xref: /openbmc/linux/fs/gfs2/aops.c (revision 16ca9412)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 
38 
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 				   unsigned int from, unsigned int to)
41 {
42 	struct buffer_head *head = page_buffers(page);
43 	unsigned int bsize = head->b_size;
44 	struct buffer_head *bh;
45 	unsigned int start, end;
46 
47 	for (bh = head, start = 0; bh != head || !start;
48 	     bh = bh->b_this_page, start = end) {
49 		end = start + bsize;
50 		if (end <= from || start >= to)
51 			continue;
52 		if (gfs2_is_jdata(ip))
53 			set_buffer_uptodate(bh);
54 		gfs2_trans_add_data(ip->i_gl, bh);
55 	}
56 }
57 
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67 
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 				  struct buffer_head *bh_result, int create)
70 {
71 	int error;
72 
73 	error = gfs2_block_map(inode, lblock, bh_result, 0);
74 	if (error)
75 		return error;
76 	if (!buffer_mapped(bh_result))
77 		return -EIO;
78 	return 0;
79 }
80 
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 				 struct buffer_head *bh_result, int create)
83 {
84 	return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86 
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94 
95 static int gfs2_writepage_common(struct page *page,
96 				 struct writeback_control *wbc)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct gfs2_inode *ip = GFS2_I(inode);
100 	struct gfs2_sbd *sdp = GFS2_SB(inode);
101 	loff_t i_size = i_size_read(inode);
102 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 	unsigned offset;
104 
105 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 		goto out;
107 	if (current->journal_info)
108 		goto redirty;
109 	/* Is the page fully outside i_size? (truncate in progress) */
110 	offset = i_size & (PAGE_CACHE_SIZE-1);
111 	if (page->index > end_index || (page->index == end_index && !offset)) {
112 		page->mapping->a_ops->invalidatepage(page, 0);
113 		goto out;
114 	}
115 	return 1;
116 redirty:
117 	redirty_page_for_writepage(wbc, page);
118 out:
119 	unlock_page(page);
120 	return 0;
121 }
122 
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129 
130 static int gfs2_writeback_writepage(struct page *page,
131 				    struct writeback_control *wbc)
132 {
133 	int ret;
134 
135 	ret = gfs2_writepage_common(page, wbc);
136 	if (ret <= 0)
137 		return ret;
138 
139 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
140 }
141 
142 /**
143  * gfs2_ordered_writepage - Write page for ordered data files
144  * @page: The page to write
145  * @wbc: The writeback control
146  *
147  */
148 
149 static int gfs2_ordered_writepage(struct page *page,
150 				  struct writeback_control *wbc)
151 {
152 	struct inode *inode = page->mapping->host;
153 	struct gfs2_inode *ip = GFS2_I(inode);
154 	int ret;
155 
156 	ret = gfs2_writepage_common(page, wbc);
157 	if (ret <= 0)
158 		return ret;
159 
160 	if (!page_has_buffers(page)) {
161 		create_empty_buffers(page, inode->i_sb->s_blocksize,
162 				     (1 << BH_Dirty)|(1 << BH_Uptodate));
163 	}
164 	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
165 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
166 }
167 
168 /**
169  * __gfs2_jdata_writepage - The core of jdata writepage
170  * @page: The page to write
171  * @wbc: The writeback control
172  *
173  * This is shared between writepage and writepages and implements the
174  * core of the writepage operation. If a transaction is required then
175  * PageChecked will have been set and the transaction will have
176  * already been started before this is called.
177  */
178 
179 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
180 {
181 	struct inode *inode = page->mapping->host;
182 	struct gfs2_inode *ip = GFS2_I(inode);
183 	struct gfs2_sbd *sdp = GFS2_SB(inode);
184 
185 	if (PageChecked(page)) {
186 		ClearPageChecked(page);
187 		if (!page_has_buffers(page)) {
188 			create_empty_buffers(page, inode->i_sb->s_blocksize,
189 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
190 		}
191 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
192 	}
193 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
194 }
195 
196 /**
197  * gfs2_jdata_writepage - Write complete page
198  * @page: Page to write
199  *
200  * Returns: errno
201  *
202  */
203 
204 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
205 {
206 	struct inode *inode = page->mapping->host;
207 	struct gfs2_sbd *sdp = GFS2_SB(inode);
208 	int ret;
209 	int done_trans = 0;
210 
211 	if (PageChecked(page)) {
212 		if (wbc->sync_mode != WB_SYNC_ALL)
213 			goto out_ignore;
214 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
215 		if (ret)
216 			goto out_ignore;
217 		done_trans = 1;
218 	}
219 	ret = gfs2_writepage_common(page, wbc);
220 	if (ret > 0)
221 		ret = __gfs2_jdata_writepage(page, wbc);
222 	if (done_trans)
223 		gfs2_trans_end(sdp);
224 	return ret;
225 
226 out_ignore:
227 	redirty_page_for_writepage(wbc, page);
228 	unlock_page(page);
229 	return 0;
230 }
231 
232 /**
233  * gfs2_writepages - Write a bunch of dirty pages back to disk
234  * @mapping: The mapping to write
235  * @wbc: Write-back control
236  *
237  * Used for both ordered and writeback modes.
238  */
239 static int gfs2_writepages(struct address_space *mapping,
240 			   struct writeback_control *wbc)
241 {
242 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
243 }
244 
245 /**
246  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
247  * @mapping: The mapping
248  * @wbc: The writeback control
249  * @writepage: The writepage function to call for each page
250  * @pvec: The vector of pages
251  * @nr_pages: The number of pages to write
252  *
253  * Returns: non-zero if loop should terminate, zero otherwise
254  */
255 
256 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
257 				    struct writeback_control *wbc,
258 				    struct pagevec *pvec,
259 				    int nr_pages, pgoff_t end)
260 {
261 	struct inode *inode = mapping->host;
262 	struct gfs2_sbd *sdp = GFS2_SB(inode);
263 	loff_t i_size = i_size_read(inode);
264 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
265 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
266 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
267 	int i;
268 	int ret;
269 
270 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
271 	if (ret < 0)
272 		return ret;
273 
274 	for(i = 0; i < nr_pages; i++) {
275 		struct page *page = pvec->pages[i];
276 
277 		lock_page(page);
278 
279 		if (unlikely(page->mapping != mapping)) {
280 			unlock_page(page);
281 			continue;
282 		}
283 
284 		if (!wbc->range_cyclic && page->index > end) {
285 			ret = 1;
286 			unlock_page(page);
287 			continue;
288 		}
289 
290 		if (wbc->sync_mode != WB_SYNC_NONE)
291 			wait_on_page_writeback(page);
292 
293 		if (PageWriteback(page) ||
294 		    !clear_page_dirty_for_io(page)) {
295 			unlock_page(page);
296 			continue;
297 		}
298 
299 		/* Is the page fully outside i_size? (truncate in progress) */
300 		if (page->index > end_index || (page->index == end_index && !offset)) {
301 			page->mapping->a_ops->invalidatepage(page, 0);
302 			unlock_page(page);
303 			continue;
304 		}
305 
306 		ret = __gfs2_jdata_writepage(page, wbc);
307 
308 		if (ret || (--(wbc->nr_to_write) <= 0))
309 			ret = 1;
310 	}
311 	gfs2_trans_end(sdp);
312 	return ret;
313 }
314 
315 /**
316  * gfs2_write_cache_jdata - Like write_cache_pages but different
317  * @mapping: The mapping to write
318  * @wbc: The writeback control
319  * @writepage: The writepage function to call
320  * @data: The data to pass to writepage
321  *
322  * The reason that we use our own function here is that we need to
323  * start transactions before we grab page locks. This allows us
324  * to get the ordering right.
325  */
326 
327 static int gfs2_write_cache_jdata(struct address_space *mapping,
328 				  struct writeback_control *wbc)
329 {
330 	int ret = 0;
331 	int done = 0;
332 	struct pagevec pvec;
333 	int nr_pages;
334 	pgoff_t index;
335 	pgoff_t end;
336 	int scanned = 0;
337 	int range_whole = 0;
338 
339 	pagevec_init(&pvec, 0);
340 	if (wbc->range_cyclic) {
341 		index = mapping->writeback_index; /* Start from prev offset */
342 		end = -1;
343 	} else {
344 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
345 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
346 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
347 			range_whole = 1;
348 		scanned = 1;
349 	}
350 
351 retry:
352 	 while (!done && (index <= end) &&
353 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
354 					       PAGECACHE_TAG_DIRTY,
355 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
356 		scanned = 1;
357 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
358 		if (ret)
359 			done = 1;
360 		if (ret > 0)
361 			ret = 0;
362 
363 		pagevec_release(&pvec);
364 		cond_resched();
365 	}
366 
367 	if (!scanned && !done) {
368 		/*
369 		 * We hit the last page and there is more work to be done: wrap
370 		 * back to the start of the file
371 		 */
372 		scanned = 1;
373 		index = 0;
374 		goto retry;
375 	}
376 
377 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
378 		mapping->writeback_index = index;
379 	return ret;
380 }
381 
382 
383 /**
384  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
385  * @mapping: The mapping to write
386  * @wbc: The writeback control
387  *
388  */
389 
390 static int gfs2_jdata_writepages(struct address_space *mapping,
391 				 struct writeback_control *wbc)
392 {
393 	struct gfs2_inode *ip = GFS2_I(mapping->host);
394 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
395 	int ret;
396 
397 	ret = gfs2_write_cache_jdata(mapping, wbc);
398 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
399 		gfs2_log_flush(sdp, ip->i_gl);
400 		ret = gfs2_write_cache_jdata(mapping, wbc);
401 	}
402 	return ret;
403 }
404 
405 /**
406  * stuffed_readpage - Fill in a Linux page with stuffed file data
407  * @ip: the inode
408  * @page: the page
409  *
410  * Returns: errno
411  */
412 
413 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
414 {
415 	struct buffer_head *dibh;
416 	u64 dsize = i_size_read(&ip->i_inode);
417 	void *kaddr;
418 	int error;
419 
420 	/*
421 	 * Due to the order of unstuffing files and ->fault(), we can be
422 	 * asked for a zero page in the case of a stuffed file being extended,
423 	 * so we need to supply one here. It doesn't happen often.
424 	 */
425 	if (unlikely(page->index)) {
426 		zero_user(page, 0, PAGE_CACHE_SIZE);
427 		SetPageUptodate(page);
428 		return 0;
429 	}
430 
431 	error = gfs2_meta_inode_buffer(ip, &dibh);
432 	if (error)
433 		return error;
434 
435 	kaddr = kmap_atomic(page);
436 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
437 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
438 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
439 	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
440 	kunmap_atomic(kaddr);
441 	flush_dcache_page(page);
442 	brelse(dibh);
443 	SetPageUptodate(page);
444 
445 	return 0;
446 }
447 
448 
449 /**
450  * __gfs2_readpage - readpage
451  * @file: The file to read a page for
452  * @page: The page to read
453  *
454  * This is the core of gfs2's readpage. Its used by the internal file
455  * reading code as in that case we already hold the glock. Also its
456  * called by gfs2_readpage() once the required lock has been granted.
457  *
458  */
459 
460 static int __gfs2_readpage(void *file, struct page *page)
461 {
462 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
463 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
464 	int error;
465 
466 	if (gfs2_is_stuffed(ip)) {
467 		error = stuffed_readpage(ip, page);
468 		unlock_page(page);
469 	} else {
470 		error = mpage_readpage(page, gfs2_block_map);
471 	}
472 
473 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
474 		return -EIO;
475 
476 	return error;
477 }
478 
479 /**
480  * gfs2_readpage - read a page of a file
481  * @file: The file to read
482  * @page: The page of the file
483  *
484  * This deals with the locking required. We have to unlock and
485  * relock the page in order to get the locking in the right
486  * order.
487  */
488 
489 static int gfs2_readpage(struct file *file, struct page *page)
490 {
491 	struct address_space *mapping = page->mapping;
492 	struct gfs2_inode *ip = GFS2_I(mapping->host);
493 	struct gfs2_holder gh;
494 	int error;
495 
496 	unlock_page(page);
497 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
498 	error = gfs2_glock_nq(&gh);
499 	if (unlikely(error))
500 		goto out;
501 	error = AOP_TRUNCATED_PAGE;
502 	lock_page(page);
503 	if (page->mapping == mapping && !PageUptodate(page))
504 		error = __gfs2_readpage(file, page);
505 	else
506 		unlock_page(page);
507 	gfs2_glock_dq(&gh);
508 out:
509 	gfs2_holder_uninit(&gh);
510 	if (error && error != AOP_TRUNCATED_PAGE)
511 		lock_page(page);
512 	return error;
513 }
514 
515 /**
516  * gfs2_internal_read - read an internal file
517  * @ip: The gfs2 inode
518  * @buf: The buffer to fill
519  * @pos: The file position
520  * @size: The amount to read
521  *
522  */
523 
524 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
525                        unsigned size)
526 {
527 	struct address_space *mapping = ip->i_inode.i_mapping;
528 	unsigned long index = *pos / PAGE_CACHE_SIZE;
529 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
530 	unsigned copied = 0;
531 	unsigned amt;
532 	struct page *page;
533 	void *p;
534 
535 	do {
536 		amt = size - copied;
537 		if (offset + size > PAGE_CACHE_SIZE)
538 			amt = PAGE_CACHE_SIZE - offset;
539 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
540 		if (IS_ERR(page))
541 			return PTR_ERR(page);
542 		p = kmap_atomic(page);
543 		memcpy(buf + copied, p + offset, amt);
544 		kunmap_atomic(p);
545 		mark_page_accessed(page);
546 		page_cache_release(page);
547 		copied += amt;
548 		index++;
549 		offset = 0;
550 	} while(copied < size);
551 	(*pos) += size;
552 	return size;
553 }
554 
555 /**
556  * gfs2_readpages - Read a bunch of pages at once
557  *
558  * Some notes:
559  * 1. This is only for readahead, so we can simply ignore any things
560  *    which are slightly inconvenient (such as locking conflicts between
561  *    the page lock and the glock) and return having done no I/O. Its
562  *    obviously not something we'd want to do on too regular a basis.
563  *    Any I/O we ignore at this time will be done via readpage later.
564  * 2. We don't handle stuffed files here we let readpage do the honours.
565  * 3. mpage_readpages() does most of the heavy lifting in the common case.
566  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
567  */
568 
569 static int gfs2_readpages(struct file *file, struct address_space *mapping,
570 			  struct list_head *pages, unsigned nr_pages)
571 {
572 	struct inode *inode = mapping->host;
573 	struct gfs2_inode *ip = GFS2_I(inode);
574 	struct gfs2_sbd *sdp = GFS2_SB(inode);
575 	struct gfs2_holder gh;
576 	int ret;
577 
578 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
579 	ret = gfs2_glock_nq(&gh);
580 	if (unlikely(ret))
581 		goto out_uninit;
582 	if (!gfs2_is_stuffed(ip))
583 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
584 	gfs2_glock_dq(&gh);
585 out_uninit:
586 	gfs2_holder_uninit(&gh);
587 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
588 		ret = -EIO;
589 	return ret;
590 }
591 
592 /**
593  * gfs2_write_begin - Begin to write to a file
594  * @file: The file to write to
595  * @mapping: The mapping in which to write
596  * @pos: The file offset at which to start writing
597  * @len: Length of the write
598  * @flags: Various flags
599  * @pagep: Pointer to return the page
600  * @fsdata: Pointer to return fs data (unused by GFS2)
601  *
602  * Returns: errno
603  */
604 
605 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
606 			    loff_t pos, unsigned len, unsigned flags,
607 			    struct page **pagep, void **fsdata)
608 {
609 	struct gfs2_inode *ip = GFS2_I(mapping->host);
610 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
611 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
612 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
613 	unsigned requested = 0;
614 	int alloc_required;
615 	int error = 0;
616 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
617 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
618 	struct page *page;
619 
620 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
621 	error = gfs2_glock_nq(&ip->i_gh);
622 	if (unlikely(error))
623 		goto out_uninit;
624 	if (&ip->i_inode == sdp->sd_rindex) {
625 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
626 					   GL_NOCACHE, &m_ip->i_gh);
627 		if (unlikely(error)) {
628 			gfs2_glock_dq(&ip->i_gh);
629 			goto out_uninit;
630 		}
631 	}
632 
633 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
634 
635 	if (alloc_required || gfs2_is_jdata(ip))
636 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
637 
638 	if (alloc_required) {
639 		error = gfs2_quota_lock_check(ip);
640 		if (error)
641 			goto out_unlock;
642 
643 		requested = data_blocks + ind_blocks;
644 		error = gfs2_inplace_reserve(ip, requested, 0);
645 		if (error)
646 			goto out_qunlock;
647 	}
648 
649 	rblocks = RES_DINODE + ind_blocks;
650 	if (gfs2_is_jdata(ip))
651 		rblocks += data_blocks ? data_blocks : 1;
652 	if (ind_blocks || data_blocks)
653 		rblocks += RES_STATFS + RES_QUOTA;
654 	if (&ip->i_inode == sdp->sd_rindex)
655 		rblocks += 2 * RES_STATFS;
656 	if (alloc_required)
657 		rblocks += gfs2_rg_blocks(ip, requested);
658 
659 	error = gfs2_trans_begin(sdp, rblocks,
660 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
661 	if (error)
662 		goto out_trans_fail;
663 
664 	error = -ENOMEM;
665 	flags |= AOP_FLAG_NOFS;
666 	page = grab_cache_page_write_begin(mapping, index, flags);
667 	*pagep = page;
668 	if (unlikely(!page))
669 		goto out_endtrans;
670 
671 	if (gfs2_is_stuffed(ip)) {
672 		error = 0;
673 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
674 			error = gfs2_unstuff_dinode(ip, page);
675 			if (error == 0)
676 				goto prepare_write;
677 		} else if (!PageUptodate(page)) {
678 			error = stuffed_readpage(ip, page);
679 		}
680 		goto out;
681 	}
682 
683 prepare_write:
684 	error = __block_write_begin(page, from, len, gfs2_block_map);
685 out:
686 	if (error == 0)
687 		return 0;
688 
689 	unlock_page(page);
690 	page_cache_release(page);
691 
692 	gfs2_trans_end(sdp);
693 	if (pos + len > ip->i_inode.i_size)
694 		gfs2_trim_blocks(&ip->i_inode);
695 	goto out_trans_fail;
696 
697 out_endtrans:
698 	gfs2_trans_end(sdp);
699 out_trans_fail:
700 	if (alloc_required) {
701 		gfs2_inplace_release(ip);
702 out_qunlock:
703 		gfs2_quota_unlock(ip);
704 	}
705 out_unlock:
706 	if (&ip->i_inode == sdp->sd_rindex) {
707 		gfs2_glock_dq(&m_ip->i_gh);
708 		gfs2_holder_uninit(&m_ip->i_gh);
709 	}
710 	gfs2_glock_dq(&ip->i_gh);
711 out_uninit:
712 	gfs2_holder_uninit(&ip->i_gh);
713 	return error;
714 }
715 
716 /**
717  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
718  * @inode: the rindex inode
719  */
720 static void adjust_fs_space(struct inode *inode)
721 {
722 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
723 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
724 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
725 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
726 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
727 	struct buffer_head *m_bh, *l_bh;
728 	u64 fs_total, new_free;
729 
730 	/* Total up the file system space, according to the latest rindex. */
731 	fs_total = gfs2_ri_total(sdp);
732 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
733 		return;
734 
735 	spin_lock(&sdp->sd_statfs_spin);
736 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
737 			      sizeof(struct gfs2_dinode));
738 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
739 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
740 	else
741 		new_free = 0;
742 	spin_unlock(&sdp->sd_statfs_spin);
743 	fs_warn(sdp, "File system extended by %llu blocks.\n",
744 		(unsigned long long)new_free);
745 	gfs2_statfs_change(sdp, new_free, new_free, 0);
746 
747 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
748 		goto out;
749 	update_statfs(sdp, m_bh, l_bh);
750 	brelse(l_bh);
751 out:
752 	brelse(m_bh);
753 }
754 
755 /**
756  * gfs2_stuffed_write_end - Write end for stuffed files
757  * @inode: The inode
758  * @dibh: The buffer_head containing the on-disk inode
759  * @pos: The file position
760  * @len: The length of the write
761  * @copied: How much was actually copied by the VFS
762  * @page: The page
763  *
764  * This copies the data from the page into the inode block after
765  * the inode data structure itself.
766  *
767  * Returns: errno
768  */
769 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
770 				  loff_t pos, unsigned len, unsigned copied,
771 				  struct page *page)
772 {
773 	struct gfs2_inode *ip = GFS2_I(inode);
774 	struct gfs2_sbd *sdp = GFS2_SB(inode);
775 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
776 	u64 to = pos + copied;
777 	void *kaddr;
778 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
779 
780 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
781 	kaddr = kmap_atomic(page);
782 	memcpy(buf + pos, kaddr + pos, copied);
783 	memset(kaddr + pos + copied, 0, len - copied);
784 	flush_dcache_page(page);
785 	kunmap_atomic(kaddr);
786 
787 	if (!PageUptodate(page))
788 		SetPageUptodate(page);
789 	unlock_page(page);
790 	page_cache_release(page);
791 
792 	if (copied) {
793 		if (inode->i_size < to)
794 			i_size_write(inode, to);
795 		mark_inode_dirty(inode);
796 	}
797 
798 	if (inode == sdp->sd_rindex) {
799 		adjust_fs_space(inode);
800 		sdp->sd_rindex_uptodate = 0;
801 	}
802 
803 	brelse(dibh);
804 	gfs2_trans_end(sdp);
805 	if (inode == sdp->sd_rindex) {
806 		gfs2_glock_dq(&m_ip->i_gh);
807 		gfs2_holder_uninit(&m_ip->i_gh);
808 	}
809 	gfs2_glock_dq(&ip->i_gh);
810 	gfs2_holder_uninit(&ip->i_gh);
811 	return copied;
812 }
813 
814 /**
815  * gfs2_write_end
816  * @file: The file to write to
817  * @mapping: The address space to write to
818  * @pos: The file position
819  * @len: The length of the data
820  * @copied:
821  * @page: The page that has been written
822  * @fsdata: The fsdata (unused in GFS2)
823  *
824  * The main write_end function for GFS2. We have a separate one for
825  * stuffed files as they are slightly different, otherwise we just
826  * put our locking around the VFS provided functions.
827  *
828  * Returns: errno
829  */
830 
831 static int gfs2_write_end(struct file *file, struct address_space *mapping,
832 			  loff_t pos, unsigned len, unsigned copied,
833 			  struct page *page, void *fsdata)
834 {
835 	struct inode *inode = page->mapping->host;
836 	struct gfs2_inode *ip = GFS2_I(inode);
837 	struct gfs2_sbd *sdp = GFS2_SB(inode);
838 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
839 	struct buffer_head *dibh;
840 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
841 	unsigned int to = from + len;
842 	int ret;
843 
844 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
845 
846 	ret = gfs2_meta_inode_buffer(ip, &dibh);
847 	if (unlikely(ret)) {
848 		unlock_page(page);
849 		page_cache_release(page);
850 		goto failed;
851 	}
852 
853 	gfs2_trans_add_meta(ip->i_gl, dibh);
854 
855 	if (gfs2_is_stuffed(ip))
856 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
857 
858 	if (!gfs2_is_writeback(ip))
859 		gfs2_page_add_databufs(ip, page, from, to);
860 
861 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
862 
863 	if (inode == sdp->sd_rindex) {
864 		adjust_fs_space(inode);
865 		sdp->sd_rindex_uptodate = 0;
866 	}
867 
868 	brelse(dibh);
869 failed:
870 	gfs2_trans_end(sdp);
871 	gfs2_inplace_release(ip);
872 	if (ip->i_res->rs_qa_qd_num)
873 		gfs2_quota_unlock(ip);
874 	if (inode == sdp->sd_rindex) {
875 		gfs2_glock_dq(&m_ip->i_gh);
876 		gfs2_holder_uninit(&m_ip->i_gh);
877 	}
878 	gfs2_glock_dq(&ip->i_gh);
879 	gfs2_holder_uninit(&ip->i_gh);
880 	return ret;
881 }
882 
883 /**
884  * gfs2_set_page_dirty - Page dirtying function
885  * @page: The page to dirty
886  *
887  * Returns: 1 if it dirtyed the page, or 0 otherwise
888  */
889 
890 static int gfs2_set_page_dirty(struct page *page)
891 {
892 	SetPageChecked(page);
893 	return __set_page_dirty_buffers(page);
894 }
895 
896 /**
897  * gfs2_bmap - Block map function
898  * @mapping: Address space info
899  * @lblock: The block to map
900  *
901  * Returns: The disk address for the block or 0 on hole or error
902  */
903 
904 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
905 {
906 	struct gfs2_inode *ip = GFS2_I(mapping->host);
907 	struct gfs2_holder i_gh;
908 	sector_t dblock = 0;
909 	int error;
910 
911 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
912 	if (error)
913 		return 0;
914 
915 	if (!gfs2_is_stuffed(ip))
916 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
917 
918 	gfs2_glock_dq_uninit(&i_gh);
919 
920 	return dblock;
921 }
922 
923 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
924 {
925 	struct gfs2_bufdata *bd;
926 
927 	lock_buffer(bh);
928 	gfs2_log_lock(sdp);
929 	clear_buffer_dirty(bh);
930 	bd = bh->b_private;
931 	if (bd) {
932 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
933 			list_del_init(&bd->bd_list);
934 		else
935 			gfs2_remove_from_journal(bh, current->journal_info, 0);
936 	}
937 	bh->b_bdev = NULL;
938 	clear_buffer_mapped(bh);
939 	clear_buffer_req(bh);
940 	clear_buffer_new(bh);
941 	gfs2_log_unlock(sdp);
942 	unlock_buffer(bh);
943 }
944 
945 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
946 {
947 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
948 	struct buffer_head *bh, *head;
949 	unsigned long pos = 0;
950 
951 	BUG_ON(!PageLocked(page));
952 	if (offset == 0)
953 		ClearPageChecked(page);
954 	if (!page_has_buffers(page))
955 		goto out;
956 
957 	bh = head = page_buffers(page);
958 	do {
959 		if (offset <= pos)
960 			gfs2_discard(sdp, bh);
961 		pos += bh->b_size;
962 		bh = bh->b_this_page;
963 	} while (bh != head);
964 out:
965 	if (offset == 0)
966 		try_to_release_page(page, 0);
967 }
968 
969 /**
970  * gfs2_ok_for_dio - check that dio is valid on this file
971  * @ip: The inode
972  * @rw: READ or WRITE
973  * @offset: The offset at which we are reading or writing
974  *
975  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
976  *          1 (to accept the i/o request)
977  */
978 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
979 {
980 	/*
981 	 * Should we return an error here? I can't see that O_DIRECT for
982 	 * a stuffed file makes any sense. For now we'll silently fall
983 	 * back to buffered I/O
984 	 */
985 	if (gfs2_is_stuffed(ip))
986 		return 0;
987 
988 	if (offset >= i_size_read(&ip->i_inode))
989 		return 0;
990 	return 1;
991 }
992 
993 
994 
995 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
996 			      const struct iovec *iov, loff_t offset,
997 			      unsigned long nr_segs)
998 {
999 	struct file *file = iocb->ki_filp;
1000 	struct inode *inode = file->f_mapping->host;
1001 	struct gfs2_inode *ip = GFS2_I(inode);
1002 	struct gfs2_holder gh;
1003 	int rv;
1004 
1005 	/*
1006 	 * Deferred lock, even if its a write, since we do no allocation
1007 	 * on this path. All we need change is atime, and this lock mode
1008 	 * ensures that other nodes have flushed their buffered read caches
1009 	 * (i.e. their page cache entries for this inode). We do not,
1010 	 * unfortunately have the option of only flushing a range like
1011 	 * the VFS does.
1012 	 */
1013 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1014 	rv = gfs2_glock_nq(&gh);
1015 	if (rv)
1016 		return rv;
1017 	rv = gfs2_ok_for_dio(ip, rw, offset);
1018 	if (rv != 1)
1019 		goto out; /* dio not valid, fall back to buffered i/o */
1020 
1021 	rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1022 				  offset, nr_segs, gfs2_get_block_direct,
1023 				  NULL, NULL, 0);
1024 out:
1025 	gfs2_glock_dq(&gh);
1026 	gfs2_holder_uninit(&gh);
1027 	return rv;
1028 }
1029 
1030 /**
1031  * gfs2_releasepage - free the metadata associated with a page
1032  * @page: the page that's being released
1033  * @gfp_mask: passed from Linux VFS, ignored by us
1034  *
1035  * Call try_to_free_buffers() if the buffers in this page can be
1036  * released.
1037  *
1038  * Returns: 0
1039  */
1040 
1041 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1042 {
1043 	struct address_space *mapping = page->mapping;
1044 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1045 	struct buffer_head *bh, *head;
1046 	struct gfs2_bufdata *bd;
1047 
1048 	if (!page_has_buffers(page))
1049 		return 0;
1050 
1051 	gfs2_log_lock(sdp);
1052 	spin_lock(&sdp->sd_ail_lock);
1053 	head = bh = page_buffers(page);
1054 	do {
1055 		if (atomic_read(&bh->b_count))
1056 			goto cannot_release;
1057 		bd = bh->b_private;
1058 		if (bd && bd->bd_tr)
1059 			goto cannot_release;
1060 		if (buffer_pinned(bh) || buffer_dirty(bh))
1061 			goto not_possible;
1062 		bh = bh->b_this_page;
1063 	} while(bh != head);
1064 	spin_unlock(&sdp->sd_ail_lock);
1065 	gfs2_log_unlock(sdp);
1066 
1067 	head = bh = page_buffers(page);
1068 	do {
1069 		gfs2_log_lock(sdp);
1070 		bd = bh->b_private;
1071 		if (bd) {
1072 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1073 			if (!list_empty(&bd->bd_list)) {
1074 				if (!buffer_pinned(bh))
1075 					list_del_init(&bd->bd_list);
1076 				else
1077 					bd = NULL;
1078 			}
1079 			if (bd)
1080 				bd->bd_bh = NULL;
1081 			bh->b_private = NULL;
1082 		}
1083 		gfs2_log_unlock(sdp);
1084 		if (bd)
1085 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1086 
1087 		bh = bh->b_this_page;
1088 	} while (bh != head);
1089 
1090 	return try_to_free_buffers(page);
1091 
1092 not_possible: /* Should never happen */
1093 	WARN_ON(buffer_dirty(bh));
1094 	WARN_ON(buffer_pinned(bh));
1095 cannot_release:
1096 	spin_unlock(&sdp->sd_ail_lock);
1097 	gfs2_log_unlock(sdp);
1098 	return 0;
1099 }
1100 
1101 static const struct address_space_operations gfs2_writeback_aops = {
1102 	.writepage = gfs2_writeback_writepage,
1103 	.writepages = gfs2_writepages,
1104 	.readpage = gfs2_readpage,
1105 	.readpages = gfs2_readpages,
1106 	.write_begin = gfs2_write_begin,
1107 	.write_end = gfs2_write_end,
1108 	.bmap = gfs2_bmap,
1109 	.invalidatepage = gfs2_invalidatepage,
1110 	.releasepage = gfs2_releasepage,
1111 	.direct_IO = gfs2_direct_IO,
1112 	.migratepage = buffer_migrate_page,
1113 	.is_partially_uptodate = block_is_partially_uptodate,
1114 	.error_remove_page = generic_error_remove_page,
1115 };
1116 
1117 static const struct address_space_operations gfs2_ordered_aops = {
1118 	.writepage = gfs2_ordered_writepage,
1119 	.writepages = gfs2_writepages,
1120 	.readpage = gfs2_readpage,
1121 	.readpages = gfs2_readpages,
1122 	.write_begin = gfs2_write_begin,
1123 	.write_end = gfs2_write_end,
1124 	.set_page_dirty = gfs2_set_page_dirty,
1125 	.bmap = gfs2_bmap,
1126 	.invalidatepage = gfs2_invalidatepage,
1127 	.releasepage = gfs2_releasepage,
1128 	.direct_IO = gfs2_direct_IO,
1129 	.migratepage = buffer_migrate_page,
1130 	.is_partially_uptodate = block_is_partially_uptodate,
1131 	.error_remove_page = generic_error_remove_page,
1132 };
1133 
1134 static const struct address_space_operations gfs2_jdata_aops = {
1135 	.writepage = gfs2_jdata_writepage,
1136 	.writepages = gfs2_jdata_writepages,
1137 	.readpage = gfs2_readpage,
1138 	.readpages = gfs2_readpages,
1139 	.write_begin = gfs2_write_begin,
1140 	.write_end = gfs2_write_end,
1141 	.set_page_dirty = gfs2_set_page_dirty,
1142 	.bmap = gfs2_bmap,
1143 	.invalidatepage = gfs2_invalidatepage,
1144 	.releasepage = gfs2_releasepage,
1145 	.is_partially_uptodate = block_is_partially_uptodate,
1146 	.error_remove_page = generic_error_remove_page,
1147 };
1148 
1149 void gfs2_set_aops(struct inode *inode)
1150 {
1151 	struct gfs2_inode *ip = GFS2_I(inode);
1152 
1153 	if (gfs2_is_writeback(ip))
1154 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1155 	else if (gfs2_is_ordered(ip))
1156 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1157 	else if (gfs2_is_jdata(ip))
1158 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1159 	else
1160 		BUG();
1161 }
1162 
1163