xref: /openbmc/linux/fs/gfs2/aops.c (revision 30116ff6)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 
38 
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 				   unsigned int from, unsigned int to)
41 {
42 	struct buffer_head *head = page_buffers(page);
43 	unsigned int bsize = head->b_size;
44 	struct buffer_head *bh;
45 	unsigned int start, end;
46 
47 	for (bh = head, start = 0; bh != head || !start;
48 	     bh = bh->b_this_page, start = end) {
49 		end = start + bsize;
50 		if (end <= from || start >= to)
51 			continue;
52 		if (gfs2_is_jdata(ip))
53 			set_buffer_uptodate(bh);
54 		gfs2_trans_add_bh(ip->i_gl, bh, 0);
55 	}
56 }
57 
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67 
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 				  struct buffer_head *bh_result, int create)
70 {
71 	int error;
72 
73 	error = gfs2_block_map(inode, lblock, bh_result, 0);
74 	if (error)
75 		return error;
76 	if (!buffer_mapped(bh_result))
77 		return -EIO;
78 	return 0;
79 }
80 
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 				 struct buffer_head *bh_result, int create)
83 {
84 	return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86 
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94 
95 static int gfs2_writepage_common(struct page *page,
96 				 struct writeback_control *wbc)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct gfs2_inode *ip = GFS2_I(inode);
100 	struct gfs2_sbd *sdp = GFS2_SB(inode);
101 	loff_t i_size = i_size_read(inode);
102 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 	unsigned offset;
104 
105 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 		goto out;
107 	if (current->journal_info)
108 		goto redirty;
109 	/* Is the page fully outside i_size? (truncate in progress) */
110 	offset = i_size & (PAGE_CACHE_SIZE-1);
111 	if (page->index > end_index || (page->index == end_index && !offset)) {
112 		page->mapping->a_ops->invalidatepage(page, 0);
113 		goto out;
114 	}
115 	return 1;
116 redirty:
117 	redirty_page_for_writepage(wbc, page);
118 out:
119 	unlock_page(page);
120 	return 0;
121 }
122 
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129 
130 static int gfs2_writeback_writepage(struct page *page,
131 				    struct writeback_control *wbc)
132 {
133 	int ret;
134 
135 	ret = gfs2_writepage_common(page, wbc);
136 	if (ret <= 0)
137 		return ret;
138 
139 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
140 }
141 
142 /**
143  * gfs2_ordered_writepage - Write page for ordered data files
144  * @page: The page to write
145  * @wbc: The writeback control
146  *
147  */
148 
149 static int gfs2_ordered_writepage(struct page *page,
150 				  struct writeback_control *wbc)
151 {
152 	struct inode *inode = page->mapping->host;
153 	struct gfs2_inode *ip = GFS2_I(inode);
154 	int ret;
155 
156 	ret = gfs2_writepage_common(page, wbc);
157 	if (ret <= 0)
158 		return ret;
159 
160 	if (!page_has_buffers(page)) {
161 		create_empty_buffers(page, inode->i_sb->s_blocksize,
162 				     (1 << BH_Dirty)|(1 << BH_Uptodate));
163 	}
164 	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
165 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
166 }
167 
168 /**
169  * __gfs2_jdata_writepage - The core of jdata writepage
170  * @page: The page to write
171  * @wbc: The writeback control
172  *
173  * This is shared between writepage and writepages and implements the
174  * core of the writepage operation. If a transaction is required then
175  * PageChecked will have been set and the transaction will have
176  * already been started before this is called.
177  */
178 
179 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
180 {
181 	struct inode *inode = page->mapping->host;
182 	struct gfs2_inode *ip = GFS2_I(inode);
183 	struct gfs2_sbd *sdp = GFS2_SB(inode);
184 
185 	if (PageChecked(page)) {
186 		ClearPageChecked(page);
187 		if (!page_has_buffers(page)) {
188 			create_empty_buffers(page, inode->i_sb->s_blocksize,
189 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
190 		}
191 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
192 	}
193 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
194 }
195 
196 /**
197  * gfs2_jdata_writepage - Write complete page
198  * @page: Page to write
199  *
200  * Returns: errno
201  *
202  */
203 
204 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
205 {
206 	struct inode *inode = page->mapping->host;
207 	struct gfs2_sbd *sdp = GFS2_SB(inode);
208 	int ret;
209 	int done_trans = 0;
210 
211 	if (PageChecked(page)) {
212 		if (wbc->sync_mode != WB_SYNC_ALL)
213 			goto out_ignore;
214 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
215 		if (ret)
216 			goto out_ignore;
217 		done_trans = 1;
218 	}
219 	ret = gfs2_writepage_common(page, wbc);
220 	if (ret > 0)
221 		ret = __gfs2_jdata_writepage(page, wbc);
222 	if (done_trans)
223 		gfs2_trans_end(sdp);
224 	return ret;
225 
226 out_ignore:
227 	redirty_page_for_writepage(wbc, page);
228 	unlock_page(page);
229 	return 0;
230 }
231 
232 /**
233  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
234  * @mapping: The mapping to write
235  * @wbc: Write-back control
236  *
237  * For the data=writeback case we can already ignore buffer heads
238  * and write whole extents at once. This is a big reduction in the
239  * number of I/O requests we send and the bmap calls we make in this case.
240  */
241 static int gfs2_writeback_writepages(struct address_space *mapping,
242 				     struct writeback_control *wbc)
243 {
244 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
245 }
246 
247 /**
248  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
249  * @mapping: The mapping
250  * @wbc: The writeback control
251  * @writepage: The writepage function to call for each page
252  * @pvec: The vector of pages
253  * @nr_pages: The number of pages to write
254  *
255  * Returns: non-zero if loop should terminate, zero otherwise
256  */
257 
258 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
259 				    struct writeback_control *wbc,
260 				    struct pagevec *pvec,
261 				    int nr_pages, pgoff_t end)
262 {
263 	struct inode *inode = mapping->host;
264 	struct gfs2_sbd *sdp = GFS2_SB(inode);
265 	loff_t i_size = i_size_read(inode);
266 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
267 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
268 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
269 	int i;
270 	int ret;
271 
272 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
273 	if (ret < 0)
274 		return ret;
275 
276 	for(i = 0; i < nr_pages; i++) {
277 		struct page *page = pvec->pages[i];
278 
279 		lock_page(page);
280 
281 		if (unlikely(page->mapping != mapping)) {
282 			unlock_page(page);
283 			continue;
284 		}
285 
286 		if (!wbc->range_cyclic && page->index > end) {
287 			ret = 1;
288 			unlock_page(page);
289 			continue;
290 		}
291 
292 		if (wbc->sync_mode != WB_SYNC_NONE)
293 			wait_on_page_writeback(page);
294 
295 		if (PageWriteback(page) ||
296 		    !clear_page_dirty_for_io(page)) {
297 			unlock_page(page);
298 			continue;
299 		}
300 
301 		/* Is the page fully outside i_size? (truncate in progress) */
302 		if (page->index > end_index || (page->index == end_index && !offset)) {
303 			page->mapping->a_ops->invalidatepage(page, 0);
304 			unlock_page(page);
305 			continue;
306 		}
307 
308 		ret = __gfs2_jdata_writepage(page, wbc);
309 
310 		if (ret || (--(wbc->nr_to_write) <= 0))
311 			ret = 1;
312 	}
313 	gfs2_trans_end(sdp);
314 	return ret;
315 }
316 
317 /**
318  * gfs2_write_cache_jdata - Like write_cache_pages but different
319  * @mapping: The mapping to write
320  * @wbc: The writeback control
321  * @writepage: The writepage function to call
322  * @data: The data to pass to writepage
323  *
324  * The reason that we use our own function here is that we need to
325  * start transactions before we grab page locks. This allows us
326  * to get the ordering right.
327  */
328 
329 static int gfs2_write_cache_jdata(struct address_space *mapping,
330 				  struct writeback_control *wbc)
331 {
332 	int ret = 0;
333 	int done = 0;
334 	struct pagevec pvec;
335 	int nr_pages;
336 	pgoff_t index;
337 	pgoff_t end;
338 	int scanned = 0;
339 	int range_whole = 0;
340 
341 	pagevec_init(&pvec, 0);
342 	if (wbc->range_cyclic) {
343 		index = mapping->writeback_index; /* Start from prev offset */
344 		end = -1;
345 	} else {
346 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
347 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
348 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
349 			range_whole = 1;
350 		scanned = 1;
351 	}
352 
353 retry:
354 	 while (!done && (index <= end) &&
355 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356 					       PAGECACHE_TAG_DIRTY,
357 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
358 		scanned = 1;
359 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
360 		if (ret)
361 			done = 1;
362 		if (ret > 0)
363 			ret = 0;
364 
365 		pagevec_release(&pvec);
366 		cond_resched();
367 	}
368 
369 	if (!scanned && !done) {
370 		/*
371 		 * We hit the last page and there is more work to be done: wrap
372 		 * back to the start of the file
373 		 */
374 		scanned = 1;
375 		index = 0;
376 		goto retry;
377 	}
378 
379 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
380 		mapping->writeback_index = index;
381 	return ret;
382 }
383 
384 
385 /**
386  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
387  * @mapping: The mapping to write
388  * @wbc: The writeback control
389  *
390  */
391 
392 static int gfs2_jdata_writepages(struct address_space *mapping,
393 				 struct writeback_control *wbc)
394 {
395 	struct gfs2_inode *ip = GFS2_I(mapping->host);
396 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
397 	int ret;
398 
399 	ret = gfs2_write_cache_jdata(mapping, wbc);
400 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
401 		gfs2_log_flush(sdp, ip->i_gl);
402 		ret = gfs2_write_cache_jdata(mapping, wbc);
403 	}
404 	return ret;
405 }
406 
407 /**
408  * stuffed_readpage - Fill in a Linux page with stuffed file data
409  * @ip: the inode
410  * @page: the page
411  *
412  * Returns: errno
413  */
414 
415 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
416 {
417 	struct buffer_head *dibh;
418 	u64 dsize = i_size_read(&ip->i_inode);
419 	void *kaddr;
420 	int error;
421 
422 	/*
423 	 * Due to the order of unstuffing files and ->fault(), we can be
424 	 * asked for a zero page in the case of a stuffed file being extended,
425 	 * so we need to supply one here. It doesn't happen often.
426 	 */
427 	if (unlikely(page->index)) {
428 		zero_user(page, 0, PAGE_CACHE_SIZE);
429 		SetPageUptodate(page);
430 		return 0;
431 	}
432 
433 	error = gfs2_meta_inode_buffer(ip, &dibh);
434 	if (error)
435 		return error;
436 
437 	kaddr = kmap_atomic(page, KM_USER0);
438 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
439 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
440 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
441 	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
442 	kunmap_atomic(kaddr, KM_USER0);
443 	flush_dcache_page(page);
444 	brelse(dibh);
445 	SetPageUptodate(page);
446 
447 	return 0;
448 }
449 
450 
451 /**
452  * __gfs2_readpage - readpage
453  * @file: The file to read a page for
454  * @page: The page to read
455  *
456  * This is the core of gfs2's readpage. Its used by the internal file
457  * reading code as in that case we already hold the glock. Also its
458  * called by gfs2_readpage() once the required lock has been granted.
459  *
460  */
461 
462 static int __gfs2_readpage(void *file, struct page *page)
463 {
464 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
465 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
466 	int error;
467 
468 	if (gfs2_is_stuffed(ip)) {
469 		error = stuffed_readpage(ip, page);
470 		unlock_page(page);
471 	} else {
472 		error = mpage_readpage(page, gfs2_block_map);
473 	}
474 
475 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
476 		return -EIO;
477 
478 	return error;
479 }
480 
481 /**
482  * gfs2_readpage - read a page of a file
483  * @file: The file to read
484  * @page: The page of the file
485  *
486  * This deals with the locking required. We have to unlock and
487  * relock the page in order to get the locking in the right
488  * order.
489  */
490 
491 static int gfs2_readpage(struct file *file, struct page *page)
492 {
493 	struct address_space *mapping = page->mapping;
494 	struct gfs2_inode *ip = GFS2_I(mapping->host);
495 	struct gfs2_holder gh;
496 	int error;
497 
498 	unlock_page(page);
499 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
500 	error = gfs2_glock_nq(&gh);
501 	if (unlikely(error))
502 		goto out;
503 	error = AOP_TRUNCATED_PAGE;
504 	lock_page(page);
505 	if (page->mapping == mapping && !PageUptodate(page))
506 		error = __gfs2_readpage(file, page);
507 	else
508 		unlock_page(page);
509 	gfs2_glock_dq(&gh);
510 out:
511 	gfs2_holder_uninit(&gh);
512 	if (error && error != AOP_TRUNCATED_PAGE)
513 		lock_page(page);
514 	return error;
515 }
516 
517 /**
518  * gfs2_internal_read - read an internal file
519  * @ip: The gfs2 inode
520  * @ra_state: The readahead state (or NULL for no readahead)
521  * @buf: The buffer to fill
522  * @pos: The file position
523  * @size: The amount to read
524  *
525  */
526 
527 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
528                        char *buf, loff_t *pos, unsigned size)
529 {
530 	struct address_space *mapping = ip->i_inode.i_mapping;
531 	unsigned long index = *pos / PAGE_CACHE_SIZE;
532 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
533 	unsigned copied = 0;
534 	unsigned amt;
535 	struct page *page;
536 	void *p;
537 
538 	do {
539 		amt = size - copied;
540 		if (offset + size > PAGE_CACHE_SIZE)
541 			amt = PAGE_CACHE_SIZE - offset;
542 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
543 		if (IS_ERR(page))
544 			return PTR_ERR(page);
545 		p = kmap_atomic(page, KM_USER0);
546 		memcpy(buf + copied, p + offset, amt);
547 		kunmap_atomic(p, KM_USER0);
548 		mark_page_accessed(page);
549 		page_cache_release(page);
550 		copied += amt;
551 		index++;
552 		offset = 0;
553 	} while(copied < size);
554 	(*pos) += size;
555 	return size;
556 }
557 
558 /**
559  * gfs2_readpages - Read a bunch of pages at once
560  *
561  * Some notes:
562  * 1. This is only for readahead, so we can simply ignore any things
563  *    which are slightly inconvenient (such as locking conflicts between
564  *    the page lock and the glock) and return having done no I/O. Its
565  *    obviously not something we'd want to do on too regular a basis.
566  *    Any I/O we ignore at this time will be done via readpage later.
567  * 2. We don't handle stuffed files here we let readpage do the honours.
568  * 3. mpage_readpages() does most of the heavy lifting in the common case.
569  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
570  */
571 
572 static int gfs2_readpages(struct file *file, struct address_space *mapping,
573 			  struct list_head *pages, unsigned nr_pages)
574 {
575 	struct inode *inode = mapping->host;
576 	struct gfs2_inode *ip = GFS2_I(inode);
577 	struct gfs2_sbd *sdp = GFS2_SB(inode);
578 	struct gfs2_holder gh;
579 	int ret;
580 
581 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
582 	ret = gfs2_glock_nq(&gh);
583 	if (unlikely(ret))
584 		goto out_uninit;
585 	if (!gfs2_is_stuffed(ip))
586 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
587 	gfs2_glock_dq(&gh);
588 out_uninit:
589 	gfs2_holder_uninit(&gh);
590 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
591 		ret = -EIO;
592 	return ret;
593 }
594 
595 /**
596  * gfs2_write_begin - Begin to write to a file
597  * @file: The file to write to
598  * @mapping: The mapping in which to write
599  * @pos: The file offset at which to start writing
600  * @len: Length of the write
601  * @flags: Various flags
602  * @pagep: Pointer to return the page
603  * @fsdata: Pointer to return fs data (unused by GFS2)
604  *
605  * Returns: errno
606  */
607 
608 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
609 			    loff_t pos, unsigned len, unsigned flags,
610 			    struct page **pagep, void **fsdata)
611 {
612 	struct gfs2_inode *ip = GFS2_I(mapping->host);
613 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
614 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
615 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
616 	int alloc_required;
617 	int error = 0;
618 	struct gfs2_alloc *al;
619 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
620 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
621 	unsigned to = from + len;
622 	struct page *page;
623 
624 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
625 	error = gfs2_glock_nq(&ip->i_gh);
626 	if (unlikely(error))
627 		goto out_uninit;
628 	if (&ip->i_inode == sdp->sd_rindex) {
629 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
630 					   GL_NOCACHE, &m_ip->i_gh);
631 		if (unlikely(error)) {
632 			gfs2_glock_dq(&ip->i_gh);
633 			goto out_uninit;
634 		}
635 	}
636 
637 	error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
638 	if (error)
639 		goto out_unlock;
640 
641 	if (alloc_required || gfs2_is_jdata(ip))
642 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
643 
644 	if (alloc_required) {
645 		al = gfs2_alloc_get(ip);
646 		if (!al) {
647 			error = -ENOMEM;
648 			goto out_unlock;
649 		}
650 
651 		error = gfs2_quota_lock_check(ip);
652 		if (error)
653 			goto out_alloc_put;
654 
655 		al->al_requested = data_blocks + ind_blocks;
656 		error = gfs2_inplace_reserve(ip);
657 		if (error)
658 			goto out_qunlock;
659 	}
660 
661 	rblocks = RES_DINODE + ind_blocks;
662 	if (gfs2_is_jdata(ip))
663 		rblocks += data_blocks ? data_blocks : 1;
664 	if (ind_blocks || data_blocks)
665 		rblocks += RES_STATFS + RES_QUOTA;
666 	if (&ip->i_inode == sdp->sd_rindex)
667 		rblocks += 2 * RES_STATFS;
668 
669 	error = gfs2_trans_begin(sdp, rblocks,
670 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
671 	if (error)
672 		goto out_trans_fail;
673 
674 	error = -ENOMEM;
675 	flags |= AOP_FLAG_NOFS;
676 	page = grab_cache_page_write_begin(mapping, index, flags);
677 	*pagep = page;
678 	if (unlikely(!page))
679 		goto out_endtrans;
680 
681 	if (gfs2_is_stuffed(ip)) {
682 		error = 0;
683 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
684 			error = gfs2_unstuff_dinode(ip, page);
685 			if (error == 0)
686 				goto prepare_write;
687 		} else if (!PageUptodate(page)) {
688 			error = stuffed_readpage(ip, page);
689 		}
690 		goto out;
691 	}
692 
693 prepare_write:
694 	error = block_prepare_write(page, from, to, gfs2_block_map);
695 out:
696 	if (error == 0)
697 		return 0;
698 
699 	page_cache_release(page);
700 
701 	/*
702 	 * XXX(hch): the call below should probably be replaced with
703 	 * a call to the gfs2-specific truncate blocks helper to actually
704 	 * release disk blocks..
705 	 */
706 	if (pos + len > ip->i_inode.i_size)
707 		simple_setsize(&ip->i_inode, ip->i_inode.i_size);
708 out_endtrans:
709 	gfs2_trans_end(sdp);
710 out_trans_fail:
711 	if (alloc_required) {
712 		gfs2_inplace_release(ip);
713 out_qunlock:
714 		gfs2_quota_unlock(ip);
715 out_alloc_put:
716 		gfs2_alloc_put(ip);
717 	}
718 out_unlock:
719 	if (&ip->i_inode == sdp->sd_rindex) {
720 		gfs2_glock_dq(&m_ip->i_gh);
721 		gfs2_holder_uninit(&m_ip->i_gh);
722 	}
723 	gfs2_glock_dq(&ip->i_gh);
724 out_uninit:
725 	gfs2_holder_uninit(&ip->i_gh);
726 	return error;
727 }
728 
729 /**
730  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
731  * @inode: the rindex inode
732  */
733 static void adjust_fs_space(struct inode *inode)
734 {
735 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
736 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
737 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
738 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
739 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
740 	struct buffer_head *m_bh, *l_bh;
741 	u64 fs_total, new_free;
742 
743 	/* Total up the file system space, according to the latest rindex. */
744 	fs_total = gfs2_ri_total(sdp);
745 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
746 		return;
747 
748 	spin_lock(&sdp->sd_statfs_spin);
749 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
750 			      sizeof(struct gfs2_dinode));
751 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
752 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
753 	else
754 		new_free = 0;
755 	spin_unlock(&sdp->sd_statfs_spin);
756 	fs_warn(sdp, "File system extended by %llu blocks.\n",
757 		(unsigned long long)new_free);
758 	gfs2_statfs_change(sdp, new_free, new_free, 0);
759 
760 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
761 		goto out;
762 	update_statfs(sdp, m_bh, l_bh);
763 	brelse(l_bh);
764 out:
765 	brelse(m_bh);
766 }
767 
768 /**
769  * gfs2_stuffed_write_end - Write end for stuffed files
770  * @inode: The inode
771  * @dibh: The buffer_head containing the on-disk inode
772  * @pos: The file position
773  * @len: The length of the write
774  * @copied: How much was actually copied by the VFS
775  * @page: The page
776  *
777  * This copies the data from the page into the inode block after
778  * the inode data structure itself.
779  *
780  * Returns: errno
781  */
782 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
783 				  loff_t pos, unsigned len, unsigned copied,
784 				  struct page *page)
785 {
786 	struct gfs2_inode *ip = GFS2_I(inode);
787 	struct gfs2_sbd *sdp = GFS2_SB(inode);
788 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
789 	u64 to = pos + copied;
790 	void *kaddr;
791 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
792 	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
793 
794 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
795 	kaddr = kmap_atomic(page, KM_USER0);
796 	memcpy(buf + pos, kaddr + pos, copied);
797 	memset(kaddr + pos + copied, 0, len - copied);
798 	flush_dcache_page(page);
799 	kunmap_atomic(kaddr, KM_USER0);
800 
801 	if (!PageUptodate(page))
802 		SetPageUptodate(page);
803 	unlock_page(page);
804 	page_cache_release(page);
805 
806 	if (copied) {
807 		if (inode->i_size < to) {
808 			i_size_write(inode, to);
809 			ip->i_disksize = inode->i_size;
810 		}
811 		gfs2_dinode_out(ip, di);
812 		mark_inode_dirty(inode);
813 	}
814 
815 	if (inode == sdp->sd_rindex) {
816 		adjust_fs_space(inode);
817 		ip->i_gh.gh_flags |= GL_NOCACHE;
818 	}
819 
820 	brelse(dibh);
821 	gfs2_trans_end(sdp);
822 	if (inode == sdp->sd_rindex) {
823 		gfs2_glock_dq(&m_ip->i_gh);
824 		gfs2_holder_uninit(&m_ip->i_gh);
825 	}
826 	gfs2_glock_dq(&ip->i_gh);
827 	gfs2_holder_uninit(&ip->i_gh);
828 	return copied;
829 }
830 
831 /**
832  * gfs2_write_end
833  * @file: The file to write to
834  * @mapping: The address space to write to
835  * @pos: The file position
836  * @len: The length of the data
837  * @copied:
838  * @page: The page that has been written
839  * @fsdata: The fsdata (unused in GFS2)
840  *
841  * The main write_end function for GFS2. We have a separate one for
842  * stuffed files as they are slightly different, otherwise we just
843  * put our locking around the VFS provided functions.
844  *
845  * Returns: errno
846  */
847 
848 static int gfs2_write_end(struct file *file, struct address_space *mapping,
849 			  loff_t pos, unsigned len, unsigned copied,
850 			  struct page *page, void *fsdata)
851 {
852 	struct inode *inode = page->mapping->host;
853 	struct gfs2_inode *ip = GFS2_I(inode);
854 	struct gfs2_sbd *sdp = GFS2_SB(inode);
855 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
856 	struct buffer_head *dibh;
857 	struct gfs2_alloc *al = ip->i_alloc;
858 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
859 	unsigned int to = from + len;
860 	int ret;
861 
862 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
863 
864 	ret = gfs2_meta_inode_buffer(ip, &dibh);
865 	if (unlikely(ret)) {
866 		unlock_page(page);
867 		page_cache_release(page);
868 		goto failed;
869 	}
870 
871 	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
872 
873 	if (gfs2_is_stuffed(ip))
874 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
875 
876 	if (!gfs2_is_writeback(ip))
877 		gfs2_page_add_databufs(ip, page, from, to);
878 
879 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
880 	if (ret > 0) {
881 		if (inode->i_size > ip->i_disksize)
882 			ip->i_disksize = inode->i_size;
883 		gfs2_dinode_out(ip, dibh->b_data);
884 		mark_inode_dirty(inode);
885 	}
886 
887 	if (inode == sdp->sd_rindex) {
888 		adjust_fs_space(inode);
889 		ip->i_gh.gh_flags |= GL_NOCACHE;
890 	}
891 
892 	brelse(dibh);
893 	gfs2_trans_end(sdp);
894 failed:
895 	if (al) {
896 		gfs2_inplace_release(ip);
897 		gfs2_quota_unlock(ip);
898 		gfs2_alloc_put(ip);
899 	}
900 	if (inode == sdp->sd_rindex) {
901 		gfs2_glock_dq(&m_ip->i_gh);
902 		gfs2_holder_uninit(&m_ip->i_gh);
903 	}
904 	gfs2_glock_dq(&ip->i_gh);
905 	gfs2_holder_uninit(&ip->i_gh);
906 	return ret;
907 }
908 
909 /**
910  * gfs2_set_page_dirty - Page dirtying function
911  * @page: The page to dirty
912  *
913  * Returns: 1 if it dirtyed the page, or 0 otherwise
914  */
915 
916 static int gfs2_set_page_dirty(struct page *page)
917 {
918 	SetPageChecked(page);
919 	return __set_page_dirty_buffers(page);
920 }
921 
922 /**
923  * gfs2_bmap - Block map function
924  * @mapping: Address space info
925  * @lblock: The block to map
926  *
927  * Returns: The disk address for the block or 0 on hole or error
928  */
929 
930 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
931 {
932 	struct gfs2_inode *ip = GFS2_I(mapping->host);
933 	struct gfs2_holder i_gh;
934 	sector_t dblock = 0;
935 	int error;
936 
937 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
938 	if (error)
939 		return 0;
940 
941 	if (!gfs2_is_stuffed(ip))
942 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
943 
944 	gfs2_glock_dq_uninit(&i_gh);
945 
946 	return dblock;
947 }
948 
949 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
950 {
951 	struct gfs2_bufdata *bd;
952 
953 	lock_buffer(bh);
954 	gfs2_log_lock(sdp);
955 	clear_buffer_dirty(bh);
956 	bd = bh->b_private;
957 	if (bd) {
958 		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
959 			list_del_init(&bd->bd_le.le_list);
960 		else
961 			gfs2_remove_from_journal(bh, current->journal_info, 0);
962 	}
963 	bh->b_bdev = NULL;
964 	clear_buffer_mapped(bh);
965 	clear_buffer_req(bh);
966 	clear_buffer_new(bh);
967 	gfs2_log_unlock(sdp);
968 	unlock_buffer(bh);
969 }
970 
971 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
972 {
973 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
974 	struct buffer_head *bh, *head;
975 	unsigned long pos = 0;
976 
977 	BUG_ON(!PageLocked(page));
978 	if (offset == 0)
979 		ClearPageChecked(page);
980 	if (!page_has_buffers(page))
981 		goto out;
982 
983 	bh = head = page_buffers(page);
984 	do {
985 		if (offset <= pos)
986 			gfs2_discard(sdp, bh);
987 		pos += bh->b_size;
988 		bh = bh->b_this_page;
989 	} while (bh != head);
990 out:
991 	if (offset == 0)
992 		try_to_release_page(page, 0);
993 }
994 
995 /**
996  * gfs2_ok_for_dio - check that dio is valid on this file
997  * @ip: The inode
998  * @rw: READ or WRITE
999  * @offset: The offset at which we are reading or writing
1000  *
1001  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1002  *          1 (to accept the i/o request)
1003  */
1004 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1005 {
1006 	/*
1007 	 * Should we return an error here? I can't see that O_DIRECT for
1008 	 * a stuffed file makes any sense. For now we'll silently fall
1009 	 * back to buffered I/O
1010 	 */
1011 	if (gfs2_is_stuffed(ip))
1012 		return 0;
1013 
1014 	if (offset >= i_size_read(&ip->i_inode))
1015 		return 0;
1016 	return 1;
1017 }
1018 
1019 
1020 
1021 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1022 			      const struct iovec *iov, loff_t offset,
1023 			      unsigned long nr_segs)
1024 {
1025 	struct file *file = iocb->ki_filp;
1026 	struct inode *inode = file->f_mapping->host;
1027 	struct gfs2_inode *ip = GFS2_I(inode);
1028 	struct gfs2_holder gh;
1029 	int rv;
1030 
1031 	/*
1032 	 * Deferred lock, even if its a write, since we do no allocation
1033 	 * on this path. All we need change is atime, and this lock mode
1034 	 * ensures that other nodes have flushed their buffered read caches
1035 	 * (i.e. their page cache entries for this inode). We do not,
1036 	 * unfortunately have the option of only flushing a range like
1037 	 * the VFS does.
1038 	 */
1039 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1040 	rv = gfs2_glock_nq(&gh);
1041 	if (rv)
1042 		return rv;
1043 	rv = gfs2_ok_for_dio(ip, rw, offset);
1044 	if (rv != 1)
1045 		goto out; /* dio not valid, fall back to buffered i/o */
1046 
1047 	rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1048 					   iov, offset, nr_segs,
1049 					   gfs2_get_block_direct, NULL);
1050 out:
1051 	gfs2_glock_dq_m(1, &gh);
1052 	gfs2_holder_uninit(&gh);
1053 	return rv;
1054 }
1055 
1056 /**
1057  * gfs2_releasepage - free the metadata associated with a page
1058  * @page: the page that's being released
1059  * @gfp_mask: passed from Linux VFS, ignored by us
1060  *
1061  * Call try_to_free_buffers() if the buffers in this page can be
1062  * released.
1063  *
1064  * Returns: 0
1065  */
1066 
1067 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1068 {
1069 	struct address_space *mapping = page->mapping;
1070 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1071 	struct buffer_head *bh, *head;
1072 	struct gfs2_bufdata *bd;
1073 
1074 	if (!page_has_buffers(page))
1075 		return 0;
1076 
1077 	gfs2_log_lock(sdp);
1078 	head = bh = page_buffers(page);
1079 	do {
1080 		if (atomic_read(&bh->b_count))
1081 			goto cannot_release;
1082 		bd = bh->b_private;
1083 		if (bd && bd->bd_ail)
1084 			goto cannot_release;
1085 		gfs2_assert_warn(sdp, !buffer_pinned(bh));
1086 		gfs2_assert_warn(sdp, !buffer_dirty(bh));
1087 		bh = bh->b_this_page;
1088 	} while(bh != head);
1089 	gfs2_log_unlock(sdp);
1090 
1091 	head = bh = page_buffers(page);
1092 	do {
1093 		gfs2_log_lock(sdp);
1094 		bd = bh->b_private;
1095 		if (bd) {
1096 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1097 			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1098 			if (!list_empty(&bd->bd_le.le_list)) {
1099 				if (!buffer_pinned(bh))
1100 					list_del_init(&bd->bd_le.le_list);
1101 				else
1102 					bd = NULL;
1103 			}
1104 			if (bd)
1105 				bd->bd_bh = NULL;
1106 			bh->b_private = NULL;
1107 		}
1108 		gfs2_log_unlock(sdp);
1109 		if (bd)
1110 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1111 
1112 		bh = bh->b_this_page;
1113 	} while (bh != head);
1114 
1115 	return try_to_free_buffers(page);
1116 cannot_release:
1117 	gfs2_log_unlock(sdp);
1118 	return 0;
1119 }
1120 
1121 static const struct address_space_operations gfs2_writeback_aops = {
1122 	.writepage = gfs2_writeback_writepage,
1123 	.writepages = gfs2_writeback_writepages,
1124 	.readpage = gfs2_readpage,
1125 	.readpages = gfs2_readpages,
1126 	.sync_page = block_sync_page,
1127 	.write_begin = gfs2_write_begin,
1128 	.write_end = gfs2_write_end,
1129 	.bmap = gfs2_bmap,
1130 	.invalidatepage = gfs2_invalidatepage,
1131 	.releasepage = gfs2_releasepage,
1132 	.direct_IO = gfs2_direct_IO,
1133 	.migratepage = buffer_migrate_page,
1134 	.is_partially_uptodate = block_is_partially_uptodate,
1135 	.error_remove_page = generic_error_remove_page,
1136 };
1137 
1138 static const struct address_space_operations gfs2_ordered_aops = {
1139 	.writepage = gfs2_ordered_writepage,
1140 	.readpage = gfs2_readpage,
1141 	.readpages = gfs2_readpages,
1142 	.sync_page = block_sync_page,
1143 	.write_begin = gfs2_write_begin,
1144 	.write_end = gfs2_write_end,
1145 	.set_page_dirty = gfs2_set_page_dirty,
1146 	.bmap = gfs2_bmap,
1147 	.invalidatepage = gfs2_invalidatepage,
1148 	.releasepage = gfs2_releasepage,
1149 	.direct_IO = gfs2_direct_IO,
1150 	.migratepage = buffer_migrate_page,
1151 	.is_partially_uptodate = block_is_partially_uptodate,
1152 	.error_remove_page = generic_error_remove_page,
1153 };
1154 
1155 static const struct address_space_operations gfs2_jdata_aops = {
1156 	.writepage = gfs2_jdata_writepage,
1157 	.writepages = gfs2_jdata_writepages,
1158 	.readpage = gfs2_readpage,
1159 	.readpages = gfs2_readpages,
1160 	.sync_page = block_sync_page,
1161 	.write_begin = gfs2_write_begin,
1162 	.write_end = gfs2_write_end,
1163 	.set_page_dirty = gfs2_set_page_dirty,
1164 	.bmap = gfs2_bmap,
1165 	.invalidatepage = gfs2_invalidatepage,
1166 	.releasepage = gfs2_releasepage,
1167 	.is_partially_uptodate = block_is_partially_uptodate,
1168 	.error_remove_page = generic_error_remove_page,
1169 };
1170 
1171 void gfs2_set_aops(struct inode *inode)
1172 {
1173 	struct gfs2_inode *ip = GFS2_I(inode);
1174 
1175 	if (gfs2_is_writeback(ip))
1176 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1177 	else if (gfs2_is_ordered(ip))
1178 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1179 	else if (gfs2_is_jdata(ip))
1180 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1181 	else
1182 		BUG();
1183 }
1184 
1185