xref: /openbmc/linux/fs/fuse/file.c (revision f80d2f08)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static const struct file_operations fuse_direct_io_file_operations;
23 
24 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
25 			  int opcode, struct fuse_open_out *outargp)
26 {
27 	struct fuse_open_in inarg;
28 	FUSE_ARGS(args);
29 
30 	memset(&inarg, 0, sizeof(inarg));
31 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
32 	if (!fc->atomic_o_trunc)
33 		inarg.flags &= ~O_TRUNC;
34 	args.in.h.opcode = opcode;
35 	args.in.h.nodeid = nodeid;
36 	args.in.numargs = 1;
37 	args.in.args[0].size = sizeof(inarg);
38 	args.in.args[0].value = &inarg;
39 	args.out.numargs = 1;
40 	args.out.args[0].size = sizeof(*outargp);
41 	args.out.args[0].value = outargp;
42 
43 	return fuse_simple_request(fc, &args);
44 }
45 
46 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
47 {
48 	struct fuse_file *ff;
49 
50 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL);
51 	if (unlikely(!ff))
52 		return NULL;
53 
54 	ff->fc = fc;
55 	ff->reserved_req = fuse_request_alloc(0);
56 	if (unlikely(!ff->reserved_req)) {
57 		kfree(ff);
58 		return NULL;
59 	}
60 
61 	INIT_LIST_HEAD(&ff->write_entry);
62 	mutex_init(&ff->readdir.lock);
63 	refcount_set(&ff->count, 1);
64 	RB_CLEAR_NODE(&ff->polled_node);
65 	init_waitqueue_head(&ff->poll_wait);
66 
67 	spin_lock(&fc->lock);
68 	ff->kh = ++fc->khctr;
69 	spin_unlock(&fc->lock);
70 
71 	return ff;
72 }
73 
74 void fuse_file_free(struct fuse_file *ff)
75 {
76 	fuse_request_free(ff->reserved_req);
77 	mutex_destroy(&ff->readdir.lock);
78 	kfree(ff);
79 }
80 
81 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
82 {
83 	refcount_inc(&ff->count);
84 	return ff;
85 }
86 
87 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
88 {
89 	iput(req->misc.release.inode);
90 }
91 
92 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
93 {
94 	if (refcount_dec_and_test(&ff->count)) {
95 		struct fuse_req *req = ff->reserved_req;
96 
97 		if (ff->fc->no_open && !isdir) {
98 			/*
99 			 * Drop the release request when client does not
100 			 * implement 'open'
101 			 */
102 			__clear_bit(FR_BACKGROUND, &req->flags);
103 			iput(req->misc.release.inode);
104 			fuse_put_request(ff->fc, req);
105 		} else if (sync) {
106 			__set_bit(FR_FORCE, &req->flags);
107 			__clear_bit(FR_BACKGROUND, &req->flags);
108 			fuse_request_send(ff->fc, req);
109 			iput(req->misc.release.inode);
110 			fuse_put_request(ff->fc, req);
111 		} else {
112 			req->end = fuse_release_end;
113 			__set_bit(FR_BACKGROUND, &req->flags);
114 			fuse_request_send_background(ff->fc, req);
115 		}
116 		kfree(ff);
117 	}
118 }
119 
120 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
121 		 bool isdir)
122 {
123 	struct fuse_file *ff;
124 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
125 
126 	ff = fuse_file_alloc(fc);
127 	if (!ff)
128 		return -ENOMEM;
129 
130 	ff->fh = 0;
131 	ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */
132 	if (!fc->no_open || isdir) {
133 		struct fuse_open_out outarg;
134 		int err;
135 
136 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
137 		if (!err) {
138 			ff->fh = outarg.fh;
139 			ff->open_flags = outarg.open_flags;
140 
141 		} else if (err != -ENOSYS || isdir) {
142 			fuse_file_free(ff);
143 			return err;
144 		} else {
145 			fc->no_open = 1;
146 		}
147 	}
148 
149 	if (isdir)
150 		ff->open_flags &= ~FOPEN_DIRECT_IO;
151 
152 	ff->nodeid = nodeid;
153 	file->private_data = ff;
154 
155 	return 0;
156 }
157 EXPORT_SYMBOL_GPL(fuse_do_open);
158 
159 static void fuse_link_write_file(struct file *file)
160 {
161 	struct inode *inode = file_inode(file);
162 	struct fuse_conn *fc = get_fuse_conn(inode);
163 	struct fuse_inode *fi = get_fuse_inode(inode);
164 	struct fuse_file *ff = file->private_data;
165 	/*
166 	 * file may be written through mmap, so chain it onto the
167 	 * inodes's write_file list
168 	 */
169 	spin_lock(&fc->lock);
170 	if (list_empty(&ff->write_entry))
171 		list_add(&ff->write_entry, &fi->write_files);
172 	spin_unlock(&fc->lock);
173 }
174 
175 void fuse_finish_open(struct inode *inode, struct file *file)
176 {
177 	struct fuse_file *ff = file->private_data;
178 	struct fuse_conn *fc = get_fuse_conn(inode);
179 
180 	if (ff->open_flags & FOPEN_DIRECT_IO)
181 		file->f_op = &fuse_direct_io_file_operations;
182 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
183 		invalidate_inode_pages2(inode->i_mapping);
184 	if (ff->open_flags & FOPEN_NONSEEKABLE)
185 		nonseekable_open(inode, file);
186 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
187 		struct fuse_inode *fi = get_fuse_inode(inode);
188 
189 		spin_lock(&fc->lock);
190 		fi->attr_version = ++fc->attr_version;
191 		i_size_write(inode, 0);
192 		spin_unlock(&fc->lock);
193 		fuse_invalidate_attr(inode);
194 		if (fc->writeback_cache)
195 			file_update_time(file);
196 	}
197 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
198 		fuse_link_write_file(file);
199 }
200 
201 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
202 {
203 	struct fuse_conn *fc = get_fuse_conn(inode);
204 	int err;
205 	bool lock_inode = (file->f_flags & O_TRUNC) &&
206 			  fc->atomic_o_trunc &&
207 			  fc->writeback_cache;
208 
209 	err = generic_file_open(inode, file);
210 	if (err)
211 		return err;
212 
213 	if (lock_inode)
214 		inode_lock(inode);
215 
216 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
217 
218 	if (!err)
219 		fuse_finish_open(inode, file);
220 
221 	if (lock_inode)
222 		inode_unlock(inode);
223 
224 	return err;
225 }
226 
227 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
228 {
229 	struct fuse_conn *fc = ff->fc;
230 	struct fuse_req *req = ff->reserved_req;
231 	struct fuse_release_in *inarg = &req->misc.release.in;
232 
233 	spin_lock(&fc->lock);
234 	list_del(&ff->write_entry);
235 	if (!RB_EMPTY_NODE(&ff->polled_node))
236 		rb_erase(&ff->polled_node, &fc->polled_files);
237 	spin_unlock(&fc->lock);
238 
239 	wake_up_interruptible_all(&ff->poll_wait);
240 
241 	inarg->fh = ff->fh;
242 	inarg->flags = flags;
243 	req->in.h.opcode = opcode;
244 	req->in.h.nodeid = ff->nodeid;
245 	req->in.numargs = 1;
246 	req->in.args[0].size = sizeof(struct fuse_release_in);
247 	req->in.args[0].value = inarg;
248 }
249 
250 void fuse_release_common(struct file *file, bool isdir)
251 {
252 	struct fuse_file *ff = file->private_data;
253 	struct fuse_req *req = ff->reserved_req;
254 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
255 
256 	fuse_prepare_release(ff, file->f_flags, opcode);
257 
258 	if (ff->flock) {
259 		struct fuse_release_in *inarg = &req->misc.release.in;
260 		inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
261 		inarg->lock_owner = fuse_lock_owner_id(ff->fc,
262 						       (fl_owner_t) file);
263 	}
264 	/* Hold inode until release is finished */
265 	req->misc.release.inode = igrab(file_inode(file));
266 
267 	/*
268 	 * Normally this will send the RELEASE request, however if
269 	 * some asynchronous READ or WRITE requests are outstanding,
270 	 * the sending will be delayed.
271 	 *
272 	 * Make the release synchronous if this is a fuseblk mount,
273 	 * synchronous RELEASE is allowed (and desirable) in this case
274 	 * because the server can be trusted not to screw up.
275 	 */
276 	fuse_file_put(ff, ff->fc->destroy_req != NULL, isdir);
277 }
278 
279 static int fuse_open(struct inode *inode, struct file *file)
280 {
281 	return fuse_open_common(inode, file, false);
282 }
283 
284 static int fuse_release(struct inode *inode, struct file *file)
285 {
286 	struct fuse_conn *fc = get_fuse_conn(inode);
287 
288 	/* see fuse_vma_close() for !writeback_cache case */
289 	if (fc->writeback_cache)
290 		write_inode_now(inode, 1);
291 
292 	fuse_release_common(file, false);
293 
294 	/* return value is ignored by VFS */
295 	return 0;
296 }
297 
298 void fuse_sync_release(struct fuse_file *ff, int flags)
299 {
300 	WARN_ON(refcount_read(&ff->count) > 1);
301 	fuse_prepare_release(ff, flags, FUSE_RELEASE);
302 	/*
303 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
304 	 * synchronous, we are fine with not doing igrab() here"
305 	 */
306 	fuse_file_put(ff, true, false);
307 }
308 EXPORT_SYMBOL_GPL(fuse_sync_release);
309 
310 /*
311  * Scramble the ID space with XTEA, so that the value of the files_struct
312  * pointer is not exposed to userspace.
313  */
314 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
315 {
316 	u32 *k = fc->scramble_key;
317 	u64 v = (unsigned long) id;
318 	u32 v0 = v;
319 	u32 v1 = v >> 32;
320 	u32 sum = 0;
321 	int i;
322 
323 	for (i = 0; i < 32; i++) {
324 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
325 		sum += 0x9E3779B9;
326 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
327 	}
328 
329 	return (u64) v0 + ((u64) v1 << 32);
330 }
331 
332 /*
333  * Check if any page in a range is under writeback
334  *
335  * This is currently done by walking the list of writepage requests
336  * for the inode, which can be pretty inefficient.
337  */
338 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
339 				   pgoff_t idx_to)
340 {
341 	struct fuse_conn *fc = get_fuse_conn(inode);
342 	struct fuse_inode *fi = get_fuse_inode(inode);
343 	struct fuse_req *req;
344 	bool found = false;
345 
346 	spin_lock(&fc->lock);
347 	list_for_each_entry(req, &fi->writepages, writepages_entry) {
348 		pgoff_t curr_index;
349 
350 		BUG_ON(req->inode != inode);
351 		curr_index = req->misc.write.in.offset >> PAGE_SHIFT;
352 		if (idx_from < curr_index + req->num_pages &&
353 		    curr_index <= idx_to) {
354 			found = true;
355 			break;
356 		}
357 	}
358 	spin_unlock(&fc->lock);
359 
360 	return found;
361 }
362 
363 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
364 {
365 	return fuse_range_is_writeback(inode, index, index);
366 }
367 
368 /*
369  * Wait for page writeback to be completed.
370  *
371  * Since fuse doesn't rely on the VM writeback tracking, this has to
372  * use some other means.
373  */
374 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
375 {
376 	struct fuse_inode *fi = get_fuse_inode(inode);
377 
378 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
379 	return 0;
380 }
381 
382 /*
383  * Wait for all pending writepages on the inode to finish.
384  *
385  * This is currently done by blocking further writes with FUSE_NOWRITE
386  * and waiting for all sent writes to complete.
387  *
388  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
389  * could conflict with truncation.
390  */
391 static void fuse_sync_writes(struct inode *inode)
392 {
393 	fuse_set_nowrite(inode);
394 	fuse_release_nowrite(inode);
395 }
396 
397 static int fuse_flush(struct file *file, fl_owner_t id)
398 {
399 	struct inode *inode = file_inode(file);
400 	struct fuse_conn *fc = get_fuse_conn(inode);
401 	struct fuse_file *ff = file->private_data;
402 	struct fuse_req *req;
403 	struct fuse_flush_in inarg;
404 	int err;
405 
406 	if (is_bad_inode(inode))
407 		return -EIO;
408 
409 	if (fc->no_flush)
410 		return 0;
411 
412 	err = write_inode_now(inode, 1);
413 	if (err)
414 		return err;
415 
416 	inode_lock(inode);
417 	fuse_sync_writes(inode);
418 	inode_unlock(inode);
419 
420 	err = filemap_check_errors(file->f_mapping);
421 	if (err)
422 		return err;
423 
424 	req = fuse_get_req_nofail_nopages(fc, file);
425 	memset(&inarg, 0, sizeof(inarg));
426 	inarg.fh = ff->fh;
427 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
428 	req->in.h.opcode = FUSE_FLUSH;
429 	req->in.h.nodeid = get_node_id(inode);
430 	req->in.numargs = 1;
431 	req->in.args[0].size = sizeof(inarg);
432 	req->in.args[0].value = &inarg;
433 	__set_bit(FR_FORCE, &req->flags);
434 	fuse_request_send(fc, req);
435 	err = req->out.h.error;
436 	fuse_put_request(fc, req);
437 	if (err == -ENOSYS) {
438 		fc->no_flush = 1;
439 		err = 0;
440 	}
441 	return err;
442 }
443 
444 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
445 		      int datasync, int opcode)
446 {
447 	struct inode *inode = file->f_mapping->host;
448 	struct fuse_conn *fc = get_fuse_conn(inode);
449 	struct fuse_file *ff = file->private_data;
450 	FUSE_ARGS(args);
451 	struct fuse_fsync_in inarg;
452 
453 	memset(&inarg, 0, sizeof(inarg));
454 	inarg.fh = ff->fh;
455 	inarg.fsync_flags = datasync ? 1 : 0;
456 	args.in.h.opcode = opcode;
457 	args.in.h.nodeid = get_node_id(inode);
458 	args.in.numargs = 1;
459 	args.in.args[0].size = sizeof(inarg);
460 	args.in.args[0].value = &inarg;
461 	return fuse_simple_request(fc, &args);
462 }
463 
464 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
465 		      int datasync)
466 {
467 	struct inode *inode = file->f_mapping->host;
468 	struct fuse_conn *fc = get_fuse_conn(inode);
469 	int err;
470 
471 	if (is_bad_inode(inode))
472 		return -EIO;
473 
474 	inode_lock(inode);
475 
476 	/*
477 	 * Start writeback against all dirty pages of the inode, then
478 	 * wait for all outstanding writes, before sending the FSYNC
479 	 * request.
480 	 */
481 	err = file_write_and_wait_range(file, start, end);
482 	if (err)
483 		goto out;
484 
485 	fuse_sync_writes(inode);
486 
487 	/*
488 	 * Due to implementation of fuse writeback
489 	 * file_write_and_wait_range() does not catch errors.
490 	 * We have to do this directly after fuse_sync_writes()
491 	 */
492 	err = file_check_and_advance_wb_err(file);
493 	if (err)
494 		goto out;
495 
496 	err = sync_inode_metadata(inode, 1);
497 	if (err)
498 		goto out;
499 
500 	if (fc->no_fsync)
501 		goto out;
502 
503 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
504 	if (err == -ENOSYS) {
505 		fc->no_fsync = 1;
506 		err = 0;
507 	}
508 out:
509 	inode_unlock(inode);
510 
511 	return err;
512 }
513 
514 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
515 		    size_t count, int opcode)
516 {
517 	struct fuse_read_in *inarg = &req->misc.read.in;
518 	struct fuse_file *ff = file->private_data;
519 
520 	inarg->fh = ff->fh;
521 	inarg->offset = pos;
522 	inarg->size = count;
523 	inarg->flags = file->f_flags;
524 	req->in.h.opcode = opcode;
525 	req->in.h.nodeid = ff->nodeid;
526 	req->in.numargs = 1;
527 	req->in.args[0].size = sizeof(struct fuse_read_in);
528 	req->in.args[0].value = inarg;
529 	req->out.argvar = 1;
530 	req->out.numargs = 1;
531 	req->out.args[0].size = count;
532 }
533 
534 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty)
535 {
536 	unsigned i;
537 
538 	for (i = 0; i < req->num_pages; i++) {
539 		struct page *page = req->pages[i];
540 		if (should_dirty)
541 			set_page_dirty_lock(page);
542 		put_page(page);
543 	}
544 }
545 
546 static void fuse_io_release(struct kref *kref)
547 {
548 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
549 }
550 
551 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
552 {
553 	if (io->err)
554 		return io->err;
555 
556 	if (io->bytes >= 0 && io->write)
557 		return -EIO;
558 
559 	return io->bytes < 0 ? io->size : io->bytes;
560 }
561 
562 /**
563  * In case of short read, the caller sets 'pos' to the position of
564  * actual end of fuse request in IO request. Otherwise, if bytes_requested
565  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
566  *
567  * An example:
568  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
569  * both submitted asynchronously. The first of them was ACKed by userspace as
570  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
571  * second request was ACKed as short, e.g. only 1K was read, resulting in
572  * pos == 33K.
573  *
574  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
575  * will be equal to the length of the longest contiguous fragment of
576  * transferred data starting from the beginning of IO request.
577  */
578 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
579 {
580 	int left;
581 
582 	spin_lock(&io->lock);
583 	if (err)
584 		io->err = io->err ? : err;
585 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
586 		io->bytes = pos;
587 
588 	left = --io->reqs;
589 	if (!left && io->blocking)
590 		complete(io->done);
591 	spin_unlock(&io->lock);
592 
593 	if (!left && !io->blocking) {
594 		ssize_t res = fuse_get_res_by_io(io);
595 
596 		if (res >= 0) {
597 			struct inode *inode = file_inode(io->iocb->ki_filp);
598 			struct fuse_conn *fc = get_fuse_conn(inode);
599 			struct fuse_inode *fi = get_fuse_inode(inode);
600 
601 			spin_lock(&fc->lock);
602 			fi->attr_version = ++fc->attr_version;
603 			spin_unlock(&fc->lock);
604 		}
605 
606 		io->iocb->ki_complete(io->iocb, res, 0);
607 	}
608 
609 	kref_put(&io->refcnt, fuse_io_release);
610 }
611 
612 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
613 {
614 	struct fuse_io_priv *io = req->io;
615 	ssize_t pos = -1;
616 
617 	fuse_release_user_pages(req, io->should_dirty);
618 
619 	if (io->write) {
620 		if (req->misc.write.in.size != req->misc.write.out.size)
621 			pos = req->misc.write.in.offset - io->offset +
622 				req->misc.write.out.size;
623 	} else {
624 		if (req->misc.read.in.size != req->out.args[0].size)
625 			pos = req->misc.read.in.offset - io->offset +
626 				req->out.args[0].size;
627 	}
628 
629 	fuse_aio_complete(io, req->out.h.error, pos);
630 }
631 
632 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
633 		size_t num_bytes, struct fuse_io_priv *io)
634 {
635 	spin_lock(&io->lock);
636 	kref_get(&io->refcnt);
637 	io->size += num_bytes;
638 	io->reqs++;
639 	spin_unlock(&io->lock);
640 
641 	req->io = io;
642 	req->end = fuse_aio_complete_req;
643 
644 	__fuse_get_request(req);
645 	fuse_request_send_background(fc, req);
646 
647 	return num_bytes;
648 }
649 
650 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
651 			     loff_t pos, size_t count, fl_owner_t owner)
652 {
653 	struct file *file = io->iocb->ki_filp;
654 	struct fuse_file *ff = file->private_data;
655 	struct fuse_conn *fc = ff->fc;
656 
657 	fuse_read_fill(req, file, pos, count, FUSE_READ);
658 	if (owner != NULL) {
659 		struct fuse_read_in *inarg = &req->misc.read.in;
660 
661 		inarg->read_flags |= FUSE_READ_LOCKOWNER;
662 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
663 	}
664 
665 	if (io->async)
666 		return fuse_async_req_send(fc, req, count, io);
667 
668 	fuse_request_send(fc, req);
669 	return req->out.args[0].size;
670 }
671 
672 static void fuse_read_update_size(struct inode *inode, loff_t size,
673 				  u64 attr_ver)
674 {
675 	struct fuse_conn *fc = get_fuse_conn(inode);
676 	struct fuse_inode *fi = get_fuse_inode(inode);
677 
678 	spin_lock(&fc->lock);
679 	if (attr_ver == fi->attr_version && size < inode->i_size &&
680 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
681 		fi->attr_version = ++fc->attr_version;
682 		i_size_write(inode, size);
683 	}
684 	spin_unlock(&fc->lock);
685 }
686 
687 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
688 			    u64 attr_ver)
689 {
690 	size_t num_read = req->out.args[0].size;
691 	struct fuse_conn *fc = get_fuse_conn(inode);
692 
693 	if (fc->writeback_cache) {
694 		/*
695 		 * A hole in a file. Some data after the hole are in page cache,
696 		 * but have not reached the client fs yet. So, the hole is not
697 		 * present there.
698 		 */
699 		int i;
700 		int start_idx = num_read >> PAGE_SHIFT;
701 		size_t off = num_read & (PAGE_SIZE - 1);
702 
703 		for (i = start_idx; i < req->num_pages; i++) {
704 			zero_user_segment(req->pages[i], off, PAGE_SIZE);
705 			off = 0;
706 		}
707 	} else {
708 		loff_t pos = page_offset(req->pages[0]) + num_read;
709 		fuse_read_update_size(inode, pos, attr_ver);
710 	}
711 }
712 
713 static int fuse_do_readpage(struct file *file, struct page *page)
714 {
715 	struct kiocb iocb;
716 	struct fuse_io_priv io;
717 	struct inode *inode = page->mapping->host;
718 	struct fuse_conn *fc = get_fuse_conn(inode);
719 	struct fuse_req *req;
720 	size_t num_read;
721 	loff_t pos = page_offset(page);
722 	size_t count = PAGE_SIZE;
723 	u64 attr_ver;
724 	int err;
725 
726 	/*
727 	 * Page writeback can extend beyond the lifetime of the
728 	 * page-cache page, so make sure we read a properly synced
729 	 * page.
730 	 */
731 	fuse_wait_on_page_writeback(inode, page->index);
732 
733 	req = fuse_get_req(fc, 1);
734 	if (IS_ERR(req))
735 		return PTR_ERR(req);
736 
737 	attr_ver = fuse_get_attr_version(fc);
738 
739 	req->out.page_zeroing = 1;
740 	req->out.argpages = 1;
741 	req->num_pages = 1;
742 	req->pages[0] = page;
743 	req->page_descs[0].length = count;
744 	init_sync_kiocb(&iocb, file);
745 	io = (struct fuse_io_priv) FUSE_IO_PRIV_SYNC(&iocb);
746 	num_read = fuse_send_read(req, &io, pos, count, NULL);
747 	err = req->out.h.error;
748 
749 	if (!err) {
750 		/*
751 		 * Short read means EOF.  If file size is larger, truncate it
752 		 */
753 		if (num_read < count)
754 			fuse_short_read(req, inode, attr_ver);
755 
756 		SetPageUptodate(page);
757 	}
758 
759 	fuse_put_request(fc, req);
760 
761 	return err;
762 }
763 
764 static int fuse_readpage(struct file *file, struct page *page)
765 {
766 	struct inode *inode = page->mapping->host;
767 	int err;
768 
769 	err = -EIO;
770 	if (is_bad_inode(inode))
771 		goto out;
772 
773 	err = fuse_do_readpage(file, page);
774 	fuse_invalidate_atime(inode);
775  out:
776 	unlock_page(page);
777 	return err;
778 }
779 
780 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
781 {
782 	int i;
783 	size_t count = req->misc.read.in.size;
784 	size_t num_read = req->out.args[0].size;
785 	struct address_space *mapping = NULL;
786 
787 	for (i = 0; mapping == NULL && i < req->num_pages; i++)
788 		mapping = req->pages[i]->mapping;
789 
790 	if (mapping) {
791 		struct inode *inode = mapping->host;
792 
793 		/*
794 		 * Short read means EOF. If file size is larger, truncate it
795 		 */
796 		if (!req->out.h.error && num_read < count)
797 			fuse_short_read(req, inode, req->misc.read.attr_ver);
798 
799 		fuse_invalidate_atime(inode);
800 	}
801 
802 	for (i = 0; i < req->num_pages; i++) {
803 		struct page *page = req->pages[i];
804 		if (!req->out.h.error)
805 			SetPageUptodate(page);
806 		else
807 			SetPageError(page);
808 		unlock_page(page);
809 		put_page(page);
810 	}
811 	if (req->ff)
812 		fuse_file_put(req->ff, false, false);
813 }
814 
815 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
816 {
817 	struct fuse_file *ff = file->private_data;
818 	struct fuse_conn *fc = ff->fc;
819 	loff_t pos = page_offset(req->pages[0]);
820 	size_t count = req->num_pages << PAGE_SHIFT;
821 
822 	req->out.argpages = 1;
823 	req->out.page_zeroing = 1;
824 	req->out.page_replace = 1;
825 	fuse_read_fill(req, file, pos, count, FUSE_READ);
826 	req->misc.read.attr_ver = fuse_get_attr_version(fc);
827 	if (fc->async_read) {
828 		req->ff = fuse_file_get(ff);
829 		req->end = fuse_readpages_end;
830 		fuse_request_send_background(fc, req);
831 	} else {
832 		fuse_request_send(fc, req);
833 		fuse_readpages_end(fc, req);
834 		fuse_put_request(fc, req);
835 	}
836 }
837 
838 struct fuse_fill_data {
839 	struct fuse_req *req;
840 	struct file *file;
841 	struct inode *inode;
842 	unsigned nr_pages;
843 };
844 
845 static int fuse_readpages_fill(void *_data, struct page *page)
846 {
847 	struct fuse_fill_data *data = _data;
848 	struct fuse_req *req = data->req;
849 	struct inode *inode = data->inode;
850 	struct fuse_conn *fc = get_fuse_conn(inode);
851 
852 	fuse_wait_on_page_writeback(inode, page->index);
853 
854 	if (req->num_pages &&
855 	    (req->num_pages == fc->max_pages ||
856 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_read ||
857 	     req->pages[req->num_pages - 1]->index + 1 != page->index)) {
858 		unsigned int nr_alloc = min_t(unsigned int, data->nr_pages,
859 					      fc->max_pages);
860 		fuse_send_readpages(req, data->file);
861 		if (fc->async_read)
862 			req = fuse_get_req_for_background(fc, nr_alloc);
863 		else
864 			req = fuse_get_req(fc, nr_alloc);
865 
866 		data->req = req;
867 		if (IS_ERR(req)) {
868 			unlock_page(page);
869 			return PTR_ERR(req);
870 		}
871 	}
872 
873 	if (WARN_ON(req->num_pages >= req->max_pages)) {
874 		unlock_page(page);
875 		fuse_put_request(fc, req);
876 		return -EIO;
877 	}
878 
879 	get_page(page);
880 	req->pages[req->num_pages] = page;
881 	req->page_descs[req->num_pages].length = PAGE_SIZE;
882 	req->num_pages++;
883 	data->nr_pages--;
884 	return 0;
885 }
886 
887 static int fuse_readpages(struct file *file, struct address_space *mapping,
888 			  struct list_head *pages, unsigned nr_pages)
889 {
890 	struct inode *inode = mapping->host;
891 	struct fuse_conn *fc = get_fuse_conn(inode);
892 	struct fuse_fill_data data;
893 	int err;
894 	unsigned int nr_alloc = min_t(unsigned int, nr_pages, fc->max_pages);
895 
896 	err = -EIO;
897 	if (is_bad_inode(inode))
898 		goto out;
899 
900 	data.file = file;
901 	data.inode = inode;
902 	if (fc->async_read)
903 		data.req = fuse_get_req_for_background(fc, nr_alloc);
904 	else
905 		data.req = fuse_get_req(fc, nr_alloc);
906 	data.nr_pages = nr_pages;
907 	err = PTR_ERR(data.req);
908 	if (IS_ERR(data.req))
909 		goto out;
910 
911 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
912 	if (!err) {
913 		if (data.req->num_pages)
914 			fuse_send_readpages(data.req, file);
915 		else
916 			fuse_put_request(fc, data.req);
917 	}
918 out:
919 	return err;
920 }
921 
922 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
923 {
924 	struct inode *inode = iocb->ki_filp->f_mapping->host;
925 	struct fuse_conn *fc = get_fuse_conn(inode);
926 
927 	/*
928 	 * In auto invalidate mode, always update attributes on read.
929 	 * Otherwise, only update if we attempt to read past EOF (to ensure
930 	 * i_size is up to date).
931 	 */
932 	if (fc->auto_inval_data ||
933 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
934 		int err;
935 		err = fuse_update_attributes(inode, iocb->ki_filp);
936 		if (err)
937 			return err;
938 	}
939 
940 	return generic_file_read_iter(iocb, to);
941 }
942 
943 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
944 			    loff_t pos, size_t count)
945 {
946 	struct fuse_write_in *inarg = &req->misc.write.in;
947 	struct fuse_write_out *outarg = &req->misc.write.out;
948 
949 	inarg->fh = ff->fh;
950 	inarg->offset = pos;
951 	inarg->size = count;
952 	req->in.h.opcode = FUSE_WRITE;
953 	req->in.h.nodeid = ff->nodeid;
954 	req->in.numargs = 2;
955 	if (ff->fc->minor < 9)
956 		req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
957 	else
958 		req->in.args[0].size = sizeof(struct fuse_write_in);
959 	req->in.args[0].value = inarg;
960 	req->in.args[1].size = count;
961 	req->out.numargs = 1;
962 	req->out.args[0].size = sizeof(struct fuse_write_out);
963 	req->out.args[0].value = outarg;
964 }
965 
966 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
967 			      loff_t pos, size_t count, fl_owner_t owner)
968 {
969 	struct kiocb *iocb = io->iocb;
970 	struct file *file = iocb->ki_filp;
971 	struct fuse_file *ff = file->private_data;
972 	struct fuse_conn *fc = ff->fc;
973 	struct fuse_write_in *inarg = &req->misc.write.in;
974 
975 	fuse_write_fill(req, ff, pos, count);
976 	inarg->flags = file->f_flags;
977 	if (iocb->ki_flags & IOCB_DSYNC)
978 		inarg->flags |= O_DSYNC;
979 	if (iocb->ki_flags & IOCB_SYNC)
980 		inarg->flags |= O_SYNC;
981 	if (owner != NULL) {
982 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
983 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
984 	}
985 
986 	if (io->async)
987 		return fuse_async_req_send(fc, req, count, io);
988 
989 	fuse_request_send(fc, req);
990 	return req->misc.write.out.size;
991 }
992 
993 bool fuse_write_update_size(struct inode *inode, loff_t pos)
994 {
995 	struct fuse_conn *fc = get_fuse_conn(inode);
996 	struct fuse_inode *fi = get_fuse_inode(inode);
997 	bool ret = false;
998 
999 	spin_lock(&fc->lock);
1000 	fi->attr_version = ++fc->attr_version;
1001 	if (pos > inode->i_size) {
1002 		i_size_write(inode, pos);
1003 		ret = true;
1004 	}
1005 	spin_unlock(&fc->lock);
1006 
1007 	return ret;
1008 }
1009 
1010 static size_t fuse_send_write_pages(struct fuse_req *req, struct kiocb *iocb,
1011 				    struct inode *inode, loff_t pos,
1012 				    size_t count)
1013 {
1014 	size_t res;
1015 	unsigned offset;
1016 	unsigned i;
1017 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1018 
1019 	for (i = 0; i < req->num_pages; i++)
1020 		fuse_wait_on_page_writeback(inode, req->pages[i]->index);
1021 
1022 	res = fuse_send_write(req, &io, pos, count, NULL);
1023 
1024 	offset = req->page_descs[0].offset;
1025 	count = res;
1026 	for (i = 0; i < req->num_pages; i++) {
1027 		struct page *page = req->pages[i];
1028 
1029 		if (!req->out.h.error && !offset && count >= PAGE_SIZE)
1030 			SetPageUptodate(page);
1031 
1032 		if (count > PAGE_SIZE - offset)
1033 			count -= PAGE_SIZE - offset;
1034 		else
1035 			count = 0;
1036 		offset = 0;
1037 
1038 		unlock_page(page);
1039 		put_page(page);
1040 	}
1041 
1042 	return res;
1043 }
1044 
1045 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1046 			       struct address_space *mapping,
1047 			       struct iov_iter *ii, loff_t pos)
1048 {
1049 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1050 	unsigned offset = pos & (PAGE_SIZE - 1);
1051 	size_t count = 0;
1052 	int err;
1053 
1054 	req->in.argpages = 1;
1055 	req->page_descs[0].offset = offset;
1056 
1057 	do {
1058 		size_t tmp;
1059 		struct page *page;
1060 		pgoff_t index = pos >> PAGE_SHIFT;
1061 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1062 				     iov_iter_count(ii));
1063 
1064 		bytes = min_t(size_t, bytes, fc->max_write - count);
1065 
1066  again:
1067 		err = -EFAULT;
1068 		if (iov_iter_fault_in_readable(ii, bytes))
1069 			break;
1070 
1071 		err = -ENOMEM;
1072 		page = grab_cache_page_write_begin(mapping, index, 0);
1073 		if (!page)
1074 			break;
1075 
1076 		if (mapping_writably_mapped(mapping))
1077 			flush_dcache_page(page);
1078 
1079 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1080 		flush_dcache_page(page);
1081 
1082 		iov_iter_advance(ii, tmp);
1083 		if (!tmp) {
1084 			unlock_page(page);
1085 			put_page(page);
1086 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1087 			goto again;
1088 		}
1089 
1090 		err = 0;
1091 		req->pages[req->num_pages] = page;
1092 		req->page_descs[req->num_pages].length = tmp;
1093 		req->num_pages++;
1094 
1095 		count += tmp;
1096 		pos += tmp;
1097 		offset += tmp;
1098 		if (offset == PAGE_SIZE)
1099 			offset = 0;
1100 
1101 		if (!fc->big_writes)
1102 			break;
1103 	} while (iov_iter_count(ii) && count < fc->max_write &&
1104 		 req->num_pages < req->max_pages && offset == 0);
1105 
1106 	return count > 0 ? count : err;
1107 }
1108 
1109 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1110 				     unsigned int max_pages)
1111 {
1112 	return min_t(unsigned int,
1113 		     ((pos + len - 1) >> PAGE_SHIFT) -
1114 		     (pos >> PAGE_SHIFT) + 1,
1115 		     max_pages);
1116 }
1117 
1118 static ssize_t fuse_perform_write(struct kiocb *iocb,
1119 				  struct address_space *mapping,
1120 				  struct iov_iter *ii, loff_t pos)
1121 {
1122 	struct inode *inode = mapping->host;
1123 	struct fuse_conn *fc = get_fuse_conn(inode);
1124 	struct fuse_inode *fi = get_fuse_inode(inode);
1125 	int err = 0;
1126 	ssize_t res = 0;
1127 
1128 	if (is_bad_inode(inode))
1129 		return -EIO;
1130 
1131 	if (inode->i_size < pos + iov_iter_count(ii))
1132 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1133 
1134 	do {
1135 		struct fuse_req *req;
1136 		ssize_t count;
1137 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1138 						      fc->max_pages);
1139 
1140 		req = fuse_get_req(fc, nr_pages);
1141 		if (IS_ERR(req)) {
1142 			err = PTR_ERR(req);
1143 			break;
1144 		}
1145 
1146 		count = fuse_fill_write_pages(req, mapping, ii, pos);
1147 		if (count <= 0) {
1148 			err = count;
1149 		} else {
1150 			size_t num_written;
1151 
1152 			num_written = fuse_send_write_pages(req, iocb, inode,
1153 							    pos, count);
1154 			err = req->out.h.error;
1155 			if (!err) {
1156 				res += num_written;
1157 				pos += num_written;
1158 
1159 				/* break out of the loop on short write */
1160 				if (num_written != count)
1161 					err = -EIO;
1162 			}
1163 		}
1164 		fuse_put_request(fc, req);
1165 	} while (!err && iov_iter_count(ii));
1166 
1167 	if (res > 0)
1168 		fuse_write_update_size(inode, pos);
1169 
1170 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1171 	fuse_invalidate_attr(inode);
1172 
1173 	return res > 0 ? res : err;
1174 }
1175 
1176 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1177 {
1178 	struct file *file = iocb->ki_filp;
1179 	struct address_space *mapping = file->f_mapping;
1180 	ssize_t written = 0;
1181 	ssize_t written_buffered = 0;
1182 	struct inode *inode = mapping->host;
1183 	ssize_t err;
1184 	loff_t endbyte = 0;
1185 
1186 	if (get_fuse_conn(inode)->writeback_cache) {
1187 		/* Update size (EOF optimization) and mode (SUID clearing) */
1188 		err = fuse_update_attributes(mapping->host, file);
1189 		if (err)
1190 			return err;
1191 
1192 		return generic_file_write_iter(iocb, from);
1193 	}
1194 
1195 	inode_lock(inode);
1196 
1197 	/* We can write back this queue in page reclaim */
1198 	current->backing_dev_info = inode_to_bdi(inode);
1199 
1200 	err = generic_write_checks(iocb, from);
1201 	if (err <= 0)
1202 		goto out;
1203 
1204 	err = file_remove_privs(file);
1205 	if (err)
1206 		goto out;
1207 
1208 	err = file_update_time(file);
1209 	if (err)
1210 		goto out;
1211 
1212 	if (iocb->ki_flags & IOCB_DIRECT) {
1213 		loff_t pos = iocb->ki_pos;
1214 		written = generic_file_direct_write(iocb, from);
1215 		if (written < 0 || !iov_iter_count(from))
1216 			goto out;
1217 
1218 		pos += written;
1219 
1220 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1221 		if (written_buffered < 0) {
1222 			err = written_buffered;
1223 			goto out;
1224 		}
1225 		endbyte = pos + written_buffered - 1;
1226 
1227 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1228 						   endbyte);
1229 		if (err)
1230 			goto out;
1231 
1232 		invalidate_mapping_pages(file->f_mapping,
1233 					 pos >> PAGE_SHIFT,
1234 					 endbyte >> PAGE_SHIFT);
1235 
1236 		written += written_buffered;
1237 		iocb->ki_pos = pos + written_buffered;
1238 	} else {
1239 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1240 		if (written >= 0)
1241 			iocb->ki_pos += written;
1242 	}
1243 out:
1244 	current->backing_dev_info = NULL;
1245 	inode_unlock(inode);
1246 	if (written > 0)
1247 		written = generic_write_sync(iocb, written);
1248 
1249 	return written ? written : err;
1250 }
1251 
1252 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1253 		unsigned index, unsigned nr_pages)
1254 {
1255 	int i;
1256 
1257 	for (i = index; i < index + nr_pages; i++)
1258 		req->page_descs[i].length = PAGE_SIZE -
1259 			req->page_descs[i].offset;
1260 }
1261 
1262 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1263 {
1264 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1265 }
1266 
1267 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1268 					size_t max_size)
1269 {
1270 	return min(iov_iter_single_seg_count(ii), max_size);
1271 }
1272 
1273 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1274 			       size_t *nbytesp, int write)
1275 {
1276 	size_t nbytes = 0;  /* # bytes already packed in req */
1277 	ssize_t ret = 0;
1278 
1279 	/* Special case for kernel I/O: can copy directly into the buffer */
1280 	if (iov_iter_is_kvec(ii)) {
1281 		unsigned long user_addr = fuse_get_user_addr(ii);
1282 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1283 
1284 		if (write)
1285 			req->in.args[1].value = (void *) user_addr;
1286 		else
1287 			req->out.args[0].value = (void *) user_addr;
1288 
1289 		iov_iter_advance(ii, frag_size);
1290 		*nbytesp = frag_size;
1291 		return 0;
1292 	}
1293 
1294 	while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1295 		unsigned npages;
1296 		size_t start;
1297 		ret = iov_iter_get_pages(ii, &req->pages[req->num_pages],
1298 					*nbytesp - nbytes,
1299 					req->max_pages - req->num_pages,
1300 					&start);
1301 		if (ret < 0)
1302 			break;
1303 
1304 		iov_iter_advance(ii, ret);
1305 		nbytes += ret;
1306 
1307 		ret += start;
1308 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1309 
1310 		req->page_descs[req->num_pages].offset = start;
1311 		fuse_page_descs_length_init(req, req->num_pages, npages);
1312 
1313 		req->num_pages += npages;
1314 		req->page_descs[req->num_pages - 1].length -=
1315 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1316 	}
1317 
1318 	if (write)
1319 		req->in.argpages = 1;
1320 	else
1321 		req->out.argpages = 1;
1322 
1323 	*nbytesp = nbytes;
1324 
1325 	return ret < 0 ? ret : 0;
1326 }
1327 
1328 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1329 		       loff_t *ppos, int flags)
1330 {
1331 	int write = flags & FUSE_DIO_WRITE;
1332 	int cuse = flags & FUSE_DIO_CUSE;
1333 	struct file *file = io->iocb->ki_filp;
1334 	struct inode *inode = file->f_mapping->host;
1335 	struct fuse_file *ff = file->private_data;
1336 	struct fuse_conn *fc = ff->fc;
1337 	size_t nmax = write ? fc->max_write : fc->max_read;
1338 	loff_t pos = *ppos;
1339 	size_t count = iov_iter_count(iter);
1340 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1341 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1342 	ssize_t res = 0;
1343 	struct fuse_req *req;
1344 	int err = 0;
1345 
1346 	if (io->async)
1347 		req = fuse_get_req_for_background(fc, iov_iter_npages(iter,
1348 								fc->max_pages));
1349 	else
1350 		req = fuse_get_req(fc, iov_iter_npages(iter, fc->max_pages));
1351 	if (IS_ERR(req))
1352 		return PTR_ERR(req);
1353 
1354 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1355 		if (!write)
1356 			inode_lock(inode);
1357 		fuse_sync_writes(inode);
1358 		if (!write)
1359 			inode_unlock(inode);
1360 	}
1361 
1362 	io->should_dirty = !write && iter_is_iovec(iter);
1363 	while (count) {
1364 		size_t nres;
1365 		fl_owner_t owner = current->files;
1366 		size_t nbytes = min(count, nmax);
1367 		err = fuse_get_user_pages(req, iter, &nbytes, write);
1368 		if (err && !nbytes)
1369 			break;
1370 
1371 		if (write)
1372 			nres = fuse_send_write(req, io, pos, nbytes, owner);
1373 		else
1374 			nres = fuse_send_read(req, io, pos, nbytes, owner);
1375 
1376 		if (!io->async)
1377 			fuse_release_user_pages(req, io->should_dirty);
1378 		if (req->out.h.error) {
1379 			err = req->out.h.error;
1380 			break;
1381 		} else if (nres > nbytes) {
1382 			res = 0;
1383 			err = -EIO;
1384 			break;
1385 		}
1386 		count -= nres;
1387 		res += nres;
1388 		pos += nres;
1389 		if (nres != nbytes)
1390 			break;
1391 		if (count) {
1392 			fuse_put_request(fc, req);
1393 			if (io->async)
1394 				req = fuse_get_req_for_background(fc,
1395 					iov_iter_npages(iter, fc->max_pages));
1396 			else
1397 				req = fuse_get_req(fc, iov_iter_npages(iter,
1398 								fc->max_pages));
1399 			if (IS_ERR(req))
1400 				break;
1401 		}
1402 	}
1403 	if (!IS_ERR(req))
1404 		fuse_put_request(fc, req);
1405 	if (res > 0)
1406 		*ppos = pos;
1407 
1408 	return res > 0 ? res : err;
1409 }
1410 EXPORT_SYMBOL_GPL(fuse_direct_io);
1411 
1412 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1413 				  struct iov_iter *iter,
1414 				  loff_t *ppos)
1415 {
1416 	ssize_t res;
1417 	struct inode *inode = file_inode(io->iocb->ki_filp);
1418 
1419 	if (is_bad_inode(inode))
1420 		return -EIO;
1421 
1422 	res = fuse_direct_io(io, iter, ppos, 0);
1423 
1424 	fuse_invalidate_atime(inode);
1425 
1426 	return res;
1427 }
1428 
1429 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1430 {
1431 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1432 	return __fuse_direct_read(&io, to, &iocb->ki_pos);
1433 }
1434 
1435 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1436 {
1437 	struct inode *inode = file_inode(iocb->ki_filp);
1438 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1439 	ssize_t res;
1440 
1441 	if (is_bad_inode(inode))
1442 		return -EIO;
1443 
1444 	/* Don't allow parallel writes to the same file */
1445 	inode_lock(inode);
1446 	res = generic_write_checks(iocb, from);
1447 	if (res > 0)
1448 		res = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE);
1449 	fuse_invalidate_attr(inode);
1450 	if (res > 0)
1451 		fuse_write_update_size(inode, iocb->ki_pos);
1452 	inode_unlock(inode);
1453 
1454 	return res;
1455 }
1456 
1457 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1458 {
1459 	int i;
1460 
1461 	for (i = 0; i < req->num_pages; i++)
1462 		__free_page(req->pages[i]);
1463 
1464 	if (req->ff)
1465 		fuse_file_put(req->ff, false, false);
1466 }
1467 
1468 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1469 {
1470 	struct inode *inode = req->inode;
1471 	struct fuse_inode *fi = get_fuse_inode(inode);
1472 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1473 	int i;
1474 
1475 	list_del(&req->writepages_entry);
1476 	for (i = 0; i < req->num_pages; i++) {
1477 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1478 		dec_node_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1479 		wb_writeout_inc(&bdi->wb);
1480 	}
1481 	wake_up(&fi->page_waitq);
1482 }
1483 
1484 /* Called under fc->lock, may release and reacquire it */
1485 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1486 				loff_t size)
1487 __releases(fc->lock)
1488 __acquires(fc->lock)
1489 {
1490 	struct fuse_inode *fi = get_fuse_inode(req->inode);
1491 	struct fuse_write_in *inarg = &req->misc.write.in;
1492 	__u64 data_size = req->num_pages * PAGE_SIZE;
1493 	bool queued;
1494 
1495 	if (!fc->connected)
1496 		goto out_free;
1497 
1498 	if (inarg->offset + data_size <= size) {
1499 		inarg->size = data_size;
1500 	} else if (inarg->offset < size) {
1501 		inarg->size = size - inarg->offset;
1502 	} else {
1503 		/* Got truncated off completely */
1504 		goto out_free;
1505 	}
1506 
1507 	req->in.args[1].size = inarg->size;
1508 	fi->writectr++;
1509 	queued = fuse_request_queue_background(fc, req);
1510 	WARN_ON(!queued);
1511 	return;
1512 
1513  out_free:
1514 	fuse_writepage_finish(fc, req);
1515 	spin_unlock(&fc->lock);
1516 	fuse_writepage_free(fc, req);
1517 	fuse_put_request(fc, req);
1518 	spin_lock(&fc->lock);
1519 }
1520 
1521 /*
1522  * If fi->writectr is positive (no truncate or fsync going on) send
1523  * all queued writepage requests.
1524  *
1525  * Called with fc->lock
1526  */
1527 void fuse_flush_writepages(struct inode *inode)
1528 __releases(fc->lock)
1529 __acquires(fc->lock)
1530 {
1531 	struct fuse_conn *fc = get_fuse_conn(inode);
1532 	struct fuse_inode *fi = get_fuse_inode(inode);
1533 	size_t crop = i_size_read(inode);
1534 	struct fuse_req *req;
1535 
1536 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1537 		req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1538 		list_del_init(&req->list);
1539 		fuse_send_writepage(fc, req, crop);
1540 	}
1541 }
1542 
1543 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1544 {
1545 	struct inode *inode = req->inode;
1546 	struct fuse_inode *fi = get_fuse_inode(inode);
1547 
1548 	mapping_set_error(inode->i_mapping, req->out.h.error);
1549 	spin_lock(&fc->lock);
1550 	while (req->misc.write.next) {
1551 		struct fuse_conn *fc = get_fuse_conn(inode);
1552 		struct fuse_write_in *inarg = &req->misc.write.in;
1553 		struct fuse_req *next = req->misc.write.next;
1554 		req->misc.write.next = next->misc.write.next;
1555 		next->misc.write.next = NULL;
1556 		next->ff = fuse_file_get(req->ff);
1557 		list_add(&next->writepages_entry, &fi->writepages);
1558 
1559 		/*
1560 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1561 		 * based on primary request size.
1562 		 *
1563 		 * 1st case (trivial): there are no concurrent activities using
1564 		 * fuse_set/release_nowrite.  Then we're on safe side because
1565 		 * fuse_flush_writepages() would call fuse_send_writepage()
1566 		 * anyway.
1567 		 *
1568 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1569 		 * now for completion of all in-flight requests.  This happens
1570 		 * rarely and no more than once per page, so this should be
1571 		 * okay.
1572 		 *
1573 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1574 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1575 		 * that fuse_set_nowrite returned implies that all in-flight
1576 		 * requests were completed along with all of their secondary
1577 		 * requests.  Further primary requests are blocked by negative
1578 		 * writectr.  Hence there cannot be any in-flight requests and
1579 		 * no invocations of fuse_writepage_end() while we're in
1580 		 * fuse_set_nowrite..fuse_release_nowrite section.
1581 		 */
1582 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1583 	}
1584 	fi->writectr--;
1585 	fuse_writepage_finish(fc, req);
1586 	spin_unlock(&fc->lock);
1587 	fuse_writepage_free(fc, req);
1588 }
1589 
1590 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1591 					       struct fuse_inode *fi)
1592 {
1593 	struct fuse_file *ff = NULL;
1594 
1595 	spin_lock(&fc->lock);
1596 	if (!list_empty(&fi->write_files)) {
1597 		ff = list_entry(fi->write_files.next, struct fuse_file,
1598 				write_entry);
1599 		fuse_file_get(ff);
1600 	}
1601 	spin_unlock(&fc->lock);
1602 
1603 	return ff;
1604 }
1605 
1606 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1607 					     struct fuse_inode *fi)
1608 {
1609 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1610 	WARN_ON(!ff);
1611 	return ff;
1612 }
1613 
1614 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1615 {
1616 	struct fuse_conn *fc = get_fuse_conn(inode);
1617 	struct fuse_inode *fi = get_fuse_inode(inode);
1618 	struct fuse_file *ff;
1619 	int err;
1620 
1621 	ff = __fuse_write_file_get(fc, fi);
1622 	err = fuse_flush_times(inode, ff);
1623 	if (ff)
1624 		fuse_file_put(ff, false, false);
1625 
1626 	return err;
1627 }
1628 
1629 static int fuse_writepage_locked(struct page *page)
1630 {
1631 	struct address_space *mapping = page->mapping;
1632 	struct inode *inode = mapping->host;
1633 	struct fuse_conn *fc = get_fuse_conn(inode);
1634 	struct fuse_inode *fi = get_fuse_inode(inode);
1635 	struct fuse_req *req;
1636 	struct page *tmp_page;
1637 	int error = -ENOMEM;
1638 
1639 	set_page_writeback(page);
1640 
1641 	req = fuse_request_alloc_nofs(1);
1642 	if (!req)
1643 		goto err;
1644 
1645 	/* writeback always goes to bg_queue */
1646 	__set_bit(FR_BACKGROUND, &req->flags);
1647 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1648 	if (!tmp_page)
1649 		goto err_free;
1650 
1651 	error = -EIO;
1652 	req->ff = fuse_write_file_get(fc, fi);
1653 	if (!req->ff)
1654 		goto err_nofile;
1655 
1656 	fuse_write_fill(req, req->ff, page_offset(page), 0);
1657 
1658 	copy_highpage(tmp_page, page);
1659 	req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1660 	req->misc.write.next = NULL;
1661 	req->in.argpages = 1;
1662 	req->num_pages = 1;
1663 	req->pages[0] = tmp_page;
1664 	req->page_descs[0].offset = 0;
1665 	req->page_descs[0].length = PAGE_SIZE;
1666 	req->end = fuse_writepage_end;
1667 	req->inode = inode;
1668 
1669 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1670 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1671 
1672 	spin_lock(&fc->lock);
1673 	list_add(&req->writepages_entry, &fi->writepages);
1674 	list_add_tail(&req->list, &fi->queued_writes);
1675 	fuse_flush_writepages(inode);
1676 	spin_unlock(&fc->lock);
1677 
1678 	end_page_writeback(page);
1679 
1680 	return 0;
1681 
1682 err_nofile:
1683 	__free_page(tmp_page);
1684 err_free:
1685 	fuse_request_free(req);
1686 err:
1687 	mapping_set_error(page->mapping, error);
1688 	end_page_writeback(page);
1689 	return error;
1690 }
1691 
1692 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1693 {
1694 	int err;
1695 
1696 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1697 		/*
1698 		 * ->writepages() should be called for sync() and friends.  We
1699 		 * should only get here on direct reclaim and then we are
1700 		 * allowed to skip a page which is already in flight
1701 		 */
1702 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1703 
1704 		redirty_page_for_writepage(wbc, page);
1705 		return 0;
1706 	}
1707 
1708 	err = fuse_writepage_locked(page);
1709 	unlock_page(page);
1710 
1711 	return err;
1712 }
1713 
1714 struct fuse_fill_wb_data {
1715 	struct fuse_req *req;
1716 	struct fuse_file *ff;
1717 	struct inode *inode;
1718 	struct page **orig_pages;
1719 };
1720 
1721 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1722 {
1723 	struct fuse_req *req = data->req;
1724 	struct inode *inode = data->inode;
1725 	struct fuse_conn *fc = get_fuse_conn(inode);
1726 	struct fuse_inode *fi = get_fuse_inode(inode);
1727 	int num_pages = req->num_pages;
1728 	int i;
1729 
1730 	req->ff = fuse_file_get(data->ff);
1731 	spin_lock(&fc->lock);
1732 	list_add_tail(&req->list, &fi->queued_writes);
1733 	fuse_flush_writepages(inode);
1734 	spin_unlock(&fc->lock);
1735 
1736 	for (i = 0; i < num_pages; i++)
1737 		end_page_writeback(data->orig_pages[i]);
1738 }
1739 
1740 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1741 				     struct page *page)
1742 {
1743 	struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1744 	struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1745 	struct fuse_req *tmp;
1746 	struct fuse_req *old_req;
1747 	bool found = false;
1748 	pgoff_t curr_index;
1749 
1750 	BUG_ON(new_req->num_pages != 0);
1751 
1752 	spin_lock(&fc->lock);
1753 	list_del(&new_req->writepages_entry);
1754 	list_for_each_entry(old_req, &fi->writepages, writepages_entry) {
1755 		BUG_ON(old_req->inode != new_req->inode);
1756 		curr_index = old_req->misc.write.in.offset >> PAGE_SHIFT;
1757 		if (curr_index <= page->index &&
1758 		    page->index < curr_index + old_req->num_pages) {
1759 			found = true;
1760 			break;
1761 		}
1762 	}
1763 	if (!found) {
1764 		list_add(&new_req->writepages_entry, &fi->writepages);
1765 		goto out_unlock;
1766 	}
1767 
1768 	new_req->num_pages = 1;
1769 	for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) {
1770 		BUG_ON(tmp->inode != new_req->inode);
1771 		curr_index = tmp->misc.write.in.offset >> PAGE_SHIFT;
1772 		if (tmp->num_pages == 1 &&
1773 		    curr_index == page->index) {
1774 			old_req = tmp;
1775 		}
1776 	}
1777 
1778 	if (old_req->num_pages == 1 && test_bit(FR_PENDING, &old_req->flags)) {
1779 		struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host);
1780 
1781 		copy_highpage(old_req->pages[0], page);
1782 		spin_unlock(&fc->lock);
1783 
1784 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1785 		dec_node_page_state(page, NR_WRITEBACK_TEMP);
1786 		wb_writeout_inc(&bdi->wb);
1787 		fuse_writepage_free(fc, new_req);
1788 		fuse_request_free(new_req);
1789 		goto out;
1790 	} else {
1791 		new_req->misc.write.next = old_req->misc.write.next;
1792 		old_req->misc.write.next = new_req;
1793 	}
1794 out_unlock:
1795 	spin_unlock(&fc->lock);
1796 out:
1797 	return found;
1798 }
1799 
1800 static int fuse_writepages_fill(struct page *page,
1801 		struct writeback_control *wbc, void *_data)
1802 {
1803 	struct fuse_fill_wb_data *data = _data;
1804 	struct fuse_req *req = data->req;
1805 	struct inode *inode = data->inode;
1806 	struct fuse_conn *fc = get_fuse_conn(inode);
1807 	struct page *tmp_page;
1808 	bool is_writeback;
1809 	int err;
1810 
1811 	if (!data->ff) {
1812 		err = -EIO;
1813 		data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1814 		if (!data->ff)
1815 			goto out_unlock;
1816 	}
1817 
1818 	/*
1819 	 * Being under writeback is unlikely but possible.  For example direct
1820 	 * read to an mmaped fuse file will set the page dirty twice; once when
1821 	 * the pages are faulted with get_user_pages(), and then after the read
1822 	 * completed.
1823 	 */
1824 	is_writeback = fuse_page_is_writeback(inode, page->index);
1825 
1826 	if (req && req->num_pages &&
1827 	    (is_writeback || req->num_pages == fc->max_pages ||
1828 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_write ||
1829 	     data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1830 		fuse_writepages_send(data);
1831 		data->req = NULL;
1832 	} else if (req && req->num_pages == req->max_pages) {
1833 		if (!fuse_req_realloc_pages(fc, req, GFP_NOFS)) {
1834 			fuse_writepages_send(data);
1835 			req = data->req = NULL;
1836 		}
1837 	}
1838 
1839 	err = -ENOMEM;
1840 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1841 	if (!tmp_page)
1842 		goto out_unlock;
1843 
1844 	/*
1845 	 * The page must not be redirtied until the writeout is completed
1846 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
1847 	 * there could be more than one temporary page instance for each real
1848 	 * page.
1849 	 *
1850 	 * This is ensured by holding the page lock in page_mkwrite() while
1851 	 * checking fuse_page_is_writeback().  We already hold the page lock
1852 	 * since clear_page_dirty_for_io() and keep it held until we add the
1853 	 * request to the fi->writepages list and increment req->num_pages.
1854 	 * After this fuse_page_is_writeback() will indicate that the page is
1855 	 * under writeback, so we can release the page lock.
1856 	 */
1857 	if (data->req == NULL) {
1858 		struct fuse_inode *fi = get_fuse_inode(inode);
1859 
1860 		err = -ENOMEM;
1861 		req = fuse_request_alloc_nofs(FUSE_REQ_INLINE_PAGES);
1862 		if (!req) {
1863 			__free_page(tmp_page);
1864 			goto out_unlock;
1865 		}
1866 
1867 		fuse_write_fill(req, data->ff, page_offset(page), 0);
1868 		req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1869 		req->misc.write.next = NULL;
1870 		req->in.argpages = 1;
1871 		__set_bit(FR_BACKGROUND, &req->flags);
1872 		req->num_pages = 0;
1873 		req->end = fuse_writepage_end;
1874 		req->inode = inode;
1875 
1876 		spin_lock(&fc->lock);
1877 		list_add(&req->writepages_entry, &fi->writepages);
1878 		spin_unlock(&fc->lock);
1879 
1880 		data->req = req;
1881 	}
1882 	set_page_writeback(page);
1883 
1884 	copy_highpage(tmp_page, page);
1885 	req->pages[req->num_pages] = tmp_page;
1886 	req->page_descs[req->num_pages].offset = 0;
1887 	req->page_descs[req->num_pages].length = PAGE_SIZE;
1888 
1889 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1890 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1891 
1892 	err = 0;
1893 	if (is_writeback && fuse_writepage_in_flight(req, page)) {
1894 		end_page_writeback(page);
1895 		data->req = NULL;
1896 		goto out_unlock;
1897 	}
1898 	data->orig_pages[req->num_pages] = page;
1899 
1900 	/*
1901 	 * Protected by fc->lock against concurrent access by
1902 	 * fuse_page_is_writeback().
1903 	 */
1904 	spin_lock(&fc->lock);
1905 	req->num_pages++;
1906 	spin_unlock(&fc->lock);
1907 
1908 out_unlock:
1909 	unlock_page(page);
1910 
1911 	return err;
1912 }
1913 
1914 static int fuse_writepages(struct address_space *mapping,
1915 			   struct writeback_control *wbc)
1916 {
1917 	struct inode *inode = mapping->host;
1918 	struct fuse_conn *fc = get_fuse_conn(inode);
1919 	struct fuse_fill_wb_data data;
1920 	int err;
1921 
1922 	err = -EIO;
1923 	if (is_bad_inode(inode))
1924 		goto out;
1925 
1926 	data.inode = inode;
1927 	data.req = NULL;
1928 	data.ff = NULL;
1929 
1930 	err = -ENOMEM;
1931 	data.orig_pages = kcalloc(fc->max_pages,
1932 				  sizeof(struct page *),
1933 				  GFP_NOFS);
1934 	if (!data.orig_pages)
1935 		goto out;
1936 
1937 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1938 	if (data.req) {
1939 		/* Ignore errors if we can write at least one page */
1940 		BUG_ON(!data.req->num_pages);
1941 		fuse_writepages_send(&data);
1942 		err = 0;
1943 	}
1944 	if (data.ff)
1945 		fuse_file_put(data.ff, false, false);
1946 
1947 	kfree(data.orig_pages);
1948 out:
1949 	return err;
1950 }
1951 
1952 /*
1953  * It's worthy to make sure that space is reserved on disk for the write,
1954  * but how to implement it without killing performance need more thinking.
1955  */
1956 static int fuse_write_begin(struct file *file, struct address_space *mapping,
1957 		loff_t pos, unsigned len, unsigned flags,
1958 		struct page **pagep, void **fsdata)
1959 {
1960 	pgoff_t index = pos >> PAGE_SHIFT;
1961 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
1962 	struct page *page;
1963 	loff_t fsize;
1964 	int err = -ENOMEM;
1965 
1966 	WARN_ON(!fc->writeback_cache);
1967 
1968 	page = grab_cache_page_write_begin(mapping, index, flags);
1969 	if (!page)
1970 		goto error;
1971 
1972 	fuse_wait_on_page_writeback(mapping->host, page->index);
1973 
1974 	if (PageUptodate(page) || len == PAGE_SIZE)
1975 		goto success;
1976 	/*
1977 	 * Check if the start this page comes after the end of file, in which
1978 	 * case the readpage can be optimized away.
1979 	 */
1980 	fsize = i_size_read(mapping->host);
1981 	if (fsize <= (pos & PAGE_MASK)) {
1982 		size_t off = pos & ~PAGE_MASK;
1983 		if (off)
1984 			zero_user_segment(page, 0, off);
1985 		goto success;
1986 	}
1987 	err = fuse_do_readpage(file, page);
1988 	if (err)
1989 		goto cleanup;
1990 success:
1991 	*pagep = page;
1992 	return 0;
1993 
1994 cleanup:
1995 	unlock_page(page);
1996 	put_page(page);
1997 error:
1998 	return err;
1999 }
2000 
2001 static int fuse_write_end(struct file *file, struct address_space *mapping,
2002 		loff_t pos, unsigned len, unsigned copied,
2003 		struct page *page, void *fsdata)
2004 {
2005 	struct inode *inode = page->mapping->host;
2006 
2007 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2008 	if (!copied)
2009 		goto unlock;
2010 
2011 	if (!PageUptodate(page)) {
2012 		/* Zero any unwritten bytes at the end of the page */
2013 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2014 		if (endoff)
2015 			zero_user_segment(page, endoff, PAGE_SIZE);
2016 		SetPageUptodate(page);
2017 	}
2018 
2019 	fuse_write_update_size(inode, pos + copied);
2020 	set_page_dirty(page);
2021 
2022 unlock:
2023 	unlock_page(page);
2024 	put_page(page);
2025 
2026 	return copied;
2027 }
2028 
2029 static int fuse_launder_page(struct page *page)
2030 {
2031 	int err = 0;
2032 	if (clear_page_dirty_for_io(page)) {
2033 		struct inode *inode = page->mapping->host;
2034 		err = fuse_writepage_locked(page);
2035 		if (!err)
2036 			fuse_wait_on_page_writeback(inode, page->index);
2037 	}
2038 	return err;
2039 }
2040 
2041 /*
2042  * Write back dirty pages now, because there may not be any suitable
2043  * open files later
2044  */
2045 static void fuse_vma_close(struct vm_area_struct *vma)
2046 {
2047 	filemap_write_and_wait(vma->vm_file->f_mapping);
2048 }
2049 
2050 /*
2051  * Wait for writeback against this page to complete before allowing it
2052  * to be marked dirty again, and hence written back again, possibly
2053  * before the previous writepage completed.
2054  *
2055  * Block here, instead of in ->writepage(), so that the userspace fs
2056  * can only block processes actually operating on the filesystem.
2057  *
2058  * Otherwise unprivileged userspace fs would be able to block
2059  * unrelated:
2060  *
2061  * - page migration
2062  * - sync(2)
2063  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2064  */
2065 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2066 {
2067 	struct page *page = vmf->page;
2068 	struct inode *inode = file_inode(vmf->vma->vm_file);
2069 
2070 	file_update_time(vmf->vma->vm_file);
2071 	lock_page(page);
2072 	if (page->mapping != inode->i_mapping) {
2073 		unlock_page(page);
2074 		return VM_FAULT_NOPAGE;
2075 	}
2076 
2077 	fuse_wait_on_page_writeback(inode, page->index);
2078 	return VM_FAULT_LOCKED;
2079 }
2080 
2081 static const struct vm_operations_struct fuse_file_vm_ops = {
2082 	.close		= fuse_vma_close,
2083 	.fault		= filemap_fault,
2084 	.map_pages	= filemap_map_pages,
2085 	.page_mkwrite	= fuse_page_mkwrite,
2086 };
2087 
2088 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2089 {
2090 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2091 		fuse_link_write_file(file);
2092 
2093 	file_accessed(file);
2094 	vma->vm_ops = &fuse_file_vm_ops;
2095 	return 0;
2096 }
2097 
2098 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
2099 {
2100 	/* Can't provide the coherency needed for MAP_SHARED */
2101 	if (vma->vm_flags & VM_MAYSHARE)
2102 		return -ENODEV;
2103 
2104 	invalidate_inode_pages2(file->f_mapping);
2105 
2106 	return generic_file_mmap(file, vma);
2107 }
2108 
2109 static int convert_fuse_file_lock(struct fuse_conn *fc,
2110 				  const struct fuse_file_lock *ffl,
2111 				  struct file_lock *fl)
2112 {
2113 	switch (ffl->type) {
2114 	case F_UNLCK:
2115 		break;
2116 
2117 	case F_RDLCK:
2118 	case F_WRLCK:
2119 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2120 		    ffl->end < ffl->start)
2121 			return -EIO;
2122 
2123 		fl->fl_start = ffl->start;
2124 		fl->fl_end = ffl->end;
2125 
2126 		/*
2127 		 * Convert pid into init's pid namespace.  The locks API will
2128 		 * translate it into the caller's pid namespace.
2129 		 */
2130 		rcu_read_lock();
2131 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2132 		rcu_read_unlock();
2133 		break;
2134 
2135 	default:
2136 		return -EIO;
2137 	}
2138 	fl->fl_type = ffl->type;
2139 	return 0;
2140 }
2141 
2142 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2143 			 const struct file_lock *fl, int opcode, pid_t pid,
2144 			 int flock, struct fuse_lk_in *inarg)
2145 {
2146 	struct inode *inode = file_inode(file);
2147 	struct fuse_conn *fc = get_fuse_conn(inode);
2148 	struct fuse_file *ff = file->private_data;
2149 
2150 	memset(inarg, 0, sizeof(*inarg));
2151 	inarg->fh = ff->fh;
2152 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2153 	inarg->lk.start = fl->fl_start;
2154 	inarg->lk.end = fl->fl_end;
2155 	inarg->lk.type = fl->fl_type;
2156 	inarg->lk.pid = pid;
2157 	if (flock)
2158 		inarg->lk_flags |= FUSE_LK_FLOCK;
2159 	args->in.h.opcode = opcode;
2160 	args->in.h.nodeid = get_node_id(inode);
2161 	args->in.numargs = 1;
2162 	args->in.args[0].size = sizeof(*inarg);
2163 	args->in.args[0].value = inarg;
2164 }
2165 
2166 static int fuse_getlk(struct file *file, struct file_lock *fl)
2167 {
2168 	struct inode *inode = file_inode(file);
2169 	struct fuse_conn *fc = get_fuse_conn(inode);
2170 	FUSE_ARGS(args);
2171 	struct fuse_lk_in inarg;
2172 	struct fuse_lk_out outarg;
2173 	int err;
2174 
2175 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2176 	args.out.numargs = 1;
2177 	args.out.args[0].size = sizeof(outarg);
2178 	args.out.args[0].value = &outarg;
2179 	err = fuse_simple_request(fc, &args);
2180 	if (!err)
2181 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2182 
2183 	return err;
2184 }
2185 
2186 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2187 {
2188 	struct inode *inode = file_inode(file);
2189 	struct fuse_conn *fc = get_fuse_conn(inode);
2190 	FUSE_ARGS(args);
2191 	struct fuse_lk_in inarg;
2192 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2193 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2194 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2195 	int err;
2196 
2197 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2198 		/* NLM needs asynchronous locks, which we don't support yet */
2199 		return -ENOLCK;
2200 	}
2201 
2202 	/* Unlock on close is handled by the flush method */
2203 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2204 		return 0;
2205 
2206 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2207 	err = fuse_simple_request(fc, &args);
2208 
2209 	/* locking is restartable */
2210 	if (err == -EINTR)
2211 		err = -ERESTARTSYS;
2212 
2213 	return err;
2214 }
2215 
2216 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2217 {
2218 	struct inode *inode = file_inode(file);
2219 	struct fuse_conn *fc = get_fuse_conn(inode);
2220 	int err;
2221 
2222 	if (cmd == F_CANCELLK) {
2223 		err = 0;
2224 	} else if (cmd == F_GETLK) {
2225 		if (fc->no_lock) {
2226 			posix_test_lock(file, fl);
2227 			err = 0;
2228 		} else
2229 			err = fuse_getlk(file, fl);
2230 	} else {
2231 		if (fc->no_lock)
2232 			err = posix_lock_file(file, fl, NULL);
2233 		else
2234 			err = fuse_setlk(file, fl, 0);
2235 	}
2236 	return err;
2237 }
2238 
2239 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2240 {
2241 	struct inode *inode = file_inode(file);
2242 	struct fuse_conn *fc = get_fuse_conn(inode);
2243 	int err;
2244 
2245 	if (fc->no_flock) {
2246 		err = locks_lock_file_wait(file, fl);
2247 	} else {
2248 		struct fuse_file *ff = file->private_data;
2249 
2250 		/* emulate flock with POSIX locks */
2251 		ff->flock = true;
2252 		err = fuse_setlk(file, fl, 1);
2253 	}
2254 
2255 	return err;
2256 }
2257 
2258 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2259 {
2260 	struct inode *inode = mapping->host;
2261 	struct fuse_conn *fc = get_fuse_conn(inode);
2262 	FUSE_ARGS(args);
2263 	struct fuse_bmap_in inarg;
2264 	struct fuse_bmap_out outarg;
2265 	int err;
2266 
2267 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2268 		return 0;
2269 
2270 	memset(&inarg, 0, sizeof(inarg));
2271 	inarg.block = block;
2272 	inarg.blocksize = inode->i_sb->s_blocksize;
2273 	args.in.h.opcode = FUSE_BMAP;
2274 	args.in.h.nodeid = get_node_id(inode);
2275 	args.in.numargs = 1;
2276 	args.in.args[0].size = sizeof(inarg);
2277 	args.in.args[0].value = &inarg;
2278 	args.out.numargs = 1;
2279 	args.out.args[0].size = sizeof(outarg);
2280 	args.out.args[0].value = &outarg;
2281 	err = fuse_simple_request(fc, &args);
2282 	if (err == -ENOSYS)
2283 		fc->no_bmap = 1;
2284 
2285 	return err ? 0 : outarg.block;
2286 }
2287 
2288 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2289 {
2290 	struct inode *inode = file->f_mapping->host;
2291 	struct fuse_conn *fc = get_fuse_conn(inode);
2292 	struct fuse_file *ff = file->private_data;
2293 	FUSE_ARGS(args);
2294 	struct fuse_lseek_in inarg = {
2295 		.fh = ff->fh,
2296 		.offset = offset,
2297 		.whence = whence
2298 	};
2299 	struct fuse_lseek_out outarg;
2300 	int err;
2301 
2302 	if (fc->no_lseek)
2303 		goto fallback;
2304 
2305 	args.in.h.opcode = FUSE_LSEEK;
2306 	args.in.h.nodeid = ff->nodeid;
2307 	args.in.numargs = 1;
2308 	args.in.args[0].size = sizeof(inarg);
2309 	args.in.args[0].value = &inarg;
2310 	args.out.numargs = 1;
2311 	args.out.args[0].size = sizeof(outarg);
2312 	args.out.args[0].value = &outarg;
2313 	err = fuse_simple_request(fc, &args);
2314 	if (err) {
2315 		if (err == -ENOSYS) {
2316 			fc->no_lseek = 1;
2317 			goto fallback;
2318 		}
2319 		return err;
2320 	}
2321 
2322 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2323 
2324 fallback:
2325 	err = fuse_update_attributes(inode, file);
2326 	if (!err)
2327 		return generic_file_llseek(file, offset, whence);
2328 	else
2329 		return err;
2330 }
2331 
2332 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2333 {
2334 	loff_t retval;
2335 	struct inode *inode = file_inode(file);
2336 
2337 	switch (whence) {
2338 	case SEEK_SET:
2339 	case SEEK_CUR:
2340 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2341 		retval = generic_file_llseek(file, offset, whence);
2342 		break;
2343 	case SEEK_END:
2344 		inode_lock(inode);
2345 		retval = fuse_update_attributes(inode, file);
2346 		if (!retval)
2347 			retval = generic_file_llseek(file, offset, whence);
2348 		inode_unlock(inode);
2349 		break;
2350 	case SEEK_HOLE:
2351 	case SEEK_DATA:
2352 		inode_lock(inode);
2353 		retval = fuse_lseek(file, offset, whence);
2354 		inode_unlock(inode);
2355 		break;
2356 	default:
2357 		retval = -EINVAL;
2358 	}
2359 
2360 	return retval;
2361 }
2362 
2363 /*
2364  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2365  * ABI was defined to be 'struct iovec' which is different on 32bit
2366  * and 64bit.  Fortunately we can determine which structure the server
2367  * used from the size of the reply.
2368  */
2369 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2370 				     size_t transferred, unsigned count,
2371 				     bool is_compat)
2372 {
2373 #ifdef CONFIG_COMPAT
2374 	if (count * sizeof(struct compat_iovec) == transferred) {
2375 		struct compat_iovec *ciov = src;
2376 		unsigned i;
2377 
2378 		/*
2379 		 * With this interface a 32bit server cannot support
2380 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2381 		 * requests
2382 		 */
2383 		if (!is_compat)
2384 			return -EINVAL;
2385 
2386 		for (i = 0; i < count; i++) {
2387 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2388 			dst[i].iov_len = ciov[i].iov_len;
2389 		}
2390 		return 0;
2391 	}
2392 #endif
2393 
2394 	if (count * sizeof(struct iovec) != transferred)
2395 		return -EIO;
2396 
2397 	memcpy(dst, src, transferred);
2398 	return 0;
2399 }
2400 
2401 /* Make sure iov_length() won't overflow */
2402 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2403 				 size_t count)
2404 {
2405 	size_t n;
2406 	u32 max = fc->max_pages << PAGE_SHIFT;
2407 
2408 	for (n = 0; n < count; n++, iov++) {
2409 		if (iov->iov_len > (size_t) max)
2410 			return -ENOMEM;
2411 		max -= iov->iov_len;
2412 	}
2413 	return 0;
2414 }
2415 
2416 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2417 				 void *src, size_t transferred, unsigned count,
2418 				 bool is_compat)
2419 {
2420 	unsigned i;
2421 	struct fuse_ioctl_iovec *fiov = src;
2422 
2423 	if (fc->minor < 16) {
2424 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2425 						 count, is_compat);
2426 	}
2427 
2428 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2429 		return -EIO;
2430 
2431 	for (i = 0; i < count; i++) {
2432 		/* Did the server supply an inappropriate value? */
2433 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2434 		    fiov[i].len != (unsigned long) fiov[i].len)
2435 			return -EIO;
2436 
2437 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2438 		dst[i].iov_len = (size_t) fiov[i].len;
2439 
2440 #ifdef CONFIG_COMPAT
2441 		if (is_compat &&
2442 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2443 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2444 			return -EIO;
2445 #endif
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 
2452 /*
2453  * For ioctls, there is no generic way to determine how much memory
2454  * needs to be read and/or written.  Furthermore, ioctls are allowed
2455  * to dereference the passed pointer, so the parameter requires deep
2456  * copying but FUSE has no idea whatsoever about what to copy in or
2457  * out.
2458  *
2459  * This is solved by allowing FUSE server to retry ioctl with
2460  * necessary in/out iovecs.  Let's assume the ioctl implementation
2461  * needs to read in the following structure.
2462  *
2463  * struct a {
2464  *	char	*buf;
2465  *	size_t	buflen;
2466  * }
2467  *
2468  * On the first callout to FUSE server, inarg->in_size and
2469  * inarg->out_size will be NULL; then, the server completes the ioctl
2470  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2471  * the actual iov array to
2472  *
2473  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2474  *
2475  * which tells FUSE to copy in the requested area and retry the ioctl.
2476  * On the second round, the server has access to the structure and
2477  * from that it can tell what to look for next, so on the invocation,
2478  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2479  *
2480  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2481  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2482  *
2483  * FUSE will copy both struct a and the pointed buffer from the
2484  * process doing the ioctl and retry ioctl with both struct a and the
2485  * buffer.
2486  *
2487  * This time, FUSE server has everything it needs and completes ioctl
2488  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2489  *
2490  * Copying data out works the same way.
2491  *
2492  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2493  * automatically initializes in and out iovs by decoding @cmd with
2494  * _IOC_* macros and the server is not allowed to request RETRY.  This
2495  * limits ioctl data transfers to well-formed ioctls and is the forced
2496  * behavior for all FUSE servers.
2497  */
2498 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2499 		   unsigned int flags)
2500 {
2501 	struct fuse_file *ff = file->private_data;
2502 	struct fuse_conn *fc = ff->fc;
2503 	struct fuse_ioctl_in inarg = {
2504 		.fh = ff->fh,
2505 		.cmd = cmd,
2506 		.arg = arg,
2507 		.flags = flags
2508 	};
2509 	struct fuse_ioctl_out outarg;
2510 	struct fuse_req *req = NULL;
2511 	struct page **pages = NULL;
2512 	struct iovec *iov_page = NULL;
2513 	struct iovec *in_iov = NULL, *out_iov = NULL;
2514 	unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2515 	size_t in_size, out_size, transferred, c;
2516 	int err, i;
2517 	struct iov_iter ii;
2518 
2519 #if BITS_PER_LONG == 32
2520 	inarg.flags |= FUSE_IOCTL_32BIT;
2521 #else
2522 	if (flags & FUSE_IOCTL_COMPAT)
2523 		inarg.flags |= FUSE_IOCTL_32BIT;
2524 #endif
2525 
2526 	/* assume all the iovs returned by client always fits in a page */
2527 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2528 
2529 	err = -ENOMEM;
2530 	pages = kcalloc(fc->max_pages, sizeof(pages[0]), GFP_KERNEL);
2531 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2532 	if (!pages || !iov_page)
2533 		goto out;
2534 
2535 	/*
2536 	 * If restricted, initialize IO parameters as encoded in @cmd.
2537 	 * RETRY from server is not allowed.
2538 	 */
2539 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2540 		struct iovec *iov = iov_page;
2541 
2542 		iov->iov_base = (void __user *)arg;
2543 		iov->iov_len = _IOC_SIZE(cmd);
2544 
2545 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2546 			in_iov = iov;
2547 			in_iovs = 1;
2548 		}
2549 
2550 		if (_IOC_DIR(cmd) & _IOC_READ) {
2551 			out_iov = iov;
2552 			out_iovs = 1;
2553 		}
2554 	}
2555 
2556  retry:
2557 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2558 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2559 
2560 	/*
2561 	 * Out data can be used either for actual out data or iovs,
2562 	 * make sure there always is at least one page.
2563 	 */
2564 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2565 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2566 
2567 	/* make sure there are enough buffer pages and init request with them */
2568 	err = -ENOMEM;
2569 	if (max_pages > fc->max_pages)
2570 		goto out;
2571 	while (num_pages < max_pages) {
2572 		pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2573 		if (!pages[num_pages])
2574 			goto out;
2575 		num_pages++;
2576 	}
2577 
2578 	req = fuse_get_req(fc, num_pages);
2579 	if (IS_ERR(req)) {
2580 		err = PTR_ERR(req);
2581 		req = NULL;
2582 		goto out;
2583 	}
2584 	memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2585 	req->num_pages = num_pages;
2586 	fuse_page_descs_length_init(req, 0, req->num_pages);
2587 
2588 	/* okay, let's send it to the client */
2589 	req->in.h.opcode = FUSE_IOCTL;
2590 	req->in.h.nodeid = ff->nodeid;
2591 	req->in.numargs = 1;
2592 	req->in.args[0].size = sizeof(inarg);
2593 	req->in.args[0].value = &inarg;
2594 	if (in_size) {
2595 		req->in.numargs++;
2596 		req->in.args[1].size = in_size;
2597 		req->in.argpages = 1;
2598 
2599 		err = -EFAULT;
2600 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2601 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2602 			c = copy_page_from_iter(pages[i], 0, PAGE_SIZE, &ii);
2603 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2604 				goto out;
2605 		}
2606 	}
2607 
2608 	req->out.numargs = 2;
2609 	req->out.args[0].size = sizeof(outarg);
2610 	req->out.args[0].value = &outarg;
2611 	req->out.args[1].size = out_size;
2612 	req->out.argpages = 1;
2613 	req->out.argvar = 1;
2614 
2615 	fuse_request_send(fc, req);
2616 	err = req->out.h.error;
2617 	transferred = req->out.args[1].size;
2618 	fuse_put_request(fc, req);
2619 	req = NULL;
2620 	if (err)
2621 		goto out;
2622 
2623 	/* did it ask for retry? */
2624 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2625 		void *vaddr;
2626 
2627 		/* no retry if in restricted mode */
2628 		err = -EIO;
2629 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2630 			goto out;
2631 
2632 		in_iovs = outarg.in_iovs;
2633 		out_iovs = outarg.out_iovs;
2634 
2635 		/*
2636 		 * Make sure things are in boundary, separate checks
2637 		 * are to protect against overflow.
2638 		 */
2639 		err = -ENOMEM;
2640 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2641 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2642 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2643 			goto out;
2644 
2645 		vaddr = kmap_atomic(pages[0]);
2646 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2647 					    transferred, in_iovs + out_iovs,
2648 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2649 		kunmap_atomic(vaddr);
2650 		if (err)
2651 			goto out;
2652 
2653 		in_iov = iov_page;
2654 		out_iov = in_iov + in_iovs;
2655 
2656 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2657 		if (err)
2658 			goto out;
2659 
2660 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2661 		if (err)
2662 			goto out;
2663 
2664 		goto retry;
2665 	}
2666 
2667 	err = -EIO;
2668 	if (transferred > inarg.out_size)
2669 		goto out;
2670 
2671 	err = -EFAULT;
2672 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2673 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2674 		c = copy_page_to_iter(pages[i], 0, PAGE_SIZE, &ii);
2675 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2676 			goto out;
2677 	}
2678 	err = 0;
2679  out:
2680 	if (req)
2681 		fuse_put_request(fc, req);
2682 	free_page((unsigned long) iov_page);
2683 	while (num_pages)
2684 		__free_page(pages[--num_pages]);
2685 	kfree(pages);
2686 
2687 	return err ? err : outarg.result;
2688 }
2689 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2690 
2691 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2692 		       unsigned long arg, unsigned int flags)
2693 {
2694 	struct inode *inode = file_inode(file);
2695 	struct fuse_conn *fc = get_fuse_conn(inode);
2696 
2697 	if (!fuse_allow_current_process(fc))
2698 		return -EACCES;
2699 
2700 	if (is_bad_inode(inode))
2701 		return -EIO;
2702 
2703 	return fuse_do_ioctl(file, cmd, arg, flags);
2704 }
2705 
2706 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2707 			    unsigned long arg)
2708 {
2709 	return fuse_ioctl_common(file, cmd, arg, 0);
2710 }
2711 
2712 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2713 				   unsigned long arg)
2714 {
2715 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2716 }
2717 
2718 /*
2719  * All files which have been polled are linked to RB tree
2720  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2721  * find the matching one.
2722  */
2723 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2724 					      struct rb_node **parent_out)
2725 {
2726 	struct rb_node **link = &fc->polled_files.rb_node;
2727 	struct rb_node *last = NULL;
2728 
2729 	while (*link) {
2730 		struct fuse_file *ff;
2731 
2732 		last = *link;
2733 		ff = rb_entry(last, struct fuse_file, polled_node);
2734 
2735 		if (kh < ff->kh)
2736 			link = &last->rb_left;
2737 		else if (kh > ff->kh)
2738 			link = &last->rb_right;
2739 		else
2740 			return link;
2741 	}
2742 
2743 	if (parent_out)
2744 		*parent_out = last;
2745 	return link;
2746 }
2747 
2748 /*
2749  * The file is about to be polled.  Make sure it's on the polled_files
2750  * RB tree.  Note that files once added to the polled_files tree are
2751  * not removed before the file is released.  This is because a file
2752  * polled once is likely to be polled again.
2753  */
2754 static void fuse_register_polled_file(struct fuse_conn *fc,
2755 				      struct fuse_file *ff)
2756 {
2757 	spin_lock(&fc->lock);
2758 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2759 		struct rb_node **link, *uninitialized_var(parent);
2760 
2761 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2762 		BUG_ON(*link);
2763 		rb_link_node(&ff->polled_node, parent, link);
2764 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2765 	}
2766 	spin_unlock(&fc->lock);
2767 }
2768 
2769 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2770 {
2771 	struct fuse_file *ff = file->private_data;
2772 	struct fuse_conn *fc = ff->fc;
2773 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2774 	struct fuse_poll_out outarg;
2775 	FUSE_ARGS(args);
2776 	int err;
2777 
2778 	if (fc->no_poll)
2779 		return DEFAULT_POLLMASK;
2780 
2781 	poll_wait(file, &ff->poll_wait, wait);
2782 	inarg.events = mangle_poll(poll_requested_events(wait));
2783 
2784 	/*
2785 	 * Ask for notification iff there's someone waiting for it.
2786 	 * The client may ignore the flag and always notify.
2787 	 */
2788 	if (waitqueue_active(&ff->poll_wait)) {
2789 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2790 		fuse_register_polled_file(fc, ff);
2791 	}
2792 
2793 	args.in.h.opcode = FUSE_POLL;
2794 	args.in.h.nodeid = ff->nodeid;
2795 	args.in.numargs = 1;
2796 	args.in.args[0].size = sizeof(inarg);
2797 	args.in.args[0].value = &inarg;
2798 	args.out.numargs = 1;
2799 	args.out.args[0].size = sizeof(outarg);
2800 	args.out.args[0].value = &outarg;
2801 	err = fuse_simple_request(fc, &args);
2802 
2803 	if (!err)
2804 		return demangle_poll(outarg.revents);
2805 	if (err == -ENOSYS) {
2806 		fc->no_poll = 1;
2807 		return DEFAULT_POLLMASK;
2808 	}
2809 	return EPOLLERR;
2810 }
2811 EXPORT_SYMBOL_GPL(fuse_file_poll);
2812 
2813 /*
2814  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2815  * wakes up the poll waiters.
2816  */
2817 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2818 			    struct fuse_notify_poll_wakeup_out *outarg)
2819 {
2820 	u64 kh = outarg->kh;
2821 	struct rb_node **link;
2822 
2823 	spin_lock(&fc->lock);
2824 
2825 	link = fuse_find_polled_node(fc, kh, NULL);
2826 	if (*link) {
2827 		struct fuse_file *ff;
2828 
2829 		ff = rb_entry(*link, struct fuse_file, polled_node);
2830 		wake_up_interruptible_sync(&ff->poll_wait);
2831 	}
2832 
2833 	spin_unlock(&fc->lock);
2834 	return 0;
2835 }
2836 
2837 static void fuse_do_truncate(struct file *file)
2838 {
2839 	struct inode *inode = file->f_mapping->host;
2840 	struct iattr attr;
2841 
2842 	attr.ia_valid = ATTR_SIZE;
2843 	attr.ia_size = i_size_read(inode);
2844 
2845 	attr.ia_file = file;
2846 	attr.ia_valid |= ATTR_FILE;
2847 
2848 	fuse_do_setattr(file_dentry(file), &attr, file);
2849 }
2850 
2851 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2852 {
2853 	return round_up(off, fc->max_pages << PAGE_SHIFT);
2854 }
2855 
2856 static ssize_t
2857 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2858 {
2859 	DECLARE_COMPLETION_ONSTACK(wait);
2860 	ssize_t ret = 0;
2861 	struct file *file = iocb->ki_filp;
2862 	struct fuse_file *ff = file->private_data;
2863 	bool async_dio = ff->fc->async_dio;
2864 	loff_t pos = 0;
2865 	struct inode *inode;
2866 	loff_t i_size;
2867 	size_t count = iov_iter_count(iter);
2868 	loff_t offset = iocb->ki_pos;
2869 	struct fuse_io_priv *io;
2870 
2871 	pos = offset;
2872 	inode = file->f_mapping->host;
2873 	i_size = i_size_read(inode);
2874 
2875 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
2876 		return 0;
2877 
2878 	/* optimization for short read */
2879 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
2880 		if (offset >= i_size)
2881 			return 0;
2882 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
2883 		count = iov_iter_count(iter);
2884 	}
2885 
2886 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2887 	if (!io)
2888 		return -ENOMEM;
2889 	spin_lock_init(&io->lock);
2890 	kref_init(&io->refcnt);
2891 	io->reqs = 1;
2892 	io->bytes = -1;
2893 	io->size = 0;
2894 	io->offset = offset;
2895 	io->write = (iov_iter_rw(iter) == WRITE);
2896 	io->err = 0;
2897 	/*
2898 	 * By default, we want to optimize all I/Os with async request
2899 	 * submission to the client filesystem if supported.
2900 	 */
2901 	io->async = async_dio;
2902 	io->iocb = iocb;
2903 	io->blocking = is_sync_kiocb(iocb);
2904 
2905 	/*
2906 	 * We cannot asynchronously extend the size of a file.
2907 	 * In such case the aio will behave exactly like sync io.
2908 	 */
2909 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
2910 		io->blocking = true;
2911 
2912 	if (io->async && io->blocking) {
2913 		/*
2914 		 * Additional reference to keep io around after
2915 		 * calling fuse_aio_complete()
2916 		 */
2917 		kref_get(&io->refcnt);
2918 		io->done = &wait;
2919 	}
2920 
2921 	if (iov_iter_rw(iter) == WRITE) {
2922 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2923 		fuse_invalidate_attr(inode);
2924 	} else {
2925 		ret = __fuse_direct_read(io, iter, &pos);
2926 	}
2927 
2928 	if (io->async) {
2929 		bool blocking = io->blocking;
2930 
2931 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2932 
2933 		/* we have a non-extending, async request, so return */
2934 		if (!blocking)
2935 			return -EIOCBQUEUED;
2936 
2937 		wait_for_completion(&wait);
2938 		ret = fuse_get_res_by_io(io);
2939 	}
2940 
2941 	kref_put(&io->refcnt, fuse_io_release);
2942 
2943 	if (iov_iter_rw(iter) == WRITE) {
2944 		if (ret > 0)
2945 			fuse_write_update_size(inode, pos);
2946 		else if (ret < 0 && offset + count > i_size)
2947 			fuse_do_truncate(file);
2948 	}
2949 
2950 	return ret;
2951 }
2952 
2953 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2954 				loff_t length)
2955 {
2956 	struct fuse_file *ff = file->private_data;
2957 	struct inode *inode = file_inode(file);
2958 	struct fuse_inode *fi = get_fuse_inode(inode);
2959 	struct fuse_conn *fc = ff->fc;
2960 	FUSE_ARGS(args);
2961 	struct fuse_fallocate_in inarg = {
2962 		.fh = ff->fh,
2963 		.offset = offset,
2964 		.length = length,
2965 		.mode = mode
2966 	};
2967 	int err;
2968 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2969 			   (mode & FALLOC_FL_PUNCH_HOLE);
2970 
2971 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2972 		return -EOPNOTSUPP;
2973 
2974 	if (fc->no_fallocate)
2975 		return -EOPNOTSUPP;
2976 
2977 	if (lock_inode) {
2978 		inode_lock(inode);
2979 		if (mode & FALLOC_FL_PUNCH_HOLE) {
2980 			loff_t endbyte = offset + length - 1;
2981 			err = filemap_write_and_wait_range(inode->i_mapping,
2982 							   offset, endbyte);
2983 			if (err)
2984 				goto out;
2985 
2986 			fuse_sync_writes(inode);
2987 		}
2988 	}
2989 
2990 	if (!(mode & FALLOC_FL_KEEP_SIZE))
2991 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2992 
2993 	args.in.h.opcode = FUSE_FALLOCATE;
2994 	args.in.h.nodeid = ff->nodeid;
2995 	args.in.numargs = 1;
2996 	args.in.args[0].size = sizeof(inarg);
2997 	args.in.args[0].value = &inarg;
2998 	err = fuse_simple_request(fc, &args);
2999 	if (err == -ENOSYS) {
3000 		fc->no_fallocate = 1;
3001 		err = -EOPNOTSUPP;
3002 	}
3003 	if (err)
3004 		goto out;
3005 
3006 	/* we could have extended the file */
3007 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3008 		bool changed = fuse_write_update_size(inode, offset + length);
3009 
3010 		if (changed && fc->writeback_cache)
3011 			file_update_time(file);
3012 	}
3013 
3014 	if (mode & FALLOC_FL_PUNCH_HOLE)
3015 		truncate_pagecache_range(inode, offset, offset + length - 1);
3016 
3017 	fuse_invalidate_attr(inode);
3018 
3019 out:
3020 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3021 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3022 
3023 	if (lock_inode)
3024 		inode_unlock(inode);
3025 
3026 	return err;
3027 }
3028 
3029 static ssize_t fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3030 				    struct file *file_out, loff_t pos_out,
3031 				    size_t len, unsigned int flags)
3032 {
3033 	struct fuse_file *ff_in = file_in->private_data;
3034 	struct fuse_file *ff_out = file_out->private_data;
3035 	struct inode *inode_out = file_inode(file_out);
3036 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3037 	struct fuse_conn *fc = ff_in->fc;
3038 	FUSE_ARGS(args);
3039 	struct fuse_copy_file_range_in inarg = {
3040 		.fh_in = ff_in->fh,
3041 		.off_in = pos_in,
3042 		.nodeid_out = ff_out->nodeid,
3043 		.fh_out = ff_out->fh,
3044 		.off_out = pos_out,
3045 		.len = len,
3046 		.flags = flags
3047 	};
3048 	struct fuse_write_out outarg;
3049 	ssize_t err;
3050 	/* mark unstable when write-back is not used, and file_out gets
3051 	 * extended */
3052 	bool is_unstable = (!fc->writeback_cache) &&
3053 			   ((pos_out + len) > inode_out->i_size);
3054 
3055 	if (fc->no_copy_file_range)
3056 		return -EOPNOTSUPP;
3057 
3058 	inode_lock(inode_out);
3059 
3060 	if (fc->writeback_cache) {
3061 		err = filemap_write_and_wait_range(inode_out->i_mapping,
3062 						   pos_out, pos_out + len);
3063 		if (err)
3064 			goto out;
3065 
3066 		fuse_sync_writes(inode_out);
3067 	}
3068 
3069 	if (is_unstable)
3070 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3071 
3072 	args.in.h.opcode = FUSE_COPY_FILE_RANGE;
3073 	args.in.h.nodeid = ff_in->nodeid;
3074 	args.in.numargs = 1;
3075 	args.in.args[0].size = sizeof(inarg);
3076 	args.in.args[0].value = &inarg;
3077 	args.out.numargs = 1;
3078 	args.out.args[0].size = sizeof(outarg);
3079 	args.out.args[0].value = &outarg;
3080 	err = fuse_simple_request(fc, &args);
3081 	if (err == -ENOSYS) {
3082 		fc->no_copy_file_range = 1;
3083 		err = -EOPNOTSUPP;
3084 	}
3085 	if (err)
3086 		goto out;
3087 
3088 	if (fc->writeback_cache) {
3089 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3090 		file_update_time(file_out);
3091 	}
3092 
3093 	fuse_invalidate_attr(inode_out);
3094 
3095 	err = outarg.size;
3096 out:
3097 	if (is_unstable)
3098 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3099 
3100 	inode_unlock(inode_out);
3101 
3102 	return err;
3103 }
3104 
3105 static const struct file_operations fuse_file_operations = {
3106 	.llseek		= fuse_file_llseek,
3107 	.read_iter	= fuse_file_read_iter,
3108 	.write_iter	= fuse_file_write_iter,
3109 	.mmap		= fuse_file_mmap,
3110 	.open		= fuse_open,
3111 	.flush		= fuse_flush,
3112 	.release	= fuse_release,
3113 	.fsync		= fuse_fsync,
3114 	.lock		= fuse_file_lock,
3115 	.flock		= fuse_file_flock,
3116 	.splice_read	= generic_file_splice_read,
3117 	.unlocked_ioctl	= fuse_file_ioctl,
3118 	.compat_ioctl	= fuse_file_compat_ioctl,
3119 	.poll		= fuse_file_poll,
3120 	.fallocate	= fuse_file_fallocate,
3121 	.copy_file_range = fuse_copy_file_range,
3122 };
3123 
3124 static const struct file_operations fuse_direct_io_file_operations = {
3125 	.llseek		= fuse_file_llseek,
3126 	.read_iter	= fuse_direct_read_iter,
3127 	.write_iter	= fuse_direct_write_iter,
3128 	.mmap		= fuse_direct_mmap,
3129 	.open		= fuse_open,
3130 	.flush		= fuse_flush,
3131 	.release	= fuse_release,
3132 	.fsync		= fuse_fsync,
3133 	.lock		= fuse_file_lock,
3134 	.flock		= fuse_file_flock,
3135 	.unlocked_ioctl	= fuse_file_ioctl,
3136 	.compat_ioctl	= fuse_file_compat_ioctl,
3137 	.poll		= fuse_file_poll,
3138 	.fallocate	= fuse_file_fallocate,
3139 	/* no splice_read */
3140 };
3141 
3142 static const struct address_space_operations fuse_file_aops  = {
3143 	.readpage	= fuse_readpage,
3144 	.writepage	= fuse_writepage,
3145 	.writepages	= fuse_writepages,
3146 	.launder_page	= fuse_launder_page,
3147 	.readpages	= fuse_readpages,
3148 	.set_page_dirty	= __set_page_dirty_nobuffers,
3149 	.bmap		= fuse_bmap,
3150 	.direct_IO	= fuse_direct_IO,
3151 	.write_begin	= fuse_write_begin,
3152 	.write_end	= fuse_write_end,
3153 };
3154 
3155 void fuse_init_file_inode(struct inode *inode)
3156 {
3157 	struct fuse_inode *fi = get_fuse_inode(inode);
3158 
3159 	inode->i_fop = &fuse_file_operations;
3160 	inode->i_data.a_ops = &fuse_file_aops;
3161 
3162 	INIT_LIST_HEAD(&fi->write_files);
3163 	INIT_LIST_HEAD(&fi->queued_writes);
3164 	fi->writectr = 0;
3165 	init_waitqueue_head(&fi->page_waitq);
3166 	INIT_LIST_HEAD(&fi->writepages);
3167 }
3168