xref: /openbmc/linux/fs/gfs2/aops.c (revision 1946f70a)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 
38 
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 				   unsigned int from, unsigned int to)
41 {
42 	struct buffer_head *head = page_buffers(page);
43 	unsigned int bsize = head->b_size;
44 	struct buffer_head *bh;
45 	unsigned int start, end;
46 
47 	for (bh = head, start = 0; bh != head || !start;
48 	     bh = bh->b_this_page, start = end) {
49 		end = start + bsize;
50 		if (end <= from || start >= to)
51 			continue;
52 		if (gfs2_is_jdata(ip))
53 			set_buffer_uptodate(bh);
54 		gfs2_trans_add_bh(ip->i_gl, bh, 0);
55 	}
56 }
57 
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67 
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 				  struct buffer_head *bh_result, int create)
70 {
71 	int error;
72 
73 	error = gfs2_block_map(inode, lblock, bh_result, 0);
74 	if (error)
75 		return error;
76 	if (!buffer_mapped(bh_result))
77 		return -EIO;
78 	return 0;
79 }
80 
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 				 struct buffer_head *bh_result, int create)
83 {
84 	return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86 
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94 
95 static int gfs2_writepage_common(struct page *page,
96 				 struct writeback_control *wbc)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct gfs2_inode *ip = GFS2_I(inode);
100 	struct gfs2_sbd *sdp = GFS2_SB(inode);
101 	loff_t i_size = i_size_read(inode);
102 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 	unsigned offset;
104 
105 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 		goto out;
107 	if (current->journal_info)
108 		goto redirty;
109 	/* Is the page fully outside i_size? (truncate in progress) */
110 	offset = i_size & (PAGE_CACHE_SIZE-1);
111 	if (page->index > end_index || (page->index == end_index && !offset)) {
112 		page->mapping->a_ops->invalidatepage(page, 0);
113 		goto out;
114 	}
115 	return 1;
116 redirty:
117 	redirty_page_for_writepage(wbc, page);
118 out:
119 	unlock_page(page);
120 	return 0;
121 }
122 
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129 
130 static int gfs2_writeback_writepage(struct page *page,
131 				    struct writeback_control *wbc)
132 {
133 	int ret;
134 
135 	ret = gfs2_writepage_common(page, wbc);
136 	if (ret <= 0)
137 		return ret;
138 
139 	ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
140 	if (ret == -EAGAIN)
141 		ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
142 	return ret;
143 }
144 
145 /**
146  * gfs2_ordered_writepage - Write page for ordered data files
147  * @page: The page to write
148  * @wbc: The writeback control
149  *
150  */
151 
152 static int gfs2_ordered_writepage(struct page *page,
153 				  struct writeback_control *wbc)
154 {
155 	struct inode *inode = page->mapping->host;
156 	struct gfs2_inode *ip = GFS2_I(inode);
157 	int ret;
158 
159 	ret = gfs2_writepage_common(page, wbc);
160 	if (ret <= 0)
161 		return ret;
162 
163 	if (!page_has_buffers(page)) {
164 		create_empty_buffers(page, inode->i_sb->s_blocksize,
165 				     (1 << BH_Dirty)|(1 << BH_Uptodate));
166 	}
167 	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
168 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170 
171 /**
172  * __gfs2_jdata_writepage - The core of jdata writepage
173  * @page: The page to write
174  * @wbc: The writeback control
175  *
176  * This is shared between writepage and writepages and implements the
177  * core of the writepage operation. If a transaction is required then
178  * PageChecked will have been set and the transaction will have
179  * already been started before this is called.
180  */
181 
182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
183 {
184 	struct inode *inode = page->mapping->host;
185 	struct gfs2_inode *ip = GFS2_I(inode);
186 	struct gfs2_sbd *sdp = GFS2_SB(inode);
187 
188 	if (PageChecked(page)) {
189 		ClearPageChecked(page);
190 		if (!page_has_buffers(page)) {
191 			create_empty_buffers(page, inode->i_sb->s_blocksize,
192 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
193 		}
194 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
195 	}
196 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
197 }
198 
199 /**
200  * gfs2_jdata_writepage - Write complete page
201  * @page: Page to write
202  *
203  * Returns: errno
204  *
205  */
206 
207 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
208 {
209 	struct inode *inode = page->mapping->host;
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	int ret;
212 	int done_trans = 0;
213 
214 	if (PageChecked(page)) {
215 		if (wbc->sync_mode != WB_SYNC_ALL)
216 			goto out_ignore;
217 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
218 		if (ret)
219 			goto out_ignore;
220 		done_trans = 1;
221 	}
222 	ret = gfs2_writepage_common(page, wbc);
223 	if (ret > 0)
224 		ret = __gfs2_jdata_writepage(page, wbc);
225 	if (done_trans)
226 		gfs2_trans_end(sdp);
227 	return ret;
228 
229 out_ignore:
230 	redirty_page_for_writepage(wbc, page);
231 	unlock_page(page);
232 	return 0;
233 }
234 
235 /**
236  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
237  * @mapping: The mapping to write
238  * @wbc: Write-back control
239  *
240  * For the data=writeback case we can already ignore buffer heads
241  * and write whole extents at once. This is a big reduction in the
242  * number of I/O requests we send and the bmap calls we make in this case.
243  */
244 static int gfs2_writeback_writepages(struct address_space *mapping,
245 				     struct writeback_control *wbc)
246 {
247 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
248 }
249 
250 /**
251  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252  * @mapping: The mapping
253  * @wbc: The writeback control
254  * @writepage: The writepage function to call for each page
255  * @pvec: The vector of pages
256  * @nr_pages: The number of pages to write
257  *
258  * Returns: non-zero if loop should terminate, zero otherwise
259  */
260 
261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262 				    struct writeback_control *wbc,
263 				    struct pagevec *pvec,
264 				    int nr_pages, pgoff_t end)
265 {
266 	struct inode *inode = mapping->host;
267 	struct gfs2_sbd *sdp = GFS2_SB(inode);
268 	loff_t i_size = i_size_read(inode);
269 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
270 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
271 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
272 	struct backing_dev_info *bdi = mapping->backing_dev_info;
273 	int i;
274 	int ret;
275 
276 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
277 	if (ret < 0)
278 		return ret;
279 
280 	for(i = 0; i < nr_pages; i++) {
281 		struct page *page = pvec->pages[i];
282 
283 		lock_page(page);
284 
285 		if (unlikely(page->mapping != mapping)) {
286 			unlock_page(page);
287 			continue;
288 		}
289 
290 		if (!wbc->range_cyclic && page->index > end) {
291 			ret = 1;
292 			unlock_page(page);
293 			continue;
294 		}
295 
296 		if (wbc->sync_mode != WB_SYNC_NONE)
297 			wait_on_page_writeback(page);
298 
299 		if (PageWriteback(page) ||
300 		    !clear_page_dirty_for_io(page)) {
301 			unlock_page(page);
302 			continue;
303 		}
304 
305 		/* Is the page fully outside i_size? (truncate in progress) */
306 		if (page->index > end_index || (page->index == end_index && !offset)) {
307 			page->mapping->a_ops->invalidatepage(page, 0);
308 			unlock_page(page);
309 			continue;
310 		}
311 
312 		ret = __gfs2_jdata_writepage(page, wbc);
313 
314 		if (ret || (--(wbc->nr_to_write) <= 0))
315 			ret = 1;
316 		if (wbc->nonblocking && bdi_write_congested(bdi)) {
317 			wbc->encountered_congestion = 1;
318 			ret = 1;
319 		}
320 
321 	}
322 	gfs2_trans_end(sdp);
323 	return ret;
324 }
325 
326 /**
327  * gfs2_write_cache_jdata - Like write_cache_pages but different
328  * @mapping: The mapping to write
329  * @wbc: The writeback control
330  * @writepage: The writepage function to call
331  * @data: The data to pass to writepage
332  *
333  * The reason that we use our own function here is that we need to
334  * start transactions before we grab page locks. This allows us
335  * to get the ordering right.
336  */
337 
338 static int gfs2_write_cache_jdata(struct address_space *mapping,
339 				  struct writeback_control *wbc)
340 {
341 	struct backing_dev_info *bdi = mapping->backing_dev_info;
342 	int ret = 0;
343 	int done = 0;
344 	struct pagevec pvec;
345 	int nr_pages;
346 	pgoff_t index;
347 	pgoff_t end;
348 	int scanned = 0;
349 	int range_whole = 0;
350 
351 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
352 		wbc->encountered_congestion = 1;
353 		return 0;
354 	}
355 
356 	pagevec_init(&pvec, 0);
357 	if (wbc->range_cyclic) {
358 		index = mapping->writeback_index; /* Start from prev offset */
359 		end = -1;
360 	} else {
361 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
362 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
363 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
364 			range_whole = 1;
365 		scanned = 1;
366 	}
367 
368 retry:
369 	 while (!done && (index <= end) &&
370 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
371 					       PAGECACHE_TAG_DIRTY,
372 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
373 		scanned = 1;
374 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
375 		if (ret)
376 			done = 1;
377 		if (ret > 0)
378 			ret = 0;
379 
380 		pagevec_release(&pvec);
381 		cond_resched();
382 	}
383 
384 	if (!scanned && !done) {
385 		/*
386 		 * We hit the last page and there is more work to be done: wrap
387 		 * back to the start of the file
388 		 */
389 		scanned = 1;
390 		index = 0;
391 		goto retry;
392 	}
393 
394 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
395 		mapping->writeback_index = index;
396 	return ret;
397 }
398 
399 
400 /**
401  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
402  * @mapping: The mapping to write
403  * @wbc: The writeback control
404  *
405  */
406 
407 static int gfs2_jdata_writepages(struct address_space *mapping,
408 				 struct writeback_control *wbc)
409 {
410 	struct gfs2_inode *ip = GFS2_I(mapping->host);
411 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
412 	int ret;
413 
414 	ret = gfs2_write_cache_jdata(mapping, wbc);
415 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
416 		gfs2_log_flush(sdp, ip->i_gl);
417 		ret = gfs2_write_cache_jdata(mapping, wbc);
418 	}
419 	return ret;
420 }
421 
422 /**
423  * stuffed_readpage - Fill in a Linux page with stuffed file data
424  * @ip: the inode
425  * @page: the page
426  *
427  * Returns: errno
428  */
429 
430 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
431 {
432 	struct buffer_head *dibh;
433 	void *kaddr;
434 	int error;
435 
436 	/*
437 	 * Due to the order of unstuffing files and ->fault(), we can be
438 	 * asked for a zero page in the case of a stuffed file being extended,
439 	 * so we need to supply one here. It doesn't happen often.
440 	 */
441 	if (unlikely(page->index)) {
442 		zero_user(page, 0, PAGE_CACHE_SIZE);
443 		SetPageUptodate(page);
444 		return 0;
445 	}
446 
447 	error = gfs2_meta_inode_buffer(ip, &dibh);
448 	if (error)
449 		return error;
450 
451 	kaddr = kmap_atomic(page, KM_USER0);
452 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode),
453 	       ip->i_disksize);
454 	memset(kaddr + ip->i_disksize, 0, PAGE_CACHE_SIZE - ip->i_disksize);
455 	kunmap_atomic(kaddr, KM_USER0);
456 	flush_dcache_page(page);
457 	brelse(dibh);
458 	SetPageUptodate(page);
459 
460 	return 0;
461 }
462 
463 
464 /**
465  * __gfs2_readpage - readpage
466  * @file: The file to read a page for
467  * @page: The page to read
468  *
469  * This is the core of gfs2's readpage. Its used by the internal file
470  * reading code as in that case we already hold the glock. Also its
471  * called by gfs2_readpage() once the required lock has been granted.
472  *
473  */
474 
475 static int __gfs2_readpage(void *file, struct page *page)
476 {
477 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
478 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
479 	int error;
480 
481 	if (gfs2_is_stuffed(ip)) {
482 		error = stuffed_readpage(ip, page);
483 		unlock_page(page);
484 	} else {
485 		error = mpage_readpage(page, gfs2_block_map);
486 	}
487 
488 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
489 		return -EIO;
490 
491 	return error;
492 }
493 
494 /**
495  * gfs2_readpage - read a page of a file
496  * @file: The file to read
497  * @page: The page of the file
498  *
499  * This deals with the locking required. We have to unlock and
500  * relock the page in order to get the locking in the right
501  * order.
502  */
503 
504 static int gfs2_readpage(struct file *file, struct page *page)
505 {
506 	struct address_space *mapping = page->mapping;
507 	struct gfs2_inode *ip = GFS2_I(mapping->host);
508 	struct gfs2_holder gh;
509 	int error;
510 
511 	unlock_page(page);
512 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
513 	error = gfs2_glock_nq(&gh);
514 	if (unlikely(error))
515 		goto out;
516 	error = AOP_TRUNCATED_PAGE;
517 	lock_page(page);
518 	if (page->mapping == mapping && !PageUptodate(page))
519 		error = __gfs2_readpage(file, page);
520 	else
521 		unlock_page(page);
522 	gfs2_glock_dq(&gh);
523 out:
524 	gfs2_holder_uninit(&gh);
525 	if (error && error != AOP_TRUNCATED_PAGE)
526 		lock_page(page);
527 	return error;
528 }
529 
530 /**
531  * gfs2_internal_read - read an internal file
532  * @ip: The gfs2 inode
533  * @ra_state: The readahead state (or NULL for no readahead)
534  * @buf: The buffer to fill
535  * @pos: The file position
536  * @size: The amount to read
537  *
538  */
539 
540 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
541                        char *buf, loff_t *pos, unsigned size)
542 {
543 	struct address_space *mapping = ip->i_inode.i_mapping;
544 	unsigned long index = *pos / PAGE_CACHE_SIZE;
545 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
546 	unsigned copied = 0;
547 	unsigned amt;
548 	struct page *page;
549 	void *p;
550 
551 	do {
552 		amt = size - copied;
553 		if (offset + size > PAGE_CACHE_SIZE)
554 			amt = PAGE_CACHE_SIZE - offset;
555 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
556 		if (IS_ERR(page))
557 			return PTR_ERR(page);
558 		p = kmap_atomic(page, KM_USER0);
559 		memcpy(buf + copied, p + offset, amt);
560 		kunmap_atomic(p, KM_USER0);
561 		mark_page_accessed(page);
562 		page_cache_release(page);
563 		copied += amt;
564 		index++;
565 		offset = 0;
566 	} while(copied < size);
567 	(*pos) += size;
568 	return size;
569 }
570 
571 /**
572  * gfs2_readpages - Read a bunch of pages at once
573  *
574  * Some notes:
575  * 1. This is only for readahead, so we can simply ignore any things
576  *    which are slightly inconvenient (such as locking conflicts between
577  *    the page lock and the glock) and return having done no I/O. Its
578  *    obviously not something we'd want to do on too regular a basis.
579  *    Any I/O we ignore at this time will be done via readpage later.
580  * 2. We don't handle stuffed files here we let readpage do the honours.
581  * 3. mpage_readpages() does most of the heavy lifting in the common case.
582  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
583  */
584 
585 static int gfs2_readpages(struct file *file, struct address_space *mapping,
586 			  struct list_head *pages, unsigned nr_pages)
587 {
588 	struct inode *inode = mapping->host;
589 	struct gfs2_inode *ip = GFS2_I(inode);
590 	struct gfs2_sbd *sdp = GFS2_SB(inode);
591 	struct gfs2_holder gh;
592 	int ret;
593 
594 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
595 	ret = gfs2_glock_nq(&gh);
596 	if (unlikely(ret))
597 		goto out_uninit;
598 	if (!gfs2_is_stuffed(ip))
599 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
600 	gfs2_glock_dq(&gh);
601 out_uninit:
602 	gfs2_holder_uninit(&gh);
603 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
604 		ret = -EIO;
605 	return ret;
606 }
607 
608 /**
609  * gfs2_write_begin - Begin to write to a file
610  * @file: The file to write to
611  * @mapping: The mapping in which to write
612  * @pos: The file offset at which to start writing
613  * @len: Length of the write
614  * @flags: Various flags
615  * @pagep: Pointer to return the page
616  * @fsdata: Pointer to return fs data (unused by GFS2)
617  *
618  * Returns: errno
619  */
620 
621 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
622 			    loff_t pos, unsigned len, unsigned flags,
623 			    struct page **pagep, void **fsdata)
624 {
625 	struct gfs2_inode *ip = GFS2_I(mapping->host);
626 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
627 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
628 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
629 	int alloc_required;
630 	int error = 0;
631 	struct gfs2_alloc *al;
632 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
633 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
634 	unsigned to = from + len;
635 	struct page *page;
636 
637 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
638 	error = gfs2_glock_nq(&ip->i_gh);
639 	if (unlikely(error))
640 		goto out_uninit;
641 	if (&ip->i_inode == sdp->sd_rindex) {
642 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
643 					   GL_NOCACHE, &m_ip->i_gh);
644 		if (unlikely(error)) {
645 			gfs2_glock_dq(&ip->i_gh);
646 			goto out_uninit;
647 		}
648 	}
649 
650 	error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
651 	if (error)
652 		goto out_unlock;
653 
654 	if (alloc_required || gfs2_is_jdata(ip))
655 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
656 
657 	if (alloc_required) {
658 		al = gfs2_alloc_get(ip);
659 		if (!al) {
660 			error = -ENOMEM;
661 			goto out_unlock;
662 		}
663 
664 		error = gfs2_quota_lock_check(ip);
665 		if (error)
666 			goto out_alloc_put;
667 
668 		al->al_requested = data_blocks + ind_blocks;
669 		error = gfs2_inplace_reserve(ip);
670 		if (error)
671 			goto out_qunlock;
672 	}
673 
674 	rblocks = RES_DINODE + ind_blocks;
675 	if (gfs2_is_jdata(ip))
676 		rblocks += data_blocks ? data_blocks : 1;
677 	if (ind_blocks || data_blocks)
678 		rblocks += RES_STATFS + RES_QUOTA;
679 	if (&ip->i_inode == sdp->sd_rindex)
680 		rblocks += 2 * RES_STATFS;
681 
682 	error = gfs2_trans_begin(sdp, rblocks,
683 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
684 	if (error)
685 		goto out_trans_fail;
686 
687 	error = -ENOMEM;
688 	flags |= AOP_FLAG_NOFS;
689 	page = grab_cache_page_write_begin(mapping, index, flags);
690 	*pagep = page;
691 	if (unlikely(!page))
692 		goto out_endtrans;
693 
694 	if (gfs2_is_stuffed(ip)) {
695 		error = 0;
696 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
697 			error = gfs2_unstuff_dinode(ip, page);
698 			if (error == 0)
699 				goto prepare_write;
700 		} else if (!PageUptodate(page)) {
701 			error = stuffed_readpage(ip, page);
702 		}
703 		goto out;
704 	}
705 
706 prepare_write:
707 	error = block_prepare_write(page, from, to, gfs2_block_map);
708 out:
709 	if (error == 0)
710 		return 0;
711 
712 	page_cache_release(page);
713 	if (pos + len > ip->i_inode.i_size)
714 		vmtruncate(&ip->i_inode, ip->i_inode.i_size);
715 out_endtrans:
716 	gfs2_trans_end(sdp);
717 out_trans_fail:
718 	if (alloc_required) {
719 		gfs2_inplace_release(ip);
720 out_qunlock:
721 		gfs2_quota_unlock(ip);
722 out_alloc_put:
723 		gfs2_alloc_put(ip);
724 	}
725 out_unlock:
726 	if (&ip->i_inode == sdp->sd_rindex) {
727 		gfs2_glock_dq(&m_ip->i_gh);
728 		gfs2_holder_uninit(&m_ip->i_gh);
729 	}
730 	gfs2_glock_dq(&ip->i_gh);
731 out_uninit:
732 	gfs2_holder_uninit(&ip->i_gh);
733 	return error;
734 }
735 
736 /**
737  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
738  * @inode: the rindex inode
739  */
740 static void adjust_fs_space(struct inode *inode)
741 {
742 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
743 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
744 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
745 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
746 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
747 	struct buffer_head *m_bh, *l_bh;
748 	u64 fs_total, new_free;
749 
750 	/* Total up the file system space, according to the latest rindex. */
751 	fs_total = gfs2_ri_total(sdp);
752 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
753 		return;
754 
755 	spin_lock(&sdp->sd_statfs_spin);
756 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
757 			      sizeof(struct gfs2_dinode));
758 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
759 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
760 	else
761 		new_free = 0;
762 	spin_unlock(&sdp->sd_statfs_spin);
763 	fs_warn(sdp, "File system extended by %llu blocks.\n",
764 		(unsigned long long)new_free);
765 	gfs2_statfs_change(sdp, new_free, new_free, 0);
766 
767 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
768 		goto out;
769 	update_statfs(sdp, m_bh, l_bh);
770 	brelse(l_bh);
771 out:
772 	brelse(m_bh);
773 }
774 
775 /**
776  * gfs2_stuffed_write_end - Write end for stuffed files
777  * @inode: The inode
778  * @dibh: The buffer_head containing the on-disk inode
779  * @pos: The file position
780  * @len: The length of the write
781  * @copied: How much was actually copied by the VFS
782  * @page: The page
783  *
784  * This copies the data from the page into the inode block after
785  * the inode data structure itself.
786  *
787  * Returns: errno
788  */
789 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
790 				  loff_t pos, unsigned len, unsigned copied,
791 				  struct page *page)
792 {
793 	struct gfs2_inode *ip = GFS2_I(inode);
794 	struct gfs2_sbd *sdp = GFS2_SB(inode);
795 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
796 	u64 to = pos + copied;
797 	void *kaddr;
798 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
799 	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
800 
801 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
802 	kaddr = kmap_atomic(page, KM_USER0);
803 	memcpy(buf + pos, kaddr + pos, copied);
804 	memset(kaddr + pos + copied, 0, len - copied);
805 	flush_dcache_page(page);
806 	kunmap_atomic(kaddr, KM_USER0);
807 
808 	if (!PageUptodate(page))
809 		SetPageUptodate(page);
810 	unlock_page(page);
811 	page_cache_release(page);
812 
813 	if (copied) {
814 		if (inode->i_size < to) {
815 			i_size_write(inode, to);
816 			ip->i_disksize = inode->i_size;
817 		}
818 		gfs2_dinode_out(ip, di);
819 		mark_inode_dirty(inode);
820 	}
821 
822 	if (inode == sdp->sd_rindex)
823 		adjust_fs_space(inode);
824 
825 	brelse(dibh);
826 	gfs2_trans_end(sdp);
827 	if (inode == sdp->sd_rindex) {
828 		gfs2_glock_dq(&m_ip->i_gh);
829 		gfs2_holder_uninit(&m_ip->i_gh);
830 	}
831 	gfs2_glock_dq(&ip->i_gh);
832 	gfs2_holder_uninit(&ip->i_gh);
833 	return copied;
834 }
835 
836 /**
837  * gfs2_write_end
838  * @file: The file to write to
839  * @mapping: The address space to write to
840  * @pos: The file position
841  * @len: The length of the data
842  * @copied:
843  * @page: The page that has been written
844  * @fsdata: The fsdata (unused in GFS2)
845  *
846  * The main write_end function for GFS2. We have a separate one for
847  * stuffed files as they are slightly different, otherwise we just
848  * put our locking around the VFS provided functions.
849  *
850  * Returns: errno
851  */
852 
853 static int gfs2_write_end(struct file *file, struct address_space *mapping,
854 			  loff_t pos, unsigned len, unsigned copied,
855 			  struct page *page, void *fsdata)
856 {
857 	struct inode *inode = page->mapping->host;
858 	struct gfs2_inode *ip = GFS2_I(inode);
859 	struct gfs2_sbd *sdp = GFS2_SB(inode);
860 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
861 	struct buffer_head *dibh;
862 	struct gfs2_alloc *al = ip->i_alloc;
863 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
864 	unsigned int to = from + len;
865 	int ret;
866 
867 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
868 
869 	ret = gfs2_meta_inode_buffer(ip, &dibh);
870 	if (unlikely(ret)) {
871 		unlock_page(page);
872 		page_cache_release(page);
873 		goto failed;
874 	}
875 
876 	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
877 
878 	if (gfs2_is_stuffed(ip))
879 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
880 
881 	if (!gfs2_is_writeback(ip))
882 		gfs2_page_add_databufs(ip, page, from, to);
883 
884 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
885 	if (ret > 0) {
886 		if (inode->i_size > ip->i_disksize)
887 			ip->i_disksize = inode->i_size;
888 		gfs2_dinode_out(ip, dibh->b_data);
889 		mark_inode_dirty(inode);
890 	}
891 
892 	if (inode == sdp->sd_rindex)
893 		adjust_fs_space(inode);
894 
895 	brelse(dibh);
896 	gfs2_trans_end(sdp);
897 failed:
898 	if (al) {
899 		gfs2_inplace_release(ip);
900 		gfs2_quota_unlock(ip);
901 		gfs2_alloc_put(ip);
902 	}
903 	if (inode == sdp->sd_rindex) {
904 		gfs2_glock_dq(&m_ip->i_gh);
905 		gfs2_holder_uninit(&m_ip->i_gh);
906 	}
907 	gfs2_glock_dq(&ip->i_gh);
908 	gfs2_holder_uninit(&ip->i_gh);
909 	return ret;
910 }
911 
912 /**
913  * gfs2_set_page_dirty - Page dirtying function
914  * @page: The page to dirty
915  *
916  * Returns: 1 if it dirtyed the page, or 0 otherwise
917  */
918 
919 static int gfs2_set_page_dirty(struct page *page)
920 {
921 	SetPageChecked(page);
922 	return __set_page_dirty_buffers(page);
923 }
924 
925 /**
926  * gfs2_bmap - Block map function
927  * @mapping: Address space info
928  * @lblock: The block to map
929  *
930  * Returns: The disk address for the block or 0 on hole or error
931  */
932 
933 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
934 {
935 	struct gfs2_inode *ip = GFS2_I(mapping->host);
936 	struct gfs2_holder i_gh;
937 	sector_t dblock = 0;
938 	int error;
939 
940 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
941 	if (error)
942 		return 0;
943 
944 	if (!gfs2_is_stuffed(ip))
945 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
946 
947 	gfs2_glock_dq_uninit(&i_gh);
948 
949 	return dblock;
950 }
951 
952 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
953 {
954 	struct gfs2_bufdata *bd;
955 
956 	lock_buffer(bh);
957 	gfs2_log_lock(sdp);
958 	clear_buffer_dirty(bh);
959 	bd = bh->b_private;
960 	if (bd) {
961 		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
962 			list_del_init(&bd->bd_le.le_list);
963 		else
964 			gfs2_remove_from_journal(bh, current->journal_info, 0);
965 	}
966 	bh->b_bdev = NULL;
967 	clear_buffer_mapped(bh);
968 	clear_buffer_req(bh);
969 	clear_buffer_new(bh);
970 	gfs2_log_unlock(sdp);
971 	unlock_buffer(bh);
972 }
973 
974 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
975 {
976 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
977 	struct buffer_head *bh, *head;
978 	unsigned long pos = 0;
979 
980 	BUG_ON(!PageLocked(page));
981 	if (offset == 0)
982 		ClearPageChecked(page);
983 	if (!page_has_buffers(page))
984 		goto out;
985 
986 	bh = head = page_buffers(page);
987 	do {
988 		if (offset <= pos)
989 			gfs2_discard(sdp, bh);
990 		pos += bh->b_size;
991 		bh = bh->b_this_page;
992 	} while (bh != head);
993 out:
994 	if (offset == 0)
995 		try_to_release_page(page, 0);
996 }
997 
998 /**
999  * gfs2_ok_for_dio - check that dio is valid on this file
1000  * @ip: The inode
1001  * @rw: READ or WRITE
1002  * @offset: The offset at which we are reading or writing
1003  *
1004  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1005  *          1 (to accept the i/o request)
1006  */
1007 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1008 {
1009 	/*
1010 	 * Should we return an error here? I can't see that O_DIRECT for
1011 	 * a stuffed file makes any sense. For now we'll silently fall
1012 	 * back to buffered I/O
1013 	 */
1014 	if (gfs2_is_stuffed(ip))
1015 		return 0;
1016 
1017 	if (offset >= i_size_read(&ip->i_inode))
1018 		return 0;
1019 	return 1;
1020 }
1021 
1022 
1023 
1024 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1025 			      const struct iovec *iov, loff_t offset,
1026 			      unsigned long nr_segs)
1027 {
1028 	struct file *file = iocb->ki_filp;
1029 	struct inode *inode = file->f_mapping->host;
1030 	struct gfs2_inode *ip = GFS2_I(inode);
1031 	struct gfs2_holder gh;
1032 	int rv;
1033 
1034 	/*
1035 	 * Deferred lock, even if its a write, since we do no allocation
1036 	 * on this path. All we need change is atime, and this lock mode
1037 	 * ensures that other nodes have flushed their buffered read caches
1038 	 * (i.e. their page cache entries for this inode). We do not,
1039 	 * unfortunately have the option of only flushing a range like
1040 	 * the VFS does.
1041 	 */
1042 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1043 	rv = gfs2_glock_nq(&gh);
1044 	if (rv)
1045 		return rv;
1046 	rv = gfs2_ok_for_dio(ip, rw, offset);
1047 	if (rv != 1)
1048 		goto out; /* dio not valid, fall back to buffered i/o */
1049 
1050 	rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1051 					   iov, offset, nr_segs,
1052 					   gfs2_get_block_direct, NULL);
1053 out:
1054 	gfs2_glock_dq_m(1, &gh);
1055 	gfs2_holder_uninit(&gh);
1056 	return rv;
1057 }
1058 
1059 /**
1060  * gfs2_releasepage - free the metadata associated with a page
1061  * @page: the page that's being released
1062  * @gfp_mask: passed from Linux VFS, ignored by us
1063  *
1064  * Call try_to_free_buffers() if the buffers in this page can be
1065  * released.
1066  *
1067  * Returns: 0
1068  */
1069 
1070 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1071 {
1072 	struct inode *aspace = page->mapping->host;
1073 	struct gfs2_sbd *sdp = aspace->i_sb->s_fs_info;
1074 	struct buffer_head *bh, *head;
1075 	struct gfs2_bufdata *bd;
1076 
1077 	if (!page_has_buffers(page))
1078 		return 0;
1079 
1080 	gfs2_log_lock(sdp);
1081 	head = bh = page_buffers(page);
1082 	do {
1083 		if (atomic_read(&bh->b_count))
1084 			goto cannot_release;
1085 		bd = bh->b_private;
1086 		if (bd && bd->bd_ail)
1087 			goto cannot_release;
1088 		gfs2_assert_warn(sdp, !buffer_pinned(bh));
1089 		gfs2_assert_warn(sdp, !buffer_dirty(bh));
1090 		bh = bh->b_this_page;
1091 	} while(bh != head);
1092 	gfs2_log_unlock(sdp);
1093 
1094 	head = bh = page_buffers(page);
1095 	do {
1096 		gfs2_log_lock(sdp);
1097 		bd = bh->b_private;
1098 		if (bd) {
1099 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1100 			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1101 			if (!list_empty(&bd->bd_le.le_list)) {
1102 				if (!buffer_pinned(bh))
1103 					list_del_init(&bd->bd_le.le_list);
1104 				else
1105 					bd = NULL;
1106 			}
1107 			if (bd)
1108 				bd->bd_bh = NULL;
1109 			bh->b_private = NULL;
1110 		}
1111 		gfs2_log_unlock(sdp);
1112 		if (bd)
1113 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1114 
1115 		bh = bh->b_this_page;
1116 	} while (bh != head);
1117 
1118 	return try_to_free_buffers(page);
1119 cannot_release:
1120 	gfs2_log_unlock(sdp);
1121 	return 0;
1122 }
1123 
1124 static const struct address_space_operations gfs2_writeback_aops = {
1125 	.writepage = gfs2_writeback_writepage,
1126 	.writepages = gfs2_writeback_writepages,
1127 	.readpage = gfs2_readpage,
1128 	.readpages = gfs2_readpages,
1129 	.sync_page = block_sync_page,
1130 	.write_begin = gfs2_write_begin,
1131 	.write_end = gfs2_write_end,
1132 	.bmap = gfs2_bmap,
1133 	.invalidatepage = gfs2_invalidatepage,
1134 	.releasepage = gfs2_releasepage,
1135 	.direct_IO = gfs2_direct_IO,
1136 	.migratepage = buffer_migrate_page,
1137 	.is_partially_uptodate = block_is_partially_uptodate,
1138 };
1139 
1140 static const struct address_space_operations gfs2_ordered_aops = {
1141 	.writepage = gfs2_ordered_writepage,
1142 	.readpage = gfs2_readpage,
1143 	.readpages = gfs2_readpages,
1144 	.sync_page = block_sync_page,
1145 	.write_begin = gfs2_write_begin,
1146 	.write_end = gfs2_write_end,
1147 	.set_page_dirty = gfs2_set_page_dirty,
1148 	.bmap = gfs2_bmap,
1149 	.invalidatepage = gfs2_invalidatepage,
1150 	.releasepage = gfs2_releasepage,
1151 	.direct_IO = gfs2_direct_IO,
1152 	.migratepage = buffer_migrate_page,
1153 	.is_partially_uptodate = block_is_partially_uptodate,
1154 };
1155 
1156 static const struct address_space_operations gfs2_jdata_aops = {
1157 	.writepage = gfs2_jdata_writepage,
1158 	.writepages = gfs2_jdata_writepages,
1159 	.readpage = gfs2_readpage,
1160 	.readpages = gfs2_readpages,
1161 	.sync_page = block_sync_page,
1162 	.write_begin = gfs2_write_begin,
1163 	.write_end = gfs2_write_end,
1164 	.set_page_dirty = gfs2_set_page_dirty,
1165 	.bmap = gfs2_bmap,
1166 	.invalidatepage = gfs2_invalidatepage,
1167 	.releasepage = gfs2_releasepage,
1168 	.is_partially_uptodate = block_is_partially_uptodate,
1169 };
1170 
1171 void gfs2_set_aops(struct inode *inode)
1172 {
1173 	struct gfs2_inode *ip = GFS2_I(inode);
1174 
1175 	if (gfs2_is_writeback(ip))
1176 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1177 	else if (gfs2_is_ordered(ip))
1178 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1179 	else if (gfs2_is_jdata(ip))
1180 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1181 	else
1182 		BUG();
1183 }
1184 
1185