xref: /openbmc/linux/fs/fuse/file.c (revision ff148d8a)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
23 			  int opcode, struct fuse_open_out *outargp)
24 {
25 	struct fuse_open_in inarg;
26 	FUSE_ARGS(args);
27 
28 	memset(&inarg, 0, sizeof(inarg));
29 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
30 	if (!fc->atomic_o_trunc)
31 		inarg.flags &= ~O_TRUNC;
32 	args.in.h.opcode = opcode;
33 	args.in.h.nodeid = nodeid;
34 	args.in.numargs = 1;
35 	args.in.args[0].size = sizeof(inarg);
36 	args.in.args[0].value = &inarg;
37 	args.out.numargs = 1;
38 	args.out.args[0].size = sizeof(*outargp);
39 	args.out.args[0].value = outargp;
40 
41 	return fuse_simple_request(fc, &args);
42 }
43 
44 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
45 {
46 	struct fuse_file *ff;
47 
48 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL);
49 	if (unlikely(!ff))
50 		return NULL;
51 
52 	ff->fc = fc;
53 	ff->reserved_req = fuse_request_alloc(0);
54 	if (unlikely(!ff->reserved_req)) {
55 		kfree(ff);
56 		return NULL;
57 	}
58 
59 	INIT_LIST_HEAD(&ff->write_entry);
60 	mutex_init(&ff->readdir.lock);
61 	refcount_set(&ff->count, 1);
62 	RB_CLEAR_NODE(&ff->polled_node);
63 	init_waitqueue_head(&ff->poll_wait);
64 
65 	ff->kh = atomic64_inc_return(&fc->khctr);
66 
67 	return ff;
68 }
69 
70 void fuse_file_free(struct fuse_file *ff)
71 {
72 	fuse_request_free(ff->reserved_req);
73 	mutex_destroy(&ff->readdir.lock);
74 	kfree(ff);
75 }
76 
77 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
78 {
79 	refcount_inc(&ff->count);
80 	return ff;
81 }
82 
83 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
84 {
85 	iput(req->misc.release.inode);
86 }
87 
88 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
89 {
90 	if (refcount_dec_and_test(&ff->count)) {
91 		struct fuse_req *req = ff->reserved_req;
92 
93 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
94 			/*
95 			 * Drop the release request when client does not
96 			 * implement 'open'
97 			 */
98 			__clear_bit(FR_BACKGROUND, &req->flags);
99 			iput(req->misc.release.inode);
100 			fuse_put_request(ff->fc, req);
101 		} else if (sync) {
102 			__set_bit(FR_FORCE, &req->flags);
103 			__clear_bit(FR_BACKGROUND, &req->flags);
104 			fuse_request_send(ff->fc, req);
105 			iput(req->misc.release.inode);
106 			fuse_put_request(ff->fc, req);
107 		} else {
108 			req->end = fuse_release_end;
109 			__set_bit(FR_BACKGROUND, &req->flags);
110 			fuse_request_send_background(ff->fc, req);
111 		}
112 		kfree(ff);
113 	}
114 }
115 
116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
117 		 bool isdir)
118 {
119 	struct fuse_file *ff;
120 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
121 
122 	ff = fuse_file_alloc(fc);
123 	if (!ff)
124 		return -ENOMEM;
125 
126 	ff->fh = 0;
127 	/* Default for no-open */
128 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
129 	if (isdir ? !fc->no_opendir : !fc->no_open) {
130 		struct fuse_open_out outarg;
131 		int err;
132 
133 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
134 		if (!err) {
135 			ff->fh = outarg.fh;
136 			ff->open_flags = outarg.open_flags;
137 
138 		} else if (err != -ENOSYS) {
139 			fuse_file_free(ff);
140 			return err;
141 		} else {
142 			if (isdir)
143 				fc->no_opendir = 1;
144 			else
145 				fc->no_open = 1;
146 		}
147 	}
148 
149 	if (isdir)
150 		ff->open_flags &= ~FOPEN_DIRECT_IO;
151 
152 	ff->nodeid = nodeid;
153 	file->private_data = ff;
154 
155 	return 0;
156 }
157 EXPORT_SYMBOL_GPL(fuse_do_open);
158 
159 static void fuse_link_write_file(struct file *file)
160 {
161 	struct inode *inode = file_inode(file);
162 	struct fuse_inode *fi = get_fuse_inode(inode);
163 	struct fuse_file *ff = file->private_data;
164 	/*
165 	 * file may be written through mmap, so chain it onto the
166 	 * inodes's write_file list
167 	 */
168 	spin_lock(&fi->lock);
169 	if (list_empty(&ff->write_entry))
170 		list_add(&ff->write_entry, &fi->write_files);
171 	spin_unlock(&fi->lock);
172 }
173 
174 void fuse_finish_open(struct inode *inode, struct file *file)
175 {
176 	struct fuse_file *ff = file->private_data;
177 	struct fuse_conn *fc = get_fuse_conn(inode);
178 
179 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
180 		invalidate_inode_pages2(inode->i_mapping);
181 	if (ff->open_flags & FOPEN_STREAM)
182 		stream_open(inode, file);
183 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
184 		nonseekable_open(inode, file);
185 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
186 		struct fuse_inode *fi = get_fuse_inode(inode);
187 
188 		spin_lock(&fi->lock);
189 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
190 		i_size_write(inode, 0);
191 		spin_unlock(&fi->lock);
192 		fuse_invalidate_attr(inode);
193 		if (fc->writeback_cache)
194 			file_update_time(file);
195 	}
196 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
197 		fuse_link_write_file(file);
198 }
199 
200 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
201 {
202 	struct fuse_conn *fc = get_fuse_conn(inode);
203 	int err;
204 	bool lock_inode = (file->f_flags & O_TRUNC) &&
205 			  fc->atomic_o_trunc &&
206 			  fc->writeback_cache;
207 
208 	err = generic_file_open(inode, file);
209 	if (err)
210 		return err;
211 
212 	if (lock_inode)
213 		inode_lock(inode);
214 
215 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
216 
217 	if (!err)
218 		fuse_finish_open(inode, file);
219 
220 	if (lock_inode)
221 		inode_unlock(inode);
222 
223 	return err;
224 }
225 
226 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
227 				 int flags, int opcode)
228 {
229 	struct fuse_conn *fc = ff->fc;
230 	struct fuse_req *req = ff->reserved_req;
231 	struct fuse_release_in *inarg = &req->misc.release.in;
232 
233 	/* Inode is NULL on error path of fuse_create_open() */
234 	if (likely(fi)) {
235 		spin_lock(&fi->lock);
236 		list_del(&ff->write_entry);
237 		spin_unlock(&fi->lock);
238 	}
239 	spin_lock(&fc->lock);
240 	if (!RB_EMPTY_NODE(&ff->polled_node))
241 		rb_erase(&ff->polled_node, &fc->polled_files);
242 	spin_unlock(&fc->lock);
243 
244 	wake_up_interruptible_all(&ff->poll_wait);
245 
246 	inarg->fh = ff->fh;
247 	inarg->flags = flags;
248 	req->in.h.opcode = opcode;
249 	req->in.h.nodeid = ff->nodeid;
250 	req->in.numargs = 1;
251 	req->in.args[0].size = sizeof(struct fuse_release_in);
252 	req->in.args[0].value = inarg;
253 }
254 
255 void fuse_release_common(struct file *file, bool isdir)
256 {
257 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
258 	struct fuse_file *ff = file->private_data;
259 	struct fuse_req *req = ff->reserved_req;
260 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
261 
262 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
263 
264 	if (ff->flock) {
265 		struct fuse_release_in *inarg = &req->misc.release.in;
266 		inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
267 		inarg->lock_owner = fuse_lock_owner_id(ff->fc,
268 						       (fl_owner_t) file);
269 	}
270 	/* Hold inode until release is finished */
271 	req->misc.release.inode = igrab(file_inode(file));
272 
273 	/*
274 	 * Normally this will send the RELEASE request, however if
275 	 * some asynchronous READ or WRITE requests are outstanding,
276 	 * the sending will be delayed.
277 	 *
278 	 * Make the release synchronous if this is a fuseblk mount,
279 	 * synchronous RELEASE is allowed (and desirable) in this case
280 	 * because the server can be trusted not to screw up.
281 	 */
282 	fuse_file_put(ff, ff->fc->destroy_req != NULL, isdir);
283 }
284 
285 static int fuse_open(struct inode *inode, struct file *file)
286 {
287 	return fuse_open_common(inode, file, false);
288 }
289 
290 static int fuse_release(struct inode *inode, struct file *file)
291 {
292 	struct fuse_conn *fc = get_fuse_conn(inode);
293 
294 	/* see fuse_vma_close() for !writeback_cache case */
295 	if (fc->writeback_cache)
296 		write_inode_now(inode, 1);
297 
298 	fuse_release_common(file, false);
299 
300 	/* return value is ignored by VFS */
301 	return 0;
302 }
303 
304 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
305 {
306 	WARN_ON(refcount_read(&ff->count) > 1);
307 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
308 	/*
309 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
310 	 * synchronous, we are fine with not doing igrab() here"
311 	 */
312 	fuse_file_put(ff, true, false);
313 }
314 EXPORT_SYMBOL_GPL(fuse_sync_release);
315 
316 /*
317  * Scramble the ID space with XTEA, so that the value of the files_struct
318  * pointer is not exposed to userspace.
319  */
320 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
321 {
322 	u32 *k = fc->scramble_key;
323 	u64 v = (unsigned long) id;
324 	u32 v0 = v;
325 	u32 v1 = v >> 32;
326 	u32 sum = 0;
327 	int i;
328 
329 	for (i = 0; i < 32; i++) {
330 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
331 		sum += 0x9E3779B9;
332 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
333 	}
334 
335 	return (u64) v0 + ((u64) v1 << 32);
336 }
337 
338 static struct fuse_req *fuse_find_writeback(struct fuse_inode *fi,
339 					    pgoff_t idx_from, pgoff_t idx_to)
340 {
341 	struct fuse_req *req;
342 
343 	list_for_each_entry(req, &fi->writepages, writepages_entry) {
344 		pgoff_t curr_index;
345 
346 		WARN_ON(get_fuse_inode(req->inode) != fi);
347 		curr_index = req->misc.write.in.offset >> PAGE_SHIFT;
348 		if (idx_from < curr_index + req->num_pages &&
349 		    curr_index <= idx_to) {
350 			return req;
351 		}
352 	}
353 	return NULL;
354 }
355 
356 /*
357  * Check if any page in a range is under writeback
358  *
359  * This is currently done by walking the list of writepage requests
360  * for the inode, which can be pretty inefficient.
361  */
362 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
363 				   pgoff_t idx_to)
364 {
365 	struct fuse_inode *fi = get_fuse_inode(inode);
366 	bool found;
367 
368 	spin_lock(&fi->lock);
369 	found = fuse_find_writeback(fi, idx_from, idx_to);
370 	spin_unlock(&fi->lock);
371 
372 	return found;
373 }
374 
375 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
376 {
377 	return fuse_range_is_writeback(inode, index, index);
378 }
379 
380 /*
381  * Wait for page writeback to be completed.
382  *
383  * Since fuse doesn't rely on the VM writeback tracking, this has to
384  * use some other means.
385  */
386 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
387 {
388 	struct fuse_inode *fi = get_fuse_inode(inode);
389 
390 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
391 	return 0;
392 }
393 
394 /*
395  * Wait for all pending writepages on the inode to finish.
396  *
397  * This is currently done by blocking further writes with FUSE_NOWRITE
398  * and waiting for all sent writes to complete.
399  *
400  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
401  * could conflict with truncation.
402  */
403 static void fuse_sync_writes(struct inode *inode)
404 {
405 	fuse_set_nowrite(inode);
406 	fuse_release_nowrite(inode);
407 }
408 
409 static int fuse_flush(struct file *file, fl_owner_t id)
410 {
411 	struct inode *inode = file_inode(file);
412 	struct fuse_conn *fc = get_fuse_conn(inode);
413 	struct fuse_file *ff = file->private_data;
414 	struct fuse_req *req;
415 	struct fuse_flush_in inarg;
416 	int err;
417 
418 	if (is_bad_inode(inode))
419 		return -EIO;
420 
421 	if (fc->no_flush)
422 		return 0;
423 
424 	err = write_inode_now(inode, 1);
425 	if (err)
426 		return err;
427 
428 	inode_lock(inode);
429 	fuse_sync_writes(inode);
430 	inode_unlock(inode);
431 
432 	err = filemap_check_errors(file->f_mapping);
433 	if (err)
434 		return err;
435 
436 	req = fuse_get_req_nofail_nopages(fc, file);
437 	memset(&inarg, 0, sizeof(inarg));
438 	inarg.fh = ff->fh;
439 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
440 	req->in.h.opcode = FUSE_FLUSH;
441 	req->in.h.nodeid = get_node_id(inode);
442 	req->in.numargs = 1;
443 	req->in.args[0].size = sizeof(inarg);
444 	req->in.args[0].value = &inarg;
445 	__set_bit(FR_FORCE, &req->flags);
446 	fuse_request_send(fc, req);
447 	err = req->out.h.error;
448 	fuse_put_request(fc, req);
449 	if (err == -ENOSYS) {
450 		fc->no_flush = 1;
451 		err = 0;
452 	}
453 	return err;
454 }
455 
456 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
457 		      int datasync, int opcode)
458 {
459 	struct inode *inode = file->f_mapping->host;
460 	struct fuse_conn *fc = get_fuse_conn(inode);
461 	struct fuse_file *ff = file->private_data;
462 	FUSE_ARGS(args);
463 	struct fuse_fsync_in inarg;
464 
465 	memset(&inarg, 0, sizeof(inarg));
466 	inarg.fh = ff->fh;
467 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
468 	args.in.h.opcode = opcode;
469 	args.in.h.nodeid = get_node_id(inode);
470 	args.in.numargs = 1;
471 	args.in.args[0].size = sizeof(inarg);
472 	args.in.args[0].value = &inarg;
473 	return fuse_simple_request(fc, &args);
474 }
475 
476 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
477 		      int datasync)
478 {
479 	struct inode *inode = file->f_mapping->host;
480 	struct fuse_conn *fc = get_fuse_conn(inode);
481 	int err;
482 
483 	if (is_bad_inode(inode))
484 		return -EIO;
485 
486 	inode_lock(inode);
487 
488 	/*
489 	 * Start writeback against all dirty pages of the inode, then
490 	 * wait for all outstanding writes, before sending the FSYNC
491 	 * request.
492 	 */
493 	err = file_write_and_wait_range(file, start, end);
494 	if (err)
495 		goto out;
496 
497 	fuse_sync_writes(inode);
498 
499 	/*
500 	 * Due to implementation of fuse writeback
501 	 * file_write_and_wait_range() does not catch errors.
502 	 * We have to do this directly after fuse_sync_writes()
503 	 */
504 	err = file_check_and_advance_wb_err(file);
505 	if (err)
506 		goto out;
507 
508 	err = sync_inode_metadata(inode, 1);
509 	if (err)
510 		goto out;
511 
512 	if (fc->no_fsync)
513 		goto out;
514 
515 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
516 	if (err == -ENOSYS) {
517 		fc->no_fsync = 1;
518 		err = 0;
519 	}
520 out:
521 	inode_unlock(inode);
522 
523 	return err;
524 }
525 
526 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
527 		    size_t count, int opcode)
528 {
529 	struct fuse_read_in *inarg = &req->misc.read.in;
530 	struct fuse_file *ff = file->private_data;
531 
532 	inarg->fh = ff->fh;
533 	inarg->offset = pos;
534 	inarg->size = count;
535 	inarg->flags = file->f_flags;
536 	req->in.h.opcode = opcode;
537 	req->in.h.nodeid = ff->nodeid;
538 	req->in.numargs = 1;
539 	req->in.args[0].size = sizeof(struct fuse_read_in);
540 	req->in.args[0].value = inarg;
541 	req->out.argvar = 1;
542 	req->out.numargs = 1;
543 	req->out.args[0].size = count;
544 }
545 
546 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty)
547 {
548 	unsigned i;
549 
550 	for (i = 0; i < req->num_pages; i++) {
551 		struct page *page = req->pages[i];
552 		if (should_dirty)
553 			set_page_dirty_lock(page);
554 		put_page(page);
555 	}
556 }
557 
558 static void fuse_io_release(struct kref *kref)
559 {
560 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
561 }
562 
563 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
564 {
565 	if (io->err)
566 		return io->err;
567 
568 	if (io->bytes >= 0 && io->write)
569 		return -EIO;
570 
571 	return io->bytes < 0 ? io->size : io->bytes;
572 }
573 
574 /**
575  * In case of short read, the caller sets 'pos' to the position of
576  * actual end of fuse request in IO request. Otherwise, if bytes_requested
577  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
578  *
579  * An example:
580  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
581  * both submitted asynchronously. The first of them was ACKed by userspace as
582  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
583  * second request was ACKed as short, e.g. only 1K was read, resulting in
584  * pos == 33K.
585  *
586  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
587  * will be equal to the length of the longest contiguous fragment of
588  * transferred data starting from the beginning of IO request.
589  */
590 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
591 {
592 	int left;
593 
594 	spin_lock(&io->lock);
595 	if (err)
596 		io->err = io->err ? : err;
597 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
598 		io->bytes = pos;
599 
600 	left = --io->reqs;
601 	if (!left && io->blocking)
602 		complete(io->done);
603 	spin_unlock(&io->lock);
604 
605 	if (!left && !io->blocking) {
606 		ssize_t res = fuse_get_res_by_io(io);
607 
608 		if (res >= 0) {
609 			struct inode *inode = file_inode(io->iocb->ki_filp);
610 			struct fuse_conn *fc = get_fuse_conn(inode);
611 			struct fuse_inode *fi = get_fuse_inode(inode);
612 
613 			spin_lock(&fi->lock);
614 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
615 			spin_unlock(&fi->lock);
616 		}
617 
618 		io->iocb->ki_complete(io->iocb, res, 0);
619 	}
620 
621 	kref_put(&io->refcnt, fuse_io_release);
622 }
623 
624 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
625 {
626 	struct fuse_io_priv *io = req->io;
627 	ssize_t pos = -1;
628 
629 	fuse_release_user_pages(req, io->should_dirty);
630 
631 	if (io->write) {
632 		if (req->misc.write.in.size != req->misc.write.out.size)
633 			pos = req->misc.write.in.offset - io->offset +
634 				req->misc.write.out.size;
635 	} else {
636 		if (req->misc.read.in.size != req->out.args[0].size)
637 			pos = req->misc.read.in.offset - io->offset +
638 				req->out.args[0].size;
639 	}
640 
641 	fuse_aio_complete(io, req->out.h.error, pos);
642 }
643 
644 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
645 		size_t num_bytes, struct fuse_io_priv *io)
646 {
647 	spin_lock(&io->lock);
648 	kref_get(&io->refcnt);
649 	io->size += num_bytes;
650 	io->reqs++;
651 	spin_unlock(&io->lock);
652 
653 	req->io = io;
654 	req->end = fuse_aio_complete_req;
655 
656 	__fuse_get_request(req);
657 	fuse_request_send_background(fc, req);
658 
659 	return num_bytes;
660 }
661 
662 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
663 			     loff_t pos, size_t count, fl_owner_t owner)
664 {
665 	struct file *file = io->iocb->ki_filp;
666 	struct fuse_file *ff = file->private_data;
667 	struct fuse_conn *fc = ff->fc;
668 
669 	fuse_read_fill(req, file, pos, count, FUSE_READ);
670 	if (owner != NULL) {
671 		struct fuse_read_in *inarg = &req->misc.read.in;
672 
673 		inarg->read_flags |= FUSE_READ_LOCKOWNER;
674 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
675 	}
676 
677 	if (io->async)
678 		return fuse_async_req_send(fc, req, count, io);
679 
680 	fuse_request_send(fc, req);
681 	return req->out.args[0].size;
682 }
683 
684 static void fuse_read_update_size(struct inode *inode, loff_t size,
685 				  u64 attr_ver)
686 {
687 	struct fuse_conn *fc = get_fuse_conn(inode);
688 	struct fuse_inode *fi = get_fuse_inode(inode);
689 
690 	spin_lock(&fi->lock);
691 	if (attr_ver == fi->attr_version && size < inode->i_size &&
692 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
693 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
694 		i_size_write(inode, size);
695 	}
696 	spin_unlock(&fi->lock);
697 }
698 
699 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
700 			    u64 attr_ver)
701 {
702 	size_t num_read = req->out.args[0].size;
703 	struct fuse_conn *fc = get_fuse_conn(inode);
704 
705 	if (fc->writeback_cache) {
706 		/*
707 		 * A hole in a file. Some data after the hole are in page cache,
708 		 * but have not reached the client fs yet. So, the hole is not
709 		 * present there.
710 		 */
711 		int i;
712 		int start_idx = num_read >> PAGE_SHIFT;
713 		size_t off = num_read & (PAGE_SIZE - 1);
714 
715 		for (i = start_idx; i < req->num_pages; i++) {
716 			zero_user_segment(req->pages[i], off, PAGE_SIZE);
717 			off = 0;
718 		}
719 	} else {
720 		loff_t pos = page_offset(req->pages[0]) + num_read;
721 		fuse_read_update_size(inode, pos, attr_ver);
722 	}
723 }
724 
725 static int fuse_do_readpage(struct file *file, struct page *page)
726 {
727 	struct kiocb iocb;
728 	struct fuse_io_priv io;
729 	struct inode *inode = page->mapping->host;
730 	struct fuse_conn *fc = get_fuse_conn(inode);
731 	struct fuse_req *req;
732 	size_t num_read;
733 	loff_t pos = page_offset(page);
734 	size_t count = PAGE_SIZE;
735 	u64 attr_ver;
736 	int err;
737 
738 	/*
739 	 * Page writeback can extend beyond the lifetime of the
740 	 * page-cache page, so make sure we read a properly synced
741 	 * page.
742 	 */
743 	fuse_wait_on_page_writeback(inode, page->index);
744 
745 	req = fuse_get_req(fc, 1);
746 	if (IS_ERR(req))
747 		return PTR_ERR(req);
748 
749 	attr_ver = fuse_get_attr_version(fc);
750 
751 	req->out.page_zeroing = 1;
752 	req->out.argpages = 1;
753 	req->num_pages = 1;
754 	req->pages[0] = page;
755 	req->page_descs[0].length = count;
756 	init_sync_kiocb(&iocb, file);
757 	io = (struct fuse_io_priv) FUSE_IO_PRIV_SYNC(&iocb);
758 	num_read = fuse_send_read(req, &io, pos, count, NULL);
759 	err = req->out.h.error;
760 
761 	if (!err) {
762 		/*
763 		 * Short read means EOF.  If file size is larger, truncate it
764 		 */
765 		if (num_read < count)
766 			fuse_short_read(req, inode, attr_ver);
767 
768 		SetPageUptodate(page);
769 	}
770 
771 	fuse_put_request(fc, req);
772 
773 	return err;
774 }
775 
776 static int fuse_readpage(struct file *file, struct page *page)
777 {
778 	struct inode *inode = page->mapping->host;
779 	int err;
780 
781 	err = -EIO;
782 	if (is_bad_inode(inode))
783 		goto out;
784 
785 	err = fuse_do_readpage(file, page);
786 	fuse_invalidate_atime(inode);
787  out:
788 	unlock_page(page);
789 	return err;
790 }
791 
792 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
793 {
794 	int i;
795 	size_t count = req->misc.read.in.size;
796 	size_t num_read = req->out.args[0].size;
797 	struct address_space *mapping = NULL;
798 
799 	for (i = 0; mapping == NULL && i < req->num_pages; i++)
800 		mapping = req->pages[i]->mapping;
801 
802 	if (mapping) {
803 		struct inode *inode = mapping->host;
804 
805 		/*
806 		 * Short read means EOF. If file size is larger, truncate it
807 		 */
808 		if (!req->out.h.error && num_read < count)
809 			fuse_short_read(req, inode, req->misc.read.attr_ver);
810 
811 		fuse_invalidate_atime(inode);
812 	}
813 
814 	for (i = 0; i < req->num_pages; i++) {
815 		struct page *page = req->pages[i];
816 		if (!req->out.h.error)
817 			SetPageUptodate(page);
818 		else
819 			SetPageError(page);
820 		unlock_page(page);
821 		put_page(page);
822 	}
823 	if (req->ff)
824 		fuse_file_put(req->ff, false, false);
825 }
826 
827 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
828 {
829 	struct fuse_file *ff = file->private_data;
830 	struct fuse_conn *fc = ff->fc;
831 	loff_t pos = page_offset(req->pages[0]);
832 	size_t count = req->num_pages << PAGE_SHIFT;
833 
834 	req->out.argpages = 1;
835 	req->out.page_zeroing = 1;
836 	req->out.page_replace = 1;
837 	fuse_read_fill(req, file, pos, count, FUSE_READ);
838 	req->misc.read.attr_ver = fuse_get_attr_version(fc);
839 	if (fc->async_read) {
840 		req->ff = fuse_file_get(ff);
841 		req->end = fuse_readpages_end;
842 		fuse_request_send_background(fc, req);
843 	} else {
844 		fuse_request_send(fc, req);
845 		fuse_readpages_end(fc, req);
846 		fuse_put_request(fc, req);
847 	}
848 }
849 
850 struct fuse_fill_data {
851 	struct fuse_req *req;
852 	struct file *file;
853 	struct inode *inode;
854 	unsigned nr_pages;
855 };
856 
857 static int fuse_readpages_fill(void *_data, struct page *page)
858 {
859 	struct fuse_fill_data *data = _data;
860 	struct fuse_req *req = data->req;
861 	struct inode *inode = data->inode;
862 	struct fuse_conn *fc = get_fuse_conn(inode);
863 
864 	fuse_wait_on_page_writeback(inode, page->index);
865 
866 	if (req->num_pages &&
867 	    (req->num_pages == fc->max_pages ||
868 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_read ||
869 	     req->pages[req->num_pages - 1]->index + 1 != page->index)) {
870 		unsigned int nr_alloc = min_t(unsigned int, data->nr_pages,
871 					      fc->max_pages);
872 		fuse_send_readpages(req, data->file);
873 		if (fc->async_read)
874 			req = fuse_get_req_for_background(fc, nr_alloc);
875 		else
876 			req = fuse_get_req(fc, nr_alloc);
877 
878 		data->req = req;
879 		if (IS_ERR(req)) {
880 			unlock_page(page);
881 			return PTR_ERR(req);
882 		}
883 	}
884 
885 	if (WARN_ON(req->num_pages >= req->max_pages)) {
886 		unlock_page(page);
887 		fuse_put_request(fc, req);
888 		return -EIO;
889 	}
890 
891 	get_page(page);
892 	req->pages[req->num_pages] = page;
893 	req->page_descs[req->num_pages].length = PAGE_SIZE;
894 	req->num_pages++;
895 	data->nr_pages--;
896 	return 0;
897 }
898 
899 static int fuse_readpages(struct file *file, struct address_space *mapping,
900 			  struct list_head *pages, unsigned nr_pages)
901 {
902 	struct inode *inode = mapping->host;
903 	struct fuse_conn *fc = get_fuse_conn(inode);
904 	struct fuse_fill_data data;
905 	int err;
906 	unsigned int nr_alloc = min_t(unsigned int, nr_pages, fc->max_pages);
907 
908 	err = -EIO;
909 	if (is_bad_inode(inode))
910 		goto out;
911 
912 	data.file = file;
913 	data.inode = inode;
914 	if (fc->async_read)
915 		data.req = fuse_get_req_for_background(fc, nr_alloc);
916 	else
917 		data.req = fuse_get_req(fc, nr_alloc);
918 	data.nr_pages = nr_pages;
919 	err = PTR_ERR(data.req);
920 	if (IS_ERR(data.req))
921 		goto out;
922 
923 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
924 	if (!err) {
925 		if (data.req->num_pages)
926 			fuse_send_readpages(data.req, file);
927 		else
928 			fuse_put_request(fc, data.req);
929 	}
930 out:
931 	return err;
932 }
933 
934 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
935 {
936 	struct inode *inode = iocb->ki_filp->f_mapping->host;
937 	struct fuse_conn *fc = get_fuse_conn(inode);
938 
939 	/*
940 	 * In auto invalidate mode, always update attributes on read.
941 	 * Otherwise, only update if we attempt to read past EOF (to ensure
942 	 * i_size is up to date).
943 	 */
944 	if (fc->auto_inval_data ||
945 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
946 		int err;
947 		err = fuse_update_attributes(inode, iocb->ki_filp);
948 		if (err)
949 			return err;
950 	}
951 
952 	return generic_file_read_iter(iocb, to);
953 }
954 
955 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
956 			    loff_t pos, size_t count)
957 {
958 	struct fuse_write_in *inarg = &req->misc.write.in;
959 	struct fuse_write_out *outarg = &req->misc.write.out;
960 
961 	inarg->fh = ff->fh;
962 	inarg->offset = pos;
963 	inarg->size = count;
964 	req->in.h.opcode = FUSE_WRITE;
965 	req->in.h.nodeid = ff->nodeid;
966 	req->in.numargs = 2;
967 	if (ff->fc->minor < 9)
968 		req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
969 	else
970 		req->in.args[0].size = sizeof(struct fuse_write_in);
971 	req->in.args[0].value = inarg;
972 	req->in.args[1].size = count;
973 	req->out.numargs = 1;
974 	req->out.args[0].size = sizeof(struct fuse_write_out);
975 	req->out.args[0].value = outarg;
976 }
977 
978 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
979 			      loff_t pos, size_t count, fl_owner_t owner)
980 {
981 	struct kiocb *iocb = io->iocb;
982 	struct file *file = iocb->ki_filp;
983 	struct fuse_file *ff = file->private_data;
984 	struct fuse_conn *fc = ff->fc;
985 	struct fuse_write_in *inarg = &req->misc.write.in;
986 
987 	fuse_write_fill(req, ff, pos, count);
988 	inarg->flags = file->f_flags;
989 	if (iocb->ki_flags & IOCB_DSYNC)
990 		inarg->flags |= O_DSYNC;
991 	if (iocb->ki_flags & IOCB_SYNC)
992 		inarg->flags |= O_SYNC;
993 	if (owner != NULL) {
994 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
995 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
996 	}
997 
998 	if (io->async)
999 		return fuse_async_req_send(fc, req, count, io);
1000 
1001 	fuse_request_send(fc, req);
1002 	return req->misc.write.out.size;
1003 }
1004 
1005 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1006 {
1007 	struct fuse_conn *fc = get_fuse_conn(inode);
1008 	struct fuse_inode *fi = get_fuse_inode(inode);
1009 	bool ret = false;
1010 
1011 	spin_lock(&fi->lock);
1012 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1013 	if (pos > inode->i_size) {
1014 		i_size_write(inode, pos);
1015 		ret = true;
1016 	}
1017 	spin_unlock(&fi->lock);
1018 
1019 	return ret;
1020 }
1021 
1022 static size_t fuse_send_write_pages(struct fuse_req *req, struct kiocb *iocb,
1023 				    struct inode *inode, loff_t pos,
1024 				    size_t count)
1025 {
1026 	size_t res;
1027 	unsigned offset;
1028 	unsigned i;
1029 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1030 
1031 	for (i = 0; i < req->num_pages; i++)
1032 		fuse_wait_on_page_writeback(inode, req->pages[i]->index);
1033 
1034 	res = fuse_send_write(req, &io, pos, count, NULL);
1035 
1036 	offset = req->page_descs[0].offset;
1037 	count = res;
1038 	for (i = 0; i < req->num_pages; i++) {
1039 		struct page *page = req->pages[i];
1040 
1041 		if (!req->out.h.error && !offset && count >= PAGE_SIZE)
1042 			SetPageUptodate(page);
1043 
1044 		if (count > PAGE_SIZE - offset)
1045 			count -= PAGE_SIZE - offset;
1046 		else
1047 			count = 0;
1048 		offset = 0;
1049 
1050 		unlock_page(page);
1051 		put_page(page);
1052 	}
1053 
1054 	return res;
1055 }
1056 
1057 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1058 			       struct address_space *mapping,
1059 			       struct iov_iter *ii, loff_t pos)
1060 {
1061 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1062 	unsigned offset = pos & (PAGE_SIZE - 1);
1063 	size_t count = 0;
1064 	int err;
1065 
1066 	req->in.argpages = 1;
1067 	req->page_descs[0].offset = offset;
1068 
1069 	do {
1070 		size_t tmp;
1071 		struct page *page;
1072 		pgoff_t index = pos >> PAGE_SHIFT;
1073 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1074 				     iov_iter_count(ii));
1075 
1076 		bytes = min_t(size_t, bytes, fc->max_write - count);
1077 
1078  again:
1079 		err = -EFAULT;
1080 		if (iov_iter_fault_in_readable(ii, bytes))
1081 			break;
1082 
1083 		err = -ENOMEM;
1084 		page = grab_cache_page_write_begin(mapping, index, 0);
1085 		if (!page)
1086 			break;
1087 
1088 		if (mapping_writably_mapped(mapping))
1089 			flush_dcache_page(page);
1090 
1091 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1092 		flush_dcache_page(page);
1093 
1094 		iov_iter_advance(ii, tmp);
1095 		if (!tmp) {
1096 			unlock_page(page);
1097 			put_page(page);
1098 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1099 			goto again;
1100 		}
1101 
1102 		err = 0;
1103 		req->pages[req->num_pages] = page;
1104 		req->page_descs[req->num_pages].length = tmp;
1105 		req->num_pages++;
1106 
1107 		count += tmp;
1108 		pos += tmp;
1109 		offset += tmp;
1110 		if (offset == PAGE_SIZE)
1111 			offset = 0;
1112 
1113 		if (!fc->big_writes)
1114 			break;
1115 	} while (iov_iter_count(ii) && count < fc->max_write &&
1116 		 req->num_pages < req->max_pages && offset == 0);
1117 
1118 	return count > 0 ? count : err;
1119 }
1120 
1121 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1122 				     unsigned int max_pages)
1123 {
1124 	return min_t(unsigned int,
1125 		     ((pos + len - 1) >> PAGE_SHIFT) -
1126 		     (pos >> PAGE_SHIFT) + 1,
1127 		     max_pages);
1128 }
1129 
1130 static ssize_t fuse_perform_write(struct kiocb *iocb,
1131 				  struct address_space *mapping,
1132 				  struct iov_iter *ii, loff_t pos)
1133 {
1134 	struct inode *inode = mapping->host;
1135 	struct fuse_conn *fc = get_fuse_conn(inode);
1136 	struct fuse_inode *fi = get_fuse_inode(inode);
1137 	int err = 0;
1138 	ssize_t res = 0;
1139 
1140 	if (inode->i_size < pos + iov_iter_count(ii))
1141 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1142 
1143 	do {
1144 		struct fuse_req *req;
1145 		ssize_t count;
1146 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1147 						      fc->max_pages);
1148 
1149 		req = fuse_get_req(fc, nr_pages);
1150 		if (IS_ERR(req)) {
1151 			err = PTR_ERR(req);
1152 			break;
1153 		}
1154 
1155 		count = fuse_fill_write_pages(req, mapping, ii, pos);
1156 		if (count <= 0) {
1157 			err = count;
1158 		} else {
1159 			size_t num_written;
1160 
1161 			num_written = fuse_send_write_pages(req, iocb, inode,
1162 							    pos, count);
1163 			err = req->out.h.error;
1164 			if (!err) {
1165 				res += num_written;
1166 				pos += num_written;
1167 
1168 				/* break out of the loop on short write */
1169 				if (num_written != count)
1170 					err = -EIO;
1171 			}
1172 		}
1173 		fuse_put_request(fc, req);
1174 	} while (!err && iov_iter_count(ii));
1175 
1176 	if (res > 0)
1177 		fuse_write_update_size(inode, pos);
1178 
1179 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1180 	fuse_invalidate_attr(inode);
1181 
1182 	return res > 0 ? res : err;
1183 }
1184 
1185 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1186 {
1187 	struct file *file = iocb->ki_filp;
1188 	struct address_space *mapping = file->f_mapping;
1189 	ssize_t written = 0;
1190 	ssize_t written_buffered = 0;
1191 	struct inode *inode = mapping->host;
1192 	ssize_t err;
1193 	loff_t endbyte = 0;
1194 
1195 	if (get_fuse_conn(inode)->writeback_cache) {
1196 		/* Update size (EOF optimization) and mode (SUID clearing) */
1197 		err = fuse_update_attributes(mapping->host, file);
1198 		if (err)
1199 			return err;
1200 
1201 		return generic_file_write_iter(iocb, from);
1202 	}
1203 
1204 	inode_lock(inode);
1205 
1206 	/* We can write back this queue in page reclaim */
1207 	current->backing_dev_info = inode_to_bdi(inode);
1208 
1209 	err = generic_write_checks(iocb, from);
1210 	if (err <= 0)
1211 		goto out;
1212 
1213 	err = file_remove_privs(file);
1214 	if (err)
1215 		goto out;
1216 
1217 	err = file_update_time(file);
1218 	if (err)
1219 		goto out;
1220 
1221 	if (iocb->ki_flags & IOCB_DIRECT) {
1222 		loff_t pos = iocb->ki_pos;
1223 		written = generic_file_direct_write(iocb, from);
1224 		if (written < 0 || !iov_iter_count(from))
1225 			goto out;
1226 
1227 		pos += written;
1228 
1229 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1230 		if (written_buffered < 0) {
1231 			err = written_buffered;
1232 			goto out;
1233 		}
1234 		endbyte = pos + written_buffered - 1;
1235 
1236 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1237 						   endbyte);
1238 		if (err)
1239 			goto out;
1240 
1241 		invalidate_mapping_pages(file->f_mapping,
1242 					 pos >> PAGE_SHIFT,
1243 					 endbyte >> PAGE_SHIFT);
1244 
1245 		written += written_buffered;
1246 		iocb->ki_pos = pos + written_buffered;
1247 	} else {
1248 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1249 		if (written >= 0)
1250 			iocb->ki_pos += written;
1251 	}
1252 out:
1253 	current->backing_dev_info = NULL;
1254 	inode_unlock(inode);
1255 	if (written > 0)
1256 		written = generic_write_sync(iocb, written);
1257 
1258 	return written ? written : err;
1259 }
1260 
1261 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1262 		unsigned index, unsigned nr_pages)
1263 {
1264 	int i;
1265 
1266 	for (i = index; i < index + nr_pages; i++)
1267 		req->page_descs[i].length = PAGE_SIZE -
1268 			req->page_descs[i].offset;
1269 }
1270 
1271 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1272 {
1273 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1274 }
1275 
1276 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1277 					size_t max_size)
1278 {
1279 	return min(iov_iter_single_seg_count(ii), max_size);
1280 }
1281 
1282 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1283 			       size_t *nbytesp, int write)
1284 {
1285 	size_t nbytes = 0;  /* # bytes already packed in req */
1286 	ssize_t ret = 0;
1287 
1288 	/* Special case for kernel I/O: can copy directly into the buffer */
1289 	if (iov_iter_is_kvec(ii)) {
1290 		unsigned long user_addr = fuse_get_user_addr(ii);
1291 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1292 
1293 		if (write)
1294 			req->in.args[1].value = (void *) user_addr;
1295 		else
1296 			req->out.args[0].value = (void *) user_addr;
1297 
1298 		iov_iter_advance(ii, frag_size);
1299 		*nbytesp = frag_size;
1300 		return 0;
1301 	}
1302 
1303 	while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1304 		unsigned npages;
1305 		size_t start;
1306 		ret = iov_iter_get_pages(ii, &req->pages[req->num_pages],
1307 					*nbytesp - nbytes,
1308 					req->max_pages - req->num_pages,
1309 					&start);
1310 		if (ret < 0)
1311 			break;
1312 
1313 		iov_iter_advance(ii, ret);
1314 		nbytes += ret;
1315 
1316 		ret += start;
1317 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1318 
1319 		req->page_descs[req->num_pages].offset = start;
1320 		fuse_page_descs_length_init(req, req->num_pages, npages);
1321 
1322 		req->num_pages += npages;
1323 		req->page_descs[req->num_pages - 1].length -=
1324 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1325 	}
1326 
1327 	if (write)
1328 		req->in.argpages = 1;
1329 	else
1330 		req->out.argpages = 1;
1331 
1332 	*nbytesp = nbytes;
1333 
1334 	return ret < 0 ? ret : 0;
1335 }
1336 
1337 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1338 		       loff_t *ppos, int flags)
1339 {
1340 	int write = flags & FUSE_DIO_WRITE;
1341 	int cuse = flags & FUSE_DIO_CUSE;
1342 	struct file *file = io->iocb->ki_filp;
1343 	struct inode *inode = file->f_mapping->host;
1344 	struct fuse_file *ff = file->private_data;
1345 	struct fuse_conn *fc = ff->fc;
1346 	size_t nmax = write ? fc->max_write : fc->max_read;
1347 	loff_t pos = *ppos;
1348 	size_t count = iov_iter_count(iter);
1349 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1350 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1351 	ssize_t res = 0;
1352 	struct fuse_req *req;
1353 	int err = 0;
1354 
1355 	if (io->async)
1356 		req = fuse_get_req_for_background(fc, iov_iter_npages(iter,
1357 								fc->max_pages));
1358 	else
1359 		req = fuse_get_req(fc, iov_iter_npages(iter, fc->max_pages));
1360 	if (IS_ERR(req))
1361 		return PTR_ERR(req);
1362 
1363 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1364 		if (!write)
1365 			inode_lock(inode);
1366 		fuse_sync_writes(inode);
1367 		if (!write)
1368 			inode_unlock(inode);
1369 	}
1370 
1371 	io->should_dirty = !write && iter_is_iovec(iter);
1372 	while (count) {
1373 		size_t nres;
1374 		fl_owner_t owner = current->files;
1375 		size_t nbytes = min(count, nmax);
1376 		err = fuse_get_user_pages(req, iter, &nbytes, write);
1377 		if (err && !nbytes)
1378 			break;
1379 
1380 		if (write)
1381 			nres = fuse_send_write(req, io, pos, nbytes, owner);
1382 		else
1383 			nres = fuse_send_read(req, io, pos, nbytes, owner);
1384 
1385 		if (!io->async)
1386 			fuse_release_user_pages(req, io->should_dirty);
1387 		if (req->out.h.error) {
1388 			err = req->out.h.error;
1389 			break;
1390 		} else if (nres > nbytes) {
1391 			res = 0;
1392 			err = -EIO;
1393 			break;
1394 		}
1395 		count -= nres;
1396 		res += nres;
1397 		pos += nres;
1398 		if (nres != nbytes)
1399 			break;
1400 		if (count) {
1401 			fuse_put_request(fc, req);
1402 			if (io->async)
1403 				req = fuse_get_req_for_background(fc,
1404 					iov_iter_npages(iter, fc->max_pages));
1405 			else
1406 				req = fuse_get_req(fc, iov_iter_npages(iter,
1407 								fc->max_pages));
1408 			if (IS_ERR(req))
1409 				break;
1410 		}
1411 	}
1412 	if (!IS_ERR(req))
1413 		fuse_put_request(fc, req);
1414 	if (res > 0)
1415 		*ppos = pos;
1416 
1417 	return res > 0 ? res : err;
1418 }
1419 EXPORT_SYMBOL_GPL(fuse_direct_io);
1420 
1421 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1422 				  struct iov_iter *iter,
1423 				  loff_t *ppos)
1424 {
1425 	ssize_t res;
1426 	struct inode *inode = file_inode(io->iocb->ki_filp);
1427 
1428 	res = fuse_direct_io(io, iter, ppos, 0);
1429 
1430 	fuse_invalidate_atime(inode);
1431 
1432 	return res;
1433 }
1434 
1435 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1436 
1437 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1438 {
1439 	ssize_t res;
1440 
1441 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1442 		res = fuse_direct_IO(iocb, to);
1443 	} else {
1444 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1445 
1446 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1447 	}
1448 
1449 	return res;
1450 }
1451 
1452 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1453 {
1454 	struct inode *inode = file_inode(iocb->ki_filp);
1455 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1456 	ssize_t res;
1457 
1458 	/* Don't allow parallel writes to the same file */
1459 	inode_lock(inode);
1460 	res = generic_write_checks(iocb, from);
1461 	if (res > 0) {
1462 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1463 			res = fuse_direct_IO(iocb, from);
1464 		} else {
1465 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1466 					     FUSE_DIO_WRITE);
1467 		}
1468 	}
1469 	fuse_invalidate_attr(inode);
1470 	if (res > 0)
1471 		fuse_write_update_size(inode, iocb->ki_pos);
1472 	inode_unlock(inode);
1473 
1474 	return res;
1475 }
1476 
1477 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1478 {
1479 	struct file *file = iocb->ki_filp;
1480 	struct fuse_file *ff = file->private_data;
1481 
1482 	if (is_bad_inode(file_inode(file)))
1483 		return -EIO;
1484 
1485 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1486 		return fuse_cache_read_iter(iocb, to);
1487 	else
1488 		return fuse_direct_read_iter(iocb, to);
1489 }
1490 
1491 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1492 {
1493 	struct file *file = iocb->ki_filp;
1494 	struct fuse_file *ff = file->private_data;
1495 
1496 	if (is_bad_inode(file_inode(file)))
1497 		return -EIO;
1498 
1499 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1500 		return fuse_cache_write_iter(iocb, from);
1501 	else
1502 		return fuse_direct_write_iter(iocb, from);
1503 }
1504 
1505 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1506 {
1507 	int i;
1508 
1509 	for (i = 0; i < req->num_pages; i++)
1510 		__free_page(req->pages[i]);
1511 
1512 	if (req->ff)
1513 		fuse_file_put(req->ff, false, false);
1514 }
1515 
1516 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1517 {
1518 	struct inode *inode = req->inode;
1519 	struct fuse_inode *fi = get_fuse_inode(inode);
1520 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1521 	int i;
1522 
1523 	list_del(&req->writepages_entry);
1524 	for (i = 0; i < req->num_pages; i++) {
1525 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1526 		dec_node_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1527 		wb_writeout_inc(&bdi->wb);
1528 	}
1529 	wake_up(&fi->page_waitq);
1530 }
1531 
1532 /* Called under fi->lock, may release and reacquire it */
1533 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1534 				loff_t size)
1535 __releases(fi->lock)
1536 __acquires(fi->lock)
1537 {
1538 	struct fuse_req *aux, *next;
1539 	struct fuse_inode *fi = get_fuse_inode(req->inode);
1540 	struct fuse_write_in *inarg = &req->misc.write.in;
1541 	__u64 data_size = req->num_pages * PAGE_SIZE;
1542 	bool queued;
1543 
1544 	if (inarg->offset + data_size <= size) {
1545 		inarg->size = data_size;
1546 	} else if (inarg->offset < size) {
1547 		inarg->size = size - inarg->offset;
1548 	} else {
1549 		/* Got truncated off completely */
1550 		goto out_free;
1551 	}
1552 
1553 	req->in.args[1].size = inarg->size;
1554 	queued = fuse_request_queue_background(fc, req);
1555 	/* Fails on broken connection only */
1556 	if (unlikely(!queued))
1557 		goto out_free;
1558 
1559 	fi->writectr++;
1560 	return;
1561 
1562  out_free:
1563 	fuse_writepage_finish(fc, req);
1564 	spin_unlock(&fi->lock);
1565 
1566 	/* After fuse_writepage_finish() aux request list is private */
1567 	for (aux = req->misc.write.next; aux; aux = next) {
1568 		next = aux->misc.write.next;
1569 		aux->misc.write.next = NULL;
1570 		fuse_writepage_free(fc, aux);
1571 		fuse_put_request(fc, aux);
1572 	}
1573 
1574 	fuse_writepage_free(fc, req);
1575 	fuse_put_request(fc, req);
1576 	spin_lock(&fi->lock);
1577 }
1578 
1579 /*
1580  * If fi->writectr is positive (no truncate or fsync going on) send
1581  * all queued writepage requests.
1582  *
1583  * Called with fi->lock
1584  */
1585 void fuse_flush_writepages(struct inode *inode)
1586 __releases(fi->lock)
1587 __acquires(fi->lock)
1588 {
1589 	struct fuse_conn *fc = get_fuse_conn(inode);
1590 	struct fuse_inode *fi = get_fuse_inode(inode);
1591 	loff_t crop = i_size_read(inode);
1592 	struct fuse_req *req;
1593 
1594 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1595 		req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1596 		list_del_init(&req->list);
1597 		fuse_send_writepage(fc, req, crop);
1598 	}
1599 }
1600 
1601 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1602 {
1603 	struct inode *inode = req->inode;
1604 	struct fuse_inode *fi = get_fuse_inode(inode);
1605 
1606 	mapping_set_error(inode->i_mapping, req->out.h.error);
1607 	spin_lock(&fi->lock);
1608 	while (req->misc.write.next) {
1609 		struct fuse_conn *fc = get_fuse_conn(inode);
1610 		struct fuse_write_in *inarg = &req->misc.write.in;
1611 		struct fuse_req *next = req->misc.write.next;
1612 		req->misc.write.next = next->misc.write.next;
1613 		next->misc.write.next = NULL;
1614 		next->ff = fuse_file_get(req->ff);
1615 		list_add(&next->writepages_entry, &fi->writepages);
1616 
1617 		/*
1618 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1619 		 * based on primary request size.
1620 		 *
1621 		 * 1st case (trivial): there are no concurrent activities using
1622 		 * fuse_set/release_nowrite.  Then we're on safe side because
1623 		 * fuse_flush_writepages() would call fuse_send_writepage()
1624 		 * anyway.
1625 		 *
1626 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1627 		 * now for completion of all in-flight requests.  This happens
1628 		 * rarely and no more than once per page, so this should be
1629 		 * okay.
1630 		 *
1631 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1632 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1633 		 * that fuse_set_nowrite returned implies that all in-flight
1634 		 * requests were completed along with all of their secondary
1635 		 * requests.  Further primary requests are blocked by negative
1636 		 * writectr.  Hence there cannot be any in-flight requests and
1637 		 * no invocations of fuse_writepage_end() while we're in
1638 		 * fuse_set_nowrite..fuse_release_nowrite section.
1639 		 */
1640 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1641 	}
1642 	fi->writectr--;
1643 	fuse_writepage_finish(fc, req);
1644 	spin_unlock(&fi->lock);
1645 	fuse_writepage_free(fc, req);
1646 }
1647 
1648 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1649 					       struct fuse_inode *fi)
1650 {
1651 	struct fuse_file *ff = NULL;
1652 
1653 	spin_lock(&fi->lock);
1654 	if (!list_empty(&fi->write_files)) {
1655 		ff = list_entry(fi->write_files.next, struct fuse_file,
1656 				write_entry);
1657 		fuse_file_get(ff);
1658 	}
1659 	spin_unlock(&fi->lock);
1660 
1661 	return ff;
1662 }
1663 
1664 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1665 					     struct fuse_inode *fi)
1666 {
1667 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1668 	WARN_ON(!ff);
1669 	return ff;
1670 }
1671 
1672 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1673 {
1674 	struct fuse_conn *fc = get_fuse_conn(inode);
1675 	struct fuse_inode *fi = get_fuse_inode(inode);
1676 	struct fuse_file *ff;
1677 	int err;
1678 
1679 	ff = __fuse_write_file_get(fc, fi);
1680 	err = fuse_flush_times(inode, ff);
1681 	if (ff)
1682 		fuse_file_put(ff, false, false);
1683 
1684 	return err;
1685 }
1686 
1687 static int fuse_writepage_locked(struct page *page)
1688 {
1689 	struct address_space *mapping = page->mapping;
1690 	struct inode *inode = mapping->host;
1691 	struct fuse_conn *fc = get_fuse_conn(inode);
1692 	struct fuse_inode *fi = get_fuse_inode(inode);
1693 	struct fuse_req *req;
1694 	struct page *tmp_page;
1695 	int error = -ENOMEM;
1696 
1697 	set_page_writeback(page);
1698 
1699 	req = fuse_request_alloc_nofs(1);
1700 	if (!req)
1701 		goto err;
1702 
1703 	/* writeback always goes to bg_queue */
1704 	__set_bit(FR_BACKGROUND, &req->flags);
1705 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1706 	if (!tmp_page)
1707 		goto err_free;
1708 
1709 	error = -EIO;
1710 	req->ff = fuse_write_file_get(fc, fi);
1711 	if (!req->ff)
1712 		goto err_nofile;
1713 
1714 	fuse_write_fill(req, req->ff, page_offset(page), 0);
1715 
1716 	copy_highpage(tmp_page, page);
1717 	req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1718 	req->misc.write.next = NULL;
1719 	req->in.argpages = 1;
1720 	req->num_pages = 1;
1721 	req->pages[0] = tmp_page;
1722 	req->page_descs[0].offset = 0;
1723 	req->page_descs[0].length = PAGE_SIZE;
1724 	req->end = fuse_writepage_end;
1725 	req->inode = inode;
1726 
1727 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1728 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1729 
1730 	spin_lock(&fi->lock);
1731 	list_add(&req->writepages_entry, &fi->writepages);
1732 	list_add_tail(&req->list, &fi->queued_writes);
1733 	fuse_flush_writepages(inode);
1734 	spin_unlock(&fi->lock);
1735 
1736 	end_page_writeback(page);
1737 
1738 	return 0;
1739 
1740 err_nofile:
1741 	__free_page(tmp_page);
1742 err_free:
1743 	fuse_request_free(req);
1744 err:
1745 	mapping_set_error(page->mapping, error);
1746 	end_page_writeback(page);
1747 	return error;
1748 }
1749 
1750 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1751 {
1752 	int err;
1753 
1754 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1755 		/*
1756 		 * ->writepages() should be called for sync() and friends.  We
1757 		 * should only get here on direct reclaim and then we are
1758 		 * allowed to skip a page which is already in flight
1759 		 */
1760 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1761 
1762 		redirty_page_for_writepage(wbc, page);
1763 		return 0;
1764 	}
1765 
1766 	err = fuse_writepage_locked(page);
1767 	unlock_page(page);
1768 
1769 	return err;
1770 }
1771 
1772 struct fuse_fill_wb_data {
1773 	struct fuse_req *req;
1774 	struct fuse_file *ff;
1775 	struct inode *inode;
1776 	struct page **orig_pages;
1777 };
1778 
1779 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1780 {
1781 	struct fuse_req *req = data->req;
1782 	struct inode *inode = data->inode;
1783 	struct fuse_inode *fi = get_fuse_inode(inode);
1784 	int num_pages = req->num_pages;
1785 	int i;
1786 
1787 	req->ff = fuse_file_get(data->ff);
1788 	spin_lock(&fi->lock);
1789 	list_add_tail(&req->list, &fi->queued_writes);
1790 	fuse_flush_writepages(inode);
1791 	spin_unlock(&fi->lock);
1792 
1793 	for (i = 0; i < num_pages; i++)
1794 		end_page_writeback(data->orig_pages[i]);
1795 }
1796 
1797 /*
1798  * First recheck under fi->lock if the offending offset is still under
1799  * writeback.  If yes, then iterate auxiliary write requests, to see if there's
1800  * one already added for a page at this offset.  If there's none, then insert
1801  * this new request onto the auxiliary list, otherwise reuse the existing one by
1802  * copying the new page contents over to the old temporary page.
1803  */
1804 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1805 				     struct page *page)
1806 {
1807 	struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1808 	struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1809 	struct fuse_req *tmp;
1810 	struct fuse_req *old_req;
1811 
1812 	WARN_ON(new_req->num_pages != 0);
1813 
1814 	spin_lock(&fi->lock);
1815 	list_del(&new_req->writepages_entry);
1816 	old_req = fuse_find_writeback(fi, page->index, page->index);
1817 	if (!old_req) {
1818 		list_add(&new_req->writepages_entry, &fi->writepages);
1819 		spin_unlock(&fi->lock);
1820 		return false;
1821 	}
1822 
1823 	new_req->num_pages = 1;
1824 	for (tmp = old_req->misc.write.next; tmp; tmp = tmp->misc.write.next) {
1825 		pgoff_t curr_index;
1826 
1827 		WARN_ON(tmp->inode != new_req->inode);
1828 		curr_index = tmp->misc.write.in.offset >> PAGE_SHIFT;
1829 		if (curr_index == page->index) {
1830 			WARN_ON(tmp->num_pages != 1);
1831 			WARN_ON(!test_bit(FR_PENDING, &tmp->flags));
1832 			swap(tmp->pages[0], new_req->pages[0]);
1833 			break;
1834 		}
1835 	}
1836 
1837 	if (!tmp) {
1838 		new_req->misc.write.next = old_req->misc.write.next;
1839 		old_req->misc.write.next = new_req;
1840 	}
1841 
1842 	spin_unlock(&fi->lock);
1843 
1844 	if (tmp) {
1845 		struct backing_dev_info *bdi = inode_to_bdi(new_req->inode);
1846 
1847 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1848 		dec_node_page_state(new_req->pages[0], NR_WRITEBACK_TEMP);
1849 		wb_writeout_inc(&bdi->wb);
1850 		fuse_writepage_free(fc, new_req);
1851 		fuse_request_free(new_req);
1852 	}
1853 
1854 	return true;
1855 }
1856 
1857 static int fuse_writepages_fill(struct page *page,
1858 		struct writeback_control *wbc, void *_data)
1859 {
1860 	struct fuse_fill_wb_data *data = _data;
1861 	struct fuse_req *req = data->req;
1862 	struct inode *inode = data->inode;
1863 	struct fuse_inode *fi = get_fuse_inode(inode);
1864 	struct fuse_conn *fc = get_fuse_conn(inode);
1865 	struct page *tmp_page;
1866 	bool is_writeback;
1867 	int err;
1868 
1869 	if (!data->ff) {
1870 		err = -EIO;
1871 		data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1872 		if (!data->ff)
1873 			goto out_unlock;
1874 	}
1875 
1876 	/*
1877 	 * Being under writeback is unlikely but possible.  For example direct
1878 	 * read to an mmaped fuse file will set the page dirty twice; once when
1879 	 * the pages are faulted with get_user_pages(), and then after the read
1880 	 * completed.
1881 	 */
1882 	is_writeback = fuse_page_is_writeback(inode, page->index);
1883 
1884 	if (req && req->num_pages &&
1885 	    (is_writeback || req->num_pages == fc->max_pages ||
1886 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_write ||
1887 	     data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1888 		fuse_writepages_send(data);
1889 		data->req = NULL;
1890 	} else if (req && req->num_pages == req->max_pages) {
1891 		if (!fuse_req_realloc_pages(fc, req, GFP_NOFS)) {
1892 			fuse_writepages_send(data);
1893 			req = data->req = NULL;
1894 		}
1895 	}
1896 
1897 	err = -ENOMEM;
1898 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1899 	if (!tmp_page)
1900 		goto out_unlock;
1901 
1902 	/*
1903 	 * The page must not be redirtied until the writeout is completed
1904 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
1905 	 * there could be more than one temporary page instance for each real
1906 	 * page.
1907 	 *
1908 	 * This is ensured by holding the page lock in page_mkwrite() while
1909 	 * checking fuse_page_is_writeback().  We already hold the page lock
1910 	 * since clear_page_dirty_for_io() and keep it held until we add the
1911 	 * request to the fi->writepages list and increment req->num_pages.
1912 	 * After this fuse_page_is_writeback() will indicate that the page is
1913 	 * under writeback, so we can release the page lock.
1914 	 */
1915 	if (data->req == NULL) {
1916 		struct fuse_inode *fi = get_fuse_inode(inode);
1917 
1918 		err = -ENOMEM;
1919 		req = fuse_request_alloc_nofs(FUSE_REQ_INLINE_PAGES);
1920 		if (!req) {
1921 			__free_page(tmp_page);
1922 			goto out_unlock;
1923 		}
1924 
1925 		fuse_write_fill(req, data->ff, page_offset(page), 0);
1926 		req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1927 		req->misc.write.next = NULL;
1928 		req->in.argpages = 1;
1929 		__set_bit(FR_BACKGROUND, &req->flags);
1930 		req->num_pages = 0;
1931 		req->end = fuse_writepage_end;
1932 		req->inode = inode;
1933 
1934 		spin_lock(&fi->lock);
1935 		list_add(&req->writepages_entry, &fi->writepages);
1936 		spin_unlock(&fi->lock);
1937 
1938 		data->req = req;
1939 	}
1940 	set_page_writeback(page);
1941 
1942 	copy_highpage(tmp_page, page);
1943 	req->pages[req->num_pages] = tmp_page;
1944 	req->page_descs[req->num_pages].offset = 0;
1945 	req->page_descs[req->num_pages].length = PAGE_SIZE;
1946 
1947 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1948 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1949 
1950 	err = 0;
1951 	if (is_writeback && fuse_writepage_in_flight(req, page)) {
1952 		end_page_writeback(page);
1953 		data->req = NULL;
1954 		goto out_unlock;
1955 	}
1956 	data->orig_pages[req->num_pages] = page;
1957 
1958 	/*
1959 	 * Protected by fi->lock against concurrent access by
1960 	 * fuse_page_is_writeback().
1961 	 */
1962 	spin_lock(&fi->lock);
1963 	req->num_pages++;
1964 	spin_unlock(&fi->lock);
1965 
1966 out_unlock:
1967 	unlock_page(page);
1968 
1969 	return err;
1970 }
1971 
1972 static int fuse_writepages(struct address_space *mapping,
1973 			   struct writeback_control *wbc)
1974 {
1975 	struct inode *inode = mapping->host;
1976 	struct fuse_conn *fc = get_fuse_conn(inode);
1977 	struct fuse_fill_wb_data data;
1978 	int err;
1979 
1980 	err = -EIO;
1981 	if (is_bad_inode(inode))
1982 		goto out;
1983 
1984 	data.inode = inode;
1985 	data.req = NULL;
1986 	data.ff = NULL;
1987 
1988 	err = -ENOMEM;
1989 	data.orig_pages = kcalloc(fc->max_pages,
1990 				  sizeof(struct page *),
1991 				  GFP_NOFS);
1992 	if (!data.orig_pages)
1993 		goto out;
1994 
1995 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1996 	if (data.req) {
1997 		/* Ignore errors if we can write at least one page */
1998 		BUG_ON(!data.req->num_pages);
1999 		fuse_writepages_send(&data);
2000 		err = 0;
2001 	}
2002 	if (data.ff)
2003 		fuse_file_put(data.ff, false, false);
2004 
2005 	kfree(data.orig_pages);
2006 out:
2007 	return err;
2008 }
2009 
2010 /*
2011  * It's worthy to make sure that space is reserved on disk for the write,
2012  * but how to implement it without killing performance need more thinking.
2013  */
2014 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2015 		loff_t pos, unsigned len, unsigned flags,
2016 		struct page **pagep, void **fsdata)
2017 {
2018 	pgoff_t index = pos >> PAGE_SHIFT;
2019 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2020 	struct page *page;
2021 	loff_t fsize;
2022 	int err = -ENOMEM;
2023 
2024 	WARN_ON(!fc->writeback_cache);
2025 
2026 	page = grab_cache_page_write_begin(mapping, index, flags);
2027 	if (!page)
2028 		goto error;
2029 
2030 	fuse_wait_on_page_writeback(mapping->host, page->index);
2031 
2032 	if (PageUptodate(page) || len == PAGE_SIZE)
2033 		goto success;
2034 	/*
2035 	 * Check if the start this page comes after the end of file, in which
2036 	 * case the readpage can be optimized away.
2037 	 */
2038 	fsize = i_size_read(mapping->host);
2039 	if (fsize <= (pos & PAGE_MASK)) {
2040 		size_t off = pos & ~PAGE_MASK;
2041 		if (off)
2042 			zero_user_segment(page, 0, off);
2043 		goto success;
2044 	}
2045 	err = fuse_do_readpage(file, page);
2046 	if (err)
2047 		goto cleanup;
2048 success:
2049 	*pagep = page;
2050 	return 0;
2051 
2052 cleanup:
2053 	unlock_page(page);
2054 	put_page(page);
2055 error:
2056 	return err;
2057 }
2058 
2059 static int fuse_write_end(struct file *file, struct address_space *mapping,
2060 		loff_t pos, unsigned len, unsigned copied,
2061 		struct page *page, void *fsdata)
2062 {
2063 	struct inode *inode = page->mapping->host;
2064 
2065 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2066 	if (!copied)
2067 		goto unlock;
2068 
2069 	if (!PageUptodate(page)) {
2070 		/* Zero any unwritten bytes at the end of the page */
2071 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2072 		if (endoff)
2073 			zero_user_segment(page, endoff, PAGE_SIZE);
2074 		SetPageUptodate(page);
2075 	}
2076 
2077 	fuse_write_update_size(inode, pos + copied);
2078 	set_page_dirty(page);
2079 
2080 unlock:
2081 	unlock_page(page);
2082 	put_page(page);
2083 
2084 	return copied;
2085 }
2086 
2087 static int fuse_launder_page(struct page *page)
2088 {
2089 	int err = 0;
2090 	if (clear_page_dirty_for_io(page)) {
2091 		struct inode *inode = page->mapping->host;
2092 		err = fuse_writepage_locked(page);
2093 		if (!err)
2094 			fuse_wait_on_page_writeback(inode, page->index);
2095 	}
2096 	return err;
2097 }
2098 
2099 /*
2100  * Write back dirty pages now, because there may not be any suitable
2101  * open files later
2102  */
2103 static void fuse_vma_close(struct vm_area_struct *vma)
2104 {
2105 	filemap_write_and_wait(vma->vm_file->f_mapping);
2106 }
2107 
2108 /*
2109  * Wait for writeback against this page to complete before allowing it
2110  * to be marked dirty again, and hence written back again, possibly
2111  * before the previous writepage completed.
2112  *
2113  * Block here, instead of in ->writepage(), so that the userspace fs
2114  * can only block processes actually operating on the filesystem.
2115  *
2116  * Otherwise unprivileged userspace fs would be able to block
2117  * unrelated:
2118  *
2119  * - page migration
2120  * - sync(2)
2121  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2122  */
2123 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2124 {
2125 	struct page *page = vmf->page;
2126 	struct inode *inode = file_inode(vmf->vma->vm_file);
2127 
2128 	file_update_time(vmf->vma->vm_file);
2129 	lock_page(page);
2130 	if (page->mapping != inode->i_mapping) {
2131 		unlock_page(page);
2132 		return VM_FAULT_NOPAGE;
2133 	}
2134 
2135 	fuse_wait_on_page_writeback(inode, page->index);
2136 	return VM_FAULT_LOCKED;
2137 }
2138 
2139 static const struct vm_operations_struct fuse_file_vm_ops = {
2140 	.close		= fuse_vma_close,
2141 	.fault		= filemap_fault,
2142 	.map_pages	= filemap_map_pages,
2143 	.page_mkwrite	= fuse_page_mkwrite,
2144 };
2145 
2146 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2147 {
2148 	struct fuse_file *ff = file->private_data;
2149 
2150 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2151 		/* Can't provide the coherency needed for MAP_SHARED */
2152 		if (vma->vm_flags & VM_MAYSHARE)
2153 			return -ENODEV;
2154 
2155 		invalidate_inode_pages2(file->f_mapping);
2156 
2157 		return generic_file_mmap(file, vma);
2158 	}
2159 
2160 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2161 		fuse_link_write_file(file);
2162 
2163 	file_accessed(file);
2164 	vma->vm_ops = &fuse_file_vm_ops;
2165 	return 0;
2166 }
2167 
2168 static int convert_fuse_file_lock(struct fuse_conn *fc,
2169 				  const struct fuse_file_lock *ffl,
2170 				  struct file_lock *fl)
2171 {
2172 	switch (ffl->type) {
2173 	case F_UNLCK:
2174 		break;
2175 
2176 	case F_RDLCK:
2177 	case F_WRLCK:
2178 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2179 		    ffl->end < ffl->start)
2180 			return -EIO;
2181 
2182 		fl->fl_start = ffl->start;
2183 		fl->fl_end = ffl->end;
2184 
2185 		/*
2186 		 * Convert pid into init's pid namespace.  The locks API will
2187 		 * translate it into the caller's pid namespace.
2188 		 */
2189 		rcu_read_lock();
2190 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2191 		rcu_read_unlock();
2192 		break;
2193 
2194 	default:
2195 		return -EIO;
2196 	}
2197 	fl->fl_type = ffl->type;
2198 	return 0;
2199 }
2200 
2201 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2202 			 const struct file_lock *fl, int opcode, pid_t pid,
2203 			 int flock, struct fuse_lk_in *inarg)
2204 {
2205 	struct inode *inode = file_inode(file);
2206 	struct fuse_conn *fc = get_fuse_conn(inode);
2207 	struct fuse_file *ff = file->private_data;
2208 
2209 	memset(inarg, 0, sizeof(*inarg));
2210 	inarg->fh = ff->fh;
2211 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2212 	inarg->lk.start = fl->fl_start;
2213 	inarg->lk.end = fl->fl_end;
2214 	inarg->lk.type = fl->fl_type;
2215 	inarg->lk.pid = pid;
2216 	if (flock)
2217 		inarg->lk_flags |= FUSE_LK_FLOCK;
2218 	args->in.h.opcode = opcode;
2219 	args->in.h.nodeid = get_node_id(inode);
2220 	args->in.numargs = 1;
2221 	args->in.args[0].size = sizeof(*inarg);
2222 	args->in.args[0].value = inarg;
2223 }
2224 
2225 static int fuse_getlk(struct file *file, struct file_lock *fl)
2226 {
2227 	struct inode *inode = file_inode(file);
2228 	struct fuse_conn *fc = get_fuse_conn(inode);
2229 	FUSE_ARGS(args);
2230 	struct fuse_lk_in inarg;
2231 	struct fuse_lk_out outarg;
2232 	int err;
2233 
2234 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2235 	args.out.numargs = 1;
2236 	args.out.args[0].size = sizeof(outarg);
2237 	args.out.args[0].value = &outarg;
2238 	err = fuse_simple_request(fc, &args);
2239 	if (!err)
2240 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2241 
2242 	return err;
2243 }
2244 
2245 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2246 {
2247 	struct inode *inode = file_inode(file);
2248 	struct fuse_conn *fc = get_fuse_conn(inode);
2249 	FUSE_ARGS(args);
2250 	struct fuse_lk_in inarg;
2251 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2252 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2253 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2254 	int err;
2255 
2256 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2257 		/* NLM needs asynchronous locks, which we don't support yet */
2258 		return -ENOLCK;
2259 	}
2260 
2261 	/* Unlock on close is handled by the flush method */
2262 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2263 		return 0;
2264 
2265 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2266 	err = fuse_simple_request(fc, &args);
2267 
2268 	/* locking is restartable */
2269 	if (err == -EINTR)
2270 		err = -ERESTARTSYS;
2271 
2272 	return err;
2273 }
2274 
2275 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2276 {
2277 	struct inode *inode = file_inode(file);
2278 	struct fuse_conn *fc = get_fuse_conn(inode);
2279 	int err;
2280 
2281 	if (cmd == F_CANCELLK) {
2282 		err = 0;
2283 	} else if (cmd == F_GETLK) {
2284 		if (fc->no_lock) {
2285 			posix_test_lock(file, fl);
2286 			err = 0;
2287 		} else
2288 			err = fuse_getlk(file, fl);
2289 	} else {
2290 		if (fc->no_lock)
2291 			err = posix_lock_file(file, fl, NULL);
2292 		else
2293 			err = fuse_setlk(file, fl, 0);
2294 	}
2295 	return err;
2296 }
2297 
2298 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2299 {
2300 	struct inode *inode = file_inode(file);
2301 	struct fuse_conn *fc = get_fuse_conn(inode);
2302 	int err;
2303 
2304 	if (fc->no_flock) {
2305 		err = locks_lock_file_wait(file, fl);
2306 	} else {
2307 		struct fuse_file *ff = file->private_data;
2308 
2309 		/* emulate flock with POSIX locks */
2310 		ff->flock = true;
2311 		err = fuse_setlk(file, fl, 1);
2312 	}
2313 
2314 	return err;
2315 }
2316 
2317 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2318 {
2319 	struct inode *inode = mapping->host;
2320 	struct fuse_conn *fc = get_fuse_conn(inode);
2321 	FUSE_ARGS(args);
2322 	struct fuse_bmap_in inarg;
2323 	struct fuse_bmap_out outarg;
2324 	int err;
2325 
2326 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2327 		return 0;
2328 
2329 	memset(&inarg, 0, sizeof(inarg));
2330 	inarg.block = block;
2331 	inarg.blocksize = inode->i_sb->s_blocksize;
2332 	args.in.h.opcode = FUSE_BMAP;
2333 	args.in.h.nodeid = get_node_id(inode);
2334 	args.in.numargs = 1;
2335 	args.in.args[0].size = sizeof(inarg);
2336 	args.in.args[0].value = &inarg;
2337 	args.out.numargs = 1;
2338 	args.out.args[0].size = sizeof(outarg);
2339 	args.out.args[0].value = &outarg;
2340 	err = fuse_simple_request(fc, &args);
2341 	if (err == -ENOSYS)
2342 		fc->no_bmap = 1;
2343 
2344 	return err ? 0 : outarg.block;
2345 }
2346 
2347 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2348 {
2349 	struct inode *inode = file->f_mapping->host;
2350 	struct fuse_conn *fc = get_fuse_conn(inode);
2351 	struct fuse_file *ff = file->private_data;
2352 	FUSE_ARGS(args);
2353 	struct fuse_lseek_in inarg = {
2354 		.fh = ff->fh,
2355 		.offset = offset,
2356 		.whence = whence
2357 	};
2358 	struct fuse_lseek_out outarg;
2359 	int err;
2360 
2361 	if (fc->no_lseek)
2362 		goto fallback;
2363 
2364 	args.in.h.opcode = FUSE_LSEEK;
2365 	args.in.h.nodeid = ff->nodeid;
2366 	args.in.numargs = 1;
2367 	args.in.args[0].size = sizeof(inarg);
2368 	args.in.args[0].value = &inarg;
2369 	args.out.numargs = 1;
2370 	args.out.args[0].size = sizeof(outarg);
2371 	args.out.args[0].value = &outarg;
2372 	err = fuse_simple_request(fc, &args);
2373 	if (err) {
2374 		if (err == -ENOSYS) {
2375 			fc->no_lseek = 1;
2376 			goto fallback;
2377 		}
2378 		return err;
2379 	}
2380 
2381 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2382 
2383 fallback:
2384 	err = fuse_update_attributes(inode, file);
2385 	if (!err)
2386 		return generic_file_llseek(file, offset, whence);
2387 	else
2388 		return err;
2389 }
2390 
2391 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2392 {
2393 	loff_t retval;
2394 	struct inode *inode = file_inode(file);
2395 
2396 	switch (whence) {
2397 	case SEEK_SET:
2398 	case SEEK_CUR:
2399 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2400 		retval = generic_file_llseek(file, offset, whence);
2401 		break;
2402 	case SEEK_END:
2403 		inode_lock(inode);
2404 		retval = fuse_update_attributes(inode, file);
2405 		if (!retval)
2406 			retval = generic_file_llseek(file, offset, whence);
2407 		inode_unlock(inode);
2408 		break;
2409 	case SEEK_HOLE:
2410 	case SEEK_DATA:
2411 		inode_lock(inode);
2412 		retval = fuse_lseek(file, offset, whence);
2413 		inode_unlock(inode);
2414 		break;
2415 	default:
2416 		retval = -EINVAL;
2417 	}
2418 
2419 	return retval;
2420 }
2421 
2422 /*
2423  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2424  * ABI was defined to be 'struct iovec' which is different on 32bit
2425  * and 64bit.  Fortunately we can determine which structure the server
2426  * used from the size of the reply.
2427  */
2428 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2429 				     size_t transferred, unsigned count,
2430 				     bool is_compat)
2431 {
2432 #ifdef CONFIG_COMPAT
2433 	if (count * sizeof(struct compat_iovec) == transferred) {
2434 		struct compat_iovec *ciov = src;
2435 		unsigned i;
2436 
2437 		/*
2438 		 * With this interface a 32bit server cannot support
2439 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2440 		 * requests
2441 		 */
2442 		if (!is_compat)
2443 			return -EINVAL;
2444 
2445 		for (i = 0; i < count; i++) {
2446 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2447 			dst[i].iov_len = ciov[i].iov_len;
2448 		}
2449 		return 0;
2450 	}
2451 #endif
2452 
2453 	if (count * sizeof(struct iovec) != transferred)
2454 		return -EIO;
2455 
2456 	memcpy(dst, src, transferred);
2457 	return 0;
2458 }
2459 
2460 /* Make sure iov_length() won't overflow */
2461 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2462 				 size_t count)
2463 {
2464 	size_t n;
2465 	u32 max = fc->max_pages << PAGE_SHIFT;
2466 
2467 	for (n = 0; n < count; n++, iov++) {
2468 		if (iov->iov_len > (size_t) max)
2469 			return -ENOMEM;
2470 		max -= iov->iov_len;
2471 	}
2472 	return 0;
2473 }
2474 
2475 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2476 				 void *src, size_t transferred, unsigned count,
2477 				 bool is_compat)
2478 {
2479 	unsigned i;
2480 	struct fuse_ioctl_iovec *fiov = src;
2481 
2482 	if (fc->minor < 16) {
2483 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2484 						 count, is_compat);
2485 	}
2486 
2487 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2488 		return -EIO;
2489 
2490 	for (i = 0; i < count; i++) {
2491 		/* Did the server supply an inappropriate value? */
2492 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2493 		    fiov[i].len != (unsigned long) fiov[i].len)
2494 			return -EIO;
2495 
2496 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2497 		dst[i].iov_len = (size_t) fiov[i].len;
2498 
2499 #ifdef CONFIG_COMPAT
2500 		if (is_compat &&
2501 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2502 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2503 			return -EIO;
2504 #endif
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 
2511 /*
2512  * For ioctls, there is no generic way to determine how much memory
2513  * needs to be read and/or written.  Furthermore, ioctls are allowed
2514  * to dereference the passed pointer, so the parameter requires deep
2515  * copying but FUSE has no idea whatsoever about what to copy in or
2516  * out.
2517  *
2518  * This is solved by allowing FUSE server to retry ioctl with
2519  * necessary in/out iovecs.  Let's assume the ioctl implementation
2520  * needs to read in the following structure.
2521  *
2522  * struct a {
2523  *	char	*buf;
2524  *	size_t	buflen;
2525  * }
2526  *
2527  * On the first callout to FUSE server, inarg->in_size and
2528  * inarg->out_size will be NULL; then, the server completes the ioctl
2529  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2530  * the actual iov array to
2531  *
2532  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2533  *
2534  * which tells FUSE to copy in the requested area and retry the ioctl.
2535  * On the second round, the server has access to the structure and
2536  * from that it can tell what to look for next, so on the invocation,
2537  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2538  *
2539  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2540  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2541  *
2542  * FUSE will copy both struct a and the pointed buffer from the
2543  * process doing the ioctl and retry ioctl with both struct a and the
2544  * buffer.
2545  *
2546  * This time, FUSE server has everything it needs and completes ioctl
2547  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2548  *
2549  * Copying data out works the same way.
2550  *
2551  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2552  * automatically initializes in and out iovs by decoding @cmd with
2553  * _IOC_* macros and the server is not allowed to request RETRY.  This
2554  * limits ioctl data transfers to well-formed ioctls and is the forced
2555  * behavior for all FUSE servers.
2556  */
2557 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2558 		   unsigned int flags)
2559 {
2560 	struct fuse_file *ff = file->private_data;
2561 	struct fuse_conn *fc = ff->fc;
2562 	struct fuse_ioctl_in inarg = {
2563 		.fh = ff->fh,
2564 		.cmd = cmd,
2565 		.arg = arg,
2566 		.flags = flags
2567 	};
2568 	struct fuse_ioctl_out outarg;
2569 	struct fuse_req *req = NULL;
2570 	struct page **pages = NULL;
2571 	struct iovec *iov_page = NULL;
2572 	struct iovec *in_iov = NULL, *out_iov = NULL;
2573 	unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2574 	size_t in_size, out_size, transferred, c;
2575 	int err, i;
2576 	struct iov_iter ii;
2577 
2578 #if BITS_PER_LONG == 32
2579 	inarg.flags |= FUSE_IOCTL_32BIT;
2580 #else
2581 	if (flags & FUSE_IOCTL_COMPAT) {
2582 		inarg.flags |= FUSE_IOCTL_32BIT;
2583 #ifdef CONFIG_X86_X32
2584 		if (in_x32_syscall())
2585 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2586 #endif
2587 	}
2588 #endif
2589 
2590 	/* assume all the iovs returned by client always fits in a page */
2591 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2592 
2593 	err = -ENOMEM;
2594 	pages = kcalloc(fc->max_pages, sizeof(pages[0]), GFP_KERNEL);
2595 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2596 	if (!pages || !iov_page)
2597 		goto out;
2598 
2599 	/*
2600 	 * If restricted, initialize IO parameters as encoded in @cmd.
2601 	 * RETRY from server is not allowed.
2602 	 */
2603 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2604 		struct iovec *iov = iov_page;
2605 
2606 		iov->iov_base = (void __user *)arg;
2607 		iov->iov_len = _IOC_SIZE(cmd);
2608 
2609 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2610 			in_iov = iov;
2611 			in_iovs = 1;
2612 		}
2613 
2614 		if (_IOC_DIR(cmd) & _IOC_READ) {
2615 			out_iov = iov;
2616 			out_iovs = 1;
2617 		}
2618 	}
2619 
2620  retry:
2621 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2622 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2623 
2624 	/*
2625 	 * Out data can be used either for actual out data or iovs,
2626 	 * make sure there always is at least one page.
2627 	 */
2628 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2629 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2630 
2631 	/* make sure there are enough buffer pages and init request with them */
2632 	err = -ENOMEM;
2633 	if (max_pages > fc->max_pages)
2634 		goto out;
2635 	while (num_pages < max_pages) {
2636 		pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2637 		if (!pages[num_pages])
2638 			goto out;
2639 		num_pages++;
2640 	}
2641 
2642 	req = fuse_get_req(fc, num_pages);
2643 	if (IS_ERR(req)) {
2644 		err = PTR_ERR(req);
2645 		req = NULL;
2646 		goto out;
2647 	}
2648 	memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2649 	req->num_pages = num_pages;
2650 	fuse_page_descs_length_init(req, 0, req->num_pages);
2651 
2652 	/* okay, let's send it to the client */
2653 	req->in.h.opcode = FUSE_IOCTL;
2654 	req->in.h.nodeid = ff->nodeid;
2655 	req->in.numargs = 1;
2656 	req->in.args[0].size = sizeof(inarg);
2657 	req->in.args[0].value = &inarg;
2658 	if (in_size) {
2659 		req->in.numargs++;
2660 		req->in.args[1].size = in_size;
2661 		req->in.argpages = 1;
2662 
2663 		err = -EFAULT;
2664 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2665 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2666 			c = copy_page_from_iter(pages[i], 0, PAGE_SIZE, &ii);
2667 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2668 				goto out;
2669 		}
2670 	}
2671 
2672 	req->out.numargs = 2;
2673 	req->out.args[0].size = sizeof(outarg);
2674 	req->out.args[0].value = &outarg;
2675 	req->out.args[1].size = out_size;
2676 	req->out.argpages = 1;
2677 	req->out.argvar = 1;
2678 
2679 	fuse_request_send(fc, req);
2680 	err = req->out.h.error;
2681 	transferred = req->out.args[1].size;
2682 	fuse_put_request(fc, req);
2683 	req = NULL;
2684 	if (err)
2685 		goto out;
2686 
2687 	/* did it ask for retry? */
2688 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2689 		void *vaddr;
2690 
2691 		/* no retry if in restricted mode */
2692 		err = -EIO;
2693 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2694 			goto out;
2695 
2696 		in_iovs = outarg.in_iovs;
2697 		out_iovs = outarg.out_iovs;
2698 
2699 		/*
2700 		 * Make sure things are in boundary, separate checks
2701 		 * are to protect against overflow.
2702 		 */
2703 		err = -ENOMEM;
2704 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2705 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2706 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2707 			goto out;
2708 
2709 		vaddr = kmap_atomic(pages[0]);
2710 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2711 					    transferred, in_iovs + out_iovs,
2712 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2713 		kunmap_atomic(vaddr);
2714 		if (err)
2715 			goto out;
2716 
2717 		in_iov = iov_page;
2718 		out_iov = in_iov + in_iovs;
2719 
2720 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2721 		if (err)
2722 			goto out;
2723 
2724 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2725 		if (err)
2726 			goto out;
2727 
2728 		goto retry;
2729 	}
2730 
2731 	err = -EIO;
2732 	if (transferred > inarg.out_size)
2733 		goto out;
2734 
2735 	err = -EFAULT;
2736 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2737 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2738 		c = copy_page_to_iter(pages[i], 0, PAGE_SIZE, &ii);
2739 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2740 			goto out;
2741 	}
2742 	err = 0;
2743  out:
2744 	if (req)
2745 		fuse_put_request(fc, req);
2746 	free_page((unsigned long) iov_page);
2747 	while (num_pages)
2748 		__free_page(pages[--num_pages]);
2749 	kfree(pages);
2750 
2751 	return err ? err : outarg.result;
2752 }
2753 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2754 
2755 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2756 		       unsigned long arg, unsigned int flags)
2757 {
2758 	struct inode *inode = file_inode(file);
2759 	struct fuse_conn *fc = get_fuse_conn(inode);
2760 
2761 	if (!fuse_allow_current_process(fc))
2762 		return -EACCES;
2763 
2764 	if (is_bad_inode(inode))
2765 		return -EIO;
2766 
2767 	return fuse_do_ioctl(file, cmd, arg, flags);
2768 }
2769 
2770 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2771 			    unsigned long arg)
2772 {
2773 	return fuse_ioctl_common(file, cmd, arg, 0);
2774 }
2775 
2776 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2777 				   unsigned long arg)
2778 {
2779 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2780 }
2781 
2782 /*
2783  * All files which have been polled are linked to RB tree
2784  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2785  * find the matching one.
2786  */
2787 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2788 					      struct rb_node **parent_out)
2789 {
2790 	struct rb_node **link = &fc->polled_files.rb_node;
2791 	struct rb_node *last = NULL;
2792 
2793 	while (*link) {
2794 		struct fuse_file *ff;
2795 
2796 		last = *link;
2797 		ff = rb_entry(last, struct fuse_file, polled_node);
2798 
2799 		if (kh < ff->kh)
2800 			link = &last->rb_left;
2801 		else if (kh > ff->kh)
2802 			link = &last->rb_right;
2803 		else
2804 			return link;
2805 	}
2806 
2807 	if (parent_out)
2808 		*parent_out = last;
2809 	return link;
2810 }
2811 
2812 /*
2813  * The file is about to be polled.  Make sure it's on the polled_files
2814  * RB tree.  Note that files once added to the polled_files tree are
2815  * not removed before the file is released.  This is because a file
2816  * polled once is likely to be polled again.
2817  */
2818 static void fuse_register_polled_file(struct fuse_conn *fc,
2819 				      struct fuse_file *ff)
2820 {
2821 	spin_lock(&fc->lock);
2822 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2823 		struct rb_node **link, *uninitialized_var(parent);
2824 
2825 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2826 		BUG_ON(*link);
2827 		rb_link_node(&ff->polled_node, parent, link);
2828 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2829 	}
2830 	spin_unlock(&fc->lock);
2831 }
2832 
2833 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2834 {
2835 	struct fuse_file *ff = file->private_data;
2836 	struct fuse_conn *fc = ff->fc;
2837 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2838 	struct fuse_poll_out outarg;
2839 	FUSE_ARGS(args);
2840 	int err;
2841 
2842 	if (fc->no_poll)
2843 		return DEFAULT_POLLMASK;
2844 
2845 	poll_wait(file, &ff->poll_wait, wait);
2846 	inarg.events = mangle_poll(poll_requested_events(wait));
2847 
2848 	/*
2849 	 * Ask for notification iff there's someone waiting for it.
2850 	 * The client may ignore the flag and always notify.
2851 	 */
2852 	if (waitqueue_active(&ff->poll_wait)) {
2853 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2854 		fuse_register_polled_file(fc, ff);
2855 	}
2856 
2857 	args.in.h.opcode = FUSE_POLL;
2858 	args.in.h.nodeid = ff->nodeid;
2859 	args.in.numargs = 1;
2860 	args.in.args[0].size = sizeof(inarg);
2861 	args.in.args[0].value = &inarg;
2862 	args.out.numargs = 1;
2863 	args.out.args[0].size = sizeof(outarg);
2864 	args.out.args[0].value = &outarg;
2865 	err = fuse_simple_request(fc, &args);
2866 
2867 	if (!err)
2868 		return demangle_poll(outarg.revents);
2869 	if (err == -ENOSYS) {
2870 		fc->no_poll = 1;
2871 		return DEFAULT_POLLMASK;
2872 	}
2873 	return EPOLLERR;
2874 }
2875 EXPORT_SYMBOL_GPL(fuse_file_poll);
2876 
2877 /*
2878  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2879  * wakes up the poll waiters.
2880  */
2881 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2882 			    struct fuse_notify_poll_wakeup_out *outarg)
2883 {
2884 	u64 kh = outarg->kh;
2885 	struct rb_node **link;
2886 
2887 	spin_lock(&fc->lock);
2888 
2889 	link = fuse_find_polled_node(fc, kh, NULL);
2890 	if (*link) {
2891 		struct fuse_file *ff;
2892 
2893 		ff = rb_entry(*link, struct fuse_file, polled_node);
2894 		wake_up_interruptible_sync(&ff->poll_wait);
2895 	}
2896 
2897 	spin_unlock(&fc->lock);
2898 	return 0;
2899 }
2900 
2901 static void fuse_do_truncate(struct file *file)
2902 {
2903 	struct inode *inode = file->f_mapping->host;
2904 	struct iattr attr;
2905 
2906 	attr.ia_valid = ATTR_SIZE;
2907 	attr.ia_size = i_size_read(inode);
2908 
2909 	attr.ia_file = file;
2910 	attr.ia_valid |= ATTR_FILE;
2911 
2912 	fuse_do_setattr(file_dentry(file), &attr, file);
2913 }
2914 
2915 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2916 {
2917 	return round_up(off, fc->max_pages << PAGE_SHIFT);
2918 }
2919 
2920 static ssize_t
2921 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2922 {
2923 	DECLARE_COMPLETION_ONSTACK(wait);
2924 	ssize_t ret = 0;
2925 	struct file *file = iocb->ki_filp;
2926 	struct fuse_file *ff = file->private_data;
2927 	bool async_dio = ff->fc->async_dio;
2928 	loff_t pos = 0;
2929 	struct inode *inode;
2930 	loff_t i_size;
2931 	size_t count = iov_iter_count(iter);
2932 	loff_t offset = iocb->ki_pos;
2933 	struct fuse_io_priv *io;
2934 
2935 	pos = offset;
2936 	inode = file->f_mapping->host;
2937 	i_size = i_size_read(inode);
2938 
2939 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
2940 		return 0;
2941 
2942 	/* optimization for short read */
2943 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
2944 		if (offset >= i_size)
2945 			return 0;
2946 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
2947 		count = iov_iter_count(iter);
2948 	}
2949 
2950 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2951 	if (!io)
2952 		return -ENOMEM;
2953 	spin_lock_init(&io->lock);
2954 	kref_init(&io->refcnt);
2955 	io->reqs = 1;
2956 	io->bytes = -1;
2957 	io->size = 0;
2958 	io->offset = offset;
2959 	io->write = (iov_iter_rw(iter) == WRITE);
2960 	io->err = 0;
2961 	/*
2962 	 * By default, we want to optimize all I/Os with async request
2963 	 * submission to the client filesystem if supported.
2964 	 */
2965 	io->async = async_dio;
2966 	io->iocb = iocb;
2967 	io->blocking = is_sync_kiocb(iocb);
2968 
2969 	/*
2970 	 * We cannot asynchronously extend the size of a file.
2971 	 * In such case the aio will behave exactly like sync io.
2972 	 */
2973 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
2974 		io->blocking = true;
2975 
2976 	if (io->async && io->blocking) {
2977 		/*
2978 		 * Additional reference to keep io around after
2979 		 * calling fuse_aio_complete()
2980 		 */
2981 		kref_get(&io->refcnt);
2982 		io->done = &wait;
2983 	}
2984 
2985 	if (iov_iter_rw(iter) == WRITE) {
2986 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2987 		fuse_invalidate_attr(inode);
2988 	} else {
2989 		ret = __fuse_direct_read(io, iter, &pos);
2990 	}
2991 
2992 	if (io->async) {
2993 		bool blocking = io->blocking;
2994 
2995 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2996 
2997 		/* we have a non-extending, async request, so return */
2998 		if (!blocking)
2999 			return -EIOCBQUEUED;
3000 
3001 		wait_for_completion(&wait);
3002 		ret = fuse_get_res_by_io(io);
3003 	}
3004 
3005 	kref_put(&io->refcnt, fuse_io_release);
3006 
3007 	if (iov_iter_rw(iter) == WRITE) {
3008 		if (ret > 0)
3009 			fuse_write_update_size(inode, pos);
3010 		else if (ret < 0 && offset + count > i_size)
3011 			fuse_do_truncate(file);
3012 	}
3013 
3014 	return ret;
3015 }
3016 
3017 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3018 				loff_t length)
3019 {
3020 	struct fuse_file *ff = file->private_data;
3021 	struct inode *inode = file_inode(file);
3022 	struct fuse_inode *fi = get_fuse_inode(inode);
3023 	struct fuse_conn *fc = ff->fc;
3024 	FUSE_ARGS(args);
3025 	struct fuse_fallocate_in inarg = {
3026 		.fh = ff->fh,
3027 		.offset = offset,
3028 		.length = length,
3029 		.mode = mode
3030 	};
3031 	int err;
3032 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3033 			   (mode & FALLOC_FL_PUNCH_HOLE);
3034 
3035 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3036 		return -EOPNOTSUPP;
3037 
3038 	if (fc->no_fallocate)
3039 		return -EOPNOTSUPP;
3040 
3041 	if (lock_inode) {
3042 		inode_lock(inode);
3043 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3044 			loff_t endbyte = offset + length - 1;
3045 			err = filemap_write_and_wait_range(inode->i_mapping,
3046 							   offset, endbyte);
3047 			if (err)
3048 				goto out;
3049 
3050 			fuse_sync_writes(inode);
3051 		}
3052 	}
3053 
3054 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3055 	    offset + length > i_size_read(inode)) {
3056 		err = inode_newsize_ok(inode, offset + length);
3057 		if (err)
3058 			return err;
3059 	}
3060 
3061 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3062 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3063 
3064 	args.in.h.opcode = FUSE_FALLOCATE;
3065 	args.in.h.nodeid = ff->nodeid;
3066 	args.in.numargs = 1;
3067 	args.in.args[0].size = sizeof(inarg);
3068 	args.in.args[0].value = &inarg;
3069 	err = fuse_simple_request(fc, &args);
3070 	if (err == -ENOSYS) {
3071 		fc->no_fallocate = 1;
3072 		err = -EOPNOTSUPP;
3073 	}
3074 	if (err)
3075 		goto out;
3076 
3077 	/* we could have extended the file */
3078 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3079 		bool changed = fuse_write_update_size(inode, offset + length);
3080 
3081 		if (changed && fc->writeback_cache)
3082 			file_update_time(file);
3083 	}
3084 
3085 	if (mode & FALLOC_FL_PUNCH_HOLE)
3086 		truncate_pagecache_range(inode, offset, offset + length - 1);
3087 
3088 	fuse_invalidate_attr(inode);
3089 
3090 out:
3091 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3092 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3093 
3094 	if (lock_inode)
3095 		inode_unlock(inode);
3096 
3097 	return err;
3098 }
3099 
3100 static ssize_t fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3101 				    struct file *file_out, loff_t pos_out,
3102 				    size_t len, unsigned int flags)
3103 {
3104 	struct fuse_file *ff_in = file_in->private_data;
3105 	struct fuse_file *ff_out = file_out->private_data;
3106 	struct inode *inode_out = file_inode(file_out);
3107 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3108 	struct fuse_conn *fc = ff_in->fc;
3109 	FUSE_ARGS(args);
3110 	struct fuse_copy_file_range_in inarg = {
3111 		.fh_in = ff_in->fh,
3112 		.off_in = pos_in,
3113 		.nodeid_out = ff_out->nodeid,
3114 		.fh_out = ff_out->fh,
3115 		.off_out = pos_out,
3116 		.len = len,
3117 		.flags = flags
3118 	};
3119 	struct fuse_write_out outarg;
3120 	ssize_t err;
3121 	/* mark unstable when write-back is not used, and file_out gets
3122 	 * extended */
3123 	bool is_unstable = (!fc->writeback_cache) &&
3124 			   ((pos_out + len) > inode_out->i_size);
3125 
3126 	if (fc->no_copy_file_range)
3127 		return -EOPNOTSUPP;
3128 
3129 	inode_lock(inode_out);
3130 
3131 	if (fc->writeback_cache) {
3132 		err = filemap_write_and_wait_range(inode_out->i_mapping,
3133 						   pos_out, pos_out + len);
3134 		if (err)
3135 			goto out;
3136 
3137 		fuse_sync_writes(inode_out);
3138 	}
3139 
3140 	if (is_unstable)
3141 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3142 
3143 	args.in.h.opcode = FUSE_COPY_FILE_RANGE;
3144 	args.in.h.nodeid = ff_in->nodeid;
3145 	args.in.numargs = 1;
3146 	args.in.args[0].size = sizeof(inarg);
3147 	args.in.args[0].value = &inarg;
3148 	args.out.numargs = 1;
3149 	args.out.args[0].size = sizeof(outarg);
3150 	args.out.args[0].value = &outarg;
3151 	err = fuse_simple_request(fc, &args);
3152 	if (err == -ENOSYS) {
3153 		fc->no_copy_file_range = 1;
3154 		err = -EOPNOTSUPP;
3155 	}
3156 	if (err)
3157 		goto out;
3158 
3159 	if (fc->writeback_cache) {
3160 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3161 		file_update_time(file_out);
3162 	}
3163 
3164 	fuse_invalidate_attr(inode_out);
3165 
3166 	err = outarg.size;
3167 out:
3168 	if (is_unstable)
3169 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3170 
3171 	inode_unlock(inode_out);
3172 
3173 	return err;
3174 }
3175 
3176 static const struct file_operations fuse_file_operations = {
3177 	.llseek		= fuse_file_llseek,
3178 	.read_iter	= fuse_file_read_iter,
3179 	.write_iter	= fuse_file_write_iter,
3180 	.mmap		= fuse_file_mmap,
3181 	.open		= fuse_open,
3182 	.flush		= fuse_flush,
3183 	.release	= fuse_release,
3184 	.fsync		= fuse_fsync,
3185 	.lock		= fuse_file_lock,
3186 	.flock		= fuse_file_flock,
3187 	.splice_read	= generic_file_splice_read,
3188 	.splice_write	= iter_file_splice_write,
3189 	.unlocked_ioctl	= fuse_file_ioctl,
3190 	.compat_ioctl	= fuse_file_compat_ioctl,
3191 	.poll		= fuse_file_poll,
3192 	.fallocate	= fuse_file_fallocate,
3193 	.copy_file_range = fuse_copy_file_range,
3194 };
3195 
3196 static const struct address_space_operations fuse_file_aops  = {
3197 	.readpage	= fuse_readpage,
3198 	.writepage	= fuse_writepage,
3199 	.writepages	= fuse_writepages,
3200 	.launder_page	= fuse_launder_page,
3201 	.readpages	= fuse_readpages,
3202 	.set_page_dirty	= __set_page_dirty_nobuffers,
3203 	.bmap		= fuse_bmap,
3204 	.direct_IO	= fuse_direct_IO,
3205 	.write_begin	= fuse_write_begin,
3206 	.write_end	= fuse_write_end,
3207 };
3208 
3209 void fuse_init_file_inode(struct inode *inode)
3210 {
3211 	struct fuse_inode *fi = get_fuse_inode(inode);
3212 
3213 	inode->i_fop = &fuse_file_operations;
3214 	inode->i_data.a_ops = &fuse_file_aops;
3215 
3216 	INIT_LIST_HEAD(&fi->write_files);
3217 	INIT_LIST_HEAD(&fi->queued_writes);
3218 	fi->writectr = 0;
3219 	init_waitqueue_head(&fi->page_waitq);
3220 	INIT_LIST_HEAD(&fi->writepages);
3221 }
3222