xref: /openbmc/linux/fs/gfs2/aops.c (revision 461cb419)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 
38 
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 				   unsigned int from, unsigned int to)
41 {
42 	struct buffer_head *head = page_buffers(page);
43 	unsigned int bsize = head->b_size;
44 	struct buffer_head *bh;
45 	unsigned int start, end;
46 
47 	for (bh = head, start = 0; bh != head || !start;
48 	     bh = bh->b_this_page, start = end) {
49 		end = start + bsize;
50 		if (end <= from || start >= to)
51 			continue;
52 		if (gfs2_is_jdata(ip))
53 			set_buffer_uptodate(bh);
54 		gfs2_trans_add_bh(ip->i_gl, bh, 0);
55 	}
56 }
57 
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67 
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 				  struct buffer_head *bh_result, int create)
70 {
71 	int error;
72 
73 	error = gfs2_block_map(inode, lblock, bh_result, 0);
74 	if (error)
75 		return error;
76 	if (!buffer_mapped(bh_result))
77 		return -EIO;
78 	return 0;
79 }
80 
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 				 struct buffer_head *bh_result, int create)
83 {
84 	return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86 
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94 
95 static int gfs2_writepage_common(struct page *page,
96 				 struct writeback_control *wbc)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct gfs2_inode *ip = GFS2_I(inode);
100 	struct gfs2_sbd *sdp = GFS2_SB(inode);
101 	loff_t i_size = i_size_read(inode);
102 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 	unsigned offset;
104 
105 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 		goto out;
107 	if (current->journal_info)
108 		goto redirty;
109 	/* Is the page fully outside i_size? (truncate in progress) */
110 	offset = i_size & (PAGE_CACHE_SIZE-1);
111 	if (page->index > end_index || (page->index == end_index && !offset)) {
112 		page->mapping->a_ops->invalidatepage(page, 0);
113 		goto out;
114 	}
115 	return 1;
116 redirty:
117 	redirty_page_for_writepage(wbc, page);
118 out:
119 	unlock_page(page);
120 	return 0;
121 }
122 
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129 
130 static int gfs2_writeback_writepage(struct page *page,
131 				    struct writeback_control *wbc)
132 {
133 	int ret;
134 
135 	ret = gfs2_writepage_common(page, wbc);
136 	if (ret <= 0)
137 		return ret;
138 
139 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
140 }
141 
142 /**
143  * gfs2_ordered_writepage - Write page for ordered data files
144  * @page: The page to write
145  * @wbc: The writeback control
146  *
147  */
148 
149 static int gfs2_ordered_writepage(struct page *page,
150 				  struct writeback_control *wbc)
151 {
152 	struct inode *inode = page->mapping->host;
153 	struct gfs2_inode *ip = GFS2_I(inode);
154 	int ret;
155 
156 	ret = gfs2_writepage_common(page, wbc);
157 	if (ret <= 0)
158 		return ret;
159 
160 	if (!page_has_buffers(page)) {
161 		create_empty_buffers(page, inode->i_sb->s_blocksize,
162 				     (1 << BH_Dirty)|(1 << BH_Uptodate));
163 	}
164 	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
165 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
166 }
167 
168 /**
169  * __gfs2_jdata_writepage - The core of jdata writepage
170  * @page: The page to write
171  * @wbc: The writeback control
172  *
173  * This is shared between writepage and writepages and implements the
174  * core of the writepage operation. If a transaction is required then
175  * PageChecked will have been set and the transaction will have
176  * already been started before this is called.
177  */
178 
179 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
180 {
181 	struct inode *inode = page->mapping->host;
182 	struct gfs2_inode *ip = GFS2_I(inode);
183 	struct gfs2_sbd *sdp = GFS2_SB(inode);
184 
185 	if (PageChecked(page)) {
186 		ClearPageChecked(page);
187 		if (!page_has_buffers(page)) {
188 			create_empty_buffers(page, inode->i_sb->s_blocksize,
189 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
190 		}
191 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
192 	}
193 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
194 }
195 
196 /**
197  * gfs2_jdata_writepage - Write complete page
198  * @page: Page to write
199  *
200  * Returns: errno
201  *
202  */
203 
204 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
205 {
206 	struct inode *inode = page->mapping->host;
207 	struct gfs2_sbd *sdp = GFS2_SB(inode);
208 	int ret;
209 	int done_trans = 0;
210 
211 	if (PageChecked(page)) {
212 		if (wbc->sync_mode != WB_SYNC_ALL)
213 			goto out_ignore;
214 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
215 		if (ret)
216 			goto out_ignore;
217 		done_trans = 1;
218 	}
219 	ret = gfs2_writepage_common(page, wbc);
220 	if (ret > 0)
221 		ret = __gfs2_jdata_writepage(page, wbc);
222 	if (done_trans)
223 		gfs2_trans_end(sdp);
224 	return ret;
225 
226 out_ignore:
227 	redirty_page_for_writepage(wbc, page);
228 	unlock_page(page);
229 	return 0;
230 }
231 
232 /**
233  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
234  * @mapping: The mapping to write
235  * @wbc: Write-back control
236  *
237  * For the data=writeback case we can already ignore buffer heads
238  * and write whole extents at once. This is a big reduction in the
239  * number of I/O requests we send and the bmap calls we make in this case.
240  */
241 static int gfs2_writeback_writepages(struct address_space *mapping,
242 				     struct writeback_control *wbc)
243 {
244 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
245 }
246 
247 /**
248  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
249  * @mapping: The mapping
250  * @wbc: The writeback control
251  * @writepage: The writepage function to call for each page
252  * @pvec: The vector of pages
253  * @nr_pages: The number of pages to write
254  *
255  * Returns: non-zero if loop should terminate, zero otherwise
256  */
257 
258 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
259 				    struct writeback_control *wbc,
260 				    struct pagevec *pvec,
261 				    int nr_pages, pgoff_t end)
262 {
263 	struct inode *inode = mapping->host;
264 	struct gfs2_sbd *sdp = GFS2_SB(inode);
265 	loff_t i_size = i_size_read(inode);
266 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
267 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
268 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
269 	int i;
270 	int ret;
271 
272 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
273 	if (ret < 0)
274 		return ret;
275 
276 	for(i = 0; i < nr_pages; i++) {
277 		struct page *page = pvec->pages[i];
278 
279 		lock_page(page);
280 
281 		if (unlikely(page->mapping != mapping)) {
282 			unlock_page(page);
283 			continue;
284 		}
285 
286 		if (!wbc->range_cyclic && page->index > end) {
287 			ret = 1;
288 			unlock_page(page);
289 			continue;
290 		}
291 
292 		if (wbc->sync_mode != WB_SYNC_NONE)
293 			wait_on_page_writeback(page);
294 
295 		if (PageWriteback(page) ||
296 		    !clear_page_dirty_for_io(page)) {
297 			unlock_page(page);
298 			continue;
299 		}
300 
301 		/* Is the page fully outside i_size? (truncate in progress) */
302 		if (page->index > end_index || (page->index == end_index && !offset)) {
303 			page->mapping->a_ops->invalidatepage(page, 0);
304 			unlock_page(page);
305 			continue;
306 		}
307 
308 		ret = __gfs2_jdata_writepage(page, wbc);
309 
310 		if (ret || (--(wbc->nr_to_write) <= 0))
311 			ret = 1;
312 	}
313 	gfs2_trans_end(sdp);
314 	return ret;
315 }
316 
317 /**
318  * gfs2_write_cache_jdata - Like write_cache_pages but different
319  * @mapping: The mapping to write
320  * @wbc: The writeback control
321  * @writepage: The writepage function to call
322  * @data: The data to pass to writepage
323  *
324  * The reason that we use our own function here is that we need to
325  * start transactions before we grab page locks. This allows us
326  * to get the ordering right.
327  */
328 
329 static int gfs2_write_cache_jdata(struct address_space *mapping,
330 				  struct writeback_control *wbc)
331 {
332 	int ret = 0;
333 	int done = 0;
334 	struct pagevec pvec;
335 	int nr_pages;
336 	pgoff_t index;
337 	pgoff_t end;
338 	int scanned = 0;
339 	int range_whole = 0;
340 
341 	pagevec_init(&pvec, 0);
342 	if (wbc->range_cyclic) {
343 		index = mapping->writeback_index; /* Start from prev offset */
344 		end = -1;
345 	} else {
346 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
347 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
348 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
349 			range_whole = 1;
350 		scanned = 1;
351 	}
352 
353 retry:
354 	 while (!done && (index <= end) &&
355 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356 					       PAGECACHE_TAG_DIRTY,
357 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
358 		scanned = 1;
359 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
360 		if (ret)
361 			done = 1;
362 		if (ret > 0)
363 			ret = 0;
364 
365 		pagevec_release(&pvec);
366 		cond_resched();
367 	}
368 
369 	if (!scanned && !done) {
370 		/*
371 		 * We hit the last page and there is more work to be done: wrap
372 		 * back to the start of the file
373 		 */
374 		scanned = 1;
375 		index = 0;
376 		goto retry;
377 	}
378 
379 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
380 		mapping->writeback_index = index;
381 	return ret;
382 }
383 
384 
385 /**
386  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
387  * @mapping: The mapping to write
388  * @wbc: The writeback control
389  *
390  */
391 
392 static int gfs2_jdata_writepages(struct address_space *mapping,
393 				 struct writeback_control *wbc)
394 {
395 	struct gfs2_inode *ip = GFS2_I(mapping->host);
396 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
397 	int ret;
398 
399 	ret = gfs2_write_cache_jdata(mapping, wbc);
400 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
401 		gfs2_log_flush(sdp, ip->i_gl);
402 		ret = gfs2_write_cache_jdata(mapping, wbc);
403 	}
404 	return ret;
405 }
406 
407 /**
408  * stuffed_readpage - Fill in a Linux page with stuffed file data
409  * @ip: the inode
410  * @page: the page
411  *
412  * Returns: errno
413  */
414 
415 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
416 {
417 	struct buffer_head *dibh;
418 	u64 dsize = i_size_read(&ip->i_inode);
419 	void *kaddr;
420 	int error;
421 
422 	/*
423 	 * Due to the order of unstuffing files and ->fault(), we can be
424 	 * asked for a zero page in the case of a stuffed file being extended,
425 	 * so we need to supply one here. It doesn't happen often.
426 	 */
427 	if (unlikely(page->index)) {
428 		zero_user(page, 0, PAGE_CACHE_SIZE);
429 		SetPageUptodate(page);
430 		return 0;
431 	}
432 
433 	error = gfs2_meta_inode_buffer(ip, &dibh);
434 	if (error)
435 		return error;
436 
437 	kaddr = kmap_atomic(page, KM_USER0);
438 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
439 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
440 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
441 	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
442 	kunmap_atomic(kaddr, KM_USER0);
443 	flush_dcache_page(page);
444 	brelse(dibh);
445 	SetPageUptodate(page);
446 
447 	return 0;
448 }
449 
450 
451 /**
452  * __gfs2_readpage - readpage
453  * @file: The file to read a page for
454  * @page: The page to read
455  *
456  * This is the core of gfs2's readpage. Its used by the internal file
457  * reading code as in that case we already hold the glock. Also its
458  * called by gfs2_readpage() once the required lock has been granted.
459  *
460  */
461 
462 static int __gfs2_readpage(void *file, struct page *page)
463 {
464 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
465 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
466 	int error;
467 
468 	if (gfs2_is_stuffed(ip)) {
469 		error = stuffed_readpage(ip, page);
470 		unlock_page(page);
471 	} else {
472 		error = mpage_readpage(page, gfs2_block_map);
473 	}
474 
475 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
476 		return -EIO;
477 
478 	return error;
479 }
480 
481 /**
482  * gfs2_readpage - read a page of a file
483  * @file: The file to read
484  * @page: The page of the file
485  *
486  * This deals with the locking required. We have to unlock and
487  * relock the page in order to get the locking in the right
488  * order.
489  */
490 
491 static int gfs2_readpage(struct file *file, struct page *page)
492 {
493 	struct address_space *mapping = page->mapping;
494 	struct gfs2_inode *ip = GFS2_I(mapping->host);
495 	struct gfs2_holder gh;
496 	int error;
497 
498 	unlock_page(page);
499 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
500 	error = gfs2_glock_nq(&gh);
501 	if (unlikely(error))
502 		goto out;
503 	error = AOP_TRUNCATED_PAGE;
504 	lock_page(page);
505 	if (page->mapping == mapping && !PageUptodate(page))
506 		error = __gfs2_readpage(file, page);
507 	else
508 		unlock_page(page);
509 	gfs2_glock_dq(&gh);
510 out:
511 	gfs2_holder_uninit(&gh);
512 	if (error && error != AOP_TRUNCATED_PAGE)
513 		lock_page(page);
514 	return error;
515 }
516 
517 /**
518  * gfs2_internal_read - read an internal file
519  * @ip: The gfs2 inode
520  * @ra_state: The readahead state (or NULL for no readahead)
521  * @buf: The buffer to fill
522  * @pos: The file position
523  * @size: The amount to read
524  *
525  */
526 
527 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
528                        char *buf, loff_t *pos, unsigned size)
529 {
530 	struct address_space *mapping = ip->i_inode.i_mapping;
531 	unsigned long index = *pos / PAGE_CACHE_SIZE;
532 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
533 	unsigned copied = 0;
534 	unsigned amt;
535 	struct page *page;
536 	void *p;
537 
538 	do {
539 		amt = size - copied;
540 		if (offset + size > PAGE_CACHE_SIZE)
541 			amt = PAGE_CACHE_SIZE - offset;
542 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
543 		if (IS_ERR(page))
544 			return PTR_ERR(page);
545 		p = kmap_atomic(page, KM_USER0);
546 		memcpy(buf + copied, p + offset, amt);
547 		kunmap_atomic(p, KM_USER0);
548 		mark_page_accessed(page);
549 		page_cache_release(page);
550 		copied += amt;
551 		index++;
552 		offset = 0;
553 	} while(copied < size);
554 	(*pos) += size;
555 	return size;
556 }
557 
558 /**
559  * gfs2_readpages - Read a bunch of pages at once
560  *
561  * Some notes:
562  * 1. This is only for readahead, so we can simply ignore any things
563  *    which are slightly inconvenient (such as locking conflicts between
564  *    the page lock and the glock) and return having done no I/O. Its
565  *    obviously not something we'd want to do on too regular a basis.
566  *    Any I/O we ignore at this time will be done via readpage later.
567  * 2. We don't handle stuffed files here we let readpage do the honours.
568  * 3. mpage_readpages() does most of the heavy lifting in the common case.
569  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
570  */
571 
572 static int gfs2_readpages(struct file *file, struct address_space *mapping,
573 			  struct list_head *pages, unsigned nr_pages)
574 {
575 	struct inode *inode = mapping->host;
576 	struct gfs2_inode *ip = GFS2_I(inode);
577 	struct gfs2_sbd *sdp = GFS2_SB(inode);
578 	struct gfs2_holder gh;
579 	int ret;
580 
581 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
582 	ret = gfs2_glock_nq(&gh);
583 	if (unlikely(ret))
584 		goto out_uninit;
585 	if (!gfs2_is_stuffed(ip))
586 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
587 	gfs2_glock_dq(&gh);
588 out_uninit:
589 	gfs2_holder_uninit(&gh);
590 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
591 		ret = -EIO;
592 	return ret;
593 }
594 
595 /**
596  * gfs2_write_begin - Begin to write to a file
597  * @file: The file to write to
598  * @mapping: The mapping in which to write
599  * @pos: The file offset at which to start writing
600  * @len: Length of the write
601  * @flags: Various flags
602  * @pagep: Pointer to return the page
603  * @fsdata: Pointer to return fs data (unused by GFS2)
604  *
605  * Returns: errno
606  */
607 
608 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
609 			    loff_t pos, unsigned len, unsigned flags,
610 			    struct page **pagep, void **fsdata)
611 {
612 	struct gfs2_inode *ip = GFS2_I(mapping->host);
613 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
614 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
615 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
616 	int alloc_required;
617 	int error = 0;
618 	struct gfs2_alloc *al;
619 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
620 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
621 	unsigned to = from + len;
622 	struct page *page;
623 
624 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
625 	error = gfs2_glock_nq(&ip->i_gh);
626 	if (unlikely(error))
627 		goto out_uninit;
628 	if (&ip->i_inode == sdp->sd_rindex) {
629 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
630 					   GL_NOCACHE, &m_ip->i_gh);
631 		if (unlikely(error)) {
632 			gfs2_glock_dq(&ip->i_gh);
633 			goto out_uninit;
634 		}
635 	}
636 
637 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
638 
639 	if (alloc_required || gfs2_is_jdata(ip))
640 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
641 
642 	if (alloc_required) {
643 		al = gfs2_alloc_get(ip);
644 		if (!al) {
645 			error = -ENOMEM;
646 			goto out_unlock;
647 		}
648 
649 		error = gfs2_quota_lock_check(ip);
650 		if (error)
651 			goto out_alloc_put;
652 
653 		al->al_requested = data_blocks + ind_blocks;
654 		error = gfs2_inplace_reserve(ip);
655 		if (error)
656 			goto out_qunlock;
657 	}
658 
659 	rblocks = RES_DINODE + ind_blocks;
660 	if (gfs2_is_jdata(ip))
661 		rblocks += data_blocks ? data_blocks : 1;
662 	if (ind_blocks || data_blocks)
663 		rblocks += RES_STATFS + RES_QUOTA;
664 	if (&ip->i_inode == sdp->sd_rindex)
665 		rblocks += 2 * RES_STATFS;
666 
667 	error = gfs2_trans_begin(sdp, rblocks,
668 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
669 	if (error)
670 		goto out_trans_fail;
671 
672 	error = -ENOMEM;
673 	flags |= AOP_FLAG_NOFS;
674 	page = grab_cache_page_write_begin(mapping, index, flags);
675 	*pagep = page;
676 	if (unlikely(!page))
677 		goto out_endtrans;
678 
679 	if (gfs2_is_stuffed(ip)) {
680 		error = 0;
681 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
682 			error = gfs2_unstuff_dinode(ip, page);
683 			if (error == 0)
684 				goto prepare_write;
685 		} else if (!PageUptodate(page)) {
686 			error = stuffed_readpage(ip, page);
687 		}
688 		goto out;
689 	}
690 
691 prepare_write:
692 	error = block_prepare_write(page, from, to, gfs2_block_map);
693 out:
694 	if (error == 0)
695 		return 0;
696 
697 	page_cache_release(page);
698 
699 	/*
700 	 * XXX(hch): the call below should probably be replaced with
701 	 * a call to the gfs2-specific truncate blocks helper to actually
702 	 * release disk blocks..
703 	 */
704 	if (pos + len > ip->i_inode.i_size)
705 		simple_setsize(&ip->i_inode, ip->i_inode.i_size);
706 out_endtrans:
707 	gfs2_trans_end(sdp);
708 out_trans_fail:
709 	if (alloc_required) {
710 		gfs2_inplace_release(ip);
711 out_qunlock:
712 		gfs2_quota_unlock(ip);
713 out_alloc_put:
714 		gfs2_alloc_put(ip);
715 	}
716 out_unlock:
717 	if (&ip->i_inode == sdp->sd_rindex) {
718 		gfs2_glock_dq(&m_ip->i_gh);
719 		gfs2_holder_uninit(&m_ip->i_gh);
720 	}
721 	gfs2_glock_dq(&ip->i_gh);
722 out_uninit:
723 	gfs2_holder_uninit(&ip->i_gh);
724 	return error;
725 }
726 
727 /**
728  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
729  * @inode: the rindex inode
730  */
731 static void adjust_fs_space(struct inode *inode)
732 {
733 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
734 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
735 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
736 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
737 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
738 	struct buffer_head *m_bh, *l_bh;
739 	u64 fs_total, new_free;
740 
741 	/* Total up the file system space, according to the latest rindex. */
742 	fs_total = gfs2_ri_total(sdp);
743 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
744 		return;
745 
746 	spin_lock(&sdp->sd_statfs_spin);
747 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
748 			      sizeof(struct gfs2_dinode));
749 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
750 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
751 	else
752 		new_free = 0;
753 	spin_unlock(&sdp->sd_statfs_spin);
754 	fs_warn(sdp, "File system extended by %llu blocks.\n",
755 		(unsigned long long)new_free);
756 	gfs2_statfs_change(sdp, new_free, new_free, 0);
757 
758 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
759 		goto out;
760 	update_statfs(sdp, m_bh, l_bh);
761 	brelse(l_bh);
762 out:
763 	brelse(m_bh);
764 }
765 
766 /**
767  * gfs2_stuffed_write_end - Write end for stuffed files
768  * @inode: The inode
769  * @dibh: The buffer_head containing the on-disk inode
770  * @pos: The file position
771  * @len: The length of the write
772  * @copied: How much was actually copied by the VFS
773  * @page: The page
774  *
775  * This copies the data from the page into the inode block after
776  * the inode data structure itself.
777  *
778  * Returns: errno
779  */
780 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
781 				  loff_t pos, unsigned len, unsigned copied,
782 				  struct page *page)
783 {
784 	struct gfs2_inode *ip = GFS2_I(inode);
785 	struct gfs2_sbd *sdp = GFS2_SB(inode);
786 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
787 	u64 to = pos + copied;
788 	void *kaddr;
789 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
790 	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
791 
792 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
793 	kaddr = kmap_atomic(page, KM_USER0);
794 	memcpy(buf + pos, kaddr + pos, copied);
795 	memset(kaddr + pos + copied, 0, len - copied);
796 	flush_dcache_page(page);
797 	kunmap_atomic(kaddr, KM_USER0);
798 
799 	if (!PageUptodate(page))
800 		SetPageUptodate(page);
801 	unlock_page(page);
802 	page_cache_release(page);
803 
804 	if (copied) {
805 		if (inode->i_size < to) {
806 			i_size_write(inode, to);
807 			ip->i_disksize = inode->i_size;
808 		}
809 		gfs2_dinode_out(ip, di);
810 		mark_inode_dirty(inode);
811 	}
812 
813 	if (inode == sdp->sd_rindex) {
814 		adjust_fs_space(inode);
815 		ip->i_gh.gh_flags |= GL_NOCACHE;
816 	}
817 
818 	brelse(dibh);
819 	gfs2_trans_end(sdp);
820 	if (inode == sdp->sd_rindex) {
821 		gfs2_glock_dq(&m_ip->i_gh);
822 		gfs2_holder_uninit(&m_ip->i_gh);
823 	}
824 	gfs2_glock_dq(&ip->i_gh);
825 	gfs2_holder_uninit(&ip->i_gh);
826 	return copied;
827 }
828 
829 /**
830  * gfs2_write_end
831  * @file: The file to write to
832  * @mapping: The address space to write to
833  * @pos: The file position
834  * @len: The length of the data
835  * @copied:
836  * @page: The page that has been written
837  * @fsdata: The fsdata (unused in GFS2)
838  *
839  * The main write_end function for GFS2. We have a separate one for
840  * stuffed files as they are slightly different, otherwise we just
841  * put our locking around the VFS provided functions.
842  *
843  * Returns: errno
844  */
845 
846 static int gfs2_write_end(struct file *file, struct address_space *mapping,
847 			  loff_t pos, unsigned len, unsigned copied,
848 			  struct page *page, void *fsdata)
849 {
850 	struct inode *inode = page->mapping->host;
851 	struct gfs2_inode *ip = GFS2_I(inode);
852 	struct gfs2_sbd *sdp = GFS2_SB(inode);
853 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
854 	struct buffer_head *dibh;
855 	struct gfs2_alloc *al = ip->i_alloc;
856 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
857 	unsigned int to = from + len;
858 	int ret;
859 
860 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
861 
862 	ret = gfs2_meta_inode_buffer(ip, &dibh);
863 	if (unlikely(ret)) {
864 		unlock_page(page);
865 		page_cache_release(page);
866 		goto failed;
867 	}
868 
869 	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
870 
871 	if (gfs2_is_stuffed(ip))
872 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
873 
874 	if (!gfs2_is_writeback(ip))
875 		gfs2_page_add_databufs(ip, page, from, to);
876 
877 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
878 	if (ret > 0) {
879 		if (inode->i_size > ip->i_disksize)
880 			ip->i_disksize = inode->i_size;
881 		gfs2_dinode_out(ip, dibh->b_data);
882 		mark_inode_dirty(inode);
883 	}
884 
885 	if (inode == sdp->sd_rindex) {
886 		adjust_fs_space(inode);
887 		ip->i_gh.gh_flags |= GL_NOCACHE;
888 	}
889 
890 	brelse(dibh);
891 	gfs2_trans_end(sdp);
892 failed:
893 	if (al) {
894 		gfs2_inplace_release(ip);
895 		gfs2_quota_unlock(ip);
896 		gfs2_alloc_put(ip);
897 	}
898 	if (inode == sdp->sd_rindex) {
899 		gfs2_glock_dq(&m_ip->i_gh);
900 		gfs2_holder_uninit(&m_ip->i_gh);
901 	}
902 	gfs2_glock_dq(&ip->i_gh);
903 	gfs2_holder_uninit(&ip->i_gh);
904 	return ret;
905 }
906 
907 /**
908  * gfs2_set_page_dirty - Page dirtying function
909  * @page: The page to dirty
910  *
911  * Returns: 1 if it dirtyed the page, or 0 otherwise
912  */
913 
914 static int gfs2_set_page_dirty(struct page *page)
915 {
916 	SetPageChecked(page);
917 	return __set_page_dirty_buffers(page);
918 }
919 
920 /**
921  * gfs2_bmap - Block map function
922  * @mapping: Address space info
923  * @lblock: The block to map
924  *
925  * Returns: The disk address for the block or 0 on hole or error
926  */
927 
928 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
929 {
930 	struct gfs2_inode *ip = GFS2_I(mapping->host);
931 	struct gfs2_holder i_gh;
932 	sector_t dblock = 0;
933 	int error;
934 
935 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
936 	if (error)
937 		return 0;
938 
939 	if (!gfs2_is_stuffed(ip))
940 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
941 
942 	gfs2_glock_dq_uninit(&i_gh);
943 
944 	return dblock;
945 }
946 
947 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
948 {
949 	struct gfs2_bufdata *bd;
950 
951 	lock_buffer(bh);
952 	gfs2_log_lock(sdp);
953 	clear_buffer_dirty(bh);
954 	bd = bh->b_private;
955 	if (bd) {
956 		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
957 			list_del_init(&bd->bd_le.le_list);
958 		else
959 			gfs2_remove_from_journal(bh, current->journal_info, 0);
960 	}
961 	bh->b_bdev = NULL;
962 	clear_buffer_mapped(bh);
963 	clear_buffer_req(bh);
964 	clear_buffer_new(bh);
965 	gfs2_log_unlock(sdp);
966 	unlock_buffer(bh);
967 }
968 
969 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
970 {
971 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
972 	struct buffer_head *bh, *head;
973 	unsigned long pos = 0;
974 
975 	BUG_ON(!PageLocked(page));
976 	if (offset == 0)
977 		ClearPageChecked(page);
978 	if (!page_has_buffers(page))
979 		goto out;
980 
981 	bh = head = page_buffers(page);
982 	do {
983 		if (offset <= pos)
984 			gfs2_discard(sdp, bh);
985 		pos += bh->b_size;
986 		bh = bh->b_this_page;
987 	} while (bh != head);
988 out:
989 	if (offset == 0)
990 		try_to_release_page(page, 0);
991 }
992 
993 /**
994  * gfs2_ok_for_dio - check that dio is valid on this file
995  * @ip: The inode
996  * @rw: READ or WRITE
997  * @offset: The offset at which we are reading or writing
998  *
999  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1000  *          1 (to accept the i/o request)
1001  */
1002 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1003 {
1004 	/*
1005 	 * Should we return an error here? I can't see that O_DIRECT for
1006 	 * a stuffed file makes any sense. For now we'll silently fall
1007 	 * back to buffered I/O
1008 	 */
1009 	if (gfs2_is_stuffed(ip))
1010 		return 0;
1011 
1012 	if (offset >= i_size_read(&ip->i_inode))
1013 		return 0;
1014 	return 1;
1015 }
1016 
1017 
1018 
1019 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1020 			      const struct iovec *iov, loff_t offset,
1021 			      unsigned long nr_segs)
1022 {
1023 	struct file *file = iocb->ki_filp;
1024 	struct inode *inode = file->f_mapping->host;
1025 	struct gfs2_inode *ip = GFS2_I(inode);
1026 	struct gfs2_holder gh;
1027 	int rv;
1028 
1029 	/*
1030 	 * Deferred lock, even if its a write, since we do no allocation
1031 	 * on this path. All we need change is atime, and this lock mode
1032 	 * ensures that other nodes have flushed their buffered read caches
1033 	 * (i.e. their page cache entries for this inode). We do not,
1034 	 * unfortunately have the option of only flushing a range like
1035 	 * the VFS does.
1036 	 */
1037 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1038 	rv = gfs2_glock_nq(&gh);
1039 	if (rv)
1040 		return rv;
1041 	rv = gfs2_ok_for_dio(ip, rw, offset);
1042 	if (rv != 1)
1043 		goto out; /* dio not valid, fall back to buffered i/o */
1044 
1045 	rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1046 					   iov, offset, nr_segs,
1047 					   gfs2_get_block_direct, NULL);
1048 out:
1049 	gfs2_glock_dq_m(1, &gh);
1050 	gfs2_holder_uninit(&gh);
1051 	return rv;
1052 }
1053 
1054 /**
1055  * gfs2_releasepage - free the metadata associated with a page
1056  * @page: the page that's being released
1057  * @gfp_mask: passed from Linux VFS, ignored by us
1058  *
1059  * Call try_to_free_buffers() if the buffers in this page can be
1060  * released.
1061  *
1062  * Returns: 0
1063  */
1064 
1065 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1066 {
1067 	struct address_space *mapping = page->mapping;
1068 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1069 	struct buffer_head *bh, *head;
1070 	struct gfs2_bufdata *bd;
1071 
1072 	if (!page_has_buffers(page))
1073 		return 0;
1074 
1075 	gfs2_log_lock(sdp);
1076 	head = bh = page_buffers(page);
1077 	do {
1078 		if (atomic_read(&bh->b_count))
1079 			goto cannot_release;
1080 		bd = bh->b_private;
1081 		if (bd && bd->bd_ail)
1082 			goto cannot_release;
1083 		gfs2_assert_warn(sdp, !buffer_pinned(bh));
1084 		gfs2_assert_warn(sdp, !buffer_dirty(bh));
1085 		bh = bh->b_this_page;
1086 	} while(bh != head);
1087 	gfs2_log_unlock(sdp);
1088 
1089 	head = bh = page_buffers(page);
1090 	do {
1091 		gfs2_log_lock(sdp);
1092 		bd = bh->b_private;
1093 		if (bd) {
1094 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1095 			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1096 			if (!list_empty(&bd->bd_le.le_list)) {
1097 				if (!buffer_pinned(bh))
1098 					list_del_init(&bd->bd_le.le_list);
1099 				else
1100 					bd = NULL;
1101 			}
1102 			if (bd)
1103 				bd->bd_bh = NULL;
1104 			bh->b_private = NULL;
1105 		}
1106 		gfs2_log_unlock(sdp);
1107 		if (bd)
1108 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1109 
1110 		bh = bh->b_this_page;
1111 	} while (bh != head);
1112 
1113 	return try_to_free_buffers(page);
1114 cannot_release:
1115 	gfs2_log_unlock(sdp);
1116 	return 0;
1117 }
1118 
1119 static const struct address_space_operations gfs2_writeback_aops = {
1120 	.writepage = gfs2_writeback_writepage,
1121 	.writepages = gfs2_writeback_writepages,
1122 	.readpage = gfs2_readpage,
1123 	.readpages = gfs2_readpages,
1124 	.sync_page = block_sync_page,
1125 	.write_begin = gfs2_write_begin,
1126 	.write_end = gfs2_write_end,
1127 	.bmap = gfs2_bmap,
1128 	.invalidatepage = gfs2_invalidatepage,
1129 	.releasepage = gfs2_releasepage,
1130 	.direct_IO = gfs2_direct_IO,
1131 	.migratepage = buffer_migrate_page,
1132 	.is_partially_uptodate = block_is_partially_uptodate,
1133 	.error_remove_page = generic_error_remove_page,
1134 };
1135 
1136 static const struct address_space_operations gfs2_ordered_aops = {
1137 	.writepage = gfs2_ordered_writepage,
1138 	.readpage = gfs2_readpage,
1139 	.readpages = gfs2_readpages,
1140 	.sync_page = block_sync_page,
1141 	.write_begin = gfs2_write_begin,
1142 	.write_end = gfs2_write_end,
1143 	.set_page_dirty = gfs2_set_page_dirty,
1144 	.bmap = gfs2_bmap,
1145 	.invalidatepage = gfs2_invalidatepage,
1146 	.releasepage = gfs2_releasepage,
1147 	.direct_IO = gfs2_direct_IO,
1148 	.migratepage = buffer_migrate_page,
1149 	.is_partially_uptodate = block_is_partially_uptodate,
1150 	.error_remove_page = generic_error_remove_page,
1151 };
1152 
1153 static const struct address_space_operations gfs2_jdata_aops = {
1154 	.writepage = gfs2_jdata_writepage,
1155 	.writepages = gfs2_jdata_writepages,
1156 	.readpage = gfs2_readpage,
1157 	.readpages = gfs2_readpages,
1158 	.sync_page = block_sync_page,
1159 	.write_begin = gfs2_write_begin,
1160 	.write_end = gfs2_write_end,
1161 	.set_page_dirty = gfs2_set_page_dirty,
1162 	.bmap = gfs2_bmap,
1163 	.invalidatepage = gfs2_invalidatepage,
1164 	.releasepage = gfs2_releasepage,
1165 	.is_partially_uptodate = block_is_partially_uptodate,
1166 	.error_remove_page = generic_error_remove_page,
1167 };
1168 
1169 void gfs2_set_aops(struct inode *inode)
1170 {
1171 	struct gfs2_inode *ip = GFS2_I(inode);
1172 
1173 	if (gfs2_is_writeback(ip))
1174 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1175 	else if (gfs2_is_ordered(ip))
1176 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1177 	else if (gfs2_is_jdata(ip))
1178 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1179 	else
1180 		BUG();
1181 }
1182 
1183