xref: /openbmc/linux/fs/gfs2/aops.c (revision 2c27c65e)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 
38 
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 				   unsigned int from, unsigned int to)
41 {
42 	struct buffer_head *head = page_buffers(page);
43 	unsigned int bsize = head->b_size;
44 	struct buffer_head *bh;
45 	unsigned int start, end;
46 
47 	for (bh = head, start = 0; bh != head || !start;
48 	     bh = bh->b_this_page, start = end) {
49 		end = start + bsize;
50 		if (end <= from || start >= to)
51 			continue;
52 		if (gfs2_is_jdata(ip))
53 			set_buffer_uptodate(bh);
54 		gfs2_trans_add_bh(ip->i_gl, bh, 0);
55 	}
56 }
57 
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67 
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 				  struct buffer_head *bh_result, int create)
70 {
71 	int error;
72 
73 	error = gfs2_block_map(inode, lblock, bh_result, 0);
74 	if (error)
75 		return error;
76 	if (!buffer_mapped(bh_result))
77 		return -EIO;
78 	return 0;
79 }
80 
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 				 struct buffer_head *bh_result, int create)
83 {
84 	return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86 
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94 
95 static int gfs2_writepage_common(struct page *page,
96 				 struct writeback_control *wbc)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct gfs2_inode *ip = GFS2_I(inode);
100 	struct gfs2_sbd *sdp = GFS2_SB(inode);
101 	loff_t i_size = i_size_read(inode);
102 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 	unsigned offset;
104 
105 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 		goto out;
107 	if (current->journal_info)
108 		goto redirty;
109 	/* Is the page fully outside i_size? (truncate in progress) */
110 	offset = i_size & (PAGE_CACHE_SIZE-1);
111 	if (page->index > end_index || (page->index == end_index && !offset)) {
112 		page->mapping->a_ops->invalidatepage(page, 0);
113 		goto out;
114 	}
115 	return 1;
116 redirty:
117 	redirty_page_for_writepage(wbc, page);
118 out:
119 	unlock_page(page);
120 	return 0;
121 }
122 
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129 
130 static int gfs2_writeback_writepage(struct page *page,
131 				    struct writeback_control *wbc)
132 {
133 	int ret;
134 
135 	ret = gfs2_writepage_common(page, wbc);
136 	if (ret <= 0)
137 		return ret;
138 
139 	ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
140 	if (ret == -EAGAIN)
141 		ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
142 	return ret;
143 }
144 
145 /**
146  * gfs2_ordered_writepage - Write page for ordered data files
147  * @page: The page to write
148  * @wbc: The writeback control
149  *
150  */
151 
152 static int gfs2_ordered_writepage(struct page *page,
153 				  struct writeback_control *wbc)
154 {
155 	struct inode *inode = page->mapping->host;
156 	struct gfs2_inode *ip = GFS2_I(inode);
157 	int ret;
158 
159 	ret = gfs2_writepage_common(page, wbc);
160 	if (ret <= 0)
161 		return ret;
162 
163 	if (!page_has_buffers(page)) {
164 		create_empty_buffers(page, inode->i_sb->s_blocksize,
165 				     (1 << BH_Dirty)|(1 << BH_Uptodate));
166 	}
167 	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
168 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170 
171 /**
172  * __gfs2_jdata_writepage - The core of jdata writepage
173  * @page: The page to write
174  * @wbc: The writeback control
175  *
176  * This is shared between writepage and writepages and implements the
177  * core of the writepage operation. If a transaction is required then
178  * PageChecked will have been set and the transaction will have
179  * already been started before this is called.
180  */
181 
182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
183 {
184 	struct inode *inode = page->mapping->host;
185 	struct gfs2_inode *ip = GFS2_I(inode);
186 	struct gfs2_sbd *sdp = GFS2_SB(inode);
187 
188 	if (PageChecked(page)) {
189 		ClearPageChecked(page);
190 		if (!page_has_buffers(page)) {
191 			create_empty_buffers(page, inode->i_sb->s_blocksize,
192 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
193 		}
194 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
195 	}
196 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
197 }
198 
199 /**
200  * gfs2_jdata_writepage - Write complete page
201  * @page: Page to write
202  *
203  * Returns: errno
204  *
205  */
206 
207 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
208 {
209 	struct inode *inode = page->mapping->host;
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 	int done_trans = 0;
213 
214 	if (PageChecked(page)) {
215 		if (wbc->sync_mode != WB_SYNC_ALL)
216 			goto out_ignore;
217 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
218 		if (ret)
219 			goto out_ignore;
220 		done_trans = 1;
221 	}
222 	ret = gfs2_writepage_common(page, wbc);
223 	if (ret > 0)
224 		ret = __gfs2_jdata_writepage(page, wbc);
225 	if (done_trans)
226 		gfs2_trans_end(sdp);
227 	return ret;
228 
229 out_ignore:
230 	redirty_page_for_writepage(wbc, page);
231 	unlock_page(page);
232 	return 0;
233 }
234 
235 /**
236  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
237  * @mapping: The mapping to write
238  * @wbc: Write-back control
239  *
240  * For the data=writeback case we can already ignore buffer heads
241  * and write whole extents at once. This is a big reduction in the
242  * number of I/O requests we send and the bmap calls we make in this case.
243  */
244 static int gfs2_writeback_writepages(struct address_space *mapping,
245 				     struct writeback_control *wbc)
246 {
247 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
248 }
249 
250 /**
251  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252  * @mapping: The mapping
253  * @wbc: The writeback control
254  * @writepage: The writepage function to call for each page
255  * @pvec: The vector of pages
256  * @nr_pages: The number of pages to write
257  *
258  * Returns: non-zero if loop should terminate, zero otherwise
259  */
260 
261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262 				    struct writeback_control *wbc,
263 				    struct pagevec *pvec,
264 				    int nr_pages, pgoff_t end)
265 {
266 	struct inode *inode = mapping->host;
267 	struct gfs2_sbd *sdp = GFS2_SB(inode);
268 	loff_t i_size = i_size_read(inode);
269 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
270 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
271 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
272 	int i;
273 	int ret;
274 
275 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
276 	if (ret < 0)
277 		return ret;
278 
279 	for(i = 0; i < nr_pages; i++) {
280 		struct page *page = pvec->pages[i];
281 
282 		lock_page(page);
283 
284 		if (unlikely(page->mapping != mapping)) {
285 			unlock_page(page);
286 			continue;
287 		}
288 
289 		if (!wbc->range_cyclic && page->index > end) {
290 			ret = 1;
291 			unlock_page(page);
292 			continue;
293 		}
294 
295 		if (wbc->sync_mode != WB_SYNC_NONE)
296 			wait_on_page_writeback(page);
297 
298 		if (PageWriteback(page) ||
299 		    !clear_page_dirty_for_io(page)) {
300 			unlock_page(page);
301 			continue;
302 		}
303 
304 		/* Is the page fully outside i_size? (truncate in progress) */
305 		if (page->index > end_index || (page->index == end_index && !offset)) {
306 			page->mapping->a_ops->invalidatepage(page, 0);
307 			unlock_page(page);
308 			continue;
309 		}
310 
311 		ret = __gfs2_jdata_writepage(page, wbc);
312 
313 		if (ret || (--(wbc->nr_to_write) <= 0))
314 			ret = 1;
315 	}
316 	gfs2_trans_end(sdp);
317 	return ret;
318 }
319 
320 /**
321  * gfs2_write_cache_jdata - Like write_cache_pages but different
322  * @mapping: The mapping to write
323  * @wbc: The writeback control
324  * @writepage: The writepage function to call
325  * @data: The data to pass to writepage
326  *
327  * The reason that we use our own function here is that we need to
328  * start transactions before we grab page locks. This allows us
329  * to get the ordering right.
330  */
331 
332 static int gfs2_write_cache_jdata(struct address_space *mapping,
333 				  struct writeback_control *wbc)
334 {
335 	int ret = 0;
336 	int done = 0;
337 	struct pagevec pvec;
338 	int nr_pages;
339 	pgoff_t index;
340 	pgoff_t end;
341 	int scanned = 0;
342 	int range_whole = 0;
343 
344 	pagevec_init(&pvec, 0);
345 	if (wbc->range_cyclic) {
346 		index = mapping->writeback_index; /* Start from prev offset */
347 		end = -1;
348 	} else {
349 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
350 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
351 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
352 			range_whole = 1;
353 		scanned = 1;
354 	}
355 
356 retry:
357 	 while (!done && (index <= end) &&
358 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 					       PAGECACHE_TAG_DIRTY,
360 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
361 		scanned = 1;
362 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
363 		if (ret)
364 			done = 1;
365 		if (ret > 0)
366 			ret = 0;
367 
368 		pagevec_release(&pvec);
369 		cond_resched();
370 	}
371 
372 	if (!scanned && !done) {
373 		/*
374 		 * We hit the last page and there is more work to be done: wrap
375 		 * back to the start of the file
376 		 */
377 		scanned = 1;
378 		index = 0;
379 		goto retry;
380 	}
381 
382 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
383 		mapping->writeback_index = index;
384 	return ret;
385 }
386 
387 
388 /**
389  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
390  * @mapping: The mapping to write
391  * @wbc: The writeback control
392  *
393  */
394 
395 static int gfs2_jdata_writepages(struct address_space *mapping,
396 				 struct writeback_control *wbc)
397 {
398 	struct gfs2_inode *ip = GFS2_I(mapping->host);
399 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
400 	int ret;
401 
402 	ret = gfs2_write_cache_jdata(mapping, wbc);
403 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
404 		gfs2_log_flush(sdp, ip->i_gl);
405 		ret = gfs2_write_cache_jdata(mapping, wbc);
406 	}
407 	return ret;
408 }
409 
410 /**
411  * stuffed_readpage - Fill in a Linux page with stuffed file data
412  * @ip: the inode
413  * @page: the page
414  *
415  * Returns: errno
416  */
417 
418 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
419 {
420 	struct buffer_head *dibh;
421 	u64 dsize = i_size_read(&ip->i_inode);
422 	void *kaddr;
423 	int error;
424 
425 	/*
426 	 * Due to the order of unstuffing files and ->fault(), we can be
427 	 * asked for a zero page in the case of a stuffed file being extended,
428 	 * so we need to supply one here. It doesn't happen often.
429 	 */
430 	if (unlikely(page->index)) {
431 		zero_user(page, 0, PAGE_CACHE_SIZE);
432 		SetPageUptodate(page);
433 		return 0;
434 	}
435 
436 	error = gfs2_meta_inode_buffer(ip, &dibh);
437 	if (error)
438 		return error;
439 
440 	kaddr = kmap_atomic(page, KM_USER0);
441 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
442 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
443 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
444 	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
445 	kunmap_atomic(kaddr, KM_USER0);
446 	flush_dcache_page(page);
447 	brelse(dibh);
448 	SetPageUptodate(page);
449 
450 	return 0;
451 }
452 
453 
454 /**
455  * __gfs2_readpage - readpage
456  * @file: The file to read a page for
457  * @page: The page to read
458  *
459  * This is the core of gfs2's readpage. Its used by the internal file
460  * reading code as in that case we already hold the glock. Also its
461  * called by gfs2_readpage() once the required lock has been granted.
462  *
463  */
464 
465 static int __gfs2_readpage(void *file, struct page *page)
466 {
467 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
468 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
469 	int error;
470 
471 	if (gfs2_is_stuffed(ip)) {
472 		error = stuffed_readpage(ip, page);
473 		unlock_page(page);
474 	} else {
475 		error = mpage_readpage(page, gfs2_block_map);
476 	}
477 
478 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
479 		return -EIO;
480 
481 	return error;
482 }
483 
484 /**
485  * gfs2_readpage - read a page of a file
486  * @file: The file to read
487  * @page: The page of the file
488  *
489  * This deals with the locking required. We have to unlock and
490  * relock the page in order to get the locking in the right
491  * order.
492  */
493 
494 static int gfs2_readpage(struct file *file, struct page *page)
495 {
496 	struct address_space *mapping = page->mapping;
497 	struct gfs2_inode *ip = GFS2_I(mapping->host);
498 	struct gfs2_holder gh;
499 	int error;
500 
501 	unlock_page(page);
502 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
503 	error = gfs2_glock_nq(&gh);
504 	if (unlikely(error))
505 		goto out;
506 	error = AOP_TRUNCATED_PAGE;
507 	lock_page(page);
508 	if (page->mapping == mapping && !PageUptodate(page))
509 		error = __gfs2_readpage(file, page);
510 	else
511 		unlock_page(page);
512 	gfs2_glock_dq(&gh);
513 out:
514 	gfs2_holder_uninit(&gh);
515 	if (error && error != AOP_TRUNCATED_PAGE)
516 		lock_page(page);
517 	return error;
518 }
519 
520 /**
521  * gfs2_internal_read - read an internal file
522  * @ip: The gfs2 inode
523  * @ra_state: The readahead state (or NULL for no readahead)
524  * @buf: The buffer to fill
525  * @pos: The file position
526  * @size: The amount to read
527  *
528  */
529 
530 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
531                        char *buf, loff_t *pos, unsigned size)
532 {
533 	struct address_space *mapping = ip->i_inode.i_mapping;
534 	unsigned long index = *pos / PAGE_CACHE_SIZE;
535 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
536 	unsigned copied = 0;
537 	unsigned amt;
538 	struct page *page;
539 	void *p;
540 
541 	do {
542 		amt = size - copied;
543 		if (offset + size > PAGE_CACHE_SIZE)
544 			amt = PAGE_CACHE_SIZE - offset;
545 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
546 		if (IS_ERR(page))
547 			return PTR_ERR(page);
548 		p = kmap_atomic(page, KM_USER0);
549 		memcpy(buf + copied, p + offset, amt);
550 		kunmap_atomic(p, KM_USER0);
551 		mark_page_accessed(page);
552 		page_cache_release(page);
553 		copied += amt;
554 		index++;
555 		offset = 0;
556 	} while(copied < size);
557 	(*pos) += size;
558 	return size;
559 }
560 
561 /**
562  * gfs2_readpages - Read a bunch of pages at once
563  *
564  * Some notes:
565  * 1. This is only for readahead, so we can simply ignore any things
566  *    which are slightly inconvenient (such as locking conflicts between
567  *    the page lock and the glock) and return having done no I/O. Its
568  *    obviously not something we'd want to do on too regular a basis.
569  *    Any I/O we ignore at this time will be done via readpage later.
570  * 2. We don't handle stuffed files here we let readpage do the honours.
571  * 3. mpage_readpages() does most of the heavy lifting in the common case.
572  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
573  */
574 
575 static int gfs2_readpages(struct file *file, struct address_space *mapping,
576 			  struct list_head *pages, unsigned nr_pages)
577 {
578 	struct inode *inode = mapping->host;
579 	struct gfs2_inode *ip = GFS2_I(inode);
580 	struct gfs2_sbd *sdp = GFS2_SB(inode);
581 	struct gfs2_holder gh;
582 	int ret;
583 
584 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
585 	ret = gfs2_glock_nq(&gh);
586 	if (unlikely(ret))
587 		goto out_uninit;
588 	if (!gfs2_is_stuffed(ip))
589 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
590 	gfs2_glock_dq(&gh);
591 out_uninit:
592 	gfs2_holder_uninit(&gh);
593 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
594 		ret = -EIO;
595 	return ret;
596 }
597 
598 /**
599  * gfs2_write_begin - Begin to write to a file
600  * @file: The file to write to
601  * @mapping: The mapping in which to write
602  * @pos: The file offset at which to start writing
603  * @len: Length of the write
604  * @flags: Various flags
605  * @pagep: Pointer to return the page
606  * @fsdata: Pointer to return fs data (unused by GFS2)
607  *
608  * Returns: errno
609  */
610 
611 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
612 			    loff_t pos, unsigned len, unsigned flags,
613 			    struct page **pagep, void **fsdata)
614 {
615 	struct gfs2_inode *ip = GFS2_I(mapping->host);
616 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
617 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
618 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
619 	int alloc_required;
620 	int error = 0;
621 	struct gfs2_alloc *al;
622 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
623 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
624 	unsigned to = from + len;
625 	struct page *page;
626 
627 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
628 	error = gfs2_glock_nq(&ip->i_gh);
629 	if (unlikely(error))
630 		goto out_uninit;
631 	if (&ip->i_inode == sdp->sd_rindex) {
632 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
633 					   GL_NOCACHE, &m_ip->i_gh);
634 		if (unlikely(error)) {
635 			gfs2_glock_dq(&ip->i_gh);
636 			goto out_uninit;
637 		}
638 	}
639 
640 	error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
641 	if (error)
642 		goto out_unlock;
643 
644 	if (alloc_required || gfs2_is_jdata(ip))
645 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
646 
647 	if (alloc_required) {
648 		al = gfs2_alloc_get(ip);
649 		if (!al) {
650 			error = -ENOMEM;
651 			goto out_unlock;
652 		}
653 
654 		error = gfs2_quota_lock_check(ip);
655 		if (error)
656 			goto out_alloc_put;
657 
658 		al->al_requested = data_blocks + ind_blocks;
659 		error = gfs2_inplace_reserve(ip);
660 		if (error)
661 			goto out_qunlock;
662 	}
663 
664 	rblocks = RES_DINODE + ind_blocks;
665 	if (gfs2_is_jdata(ip))
666 		rblocks += data_blocks ? data_blocks : 1;
667 	if (ind_blocks || data_blocks)
668 		rblocks += RES_STATFS + RES_QUOTA;
669 	if (&ip->i_inode == sdp->sd_rindex)
670 		rblocks += 2 * RES_STATFS;
671 
672 	error = gfs2_trans_begin(sdp, rblocks,
673 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
674 	if (error)
675 		goto out_trans_fail;
676 
677 	error = -ENOMEM;
678 	flags |= AOP_FLAG_NOFS;
679 	page = grab_cache_page_write_begin(mapping, index, flags);
680 	*pagep = page;
681 	if (unlikely(!page))
682 		goto out_endtrans;
683 
684 	if (gfs2_is_stuffed(ip)) {
685 		error = 0;
686 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
687 			error = gfs2_unstuff_dinode(ip, page);
688 			if (error == 0)
689 				goto prepare_write;
690 		} else if (!PageUptodate(page)) {
691 			error = stuffed_readpage(ip, page);
692 		}
693 		goto out;
694 	}
695 
696 prepare_write:
697 	error = block_prepare_write(page, from, to, gfs2_block_map);
698 out:
699 	if (error == 0)
700 		return 0;
701 
702 	page_cache_release(page);
703 
704 	/*
705 	 * XXX(truncate): the call below should probably be replaced with
706 	 * a call to the gfs2-specific truncate blocks helper to actually
707 	 * release disk blocks..
708 	 */
709 	if (pos + len > ip->i_inode.i_size)
710 		truncate_setsize(&ip->i_inode, ip->i_inode.i_size);
711 out_endtrans:
712 	gfs2_trans_end(sdp);
713 out_trans_fail:
714 	if (alloc_required) {
715 		gfs2_inplace_release(ip);
716 out_qunlock:
717 		gfs2_quota_unlock(ip);
718 out_alloc_put:
719 		gfs2_alloc_put(ip);
720 	}
721 out_unlock:
722 	if (&ip->i_inode == sdp->sd_rindex) {
723 		gfs2_glock_dq(&m_ip->i_gh);
724 		gfs2_holder_uninit(&m_ip->i_gh);
725 	}
726 	gfs2_glock_dq(&ip->i_gh);
727 out_uninit:
728 	gfs2_holder_uninit(&ip->i_gh);
729 	return error;
730 }
731 
732 /**
733  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
734  * @inode: the rindex inode
735  */
736 static void adjust_fs_space(struct inode *inode)
737 {
738 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
739 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
740 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
741 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
742 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
743 	struct buffer_head *m_bh, *l_bh;
744 	u64 fs_total, new_free;
745 
746 	/* Total up the file system space, according to the latest rindex. */
747 	fs_total = gfs2_ri_total(sdp);
748 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
749 		return;
750 
751 	spin_lock(&sdp->sd_statfs_spin);
752 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
753 			      sizeof(struct gfs2_dinode));
754 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
755 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
756 	else
757 		new_free = 0;
758 	spin_unlock(&sdp->sd_statfs_spin);
759 	fs_warn(sdp, "File system extended by %llu blocks.\n",
760 		(unsigned long long)new_free);
761 	gfs2_statfs_change(sdp, new_free, new_free, 0);
762 
763 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
764 		goto out;
765 	update_statfs(sdp, m_bh, l_bh);
766 	brelse(l_bh);
767 out:
768 	brelse(m_bh);
769 }
770 
771 /**
772  * gfs2_stuffed_write_end - Write end for stuffed files
773  * @inode: The inode
774  * @dibh: The buffer_head containing the on-disk inode
775  * @pos: The file position
776  * @len: The length of the write
777  * @copied: How much was actually copied by the VFS
778  * @page: The page
779  *
780  * This copies the data from the page into the inode block after
781  * the inode data structure itself.
782  *
783  * Returns: errno
784  */
785 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
786 				  loff_t pos, unsigned len, unsigned copied,
787 				  struct page *page)
788 {
789 	struct gfs2_inode *ip = GFS2_I(inode);
790 	struct gfs2_sbd *sdp = GFS2_SB(inode);
791 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
792 	u64 to = pos + copied;
793 	void *kaddr;
794 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
795 	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
796 
797 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
798 	kaddr = kmap_atomic(page, KM_USER0);
799 	memcpy(buf + pos, kaddr + pos, copied);
800 	memset(kaddr + pos + copied, 0, len - copied);
801 	flush_dcache_page(page);
802 	kunmap_atomic(kaddr, KM_USER0);
803 
804 	if (!PageUptodate(page))
805 		SetPageUptodate(page);
806 	unlock_page(page);
807 	page_cache_release(page);
808 
809 	if (copied) {
810 		if (inode->i_size < to) {
811 			i_size_write(inode, to);
812 			ip->i_disksize = inode->i_size;
813 		}
814 		gfs2_dinode_out(ip, di);
815 		mark_inode_dirty(inode);
816 	}
817 
818 	if (inode == sdp->sd_rindex) {
819 		adjust_fs_space(inode);
820 		ip->i_gh.gh_flags |= GL_NOCACHE;
821 	}
822 
823 	brelse(dibh);
824 	gfs2_trans_end(sdp);
825 	if (inode == sdp->sd_rindex) {
826 		gfs2_glock_dq(&m_ip->i_gh);
827 		gfs2_holder_uninit(&m_ip->i_gh);
828 	}
829 	gfs2_glock_dq(&ip->i_gh);
830 	gfs2_holder_uninit(&ip->i_gh);
831 	return copied;
832 }
833 
834 /**
835  * gfs2_write_end
836  * @file: The file to write to
837  * @mapping: The address space to write to
838  * @pos: The file position
839  * @len: The length of the data
840  * @copied:
841  * @page: The page that has been written
842  * @fsdata: The fsdata (unused in GFS2)
843  *
844  * The main write_end function for GFS2. We have a separate one for
845  * stuffed files as they are slightly different, otherwise we just
846  * put our locking around the VFS provided functions.
847  *
848  * Returns: errno
849  */
850 
851 static int gfs2_write_end(struct file *file, struct address_space *mapping,
852 			  loff_t pos, unsigned len, unsigned copied,
853 			  struct page *page, void *fsdata)
854 {
855 	struct inode *inode = page->mapping->host;
856 	struct gfs2_inode *ip = GFS2_I(inode);
857 	struct gfs2_sbd *sdp = GFS2_SB(inode);
858 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
859 	struct buffer_head *dibh;
860 	struct gfs2_alloc *al = ip->i_alloc;
861 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
862 	unsigned int to = from + len;
863 	int ret;
864 
865 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
866 
867 	ret = gfs2_meta_inode_buffer(ip, &dibh);
868 	if (unlikely(ret)) {
869 		unlock_page(page);
870 		page_cache_release(page);
871 		goto failed;
872 	}
873 
874 	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
875 
876 	if (gfs2_is_stuffed(ip))
877 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
878 
879 	if (!gfs2_is_writeback(ip))
880 		gfs2_page_add_databufs(ip, page, from, to);
881 
882 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
883 	if (ret > 0) {
884 		if (inode->i_size > ip->i_disksize)
885 			ip->i_disksize = inode->i_size;
886 		gfs2_dinode_out(ip, dibh->b_data);
887 		mark_inode_dirty(inode);
888 	}
889 
890 	if (inode == sdp->sd_rindex) {
891 		adjust_fs_space(inode);
892 		ip->i_gh.gh_flags |= GL_NOCACHE;
893 	}
894 
895 	brelse(dibh);
896 	gfs2_trans_end(sdp);
897 failed:
898 	if (al) {
899 		gfs2_inplace_release(ip);
900 		gfs2_quota_unlock(ip);
901 		gfs2_alloc_put(ip);
902 	}
903 	if (inode == sdp->sd_rindex) {
904 		gfs2_glock_dq(&m_ip->i_gh);
905 		gfs2_holder_uninit(&m_ip->i_gh);
906 	}
907 	gfs2_glock_dq(&ip->i_gh);
908 	gfs2_holder_uninit(&ip->i_gh);
909 	return ret;
910 }
911 
912 /**
913  * gfs2_set_page_dirty - Page dirtying function
914  * @page: The page to dirty
915  *
916  * Returns: 1 if it dirtyed the page, or 0 otherwise
917  */
918 
919 static int gfs2_set_page_dirty(struct page *page)
920 {
921 	SetPageChecked(page);
922 	return __set_page_dirty_buffers(page);
923 }
924 
925 /**
926  * gfs2_bmap - Block map function
927  * @mapping: Address space info
928  * @lblock: The block to map
929  *
930  * Returns: The disk address for the block or 0 on hole or error
931  */
932 
933 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
934 {
935 	struct gfs2_inode *ip = GFS2_I(mapping->host);
936 	struct gfs2_holder i_gh;
937 	sector_t dblock = 0;
938 	int error;
939 
940 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
941 	if (error)
942 		return 0;
943 
944 	if (!gfs2_is_stuffed(ip))
945 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
946 
947 	gfs2_glock_dq_uninit(&i_gh);
948 
949 	return dblock;
950 }
951 
952 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
953 {
954 	struct gfs2_bufdata *bd;
955 
956 	lock_buffer(bh);
957 	gfs2_log_lock(sdp);
958 	clear_buffer_dirty(bh);
959 	bd = bh->b_private;
960 	if (bd) {
961 		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
962 			list_del_init(&bd->bd_le.le_list);
963 		else
964 			gfs2_remove_from_journal(bh, current->journal_info, 0);
965 	}
966 	bh->b_bdev = NULL;
967 	clear_buffer_mapped(bh);
968 	clear_buffer_req(bh);
969 	clear_buffer_new(bh);
970 	gfs2_log_unlock(sdp);
971 	unlock_buffer(bh);
972 }
973 
974 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
975 {
976 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
977 	struct buffer_head *bh, *head;
978 	unsigned long pos = 0;
979 
980 	BUG_ON(!PageLocked(page));
981 	if (offset == 0)
982 		ClearPageChecked(page);
983 	if (!page_has_buffers(page))
984 		goto out;
985 
986 	bh = head = page_buffers(page);
987 	do {
988 		if (offset <= pos)
989 			gfs2_discard(sdp, bh);
990 		pos += bh->b_size;
991 		bh = bh->b_this_page;
992 	} while (bh != head);
993 out:
994 	if (offset == 0)
995 		try_to_release_page(page, 0);
996 }
997 
998 /**
999  * gfs2_ok_for_dio - check that dio is valid on this file
1000  * @ip: The inode
1001  * @rw: READ or WRITE
1002  * @offset: The offset at which we are reading or writing
1003  *
1004  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1005  *          1 (to accept the i/o request)
1006  */
1007 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1008 {
1009 	/*
1010 	 * Should we return an error here? I can't see that O_DIRECT for
1011 	 * a stuffed file makes any sense. For now we'll silently fall
1012 	 * back to buffered I/O
1013 	 */
1014 	if (gfs2_is_stuffed(ip))
1015 		return 0;
1016 
1017 	if (offset >= i_size_read(&ip->i_inode))
1018 		return 0;
1019 	return 1;
1020 }
1021 
1022 
1023 
1024 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1025 			      const struct iovec *iov, loff_t offset,
1026 			      unsigned long nr_segs)
1027 {
1028 	struct file *file = iocb->ki_filp;
1029 	struct inode *inode = file->f_mapping->host;
1030 	struct gfs2_inode *ip = GFS2_I(inode);
1031 	struct gfs2_holder gh;
1032 	int rv;
1033 
1034 	/*
1035 	 * Deferred lock, even if its a write, since we do no allocation
1036 	 * on this path. All we need change is atime, and this lock mode
1037 	 * ensures that other nodes have flushed their buffered read caches
1038 	 * (i.e. their page cache entries for this inode). We do not,
1039 	 * unfortunately have the option of only flushing a range like
1040 	 * the VFS does.
1041 	 */
1042 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1043 	rv = gfs2_glock_nq(&gh);
1044 	if (rv)
1045 		return rv;
1046 	rv = gfs2_ok_for_dio(ip, rw, offset);
1047 	if (rv != 1)
1048 		goto out; /* dio not valid, fall back to buffered i/o */
1049 
1050 	rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1051 				  offset, nr_segs, gfs2_get_block_direct,
1052 				  NULL, NULL, 0);
1053 out:
1054 	gfs2_glock_dq_m(1, &gh);
1055 	gfs2_holder_uninit(&gh);
1056 	return rv;
1057 }
1058 
1059 /**
1060  * gfs2_releasepage - free the metadata associated with a page
1061  * @page: the page that's being released
1062  * @gfp_mask: passed from Linux VFS, ignored by us
1063  *
1064  * Call try_to_free_buffers() if the buffers in this page can be
1065  * released.
1066  *
1067  * Returns: 0
1068  */
1069 
1070 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1071 {
1072 	struct address_space *mapping = page->mapping;
1073 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1074 	struct buffer_head *bh, *head;
1075 	struct gfs2_bufdata *bd;
1076 
1077 	if (!page_has_buffers(page))
1078 		return 0;
1079 
1080 	gfs2_log_lock(sdp);
1081 	head = bh = page_buffers(page);
1082 	do {
1083 		if (atomic_read(&bh->b_count))
1084 			goto cannot_release;
1085 		bd = bh->b_private;
1086 		if (bd && bd->bd_ail)
1087 			goto cannot_release;
1088 		gfs2_assert_warn(sdp, !buffer_pinned(bh));
1089 		gfs2_assert_warn(sdp, !buffer_dirty(bh));
1090 		bh = bh->b_this_page;
1091 	} while(bh != head);
1092 	gfs2_log_unlock(sdp);
1093 
1094 	head = bh = page_buffers(page);
1095 	do {
1096 		gfs2_log_lock(sdp);
1097 		bd = bh->b_private;
1098 		if (bd) {
1099 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1100 			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1101 			if (!list_empty(&bd->bd_le.le_list)) {
1102 				if (!buffer_pinned(bh))
1103 					list_del_init(&bd->bd_le.le_list);
1104 				else
1105 					bd = NULL;
1106 			}
1107 			if (bd)
1108 				bd->bd_bh = NULL;
1109 			bh->b_private = NULL;
1110 		}
1111 		gfs2_log_unlock(sdp);
1112 		if (bd)
1113 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1114 
1115 		bh = bh->b_this_page;
1116 	} while (bh != head);
1117 
1118 	return try_to_free_buffers(page);
1119 cannot_release:
1120 	gfs2_log_unlock(sdp);
1121 	return 0;
1122 }
1123 
1124 static const struct address_space_operations gfs2_writeback_aops = {
1125 	.writepage = gfs2_writeback_writepage,
1126 	.writepages = gfs2_writeback_writepages,
1127 	.readpage = gfs2_readpage,
1128 	.readpages = gfs2_readpages,
1129 	.sync_page = block_sync_page,
1130 	.write_begin = gfs2_write_begin,
1131 	.write_end = gfs2_write_end,
1132 	.bmap = gfs2_bmap,
1133 	.invalidatepage = gfs2_invalidatepage,
1134 	.releasepage = gfs2_releasepage,
1135 	.direct_IO = gfs2_direct_IO,
1136 	.migratepage = buffer_migrate_page,
1137 	.is_partially_uptodate = block_is_partially_uptodate,
1138 	.error_remove_page = generic_error_remove_page,
1139 };
1140 
1141 static const struct address_space_operations gfs2_ordered_aops = {
1142 	.writepage = gfs2_ordered_writepage,
1143 	.readpage = gfs2_readpage,
1144 	.readpages = gfs2_readpages,
1145 	.sync_page = block_sync_page,
1146 	.write_begin = gfs2_write_begin,
1147 	.write_end = gfs2_write_end,
1148 	.set_page_dirty = gfs2_set_page_dirty,
1149 	.bmap = gfs2_bmap,
1150 	.invalidatepage = gfs2_invalidatepage,
1151 	.releasepage = gfs2_releasepage,
1152 	.direct_IO = gfs2_direct_IO,
1153 	.migratepage = buffer_migrate_page,
1154 	.is_partially_uptodate = block_is_partially_uptodate,
1155 	.error_remove_page = generic_error_remove_page,
1156 };
1157 
1158 static const struct address_space_operations gfs2_jdata_aops = {
1159 	.writepage = gfs2_jdata_writepage,
1160 	.writepages = gfs2_jdata_writepages,
1161 	.readpage = gfs2_readpage,
1162 	.readpages = gfs2_readpages,
1163 	.sync_page = block_sync_page,
1164 	.write_begin = gfs2_write_begin,
1165 	.write_end = gfs2_write_end,
1166 	.set_page_dirty = gfs2_set_page_dirty,
1167 	.bmap = gfs2_bmap,
1168 	.invalidatepage = gfs2_invalidatepage,
1169 	.releasepage = gfs2_releasepage,
1170 	.is_partially_uptodate = block_is_partially_uptodate,
1171 	.error_remove_page = generic_error_remove_page,
1172 };
1173 
1174 void gfs2_set_aops(struct inode *inode)
1175 {
1176 	struct gfs2_inode *ip = GFS2_I(inode);
1177 
1178 	if (gfs2_is_writeback(ip))
1179 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1180 	else if (gfs2_is_ordered(ip))
1181 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1182 	else if (gfs2_is_jdata(ip))
1183 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1184 	else
1185 		BUG();
1186 }
1187 
1188