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
796 			      sizeof(struct gfs2_dinode));
797 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
798 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
799 	else
800 		new_free = 0;
801 	spin_unlock(&sdp->sd_statfs_spin);
802 	fs_warn(sdp, "File system extended by %llu blocks.\n",
803 		(unsigned long long)new_free);
804 	gfs2_statfs_change(sdp, new_free, new_free, 0);
805 
806 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
807 		goto out;
808 	update_statfs(sdp, m_bh, l_bh);
809 	brelse(l_bh);
810 out:
811 	brelse(m_bh);
812 }
813 
814 /**
815  * gfs2_stuffed_write_end - Write end for stuffed files
816  * @inode: The inode
817  * @dibh: The buffer_head containing the on-disk inode
818  * @pos: The file position
819  * @len: The length of the write
820  * @copied: How much was actually copied by the VFS
821  * @page: The page
822  *
823  * This copies the data from the page into the inode block after
824  * the inode data structure itself.
825  *
826  * Returns: errno
827  */
828 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
829 				  loff_t pos, unsigned len, unsigned copied,
830 				  struct page *page)
831 {
832 	struct gfs2_inode *ip = GFS2_I(inode);
833 	struct gfs2_sbd *sdp = GFS2_SB(inode);
834 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
835 	u64 to = pos + copied;
836 	void *kaddr;
837 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
838 
839 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
840 	kaddr = kmap_atomic(page);
841 	memcpy(buf + pos, kaddr + pos, copied);
842 	flush_dcache_page(page);
843 	kunmap_atomic(kaddr);
844 
845 	WARN_ON(!PageUptodate(page));
846 	unlock_page(page);
847 	put_page(page);
848 
849 	if (copied) {
850 		if (inode->i_size < to)
851 			i_size_write(inode, to);
852 		mark_inode_dirty(inode);
853 	}
854 
855 	if (inode == sdp->sd_rindex) {
856 		adjust_fs_space(inode);
857 		sdp->sd_rindex_uptodate = 0;
858 	}
859 
860 	brelse(dibh);
861 	gfs2_trans_end(sdp);
862 	if (inode == sdp->sd_rindex) {
863 		gfs2_glock_dq(&m_ip->i_gh);
864 		gfs2_holder_uninit(&m_ip->i_gh);
865 	}
866 	gfs2_glock_dq(&ip->i_gh);
867 	gfs2_holder_uninit(&ip->i_gh);
868 	return copied;
869 }
870 
871 /**
872  * gfs2_write_end
873  * @file: The file to write to
874  * @mapping: The address space to write to
875  * @pos: The file position
876  * @len: The length of the data
877  * @copied: How much was actually copied by the VFS
878  * @page: The page that has been written
879  * @fsdata: The fsdata (unused in GFS2)
880  *
881  * The main write_end function for GFS2. We have a separate one for
882  * stuffed files as they are slightly different, otherwise we just
883  * put our locking around the VFS provided functions.
884  *
885  * Returns: errno
886  */
887 
888 static int gfs2_write_end(struct file *file, struct address_space *mapping,
889 			  loff_t pos, unsigned len, unsigned copied,
890 			  struct page *page, void *fsdata)
891 {
892 	struct inode *inode = page->mapping->host;
893 	struct gfs2_inode *ip = GFS2_I(inode);
894 	struct gfs2_sbd *sdp = GFS2_SB(inode);
895 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
896 	struct buffer_head *dibh;
897 	unsigned int from = pos & (PAGE_SIZE - 1);
898 	unsigned int to = from + len;
899 	int ret;
900 	struct gfs2_trans *tr = current->journal_info;
901 	BUG_ON(!tr);
902 
903 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
904 
905 	ret = gfs2_meta_inode_buffer(ip, &dibh);
906 	if (unlikely(ret)) {
907 		unlock_page(page);
908 		put_page(page);
909 		goto failed;
910 	}
911 
912 	if (gfs2_is_stuffed(ip))
913 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
914 
915 	if (!gfs2_is_writeback(ip))
916 		gfs2_page_add_databufs(ip, page, from, to);
917 
918 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
919 	if (tr->tr_num_buf_new)
920 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
921 	else
922 		gfs2_trans_add_meta(ip->i_gl, dibh);
923 
924 
925 	if (inode == sdp->sd_rindex) {
926 		adjust_fs_space(inode);
927 		sdp->sd_rindex_uptodate = 0;
928 	}
929 
930 	brelse(dibh);
931 failed:
932 	gfs2_trans_end(sdp);
933 	gfs2_inplace_release(ip);
934 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
935 		gfs2_quota_unlock(ip);
936 	if (inode == sdp->sd_rindex) {
937 		gfs2_glock_dq(&m_ip->i_gh);
938 		gfs2_holder_uninit(&m_ip->i_gh);
939 	}
940 	gfs2_glock_dq(&ip->i_gh);
941 	gfs2_holder_uninit(&ip->i_gh);
942 	return ret;
943 }
944 
945 /**
946  * gfs2_set_page_dirty - Page dirtying function
947  * @page: The page to dirty
948  *
949  * Returns: 1 if it dirtyed the page, or 0 otherwise
950  */
951 
952 static int gfs2_set_page_dirty(struct page *page)
953 {
954 	SetPageChecked(page);
955 	return __set_page_dirty_buffers(page);
956 }
957 
958 /**
959  * gfs2_bmap - Block map function
960  * @mapping: Address space info
961  * @lblock: The block to map
962  *
963  * Returns: The disk address for the block or 0 on hole or error
964  */
965 
966 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
967 {
968 	struct gfs2_inode *ip = GFS2_I(mapping->host);
969 	struct gfs2_holder i_gh;
970 	sector_t dblock = 0;
971 	int error;
972 
973 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
974 	if (error)
975 		return 0;
976 
977 	if (!gfs2_is_stuffed(ip))
978 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
979 
980 	gfs2_glock_dq_uninit(&i_gh);
981 
982 	return dblock;
983 }
984 
985 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
986 {
987 	struct gfs2_bufdata *bd;
988 
989 	lock_buffer(bh);
990 	gfs2_log_lock(sdp);
991 	clear_buffer_dirty(bh);
992 	bd = bh->b_private;
993 	if (bd) {
994 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
995 			list_del_init(&bd->bd_list);
996 		else
997 			gfs2_remove_from_journal(bh, REMOVE_JDATA);
998 	}
999 	bh->b_bdev = NULL;
1000 	clear_buffer_mapped(bh);
1001 	clear_buffer_req(bh);
1002 	clear_buffer_new(bh);
1003 	gfs2_log_unlock(sdp);
1004 	unlock_buffer(bh);
1005 }
1006 
1007 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1008 				unsigned int length)
1009 {
1010 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1011 	unsigned int stop = offset + length;
1012 	int partial_page = (offset || length < PAGE_SIZE);
1013 	struct buffer_head *bh, *head;
1014 	unsigned long pos = 0;
1015 
1016 	BUG_ON(!PageLocked(page));
1017 	if (!partial_page)
1018 		ClearPageChecked(page);
1019 	if (!page_has_buffers(page))
1020 		goto out;
1021 
1022 	bh = head = page_buffers(page);
1023 	do {
1024 		if (pos + bh->b_size > stop)
1025 			return;
1026 
1027 		if (offset <= pos)
1028 			gfs2_discard(sdp, bh);
1029 		pos += bh->b_size;
1030 		bh = bh->b_this_page;
1031 	} while (bh != head);
1032 out:
1033 	if (!partial_page)
1034 		try_to_release_page(page, 0);
1035 }
1036 
1037 /**
1038  * gfs2_ok_for_dio - check that dio is valid on this file
1039  * @ip: The inode
1040  * @offset: The offset at which we are reading or writing
1041  *
1042  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1043  *          1 (to accept the i/o request)
1044  */
1045 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1046 {
1047 	/*
1048 	 * Should we return an error here? I can't see that O_DIRECT for
1049 	 * a stuffed file makes any sense. For now we'll silently fall
1050 	 * back to buffered I/O
1051 	 */
1052 	if (gfs2_is_stuffed(ip))
1053 		return 0;
1054 
1055 	if (offset >= i_size_read(&ip->i_inode))
1056 		return 0;
1057 	return 1;
1058 }
1059 
1060 
1061 
1062 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1063 {
1064 	struct file *file = iocb->ki_filp;
1065 	struct inode *inode = file->f_mapping->host;
1066 	struct address_space *mapping = inode->i_mapping;
1067 	struct gfs2_inode *ip = GFS2_I(inode);
1068 	loff_t offset = iocb->ki_pos;
1069 	struct gfs2_holder gh;
1070 	int rv;
1071 
1072 	/*
1073 	 * Deferred lock, even if its a write, since we do no allocation
1074 	 * on this path. All we need change is atime, and this lock mode
1075 	 * ensures that other nodes have flushed their buffered read caches
1076 	 * (i.e. their page cache entries for this inode). We do not,
1077 	 * unfortunately have the option of only flushing a range like
1078 	 * the VFS does.
1079 	 */
1080 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1081 	rv = gfs2_glock_nq(&gh);
1082 	if (rv)
1083 		goto out_uninit;
1084 	rv = gfs2_ok_for_dio(ip, offset);
1085 	if (rv != 1)
1086 		goto out; /* dio not valid, fall back to buffered i/o */
1087 
1088 	/*
1089 	 * Now since we are holding a deferred (CW) lock at this point, you
1090 	 * might be wondering why this is ever needed. There is a case however
1091 	 * where we've granted a deferred local lock against a cached exclusive
1092 	 * glock. That is ok provided all granted local locks are deferred, but
1093 	 * it also means that it is possible to encounter pages which are
1094 	 * cached and possibly also mapped. So here we check for that and sort
1095 	 * them out ahead of the dio. The glock state machine will take care of
1096 	 * everything else.
1097 	 *
1098 	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1099 	 * the first place, mapping->nr_pages will always be zero.
1100 	 */
1101 	if (mapping->nrpages) {
1102 		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1103 		loff_t len = iov_iter_count(iter);
1104 		loff_t end = PAGE_ALIGN(offset + len) - 1;
1105 
1106 		rv = 0;
1107 		if (len == 0)
1108 			goto out;
1109 		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1110 			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1111 		rv = filemap_write_and_wait_range(mapping, lstart, end);
1112 		if (rv)
1113 			goto out;
1114 		if (iov_iter_rw(iter) == WRITE)
1115 			truncate_inode_pages_range(mapping, lstart, end);
1116 	}
1117 
1118 	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1119 				  gfs2_get_block_direct, NULL, NULL, 0);
1120 out:
1121 	gfs2_glock_dq(&gh);
1122 out_uninit:
1123 	gfs2_holder_uninit(&gh);
1124 	return rv;
1125 }
1126 
1127 /**
1128  * gfs2_releasepage - free the metadata associated with a page
1129  * @page: the page that's being released
1130  * @gfp_mask: passed from Linux VFS, ignored by us
1131  *
1132  * Call try_to_free_buffers() if the buffers in this page can be
1133  * released.
1134  *
1135  * Returns: 0
1136  */
1137 
1138 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1139 {
1140 	struct address_space *mapping = page->mapping;
1141 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1142 	struct buffer_head *bh, *head;
1143 	struct gfs2_bufdata *bd;
1144 
1145 	if (!page_has_buffers(page))
1146 		return 0;
1147 
1148 	/*
1149 	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1150 	 * clean pages might not have had the dirty bit cleared.  Thus, it can
1151 	 * send actual dirty pages to ->releasepage() via shrink_active_list().
1152 	 *
1153 	 * As a workaround, we skip pages that contain dirty buffers below.
1154 	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1155 	 * on dirty buffers like we used to here again.
1156 	 */
1157 
1158 	gfs2_log_lock(sdp);
1159 	spin_lock(&sdp->sd_ail_lock);
1160 	head = bh = page_buffers(page);
1161 	do {
1162 		if (atomic_read(&bh->b_count))
1163 			goto cannot_release;
1164 		bd = bh->b_private;
1165 		if (bd && bd->bd_tr)
1166 			goto cannot_release;
1167 		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1168 			goto cannot_release;
1169 		bh = bh->b_this_page;
1170 	} while(bh != head);
1171 	spin_unlock(&sdp->sd_ail_lock);
1172 
1173 	head = bh = page_buffers(page);
1174 	do {
1175 		bd = bh->b_private;
1176 		if (bd) {
1177 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1178 			if (!list_empty(&bd->bd_list))
1179 				list_del_init(&bd->bd_list);
1180 			bd->bd_bh = NULL;
1181 			bh->b_private = NULL;
1182 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1183 		}
1184 
1185 		bh = bh->b_this_page;
1186 	} while (bh != head);
1187 	gfs2_log_unlock(sdp);
1188 
1189 	return try_to_free_buffers(page);
1190 
1191 cannot_release:
1192 	spin_unlock(&sdp->sd_ail_lock);
1193 	gfs2_log_unlock(sdp);
1194 	return 0;
1195 }
1196 
1197 static const struct address_space_operations gfs2_writeback_aops = {
1198 	.writepage = gfs2_writepage,
1199 	.writepages = gfs2_writepages,
1200 	.readpage = gfs2_readpage,
1201 	.readpages = gfs2_readpages,
1202 	.write_begin = gfs2_write_begin,
1203 	.write_end = gfs2_write_end,
1204 	.bmap = gfs2_bmap,
1205 	.invalidatepage = gfs2_invalidatepage,
1206 	.releasepage = gfs2_releasepage,
1207 	.direct_IO = gfs2_direct_IO,
1208 	.migratepage = buffer_migrate_page,
1209 	.is_partially_uptodate = block_is_partially_uptodate,
1210 	.error_remove_page = generic_error_remove_page,
1211 };
1212 
1213 static const struct address_space_operations gfs2_ordered_aops = {
1214 	.writepage = gfs2_writepage,
1215 	.writepages = gfs2_writepages,
1216 	.readpage = gfs2_readpage,
1217 	.readpages = gfs2_readpages,
1218 	.write_begin = gfs2_write_begin,
1219 	.write_end = gfs2_write_end,
1220 	.set_page_dirty = gfs2_set_page_dirty,
1221 	.bmap = gfs2_bmap,
1222 	.invalidatepage = gfs2_invalidatepage,
1223 	.releasepage = gfs2_releasepage,
1224 	.direct_IO = gfs2_direct_IO,
1225 	.migratepage = buffer_migrate_page,
1226 	.is_partially_uptodate = block_is_partially_uptodate,
1227 	.error_remove_page = generic_error_remove_page,
1228 };
1229 
1230 static const struct address_space_operations gfs2_jdata_aops = {
1231 	.writepage = gfs2_jdata_writepage,
1232 	.writepages = gfs2_jdata_writepages,
1233 	.readpage = gfs2_readpage,
1234 	.readpages = gfs2_readpages,
1235 	.write_begin = gfs2_write_begin,
1236 	.write_end = gfs2_write_end,
1237 	.set_page_dirty = gfs2_set_page_dirty,
1238 	.bmap = gfs2_bmap,
1239 	.invalidatepage = gfs2_invalidatepage,
1240 	.releasepage = gfs2_releasepage,
1241 	.is_partially_uptodate = block_is_partially_uptodate,
1242 	.error_remove_page = generic_error_remove_page,
1243 };
1244 
1245 void gfs2_set_aops(struct inode *inode)
1246 {
1247 	struct gfs2_inode *ip = GFS2_I(inode);
1248 
1249 	if (gfs2_is_writeback(ip))
1250 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1251 	else if (gfs2_is_ordered(ip))
1252 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1253 	else if (gfs2_is_jdata(ip))
1254 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1255 	else
1256 		BUG();
1257 }
1258 
1259