xref: /openbmc/linux/fs/fuse/file.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16 #include <linux/compat.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 
21 static const struct file_operations fuse_direct_io_file_operations;
22 
23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
24 			  int opcode, struct fuse_open_out *outargp)
25 {
26 	struct fuse_open_in inarg;
27 	FUSE_ARGS(args);
28 
29 	memset(&inarg, 0, sizeof(inarg));
30 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
31 	if (!fc->atomic_o_trunc)
32 		inarg.flags &= ~O_TRUNC;
33 	args.in.h.opcode = opcode;
34 	args.in.h.nodeid = nodeid;
35 	args.in.numargs = 1;
36 	args.in.args[0].size = sizeof(inarg);
37 	args.in.args[0].value = &inarg;
38 	args.out.numargs = 1;
39 	args.out.args[0].size = sizeof(*outargp);
40 	args.out.args[0].value = outargp;
41 
42 	return fuse_simple_request(fc, &args);
43 }
44 
45 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
46 {
47 	struct fuse_file *ff;
48 
49 	ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL);
50 	if (unlikely(!ff))
51 		return NULL;
52 
53 	ff->fc = fc;
54 	ff->reserved_req = fuse_request_alloc(0);
55 	if (unlikely(!ff->reserved_req)) {
56 		kfree(ff);
57 		return NULL;
58 	}
59 
60 	INIT_LIST_HEAD(&ff->write_entry);
61 	atomic_set(&ff->count, 0);
62 	RB_CLEAR_NODE(&ff->polled_node);
63 	init_waitqueue_head(&ff->poll_wait);
64 
65 	spin_lock(&fc->lock);
66 	ff->kh = ++fc->khctr;
67 	spin_unlock(&fc->lock);
68 
69 	return ff;
70 }
71 
72 void fuse_file_free(struct fuse_file *ff)
73 {
74 	fuse_request_free(ff->reserved_req);
75 	kfree(ff);
76 }
77 
78 struct fuse_file *fuse_file_get(struct fuse_file *ff)
79 {
80 	atomic_inc(&ff->count);
81 	return ff;
82 }
83 
84 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
85 {
86 	iput(req->misc.release.inode);
87 }
88 
89 static void fuse_file_put(struct fuse_file *ff, bool sync)
90 {
91 	if (atomic_dec_and_test(&ff->count)) {
92 		struct fuse_req *req = ff->reserved_req;
93 
94 		if (ff->fc->no_open) {
95 			/*
96 			 * Drop the release request when client does not
97 			 * implement 'open'
98 			 */
99 			__clear_bit(FR_BACKGROUND, &req->flags);
100 			iput(req->misc.release.inode);
101 			fuse_put_request(ff->fc, req);
102 		} else if (sync) {
103 			__clear_bit(FR_BACKGROUND, &req->flags);
104 			fuse_request_send(ff->fc, req);
105 			iput(req->misc.release.inode);
106 			fuse_put_request(ff->fc, req);
107 		} else {
108 			req->end = fuse_release_end;
109 			__set_bit(FR_BACKGROUND, &req->flags);
110 			fuse_request_send_background(ff->fc, req);
111 		}
112 		kfree(ff);
113 	}
114 }
115 
116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
117 		 bool isdir)
118 {
119 	struct fuse_file *ff;
120 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
121 
122 	ff = fuse_file_alloc(fc);
123 	if (!ff)
124 		return -ENOMEM;
125 
126 	ff->fh = 0;
127 	ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */
128 	if (!fc->no_open || isdir) {
129 		struct fuse_open_out outarg;
130 		int err;
131 
132 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
133 		if (!err) {
134 			ff->fh = outarg.fh;
135 			ff->open_flags = outarg.open_flags;
136 
137 		} else if (err != -ENOSYS || isdir) {
138 			fuse_file_free(ff);
139 			return err;
140 		} else {
141 			fc->no_open = 1;
142 		}
143 	}
144 
145 	if (isdir)
146 		ff->open_flags &= ~FOPEN_DIRECT_IO;
147 
148 	ff->nodeid = nodeid;
149 	file->private_data = fuse_file_get(ff);
150 
151 	return 0;
152 }
153 EXPORT_SYMBOL_GPL(fuse_do_open);
154 
155 static void fuse_link_write_file(struct file *file)
156 {
157 	struct inode *inode = file_inode(file);
158 	struct fuse_conn *fc = get_fuse_conn(inode);
159 	struct fuse_inode *fi = get_fuse_inode(inode);
160 	struct fuse_file *ff = file->private_data;
161 	/*
162 	 * file may be written through mmap, so chain it onto the
163 	 * inodes's write_file list
164 	 */
165 	spin_lock(&fc->lock);
166 	if (list_empty(&ff->write_entry))
167 		list_add(&ff->write_entry, &fi->write_files);
168 	spin_unlock(&fc->lock);
169 }
170 
171 void fuse_finish_open(struct inode *inode, struct file *file)
172 {
173 	struct fuse_file *ff = file->private_data;
174 	struct fuse_conn *fc = get_fuse_conn(inode);
175 
176 	if (ff->open_flags & FOPEN_DIRECT_IO)
177 		file->f_op = &fuse_direct_io_file_operations;
178 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
179 		invalidate_inode_pages2(inode->i_mapping);
180 	if (ff->open_flags & FOPEN_NONSEEKABLE)
181 		nonseekable_open(inode, file);
182 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
183 		struct fuse_inode *fi = get_fuse_inode(inode);
184 
185 		spin_lock(&fc->lock);
186 		fi->attr_version = ++fc->attr_version;
187 		i_size_write(inode, 0);
188 		spin_unlock(&fc->lock);
189 		fuse_invalidate_attr(inode);
190 		if (fc->writeback_cache)
191 			file_update_time(file);
192 	}
193 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
194 		fuse_link_write_file(file);
195 }
196 
197 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
198 {
199 	struct fuse_conn *fc = get_fuse_conn(inode);
200 	int err;
201 	bool lock_inode = (file->f_flags & O_TRUNC) &&
202 			  fc->atomic_o_trunc &&
203 			  fc->writeback_cache;
204 
205 	err = generic_file_open(inode, file);
206 	if (err)
207 		return err;
208 
209 	if (lock_inode)
210 		mutex_lock(&inode->i_mutex);
211 
212 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
213 
214 	if (!err)
215 		fuse_finish_open(inode, file);
216 
217 	if (lock_inode)
218 		mutex_unlock(&inode->i_mutex);
219 
220 	return err;
221 }
222 
223 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
224 {
225 	struct fuse_conn *fc = ff->fc;
226 	struct fuse_req *req = ff->reserved_req;
227 	struct fuse_release_in *inarg = &req->misc.release.in;
228 
229 	spin_lock(&fc->lock);
230 	list_del(&ff->write_entry);
231 	if (!RB_EMPTY_NODE(&ff->polled_node))
232 		rb_erase(&ff->polled_node, &fc->polled_files);
233 	spin_unlock(&fc->lock);
234 
235 	wake_up_interruptible_all(&ff->poll_wait);
236 
237 	inarg->fh = ff->fh;
238 	inarg->flags = flags;
239 	req->in.h.opcode = opcode;
240 	req->in.h.nodeid = ff->nodeid;
241 	req->in.numargs = 1;
242 	req->in.args[0].size = sizeof(struct fuse_release_in);
243 	req->in.args[0].value = inarg;
244 }
245 
246 void fuse_release_common(struct file *file, int opcode)
247 {
248 	struct fuse_file *ff;
249 	struct fuse_req *req;
250 
251 	ff = file->private_data;
252 	if (unlikely(!ff))
253 		return;
254 
255 	req = ff->reserved_req;
256 	fuse_prepare_release(ff, file->f_flags, opcode);
257 
258 	if (ff->flock) {
259 		struct fuse_release_in *inarg = &req->misc.release.in;
260 		inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
261 		inarg->lock_owner = fuse_lock_owner_id(ff->fc,
262 						       (fl_owner_t) file);
263 	}
264 	/* Hold inode until release is finished */
265 	req->misc.release.inode = igrab(file_inode(file));
266 
267 	/*
268 	 * Normally this will send the RELEASE request, however if
269 	 * some asynchronous READ or WRITE requests are outstanding,
270 	 * the sending will be delayed.
271 	 *
272 	 * Make the release synchronous if this is a fuseblk mount,
273 	 * synchronous RELEASE is allowed (and desirable) in this case
274 	 * because the server can be trusted not to screw up.
275 	 */
276 	fuse_file_put(ff, ff->fc->destroy_req != NULL);
277 }
278 
279 static int fuse_open(struct inode *inode, struct file *file)
280 {
281 	return fuse_open_common(inode, file, false);
282 }
283 
284 static int fuse_release(struct inode *inode, struct file *file)
285 {
286 	struct fuse_conn *fc = get_fuse_conn(inode);
287 
288 	/* see fuse_vma_close() for !writeback_cache case */
289 	if (fc->writeback_cache)
290 		write_inode_now(inode, 1);
291 
292 	fuse_release_common(file, FUSE_RELEASE);
293 
294 	/* return value is ignored by VFS */
295 	return 0;
296 }
297 
298 void fuse_sync_release(struct fuse_file *ff, int flags)
299 {
300 	WARN_ON(atomic_read(&ff->count) > 1);
301 	fuse_prepare_release(ff, flags, FUSE_RELEASE);
302 	__set_bit(FR_FORCE, &ff->reserved_req->flags);
303 	__clear_bit(FR_BACKGROUND, &ff->reserved_req->flags);
304 	fuse_request_send(ff->fc, ff->reserved_req);
305 	fuse_put_request(ff->fc, ff->reserved_req);
306 	kfree(ff);
307 }
308 EXPORT_SYMBOL_GPL(fuse_sync_release);
309 
310 /*
311  * Scramble the ID space with XTEA, so that the value of the files_struct
312  * pointer is not exposed to userspace.
313  */
314 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
315 {
316 	u32 *k = fc->scramble_key;
317 	u64 v = (unsigned long) id;
318 	u32 v0 = v;
319 	u32 v1 = v >> 32;
320 	u32 sum = 0;
321 	int i;
322 
323 	for (i = 0; i < 32; i++) {
324 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
325 		sum += 0x9E3779B9;
326 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
327 	}
328 
329 	return (u64) v0 + ((u64) v1 << 32);
330 }
331 
332 /*
333  * Check if any page in a range is under writeback
334  *
335  * This is currently done by walking the list of writepage requests
336  * for the inode, which can be pretty inefficient.
337  */
338 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
339 				   pgoff_t idx_to)
340 {
341 	struct fuse_conn *fc = get_fuse_conn(inode);
342 	struct fuse_inode *fi = get_fuse_inode(inode);
343 	struct fuse_req *req;
344 	bool found = false;
345 
346 	spin_lock(&fc->lock);
347 	list_for_each_entry(req, &fi->writepages, writepages_entry) {
348 		pgoff_t curr_index;
349 
350 		BUG_ON(req->inode != inode);
351 		curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
352 		if (idx_from < curr_index + req->num_pages &&
353 		    curr_index <= idx_to) {
354 			found = true;
355 			break;
356 		}
357 	}
358 	spin_unlock(&fc->lock);
359 
360 	return found;
361 }
362 
363 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
364 {
365 	return fuse_range_is_writeback(inode, index, index);
366 }
367 
368 /*
369  * Wait for page writeback to be completed.
370  *
371  * Since fuse doesn't rely on the VM writeback tracking, this has to
372  * use some other means.
373  */
374 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
375 {
376 	struct fuse_inode *fi = get_fuse_inode(inode);
377 
378 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
379 	return 0;
380 }
381 
382 /*
383  * Wait for all pending writepages on the inode to finish.
384  *
385  * This is currently done by blocking further writes with FUSE_NOWRITE
386  * and waiting for all sent writes to complete.
387  *
388  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
389  * could conflict with truncation.
390  */
391 static void fuse_sync_writes(struct inode *inode)
392 {
393 	fuse_set_nowrite(inode);
394 	fuse_release_nowrite(inode);
395 }
396 
397 static int fuse_flush(struct file *file, fl_owner_t id)
398 {
399 	struct inode *inode = file_inode(file);
400 	struct fuse_conn *fc = get_fuse_conn(inode);
401 	struct fuse_file *ff = file->private_data;
402 	struct fuse_req *req;
403 	struct fuse_flush_in inarg;
404 	int err;
405 
406 	if (is_bad_inode(inode))
407 		return -EIO;
408 
409 	if (fc->no_flush)
410 		return 0;
411 
412 	err = write_inode_now(inode, 1);
413 	if (err)
414 		return err;
415 
416 	mutex_lock(&inode->i_mutex);
417 	fuse_sync_writes(inode);
418 	mutex_unlock(&inode->i_mutex);
419 
420 	req = fuse_get_req_nofail_nopages(fc, file);
421 	memset(&inarg, 0, sizeof(inarg));
422 	inarg.fh = ff->fh;
423 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
424 	req->in.h.opcode = FUSE_FLUSH;
425 	req->in.h.nodeid = get_node_id(inode);
426 	req->in.numargs = 1;
427 	req->in.args[0].size = sizeof(inarg);
428 	req->in.args[0].value = &inarg;
429 	__set_bit(FR_FORCE, &req->flags);
430 	fuse_request_send(fc, req);
431 	err = req->out.h.error;
432 	fuse_put_request(fc, req);
433 	if (err == -ENOSYS) {
434 		fc->no_flush = 1;
435 		err = 0;
436 	}
437 	return err;
438 }
439 
440 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
441 		      int datasync, int isdir)
442 {
443 	struct inode *inode = file->f_mapping->host;
444 	struct fuse_conn *fc = get_fuse_conn(inode);
445 	struct fuse_file *ff = file->private_data;
446 	FUSE_ARGS(args);
447 	struct fuse_fsync_in inarg;
448 	int err;
449 
450 	if (is_bad_inode(inode))
451 		return -EIO;
452 
453 	mutex_lock(&inode->i_mutex);
454 
455 	/*
456 	 * Start writeback against all dirty pages of the inode, then
457 	 * wait for all outstanding writes, before sending the FSYNC
458 	 * request.
459 	 */
460 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
461 	if (err)
462 		goto out;
463 
464 	fuse_sync_writes(inode);
465 	err = sync_inode_metadata(inode, 1);
466 	if (err)
467 		goto out;
468 
469 	if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
470 		goto out;
471 
472 	memset(&inarg, 0, sizeof(inarg));
473 	inarg.fh = ff->fh;
474 	inarg.fsync_flags = datasync ? 1 : 0;
475 	args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
476 	args.in.h.nodeid = get_node_id(inode);
477 	args.in.numargs = 1;
478 	args.in.args[0].size = sizeof(inarg);
479 	args.in.args[0].value = &inarg;
480 	err = fuse_simple_request(fc, &args);
481 	if (err == -ENOSYS) {
482 		if (isdir)
483 			fc->no_fsyncdir = 1;
484 		else
485 			fc->no_fsync = 1;
486 		err = 0;
487 	}
488 out:
489 	mutex_unlock(&inode->i_mutex);
490 	return err;
491 }
492 
493 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
494 		      int datasync)
495 {
496 	return fuse_fsync_common(file, start, end, datasync, 0);
497 }
498 
499 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
500 		    size_t count, int opcode)
501 {
502 	struct fuse_read_in *inarg = &req->misc.read.in;
503 	struct fuse_file *ff = file->private_data;
504 
505 	inarg->fh = ff->fh;
506 	inarg->offset = pos;
507 	inarg->size = count;
508 	inarg->flags = file->f_flags;
509 	req->in.h.opcode = opcode;
510 	req->in.h.nodeid = ff->nodeid;
511 	req->in.numargs = 1;
512 	req->in.args[0].size = sizeof(struct fuse_read_in);
513 	req->in.args[0].value = inarg;
514 	req->out.argvar = 1;
515 	req->out.numargs = 1;
516 	req->out.args[0].size = count;
517 }
518 
519 static void fuse_release_user_pages(struct fuse_req *req, int write)
520 {
521 	unsigned i;
522 
523 	for (i = 0; i < req->num_pages; i++) {
524 		struct page *page = req->pages[i];
525 		if (write)
526 			set_page_dirty_lock(page);
527 		put_page(page);
528 	}
529 }
530 
531 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
532 {
533 	if (io->err)
534 		return io->err;
535 
536 	if (io->bytes >= 0 && io->write)
537 		return -EIO;
538 
539 	return io->bytes < 0 ? io->size : io->bytes;
540 }
541 
542 /**
543  * In case of short read, the caller sets 'pos' to the position of
544  * actual end of fuse request in IO request. Otherwise, if bytes_requested
545  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
546  *
547  * An example:
548  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
549  * both submitted asynchronously. The first of them was ACKed by userspace as
550  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
551  * second request was ACKed as short, e.g. only 1K was read, resulting in
552  * pos == 33K.
553  *
554  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
555  * will be equal to the length of the longest contiguous fragment of
556  * transferred data starting from the beginning of IO request.
557  */
558 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
559 {
560 	bool is_sync = is_sync_kiocb(io->iocb);
561 	int left;
562 
563 	spin_lock(&io->lock);
564 	if (err)
565 		io->err = io->err ? : err;
566 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
567 		io->bytes = pos;
568 
569 	left = --io->reqs;
570 	if (!left && is_sync)
571 		complete(io->done);
572 	spin_unlock(&io->lock);
573 
574 	if (!left && !is_sync) {
575 		ssize_t res = fuse_get_res_by_io(io);
576 
577 		if (res >= 0) {
578 			struct inode *inode = file_inode(io->iocb->ki_filp);
579 			struct fuse_conn *fc = get_fuse_conn(inode);
580 			struct fuse_inode *fi = get_fuse_inode(inode);
581 
582 			spin_lock(&fc->lock);
583 			fi->attr_version = ++fc->attr_version;
584 			spin_unlock(&fc->lock);
585 		}
586 
587 		io->iocb->ki_complete(io->iocb, res, 0);
588 		kfree(io);
589 	}
590 }
591 
592 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
593 {
594 	struct fuse_io_priv *io = req->io;
595 	ssize_t pos = -1;
596 
597 	fuse_release_user_pages(req, !io->write);
598 
599 	if (io->write) {
600 		if (req->misc.write.in.size != req->misc.write.out.size)
601 			pos = req->misc.write.in.offset - io->offset +
602 				req->misc.write.out.size;
603 	} else {
604 		if (req->misc.read.in.size != req->out.args[0].size)
605 			pos = req->misc.read.in.offset - io->offset +
606 				req->out.args[0].size;
607 	}
608 
609 	fuse_aio_complete(io, req->out.h.error, pos);
610 }
611 
612 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
613 		size_t num_bytes, struct fuse_io_priv *io)
614 {
615 	spin_lock(&io->lock);
616 	io->size += num_bytes;
617 	io->reqs++;
618 	spin_unlock(&io->lock);
619 
620 	req->io = io;
621 	req->end = fuse_aio_complete_req;
622 
623 	__fuse_get_request(req);
624 	fuse_request_send_background(fc, req);
625 
626 	return num_bytes;
627 }
628 
629 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
630 			     loff_t pos, size_t count, fl_owner_t owner)
631 {
632 	struct file *file = io->file;
633 	struct fuse_file *ff = file->private_data;
634 	struct fuse_conn *fc = ff->fc;
635 
636 	fuse_read_fill(req, file, pos, count, FUSE_READ);
637 	if (owner != NULL) {
638 		struct fuse_read_in *inarg = &req->misc.read.in;
639 
640 		inarg->read_flags |= FUSE_READ_LOCKOWNER;
641 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
642 	}
643 
644 	if (io->async)
645 		return fuse_async_req_send(fc, req, count, io);
646 
647 	fuse_request_send(fc, req);
648 	return req->out.args[0].size;
649 }
650 
651 static void fuse_read_update_size(struct inode *inode, loff_t size,
652 				  u64 attr_ver)
653 {
654 	struct fuse_conn *fc = get_fuse_conn(inode);
655 	struct fuse_inode *fi = get_fuse_inode(inode);
656 
657 	spin_lock(&fc->lock);
658 	if (attr_ver == fi->attr_version && size < inode->i_size &&
659 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
660 		fi->attr_version = ++fc->attr_version;
661 		i_size_write(inode, size);
662 	}
663 	spin_unlock(&fc->lock);
664 }
665 
666 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
667 			    u64 attr_ver)
668 {
669 	size_t num_read = req->out.args[0].size;
670 	struct fuse_conn *fc = get_fuse_conn(inode);
671 
672 	if (fc->writeback_cache) {
673 		/*
674 		 * A hole in a file. Some data after the hole are in page cache,
675 		 * but have not reached the client fs yet. So, the hole is not
676 		 * present there.
677 		 */
678 		int i;
679 		int start_idx = num_read >> PAGE_CACHE_SHIFT;
680 		size_t off = num_read & (PAGE_CACHE_SIZE - 1);
681 
682 		for (i = start_idx; i < req->num_pages; i++) {
683 			zero_user_segment(req->pages[i], off, PAGE_CACHE_SIZE);
684 			off = 0;
685 		}
686 	} else {
687 		loff_t pos = page_offset(req->pages[0]) + num_read;
688 		fuse_read_update_size(inode, pos, attr_ver);
689 	}
690 }
691 
692 static int fuse_do_readpage(struct file *file, struct page *page)
693 {
694 	struct fuse_io_priv io = { .async = 0, .file = file };
695 	struct inode *inode = page->mapping->host;
696 	struct fuse_conn *fc = get_fuse_conn(inode);
697 	struct fuse_req *req;
698 	size_t num_read;
699 	loff_t pos = page_offset(page);
700 	size_t count = PAGE_CACHE_SIZE;
701 	u64 attr_ver;
702 	int err;
703 
704 	/*
705 	 * Page writeback can extend beyond the lifetime of the
706 	 * page-cache page, so make sure we read a properly synced
707 	 * page.
708 	 */
709 	fuse_wait_on_page_writeback(inode, page->index);
710 
711 	req = fuse_get_req(fc, 1);
712 	if (IS_ERR(req))
713 		return PTR_ERR(req);
714 
715 	attr_ver = fuse_get_attr_version(fc);
716 
717 	req->out.page_zeroing = 1;
718 	req->out.argpages = 1;
719 	req->num_pages = 1;
720 	req->pages[0] = page;
721 	req->page_descs[0].length = count;
722 	num_read = fuse_send_read(req, &io, pos, count, NULL);
723 	err = req->out.h.error;
724 
725 	if (!err) {
726 		/*
727 		 * Short read means EOF.  If file size is larger, truncate it
728 		 */
729 		if (num_read < count)
730 			fuse_short_read(req, inode, attr_ver);
731 
732 		SetPageUptodate(page);
733 	}
734 
735 	fuse_put_request(fc, req);
736 
737 	return err;
738 }
739 
740 static int fuse_readpage(struct file *file, struct page *page)
741 {
742 	struct inode *inode = page->mapping->host;
743 	int err;
744 
745 	err = -EIO;
746 	if (is_bad_inode(inode))
747 		goto out;
748 
749 	err = fuse_do_readpage(file, page);
750 	fuse_invalidate_atime(inode);
751  out:
752 	unlock_page(page);
753 	return err;
754 }
755 
756 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
757 {
758 	int i;
759 	size_t count = req->misc.read.in.size;
760 	size_t num_read = req->out.args[0].size;
761 	struct address_space *mapping = NULL;
762 
763 	for (i = 0; mapping == NULL && i < req->num_pages; i++)
764 		mapping = req->pages[i]->mapping;
765 
766 	if (mapping) {
767 		struct inode *inode = mapping->host;
768 
769 		/*
770 		 * Short read means EOF. If file size is larger, truncate it
771 		 */
772 		if (!req->out.h.error && num_read < count)
773 			fuse_short_read(req, inode, req->misc.read.attr_ver);
774 
775 		fuse_invalidate_atime(inode);
776 	}
777 
778 	for (i = 0; i < req->num_pages; i++) {
779 		struct page *page = req->pages[i];
780 		if (!req->out.h.error)
781 			SetPageUptodate(page);
782 		else
783 			SetPageError(page);
784 		unlock_page(page);
785 		page_cache_release(page);
786 	}
787 	if (req->ff)
788 		fuse_file_put(req->ff, false);
789 }
790 
791 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
792 {
793 	struct fuse_file *ff = file->private_data;
794 	struct fuse_conn *fc = ff->fc;
795 	loff_t pos = page_offset(req->pages[0]);
796 	size_t count = req->num_pages << PAGE_CACHE_SHIFT;
797 
798 	req->out.argpages = 1;
799 	req->out.page_zeroing = 1;
800 	req->out.page_replace = 1;
801 	fuse_read_fill(req, file, pos, count, FUSE_READ);
802 	req->misc.read.attr_ver = fuse_get_attr_version(fc);
803 	if (fc->async_read) {
804 		req->ff = fuse_file_get(ff);
805 		req->end = fuse_readpages_end;
806 		fuse_request_send_background(fc, req);
807 	} else {
808 		fuse_request_send(fc, req);
809 		fuse_readpages_end(fc, req);
810 		fuse_put_request(fc, req);
811 	}
812 }
813 
814 struct fuse_fill_data {
815 	struct fuse_req *req;
816 	struct file *file;
817 	struct inode *inode;
818 	unsigned nr_pages;
819 };
820 
821 static int fuse_readpages_fill(void *_data, struct page *page)
822 {
823 	struct fuse_fill_data *data = _data;
824 	struct fuse_req *req = data->req;
825 	struct inode *inode = data->inode;
826 	struct fuse_conn *fc = get_fuse_conn(inode);
827 
828 	fuse_wait_on_page_writeback(inode, page->index);
829 
830 	if (req->num_pages &&
831 	    (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
832 	     (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read ||
833 	     req->pages[req->num_pages - 1]->index + 1 != page->index)) {
834 		int nr_alloc = min_t(unsigned, data->nr_pages,
835 				     FUSE_MAX_PAGES_PER_REQ);
836 		fuse_send_readpages(req, data->file);
837 		if (fc->async_read)
838 			req = fuse_get_req_for_background(fc, nr_alloc);
839 		else
840 			req = fuse_get_req(fc, nr_alloc);
841 
842 		data->req = req;
843 		if (IS_ERR(req)) {
844 			unlock_page(page);
845 			return PTR_ERR(req);
846 		}
847 	}
848 
849 	if (WARN_ON(req->num_pages >= req->max_pages)) {
850 		fuse_put_request(fc, req);
851 		return -EIO;
852 	}
853 
854 	page_cache_get(page);
855 	req->pages[req->num_pages] = page;
856 	req->page_descs[req->num_pages].length = PAGE_SIZE;
857 	req->num_pages++;
858 	data->nr_pages--;
859 	return 0;
860 }
861 
862 static int fuse_readpages(struct file *file, struct address_space *mapping,
863 			  struct list_head *pages, unsigned nr_pages)
864 {
865 	struct inode *inode = mapping->host;
866 	struct fuse_conn *fc = get_fuse_conn(inode);
867 	struct fuse_fill_data data;
868 	int err;
869 	int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ);
870 
871 	err = -EIO;
872 	if (is_bad_inode(inode))
873 		goto out;
874 
875 	data.file = file;
876 	data.inode = inode;
877 	if (fc->async_read)
878 		data.req = fuse_get_req_for_background(fc, nr_alloc);
879 	else
880 		data.req = fuse_get_req(fc, nr_alloc);
881 	data.nr_pages = nr_pages;
882 	err = PTR_ERR(data.req);
883 	if (IS_ERR(data.req))
884 		goto out;
885 
886 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
887 	if (!err) {
888 		if (data.req->num_pages)
889 			fuse_send_readpages(data.req, file);
890 		else
891 			fuse_put_request(fc, data.req);
892 	}
893 out:
894 	return err;
895 }
896 
897 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
898 {
899 	struct inode *inode = iocb->ki_filp->f_mapping->host;
900 	struct fuse_conn *fc = get_fuse_conn(inode);
901 
902 	/*
903 	 * In auto invalidate mode, always update attributes on read.
904 	 * Otherwise, only update if we attempt to read past EOF (to ensure
905 	 * i_size is up to date).
906 	 */
907 	if (fc->auto_inval_data ||
908 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
909 		int err;
910 		err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL);
911 		if (err)
912 			return err;
913 	}
914 
915 	return generic_file_read_iter(iocb, to);
916 }
917 
918 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
919 			    loff_t pos, size_t count)
920 {
921 	struct fuse_write_in *inarg = &req->misc.write.in;
922 	struct fuse_write_out *outarg = &req->misc.write.out;
923 
924 	inarg->fh = ff->fh;
925 	inarg->offset = pos;
926 	inarg->size = count;
927 	req->in.h.opcode = FUSE_WRITE;
928 	req->in.h.nodeid = ff->nodeid;
929 	req->in.numargs = 2;
930 	if (ff->fc->minor < 9)
931 		req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
932 	else
933 		req->in.args[0].size = sizeof(struct fuse_write_in);
934 	req->in.args[0].value = inarg;
935 	req->in.args[1].size = count;
936 	req->out.numargs = 1;
937 	req->out.args[0].size = sizeof(struct fuse_write_out);
938 	req->out.args[0].value = outarg;
939 }
940 
941 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
942 			      loff_t pos, size_t count, fl_owner_t owner)
943 {
944 	struct file *file = io->file;
945 	struct fuse_file *ff = file->private_data;
946 	struct fuse_conn *fc = ff->fc;
947 	struct fuse_write_in *inarg = &req->misc.write.in;
948 
949 	fuse_write_fill(req, ff, pos, count);
950 	inarg->flags = file->f_flags;
951 	if (owner != NULL) {
952 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
953 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
954 	}
955 
956 	if (io->async)
957 		return fuse_async_req_send(fc, req, count, io);
958 
959 	fuse_request_send(fc, req);
960 	return req->misc.write.out.size;
961 }
962 
963 bool fuse_write_update_size(struct inode *inode, loff_t pos)
964 {
965 	struct fuse_conn *fc = get_fuse_conn(inode);
966 	struct fuse_inode *fi = get_fuse_inode(inode);
967 	bool ret = false;
968 
969 	spin_lock(&fc->lock);
970 	fi->attr_version = ++fc->attr_version;
971 	if (pos > inode->i_size) {
972 		i_size_write(inode, pos);
973 		ret = true;
974 	}
975 	spin_unlock(&fc->lock);
976 
977 	return ret;
978 }
979 
980 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file,
981 				    struct inode *inode, loff_t pos,
982 				    size_t count)
983 {
984 	size_t res;
985 	unsigned offset;
986 	unsigned i;
987 	struct fuse_io_priv io = { .async = 0, .file = file };
988 
989 	for (i = 0; i < req->num_pages; i++)
990 		fuse_wait_on_page_writeback(inode, req->pages[i]->index);
991 
992 	res = fuse_send_write(req, &io, pos, count, NULL);
993 
994 	offset = req->page_descs[0].offset;
995 	count = res;
996 	for (i = 0; i < req->num_pages; i++) {
997 		struct page *page = req->pages[i];
998 
999 		if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE)
1000 			SetPageUptodate(page);
1001 
1002 		if (count > PAGE_CACHE_SIZE - offset)
1003 			count -= PAGE_CACHE_SIZE - offset;
1004 		else
1005 			count = 0;
1006 		offset = 0;
1007 
1008 		unlock_page(page);
1009 		page_cache_release(page);
1010 	}
1011 
1012 	return res;
1013 }
1014 
1015 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1016 			       struct address_space *mapping,
1017 			       struct iov_iter *ii, loff_t pos)
1018 {
1019 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1020 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1021 	size_t count = 0;
1022 	int err;
1023 
1024 	req->in.argpages = 1;
1025 	req->page_descs[0].offset = offset;
1026 
1027 	do {
1028 		size_t tmp;
1029 		struct page *page;
1030 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1031 		size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset,
1032 				     iov_iter_count(ii));
1033 
1034 		bytes = min_t(size_t, bytes, fc->max_write - count);
1035 
1036  again:
1037 		err = -EFAULT;
1038 		if (iov_iter_fault_in_readable(ii, bytes))
1039 			break;
1040 
1041 		err = -ENOMEM;
1042 		page = grab_cache_page_write_begin(mapping, index, 0);
1043 		if (!page)
1044 			break;
1045 
1046 		if (mapping_writably_mapped(mapping))
1047 			flush_dcache_page(page);
1048 
1049 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1050 		flush_dcache_page(page);
1051 
1052 		if (!tmp) {
1053 			unlock_page(page);
1054 			page_cache_release(page);
1055 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1056 			goto again;
1057 		}
1058 
1059 		err = 0;
1060 		req->pages[req->num_pages] = page;
1061 		req->page_descs[req->num_pages].length = tmp;
1062 		req->num_pages++;
1063 
1064 		iov_iter_advance(ii, tmp);
1065 		count += tmp;
1066 		pos += tmp;
1067 		offset += tmp;
1068 		if (offset == PAGE_CACHE_SIZE)
1069 			offset = 0;
1070 
1071 		if (!fc->big_writes)
1072 			break;
1073 	} while (iov_iter_count(ii) && count < fc->max_write &&
1074 		 req->num_pages < req->max_pages && offset == 0);
1075 
1076 	return count > 0 ? count : err;
1077 }
1078 
1079 static inline unsigned fuse_wr_pages(loff_t pos, size_t len)
1080 {
1081 	return min_t(unsigned,
1082 		     ((pos + len - 1) >> PAGE_CACHE_SHIFT) -
1083 		     (pos >> PAGE_CACHE_SHIFT) + 1,
1084 		     FUSE_MAX_PAGES_PER_REQ);
1085 }
1086 
1087 static ssize_t fuse_perform_write(struct file *file,
1088 				  struct address_space *mapping,
1089 				  struct iov_iter *ii, loff_t pos)
1090 {
1091 	struct inode *inode = mapping->host;
1092 	struct fuse_conn *fc = get_fuse_conn(inode);
1093 	struct fuse_inode *fi = get_fuse_inode(inode);
1094 	int err = 0;
1095 	ssize_t res = 0;
1096 
1097 	if (is_bad_inode(inode))
1098 		return -EIO;
1099 
1100 	if (inode->i_size < pos + iov_iter_count(ii))
1101 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1102 
1103 	do {
1104 		struct fuse_req *req;
1105 		ssize_t count;
1106 		unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii));
1107 
1108 		req = fuse_get_req(fc, nr_pages);
1109 		if (IS_ERR(req)) {
1110 			err = PTR_ERR(req);
1111 			break;
1112 		}
1113 
1114 		count = fuse_fill_write_pages(req, mapping, ii, pos);
1115 		if (count <= 0) {
1116 			err = count;
1117 		} else {
1118 			size_t num_written;
1119 
1120 			num_written = fuse_send_write_pages(req, file, inode,
1121 							    pos, count);
1122 			err = req->out.h.error;
1123 			if (!err) {
1124 				res += num_written;
1125 				pos += num_written;
1126 
1127 				/* break out of the loop on short write */
1128 				if (num_written != count)
1129 					err = -EIO;
1130 			}
1131 		}
1132 		fuse_put_request(fc, req);
1133 	} while (!err && iov_iter_count(ii));
1134 
1135 	if (res > 0)
1136 		fuse_write_update_size(inode, pos);
1137 
1138 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1139 	fuse_invalidate_attr(inode);
1140 
1141 	return res > 0 ? res : err;
1142 }
1143 
1144 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1145 {
1146 	struct file *file = iocb->ki_filp;
1147 	struct address_space *mapping = file->f_mapping;
1148 	ssize_t written = 0;
1149 	ssize_t written_buffered = 0;
1150 	struct inode *inode = mapping->host;
1151 	ssize_t err;
1152 	loff_t endbyte = 0;
1153 
1154 	if (get_fuse_conn(inode)->writeback_cache) {
1155 		/* Update size (EOF optimization) and mode (SUID clearing) */
1156 		err = fuse_update_attributes(mapping->host, NULL, file, NULL);
1157 		if (err)
1158 			return err;
1159 
1160 		return generic_file_write_iter(iocb, from);
1161 	}
1162 
1163 	mutex_lock(&inode->i_mutex);
1164 
1165 	/* We can write back this queue in page reclaim */
1166 	current->backing_dev_info = inode_to_bdi(inode);
1167 
1168 	err = generic_write_checks(iocb, from);
1169 	if (err <= 0)
1170 		goto out;
1171 
1172 	err = file_remove_privs(file);
1173 	if (err)
1174 		goto out;
1175 
1176 	err = file_update_time(file);
1177 	if (err)
1178 		goto out;
1179 
1180 	if (iocb->ki_flags & IOCB_DIRECT) {
1181 		loff_t pos = iocb->ki_pos;
1182 		written = generic_file_direct_write(iocb, from, pos);
1183 		if (written < 0 || !iov_iter_count(from))
1184 			goto out;
1185 
1186 		pos += written;
1187 
1188 		written_buffered = fuse_perform_write(file, mapping, from, pos);
1189 		if (written_buffered < 0) {
1190 			err = written_buffered;
1191 			goto out;
1192 		}
1193 		endbyte = pos + written_buffered - 1;
1194 
1195 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1196 						   endbyte);
1197 		if (err)
1198 			goto out;
1199 
1200 		invalidate_mapping_pages(file->f_mapping,
1201 					 pos >> PAGE_CACHE_SHIFT,
1202 					 endbyte >> PAGE_CACHE_SHIFT);
1203 
1204 		written += written_buffered;
1205 		iocb->ki_pos = pos + written_buffered;
1206 	} else {
1207 		written = fuse_perform_write(file, mapping, from, iocb->ki_pos);
1208 		if (written >= 0)
1209 			iocb->ki_pos += written;
1210 	}
1211 out:
1212 	current->backing_dev_info = NULL;
1213 	mutex_unlock(&inode->i_mutex);
1214 
1215 	return written ? written : err;
1216 }
1217 
1218 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1219 		unsigned index, unsigned nr_pages)
1220 {
1221 	int i;
1222 
1223 	for (i = index; i < index + nr_pages; i++)
1224 		req->page_descs[i].length = PAGE_SIZE -
1225 			req->page_descs[i].offset;
1226 }
1227 
1228 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1229 {
1230 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1231 }
1232 
1233 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1234 					size_t max_size)
1235 {
1236 	return min(iov_iter_single_seg_count(ii), max_size);
1237 }
1238 
1239 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1240 			       size_t *nbytesp, int write)
1241 {
1242 	size_t nbytes = 0;  /* # bytes already packed in req */
1243 
1244 	/* Special case for kernel I/O: can copy directly into the buffer */
1245 	if (ii->type & ITER_KVEC) {
1246 		unsigned long user_addr = fuse_get_user_addr(ii);
1247 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1248 
1249 		if (write)
1250 			req->in.args[1].value = (void *) user_addr;
1251 		else
1252 			req->out.args[0].value = (void *) user_addr;
1253 
1254 		iov_iter_advance(ii, frag_size);
1255 		*nbytesp = frag_size;
1256 		return 0;
1257 	}
1258 
1259 	while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1260 		unsigned npages;
1261 		size_t start;
1262 		ssize_t ret = iov_iter_get_pages(ii,
1263 					&req->pages[req->num_pages],
1264 					*nbytesp - nbytes,
1265 					req->max_pages - req->num_pages,
1266 					&start);
1267 		if (ret < 0)
1268 			return ret;
1269 
1270 		iov_iter_advance(ii, ret);
1271 		nbytes += ret;
1272 
1273 		ret += start;
1274 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1275 
1276 		req->page_descs[req->num_pages].offset = start;
1277 		fuse_page_descs_length_init(req, req->num_pages, npages);
1278 
1279 		req->num_pages += npages;
1280 		req->page_descs[req->num_pages - 1].length -=
1281 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1282 	}
1283 
1284 	if (write)
1285 		req->in.argpages = 1;
1286 	else
1287 		req->out.argpages = 1;
1288 
1289 	*nbytesp = nbytes;
1290 
1291 	return 0;
1292 }
1293 
1294 static inline int fuse_iter_npages(const struct iov_iter *ii_p)
1295 {
1296 	return iov_iter_npages(ii_p, FUSE_MAX_PAGES_PER_REQ);
1297 }
1298 
1299 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1300 		       loff_t *ppos, int flags)
1301 {
1302 	int write = flags & FUSE_DIO_WRITE;
1303 	int cuse = flags & FUSE_DIO_CUSE;
1304 	struct file *file = io->file;
1305 	struct inode *inode = file->f_mapping->host;
1306 	struct fuse_file *ff = file->private_data;
1307 	struct fuse_conn *fc = ff->fc;
1308 	size_t nmax = write ? fc->max_write : fc->max_read;
1309 	loff_t pos = *ppos;
1310 	size_t count = iov_iter_count(iter);
1311 	pgoff_t idx_from = pos >> PAGE_CACHE_SHIFT;
1312 	pgoff_t idx_to = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1313 	ssize_t res = 0;
1314 	struct fuse_req *req;
1315 
1316 	if (io->async)
1317 		req = fuse_get_req_for_background(fc, fuse_iter_npages(iter));
1318 	else
1319 		req = fuse_get_req(fc, fuse_iter_npages(iter));
1320 	if (IS_ERR(req))
1321 		return PTR_ERR(req);
1322 
1323 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1324 		if (!write)
1325 			mutex_lock(&inode->i_mutex);
1326 		fuse_sync_writes(inode);
1327 		if (!write)
1328 			mutex_unlock(&inode->i_mutex);
1329 	}
1330 
1331 	while (count) {
1332 		size_t nres;
1333 		fl_owner_t owner = current->files;
1334 		size_t nbytes = min(count, nmax);
1335 		int err = fuse_get_user_pages(req, iter, &nbytes, write);
1336 		if (err) {
1337 			res = err;
1338 			break;
1339 		}
1340 
1341 		if (write)
1342 			nres = fuse_send_write(req, io, pos, nbytes, owner);
1343 		else
1344 			nres = fuse_send_read(req, io, pos, nbytes, owner);
1345 
1346 		if (!io->async)
1347 			fuse_release_user_pages(req, !write);
1348 		if (req->out.h.error) {
1349 			if (!res)
1350 				res = req->out.h.error;
1351 			break;
1352 		} else if (nres > nbytes) {
1353 			res = -EIO;
1354 			break;
1355 		}
1356 		count -= nres;
1357 		res += nres;
1358 		pos += nres;
1359 		if (nres != nbytes)
1360 			break;
1361 		if (count) {
1362 			fuse_put_request(fc, req);
1363 			if (io->async)
1364 				req = fuse_get_req_for_background(fc,
1365 					fuse_iter_npages(iter));
1366 			else
1367 				req = fuse_get_req(fc, fuse_iter_npages(iter));
1368 			if (IS_ERR(req))
1369 				break;
1370 		}
1371 	}
1372 	if (!IS_ERR(req))
1373 		fuse_put_request(fc, req);
1374 	if (res > 0)
1375 		*ppos = pos;
1376 
1377 	return res;
1378 }
1379 EXPORT_SYMBOL_GPL(fuse_direct_io);
1380 
1381 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1382 				  struct iov_iter *iter,
1383 				  loff_t *ppos)
1384 {
1385 	ssize_t res;
1386 	struct file *file = io->file;
1387 	struct inode *inode = file_inode(file);
1388 
1389 	if (is_bad_inode(inode))
1390 		return -EIO;
1391 
1392 	res = fuse_direct_io(io, iter, ppos, 0);
1393 
1394 	fuse_invalidate_attr(inode);
1395 
1396 	return res;
1397 }
1398 
1399 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1400 {
1401 	struct fuse_io_priv io = { .async = 0, .file = iocb->ki_filp };
1402 	return __fuse_direct_read(&io, to, &iocb->ki_pos);
1403 }
1404 
1405 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1406 {
1407 	struct file *file = iocb->ki_filp;
1408 	struct inode *inode = file_inode(file);
1409 	struct fuse_io_priv io = { .async = 0, .file = file };
1410 	ssize_t res;
1411 
1412 	if (is_bad_inode(inode))
1413 		return -EIO;
1414 
1415 	/* Don't allow parallel writes to the same file */
1416 	mutex_lock(&inode->i_mutex);
1417 	res = generic_write_checks(iocb, from);
1418 	if (res > 0)
1419 		res = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE);
1420 	fuse_invalidate_attr(inode);
1421 	if (res > 0)
1422 		fuse_write_update_size(inode, iocb->ki_pos);
1423 	mutex_unlock(&inode->i_mutex);
1424 
1425 	return res;
1426 }
1427 
1428 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1429 {
1430 	int i;
1431 
1432 	for (i = 0; i < req->num_pages; i++)
1433 		__free_page(req->pages[i]);
1434 
1435 	if (req->ff)
1436 		fuse_file_put(req->ff, false);
1437 }
1438 
1439 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1440 {
1441 	struct inode *inode = req->inode;
1442 	struct fuse_inode *fi = get_fuse_inode(inode);
1443 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1444 	int i;
1445 
1446 	list_del(&req->writepages_entry);
1447 	for (i = 0; i < req->num_pages; i++) {
1448 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1449 		dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1450 		wb_writeout_inc(&bdi->wb);
1451 	}
1452 	wake_up(&fi->page_waitq);
1453 }
1454 
1455 /* Called under fc->lock, may release and reacquire it */
1456 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1457 				loff_t size)
1458 __releases(fc->lock)
1459 __acquires(fc->lock)
1460 {
1461 	struct fuse_inode *fi = get_fuse_inode(req->inode);
1462 	struct fuse_write_in *inarg = &req->misc.write.in;
1463 	__u64 data_size = req->num_pages * PAGE_CACHE_SIZE;
1464 
1465 	if (!fc->connected)
1466 		goto out_free;
1467 
1468 	if (inarg->offset + data_size <= size) {
1469 		inarg->size = data_size;
1470 	} else if (inarg->offset < size) {
1471 		inarg->size = size - inarg->offset;
1472 	} else {
1473 		/* Got truncated off completely */
1474 		goto out_free;
1475 	}
1476 
1477 	req->in.args[1].size = inarg->size;
1478 	fi->writectr++;
1479 	fuse_request_send_background_locked(fc, req);
1480 	return;
1481 
1482  out_free:
1483 	fuse_writepage_finish(fc, req);
1484 	spin_unlock(&fc->lock);
1485 	fuse_writepage_free(fc, req);
1486 	fuse_put_request(fc, req);
1487 	spin_lock(&fc->lock);
1488 }
1489 
1490 /*
1491  * If fi->writectr is positive (no truncate or fsync going on) send
1492  * all queued writepage requests.
1493  *
1494  * Called with fc->lock
1495  */
1496 void fuse_flush_writepages(struct inode *inode)
1497 __releases(fc->lock)
1498 __acquires(fc->lock)
1499 {
1500 	struct fuse_conn *fc = get_fuse_conn(inode);
1501 	struct fuse_inode *fi = get_fuse_inode(inode);
1502 	size_t crop = i_size_read(inode);
1503 	struct fuse_req *req;
1504 
1505 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1506 		req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1507 		list_del_init(&req->list);
1508 		fuse_send_writepage(fc, req, crop);
1509 	}
1510 }
1511 
1512 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1513 {
1514 	struct inode *inode = req->inode;
1515 	struct fuse_inode *fi = get_fuse_inode(inode);
1516 
1517 	mapping_set_error(inode->i_mapping, req->out.h.error);
1518 	spin_lock(&fc->lock);
1519 	while (req->misc.write.next) {
1520 		struct fuse_conn *fc = get_fuse_conn(inode);
1521 		struct fuse_write_in *inarg = &req->misc.write.in;
1522 		struct fuse_req *next = req->misc.write.next;
1523 		req->misc.write.next = next->misc.write.next;
1524 		next->misc.write.next = NULL;
1525 		next->ff = fuse_file_get(req->ff);
1526 		list_add(&next->writepages_entry, &fi->writepages);
1527 
1528 		/*
1529 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1530 		 * based on primary request size.
1531 		 *
1532 		 * 1st case (trivial): there are no concurrent activities using
1533 		 * fuse_set/release_nowrite.  Then we're on safe side because
1534 		 * fuse_flush_writepages() would call fuse_send_writepage()
1535 		 * anyway.
1536 		 *
1537 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1538 		 * now for completion of all in-flight requests.  This happens
1539 		 * rarely and no more than once per page, so this should be
1540 		 * okay.
1541 		 *
1542 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1543 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1544 		 * that fuse_set_nowrite returned implies that all in-flight
1545 		 * requests were completed along with all of their secondary
1546 		 * requests.  Further primary requests are blocked by negative
1547 		 * writectr.  Hence there cannot be any in-flight requests and
1548 		 * no invocations of fuse_writepage_end() while we're in
1549 		 * fuse_set_nowrite..fuse_release_nowrite section.
1550 		 */
1551 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1552 	}
1553 	fi->writectr--;
1554 	fuse_writepage_finish(fc, req);
1555 	spin_unlock(&fc->lock);
1556 	fuse_writepage_free(fc, req);
1557 }
1558 
1559 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1560 					       struct fuse_inode *fi)
1561 {
1562 	struct fuse_file *ff = NULL;
1563 
1564 	spin_lock(&fc->lock);
1565 	if (!list_empty(&fi->write_files)) {
1566 		ff = list_entry(fi->write_files.next, struct fuse_file,
1567 				write_entry);
1568 		fuse_file_get(ff);
1569 	}
1570 	spin_unlock(&fc->lock);
1571 
1572 	return ff;
1573 }
1574 
1575 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1576 					     struct fuse_inode *fi)
1577 {
1578 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1579 	WARN_ON(!ff);
1580 	return ff;
1581 }
1582 
1583 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1584 {
1585 	struct fuse_conn *fc = get_fuse_conn(inode);
1586 	struct fuse_inode *fi = get_fuse_inode(inode);
1587 	struct fuse_file *ff;
1588 	int err;
1589 
1590 	ff = __fuse_write_file_get(fc, fi);
1591 	err = fuse_flush_times(inode, ff);
1592 	if (ff)
1593 		fuse_file_put(ff, 0);
1594 
1595 	return err;
1596 }
1597 
1598 static int fuse_writepage_locked(struct page *page)
1599 {
1600 	struct address_space *mapping = page->mapping;
1601 	struct inode *inode = mapping->host;
1602 	struct fuse_conn *fc = get_fuse_conn(inode);
1603 	struct fuse_inode *fi = get_fuse_inode(inode);
1604 	struct fuse_req *req;
1605 	struct page *tmp_page;
1606 	int error = -ENOMEM;
1607 
1608 	set_page_writeback(page);
1609 
1610 	req = fuse_request_alloc_nofs(1);
1611 	if (!req)
1612 		goto err;
1613 
1614 	/* writeback always goes to bg_queue */
1615 	__set_bit(FR_BACKGROUND, &req->flags);
1616 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1617 	if (!tmp_page)
1618 		goto err_free;
1619 
1620 	error = -EIO;
1621 	req->ff = fuse_write_file_get(fc, fi);
1622 	if (!req->ff)
1623 		goto err_nofile;
1624 
1625 	fuse_write_fill(req, req->ff, page_offset(page), 0);
1626 
1627 	copy_highpage(tmp_page, page);
1628 	req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1629 	req->misc.write.next = NULL;
1630 	req->in.argpages = 1;
1631 	req->num_pages = 1;
1632 	req->pages[0] = tmp_page;
1633 	req->page_descs[0].offset = 0;
1634 	req->page_descs[0].length = PAGE_SIZE;
1635 	req->end = fuse_writepage_end;
1636 	req->inode = inode;
1637 
1638 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1639 	inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1640 
1641 	spin_lock(&fc->lock);
1642 	list_add(&req->writepages_entry, &fi->writepages);
1643 	list_add_tail(&req->list, &fi->queued_writes);
1644 	fuse_flush_writepages(inode);
1645 	spin_unlock(&fc->lock);
1646 
1647 	end_page_writeback(page);
1648 
1649 	return 0;
1650 
1651 err_nofile:
1652 	__free_page(tmp_page);
1653 err_free:
1654 	fuse_request_free(req);
1655 err:
1656 	end_page_writeback(page);
1657 	return error;
1658 }
1659 
1660 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1661 {
1662 	int err;
1663 
1664 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1665 		/*
1666 		 * ->writepages() should be called for sync() and friends.  We
1667 		 * should only get here on direct reclaim and then we are
1668 		 * allowed to skip a page which is already in flight
1669 		 */
1670 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1671 
1672 		redirty_page_for_writepage(wbc, page);
1673 		return 0;
1674 	}
1675 
1676 	err = fuse_writepage_locked(page);
1677 	unlock_page(page);
1678 
1679 	return err;
1680 }
1681 
1682 struct fuse_fill_wb_data {
1683 	struct fuse_req *req;
1684 	struct fuse_file *ff;
1685 	struct inode *inode;
1686 	struct page **orig_pages;
1687 };
1688 
1689 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1690 {
1691 	struct fuse_req *req = data->req;
1692 	struct inode *inode = data->inode;
1693 	struct fuse_conn *fc = get_fuse_conn(inode);
1694 	struct fuse_inode *fi = get_fuse_inode(inode);
1695 	int num_pages = req->num_pages;
1696 	int i;
1697 
1698 	req->ff = fuse_file_get(data->ff);
1699 	spin_lock(&fc->lock);
1700 	list_add_tail(&req->list, &fi->queued_writes);
1701 	fuse_flush_writepages(inode);
1702 	spin_unlock(&fc->lock);
1703 
1704 	for (i = 0; i < num_pages; i++)
1705 		end_page_writeback(data->orig_pages[i]);
1706 }
1707 
1708 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1709 				     struct page *page)
1710 {
1711 	struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1712 	struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1713 	struct fuse_req *tmp;
1714 	struct fuse_req *old_req;
1715 	bool found = false;
1716 	pgoff_t curr_index;
1717 
1718 	BUG_ON(new_req->num_pages != 0);
1719 
1720 	spin_lock(&fc->lock);
1721 	list_del(&new_req->writepages_entry);
1722 	list_for_each_entry(old_req, &fi->writepages, writepages_entry) {
1723 		BUG_ON(old_req->inode != new_req->inode);
1724 		curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1725 		if (curr_index <= page->index &&
1726 		    page->index < curr_index + old_req->num_pages) {
1727 			found = true;
1728 			break;
1729 		}
1730 	}
1731 	if (!found) {
1732 		list_add(&new_req->writepages_entry, &fi->writepages);
1733 		goto out_unlock;
1734 	}
1735 
1736 	new_req->num_pages = 1;
1737 	for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) {
1738 		BUG_ON(tmp->inode != new_req->inode);
1739 		curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1740 		if (tmp->num_pages == 1 &&
1741 		    curr_index == page->index) {
1742 			old_req = tmp;
1743 		}
1744 	}
1745 
1746 	if (old_req->num_pages == 1 && test_bit(FR_PENDING, &old_req->flags)) {
1747 		struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host);
1748 
1749 		copy_highpage(old_req->pages[0], page);
1750 		spin_unlock(&fc->lock);
1751 
1752 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1753 		dec_zone_page_state(page, NR_WRITEBACK_TEMP);
1754 		wb_writeout_inc(&bdi->wb);
1755 		fuse_writepage_free(fc, new_req);
1756 		fuse_request_free(new_req);
1757 		goto out;
1758 	} else {
1759 		new_req->misc.write.next = old_req->misc.write.next;
1760 		old_req->misc.write.next = new_req;
1761 	}
1762 out_unlock:
1763 	spin_unlock(&fc->lock);
1764 out:
1765 	return found;
1766 }
1767 
1768 static int fuse_writepages_fill(struct page *page,
1769 		struct writeback_control *wbc, void *_data)
1770 {
1771 	struct fuse_fill_wb_data *data = _data;
1772 	struct fuse_req *req = data->req;
1773 	struct inode *inode = data->inode;
1774 	struct fuse_conn *fc = get_fuse_conn(inode);
1775 	struct page *tmp_page;
1776 	bool is_writeback;
1777 	int err;
1778 
1779 	if (!data->ff) {
1780 		err = -EIO;
1781 		data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1782 		if (!data->ff)
1783 			goto out_unlock;
1784 	}
1785 
1786 	/*
1787 	 * Being under writeback is unlikely but possible.  For example direct
1788 	 * read to an mmaped fuse file will set the page dirty twice; once when
1789 	 * the pages are faulted with get_user_pages(), and then after the read
1790 	 * completed.
1791 	 */
1792 	is_writeback = fuse_page_is_writeback(inode, page->index);
1793 
1794 	if (req && req->num_pages &&
1795 	    (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
1796 	     (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write ||
1797 	     data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1798 		fuse_writepages_send(data);
1799 		data->req = NULL;
1800 	}
1801 	err = -ENOMEM;
1802 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1803 	if (!tmp_page)
1804 		goto out_unlock;
1805 
1806 	/*
1807 	 * The page must not be redirtied until the writeout is completed
1808 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
1809 	 * there could be more than one temporary page instance for each real
1810 	 * page.
1811 	 *
1812 	 * This is ensured by holding the page lock in page_mkwrite() while
1813 	 * checking fuse_page_is_writeback().  We already hold the page lock
1814 	 * since clear_page_dirty_for_io() and keep it held until we add the
1815 	 * request to the fi->writepages list and increment req->num_pages.
1816 	 * After this fuse_page_is_writeback() will indicate that the page is
1817 	 * under writeback, so we can release the page lock.
1818 	 */
1819 	if (data->req == NULL) {
1820 		struct fuse_inode *fi = get_fuse_inode(inode);
1821 
1822 		err = -ENOMEM;
1823 		req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ);
1824 		if (!req) {
1825 			__free_page(tmp_page);
1826 			goto out_unlock;
1827 		}
1828 
1829 		fuse_write_fill(req, data->ff, page_offset(page), 0);
1830 		req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1831 		req->misc.write.next = NULL;
1832 		req->in.argpages = 1;
1833 		__set_bit(FR_BACKGROUND, &req->flags);
1834 		req->num_pages = 0;
1835 		req->end = fuse_writepage_end;
1836 		req->inode = inode;
1837 
1838 		spin_lock(&fc->lock);
1839 		list_add(&req->writepages_entry, &fi->writepages);
1840 		spin_unlock(&fc->lock);
1841 
1842 		data->req = req;
1843 	}
1844 	set_page_writeback(page);
1845 
1846 	copy_highpage(tmp_page, page);
1847 	req->pages[req->num_pages] = tmp_page;
1848 	req->page_descs[req->num_pages].offset = 0;
1849 	req->page_descs[req->num_pages].length = PAGE_SIZE;
1850 
1851 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1852 	inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1853 
1854 	err = 0;
1855 	if (is_writeback && fuse_writepage_in_flight(req, page)) {
1856 		end_page_writeback(page);
1857 		data->req = NULL;
1858 		goto out_unlock;
1859 	}
1860 	data->orig_pages[req->num_pages] = page;
1861 
1862 	/*
1863 	 * Protected by fc->lock against concurrent access by
1864 	 * fuse_page_is_writeback().
1865 	 */
1866 	spin_lock(&fc->lock);
1867 	req->num_pages++;
1868 	spin_unlock(&fc->lock);
1869 
1870 out_unlock:
1871 	unlock_page(page);
1872 
1873 	return err;
1874 }
1875 
1876 static int fuse_writepages(struct address_space *mapping,
1877 			   struct writeback_control *wbc)
1878 {
1879 	struct inode *inode = mapping->host;
1880 	struct fuse_fill_wb_data data;
1881 	int err;
1882 
1883 	err = -EIO;
1884 	if (is_bad_inode(inode))
1885 		goto out;
1886 
1887 	data.inode = inode;
1888 	data.req = NULL;
1889 	data.ff = NULL;
1890 
1891 	err = -ENOMEM;
1892 	data.orig_pages = kcalloc(FUSE_MAX_PAGES_PER_REQ,
1893 				  sizeof(struct page *),
1894 				  GFP_NOFS);
1895 	if (!data.orig_pages)
1896 		goto out;
1897 
1898 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1899 	if (data.req) {
1900 		/* Ignore errors if we can write at least one page */
1901 		BUG_ON(!data.req->num_pages);
1902 		fuse_writepages_send(&data);
1903 		err = 0;
1904 	}
1905 	if (data.ff)
1906 		fuse_file_put(data.ff, false);
1907 
1908 	kfree(data.orig_pages);
1909 out:
1910 	return err;
1911 }
1912 
1913 /*
1914  * It's worthy to make sure that space is reserved on disk for the write,
1915  * but how to implement it without killing performance need more thinking.
1916  */
1917 static int fuse_write_begin(struct file *file, struct address_space *mapping,
1918 		loff_t pos, unsigned len, unsigned flags,
1919 		struct page **pagep, void **fsdata)
1920 {
1921 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1922 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
1923 	struct page *page;
1924 	loff_t fsize;
1925 	int err = -ENOMEM;
1926 
1927 	WARN_ON(!fc->writeback_cache);
1928 
1929 	page = grab_cache_page_write_begin(mapping, index, flags);
1930 	if (!page)
1931 		goto error;
1932 
1933 	fuse_wait_on_page_writeback(mapping->host, page->index);
1934 
1935 	if (PageUptodate(page) || len == PAGE_CACHE_SIZE)
1936 		goto success;
1937 	/*
1938 	 * Check if the start this page comes after the end of file, in which
1939 	 * case the readpage can be optimized away.
1940 	 */
1941 	fsize = i_size_read(mapping->host);
1942 	if (fsize <= (pos & PAGE_CACHE_MASK)) {
1943 		size_t off = pos & ~PAGE_CACHE_MASK;
1944 		if (off)
1945 			zero_user_segment(page, 0, off);
1946 		goto success;
1947 	}
1948 	err = fuse_do_readpage(file, page);
1949 	if (err)
1950 		goto cleanup;
1951 success:
1952 	*pagep = page;
1953 	return 0;
1954 
1955 cleanup:
1956 	unlock_page(page);
1957 	page_cache_release(page);
1958 error:
1959 	return err;
1960 }
1961 
1962 static int fuse_write_end(struct file *file, struct address_space *mapping,
1963 		loff_t pos, unsigned len, unsigned copied,
1964 		struct page *page, void *fsdata)
1965 {
1966 	struct inode *inode = page->mapping->host;
1967 
1968 	if (!PageUptodate(page)) {
1969 		/* Zero any unwritten bytes at the end of the page */
1970 		size_t endoff = (pos + copied) & ~PAGE_CACHE_MASK;
1971 		if (endoff)
1972 			zero_user_segment(page, endoff, PAGE_CACHE_SIZE);
1973 		SetPageUptodate(page);
1974 	}
1975 
1976 	fuse_write_update_size(inode, pos + copied);
1977 	set_page_dirty(page);
1978 	unlock_page(page);
1979 	page_cache_release(page);
1980 
1981 	return copied;
1982 }
1983 
1984 static int fuse_launder_page(struct page *page)
1985 {
1986 	int err = 0;
1987 	if (clear_page_dirty_for_io(page)) {
1988 		struct inode *inode = page->mapping->host;
1989 		err = fuse_writepage_locked(page);
1990 		if (!err)
1991 			fuse_wait_on_page_writeback(inode, page->index);
1992 	}
1993 	return err;
1994 }
1995 
1996 /*
1997  * Write back dirty pages now, because there may not be any suitable
1998  * open files later
1999  */
2000 static void fuse_vma_close(struct vm_area_struct *vma)
2001 {
2002 	filemap_write_and_wait(vma->vm_file->f_mapping);
2003 }
2004 
2005 /*
2006  * Wait for writeback against this page to complete before allowing it
2007  * to be marked dirty again, and hence written back again, possibly
2008  * before the previous writepage completed.
2009  *
2010  * Block here, instead of in ->writepage(), so that the userspace fs
2011  * can only block processes actually operating on the filesystem.
2012  *
2013  * Otherwise unprivileged userspace fs would be able to block
2014  * unrelated:
2015  *
2016  * - page migration
2017  * - sync(2)
2018  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2019  */
2020 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2021 {
2022 	struct page *page = vmf->page;
2023 	struct inode *inode = file_inode(vma->vm_file);
2024 
2025 	file_update_time(vma->vm_file);
2026 	lock_page(page);
2027 	if (page->mapping != inode->i_mapping) {
2028 		unlock_page(page);
2029 		return VM_FAULT_NOPAGE;
2030 	}
2031 
2032 	fuse_wait_on_page_writeback(inode, page->index);
2033 	return VM_FAULT_LOCKED;
2034 }
2035 
2036 static const struct vm_operations_struct fuse_file_vm_ops = {
2037 	.close		= fuse_vma_close,
2038 	.fault		= filemap_fault,
2039 	.map_pages	= filemap_map_pages,
2040 	.page_mkwrite	= fuse_page_mkwrite,
2041 };
2042 
2043 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2044 {
2045 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2046 		fuse_link_write_file(file);
2047 
2048 	file_accessed(file);
2049 	vma->vm_ops = &fuse_file_vm_ops;
2050 	return 0;
2051 }
2052 
2053 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
2054 {
2055 	/* Can't provide the coherency needed for MAP_SHARED */
2056 	if (vma->vm_flags & VM_MAYSHARE)
2057 		return -ENODEV;
2058 
2059 	invalidate_inode_pages2(file->f_mapping);
2060 
2061 	return generic_file_mmap(file, vma);
2062 }
2063 
2064 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl,
2065 				  struct file_lock *fl)
2066 {
2067 	switch (ffl->type) {
2068 	case F_UNLCK:
2069 		break;
2070 
2071 	case F_RDLCK:
2072 	case F_WRLCK:
2073 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2074 		    ffl->end < ffl->start)
2075 			return -EIO;
2076 
2077 		fl->fl_start = ffl->start;
2078 		fl->fl_end = ffl->end;
2079 		fl->fl_pid = ffl->pid;
2080 		break;
2081 
2082 	default:
2083 		return -EIO;
2084 	}
2085 	fl->fl_type = ffl->type;
2086 	return 0;
2087 }
2088 
2089 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2090 			 const struct file_lock *fl, int opcode, pid_t pid,
2091 			 int flock, struct fuse_lk_in *inarg)
2092 {
2093 	struct inode *inode = file_inode(file);
2094 	struct fuse_conn *fc = get_fuse_conn(inode);
2095 	struct fuse_file *ff = file->private_data;
2096 
2097 	memset(inarg, 0, sizeof(*inarg));
2098 	inarg->fh = ff->fh;
2099 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2100 	inarg->lk.start = fl->fl_start;
2101 	inarg->lk.end = fl->fl_end;
2102 	inarg->lk.type = fl->fl_type;
2103 	inarg->lk.pid = pid;
2104 	if (flock)
2105 		inarg->lk_flags |= FUSE_LK_FLOCK;
2106 	args->in.h.opcode = opcode;
2107 	args->in.h.nodeid = get_node_id(inode);
2108 	args->in.numargs = 1;
2109 	args->in.args[0].size = sizeof(*inarg);
2110 	args->in.args[0].value = inarg;
2111 }
2112 
2113 static int fuse_getlk(struct file *file, struct file_lock *fl)
2114 {
2115 	struct inode *inode = file_inode(file);
2116 	struct fuse_conn *fc = get_fuse_conn(inode);
2117 	FUSE_ARGS(args);
2118 	struct fuse_lk_in inarg;
2119 	struct fuse_lk_out outarg;
2120 	int err;
2121 
2122 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2123 	args.out.numargs = 1;
2124 	args.out.args[0].size = sizeof(outarg);
2125 	args.out.args[0].value = &outarg;
2126 	err = fuse_simple_request(fc, &args);
2127 	if (!err)
2128 		err = convert_fuse_file_lock(&outarg.lk, fl);
2129 
2130 	return err;
2131 }
2132 
2133 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2134 {
2135 	struct inode *inode = file_inode(file);
2136 	struct fuse_conn *fc = get_fuse_conn(inode);
2137 	FUSE_ARGS(args);
2138 	struct fuse_lk_in inarg;
2139 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2140 	pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0;
2141 	int err;
2142 
2143 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2144 		/* NLM needs asynchronous locks, which we don't support yet */
2145 		return -ENOLCK;
2146 	}
2147 
2148 	/* Unlock on close is handled by the flush method */
2149 	if (fl->fl_flags & FL_CLOSE)
2150 		return 0;
2151 
2152 	fuse_lk_fill(&args, file, fl, opcode, pid, flock, &inarg);
2153 	err = fuse_simple_request(fc, &args);
2154 
2155 	/* locking is restartable */
2156 	if (err == -EINTR)
2157 		err = -ERESTARTSYS;
2158 
2159 	return err;
2160 }
2161 
2162 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2163 {
2164 	struct inode *inode = file_inode(file);
2165 	struct fuse_conn *fc = get_fuse_conn(inode);
2166 	int err;
2167 
2168 	if (cmd == F_CANCELLK) {
2169 		err = 0;
2170 	} else if (cmd == F_GETLK) {
2171 		if (fc->no_lock) {
2172 			posix_test_lock(file, fl);
2173 			err = 0;
2174 		} else
2175 			err = fuse_getlk(file, fl);
2176 	} else {
2177 		if (fc->no_lock)
2178 			err = posix_lock_file(file, fl, NULL);
2179 		else
2180 			err = fuse_setlk(file, fl, 0);
2181 	}
2182 	return err;
2183 }
2184 
2185 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2186 {
2187 	struct inode *inode = file_inode(file);
2188 	struct fuse_conn *fc = get_fuse_conn(inode);
2189 	int err;
2190 
2191 	if (fc->no_flock) {
2192 		err = flock_lock_file_wait(file, fl);
2193 	} else {
2194 		struct fuse_file *ff = file->private_data;
2195 
2196 		/* emulate flock with POSIX locks */
2197 		ff->flock = true;
2198 		err = fuse_setlk(file, fl, 1);
2199 	}
2200 
2201 	return err;
2202 }
2203 
2204 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2205 {
2206 	struct inode *inode = mapping->host;
2207 	struct fuse_conn *fc = get_fuse_conn(inode);
2208 	FUSE_ARGS(args);
2209 	struct fuse_bmap_in inarg;
2210 	struct fuse_bmap_out outarg;
2211 	int err;
2212 
2213 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2214 		return 0;
2215 
2216 	memset(&inarg, 0, sizeof(inarg));
2217 	inarg.block = block;
2218 	inarg.blocksize = inode->i_sb->s_blocksize;
2219 	args.in.h.opcode = FUSE_BMAP;
2220 	args.in.h.nodeid = get_node_id(inode);
2221 	args.in.numargs = 1;
2222 	args.in.args[0].size = sizeof(inarg);
2223 	args.in.args[0].value = &inarg;
2224 	args.out.numargs = 1;
2225 	args.out.args[0].size = sizeof(outarg);
2226 	args.out.args[0].value = &outarg;
2227 	err = fuse_simple_request(fc, &args);
2228 	if (err == -ENOSYS)
2229 		fc->no_bmap = 1;
2230 
2231 	return err ? 0 : outarg.block;
2232 }
2233 
2234 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2235 {
2236 	loff_t retval;
2237 	struct inode *inode = file_inode(file);
2238 
2239 	/* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2240 	if (whence == SEEK_CUR || whence == SEEK_SET)
2241 		return generic_file_llseek(file, offset, whence);
2242 
2243 	mutex_lock(&inode->i_mutex);
2244 	retval = fuse_update_attributes(inode, NULL, file, NULL);
2245 	if (!retval)
2246 		retval = generic_file_llseek(file, offset, whence);
2247 	mutex_unlock(&inode->i_mutex);
2248 
2249 	return retval;
2250 }
2251 
2252 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov,
2253 			unsigned int nr_segs, size_t bytes, bool to_user)
2254 {
2255 	struct iov_iter ii;
2256 	int page_idx = 0;
2257 
2258 	if (!bytes)
2259 		return 0;
2260 
2261 	iov_iter_init(&ii, to_user ? READ : WRITE, iov, nr_segs, bytes);
2262 
2263 	while (iov_iter_count(&ii)) {
2264 		struct page *page = pages[page_idx++];
2265 		size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii));
2266 		void *kaddr;
2267 
2268 		kaddr = kmap(page);
2269 
2270 		while (todo) {
2271 			char __user *uaddr = ii.iov->iov_base + ii.iov_offset;
2272 			size_t iov_len = ii.iov->iov_len - ii.iov_offset;
2273 			size_t copy = min(todo, iov_len);
2274 			size_t left;
2275 
2276 			if (!to_user)
2277 				left = copy_from_user(kaddr, uaddr, copy);
2278 			else
2279 				left = copy_to_user(uaddr, kaddr, copy);
2280 
2281 			if (unlikely(left))
2282 				return -EFAULT;
2283 
2284 			iov_iter_advance(&ii, copy);
2285 			todo -= copy;
2286 			kaddr += copy;
2287 		}
2288 
2289 		kunmap(page);
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 /*
2296  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2297  * ABI was defined to be 'struct iovec' which is different on 32bit
2298  * and 64bit.  Fortunately we can determine which structure the server
2299  * used from the size of the reply.
2300  */
2301 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2302 				     size_t transferred, unsigned count,
2303 				     bool is_compat)
2304 {
2305 #ifdef CONFIG_COMPAT
2306 	if (count * sizeof(struct compat_iovec) == transferred) {
2307 		struct compat_iovec *ciov = src;
2308 		unsigned i;
2309 
2310 		/*
2311 		 * With this interface a 32bit server cannot support
2312 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2313 		 * requests
2314 		 */
2315 		if (!is_compat)
2316 			return -EINVAL;
2317 
2318 		for (i = 0; i < count; i++) {
2319 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2320 			dst[i].iov_len = ciov[i].iov_len;
2321 		}
2322 		return 0;
2323 	}
2324 #endif
2325 
2326 	if (count * sizeof(struct iovec) != transferred)
2327 		return -EIO;
2328 
2329 	memcpy(dst, src, transferred);
2330 	return 0;
2331 }
2332 
2333 /* Make sure iov_length() won't overflow */
2334 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count)
2335 {
2336 	size_t n;
2337 	u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT;
2338 
2339 	for (n = 0; n < count; n++, iov++) {
2340 		if (iov->iov_len > (size_t) max)
2341 			return -ENOMEM;
2342 		max -= iov->iov_len;
2343 	}
2344 	return 0;
2345 }
2346 
2347 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2348 				 void *src, size_t transferred, unsigned count,
2349 				 bool is_compat)
2350 {
2351 	unsigned i;
2352 	struct fuse_ioctl_iovec *fiov = src;
2353 
2354 	if (fc->minor < 16) {
2355 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2356 						 count, is_compat);
2357 	}
2358 
2359 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2360 		return -EIO;
2361 
2362 	for (i = 0; i < count; i++) {
2363 		/* Did the server supply an inappropriate value? */
2364 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2365 		    fiov[i].len != (unsigned long) fiov[i].len)
2366 			return -EIO;
2367 
2368 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2369 		dst[i].iov_len = (size_t) fiov[i].len;
2370 
2371 #ifdef CONFIG_COMPAT
2372 		if (is_compat &&
2373 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2374 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2375 			return -EIO;
2376 #endif
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 
2383 /*
2384  * For ioctls, there is no generic way to determine how much memory
2385  * needs to be read and/or written.  Furthermore, ioctls are allowed
2386  * to dereference the passed pointer, so the parameter requires deep
2387  * copying but FUSE has no idea whatsoever about what to copy in or
2388  * out.
2389  *
2390  * This is solved by allowing FUSE server to retry ioctl with
2391  * necessary in/out iovecs.  Let's assume the ioctl implementation
2392  * needs to read in the following structure.
2393  *
2394  * struct a {
2395  *	char	*buf;
2396  *	size_t	buflen;
2397  * }
2398  *
2399  * On the first callout to FUSE server, inarg->in_size and
2400  * inarg->out_size will be NULL; then, the server completes the ioctl
2401  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2402  * the actual iov array to
2403  *
2404  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2405  *
2406  * which tells FUSE to copy in the requested area and retry the ioctl.
2407  * On the second round, the server has access to the structure and
2408  * from that it can tell what to look for next, so on the invocation,
2409  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2410  *
2411  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2412  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2413  *
2414  * FUSE will copy both struct a and the pointed buffer from the
2415  * process doing the ioctl and retry ioctl with both struct a and the
2416  * buffer.
2417  *
2418  * This time, FUSE server has everything it needs and completes ioctl
2419  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2420  *
2421  * Copying data out works the same way.
2422  *
2423  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2424  * automatically initializes in and out iovs by decoding @cmd with
2425  * _IOC_* macros and the server is not allowed to request RETRY.  This
2426  * limits ioctl data transfers to well-formed ioctls and is the forced
2427  * behavior for all FUSE servers.
2428  */
2429 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2430 		   unsigned int flags)
2431 {
2432 	struct fuse_file *ff = file->private_data;
2433 	struct fuse_conn *fc = ff->fc;
2434 	struct fuse_ioctl_in inarg = {
2435 		.fh = ff->fh,
2436 		.cmd = cmd,
2437 		.arg = arg,
2438 		.flags = flags
2439 	};
2440 	struct fuse_ioctl_out outarg;
2441 	struct fuse_req *req = NULL;
2442 	struct page **pages = NULL;
2443 	struct iovec *iov_page = NULL;
2444 	struct iovec *in_iov = NULL, *out_iov = NULL;
2445 	unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2446 	size_t in_size, out_size, transferred;
2447 	int err;
2448 
2449 #if BITS_PER_LONG == 32
2450 	inarg.flags |= FUSE_IOCTL_32BIT;
2451 #else
2452 	if (flags & FUSE_IOCTL_COMPAT)
2453 		inarg.flags |= FUSE_IOCTL_32BIT;
2454 #endif
2455 
2456 	/* assume all the iovs returned by client always fits in a page */
2457 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2458 
2459 	err = -ENOMEM;
2460 	pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL);
2461 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2462 	if (!pages || !iov_page)
2463 		goto out;
2464 
2465 	/*
2466 	 * If restricted, initialize IO parameters as encoded in @cmd.
2467 	 * RETRY from server is not allowed.
2468 	 */
2469 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2470 		struct iovec *iov = iov_page;
2471 
2472 		iov->iov_base = (void __user *)arg;
2473 		iov->iov_len = _IOC_SIZE(cmd);
2474 
2475 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2476 			in_iov = iov;
2477 			in_iovs = 1;
2478 		}
2479 
2480 		if (_IOC_DIR(cmd) & _IOC_READ) {
2481 			out_iov = iov;
2482 			out_iovs = 1;
2483 		}
2484 	}
2485 
2486  retry:
2487 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2488 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2489 
2490 	/*
2491 	 * Out data can be used either for actual out data or iovs,
2492 	 * make sure there always is at least one page.
2493 	 */
2494 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2495 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2496 
2497 	/* make sure there are enough buffer pages and init request with them */
2498 	err = -ENOMEM;
2499 	if (max_pages > FUSE_MAX_PAGES_PER_REQ)
2500 		goto out;
2501 	while (num_pages < max_pages) {
2502 		pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2503 		if (!pages[num_pages])
2504 			goto out;
2505 		num_pages++;
2506 	}
2507 
2508 	req = fuse_get_req(fc, num_pages);
2509 	if (IS_ERR(req)) {
2510 		err = PTR_ERR(req);
2511 		req = NULL;
2512 		goto out;
2513 	}
2514 	memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2515 	req->num_pages = num_pages;
2516 	fuse_page_descs_length_init(req, 0, req->num_pages);
2517 
2518 	/* okay, let's send it to the client */
2519 	req->in.h.opcode = FUSE_IOCTL;
2520 	req->in.h.nodeid = ff->nodeid;
2521 	req->in.numargs = 1;
2522 	req->in.args[0].size = sizeof(inarg);
2523 	req->in.args[0].value = &inarg;
2524 	if (in_size) {
2525 		req->in.numargs++;
2526 		req->in.args[1].size = in_size;
2527 		req->in.argpages = 1;
2528 
2529 		err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size,
2530 					   false);
2531 		if (err)
2532 			goto out;
2533 	}
2534 
2535 	req->out.numargs = 2;
2536 	req->out.args[0].size = sizeof(outarg);
2537 	req->out.args[0].value = &outarg;
2538 	req->out.args[1].size = out_size;
2539 	req->out.argpages = 1;
2540 	req->out.argvar = 1;
2541 
2542 	fuse_request_send(fc, req);
2543 	err = req->out.h.error;
2544 	transferred = req->out.args[1].size;
2545 	fuse_put_request(fc, req);
2546 	req = NULL;
2547 	if (err)
2548 		goto out;
2549 
2550 	/* did it ask for retry? */
2551 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2552 		void *vaddr;
2553 
2554 		/* no retry if in restricted mode */
2555 		err = -EIO;
2556 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2557 			goto out;
2558 
2559 		in_iovs = outarg.in_iovs;
2560 		out_iovs = outarg.out_iovs;
2561 
2562 		/*
2563 		 * Make sure things are in boundary, separate checks
2564 		 * are to protect against overflow.
2565 		 */
2566 		err = -ENOMEM;
2567 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2568 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2569 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2570 			goto out;
2571 
2572 		vaddr = kmap_atomic(pages[0]);
2573 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2574 					    transferred, in_iovs + out_iovs,
2575 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2576 		kunmap_atomic(vaddr);
2577 		if (err)
2578 			goto out;
2579 
2580 		in_iov = iov_page;
2581 		out_iov = in_iov + in_iovs;
2582 
2583 		err = fuse_verify_ioctl_iov(in_iov, in_iovs);
2584 		if (err)
2585 			goto out;
2586 
2587 		err = fuse_verify_ioctl_iov(out_iov, out_iovs);
2588 		if (err)
2589 			goto out;
2590 
2591 		goto retry;
2592 	}
2593 
2594 	err = -EIO;
2595 	if (transferred > inarg.out_size)
2596 		goto out;
2597 
2598 	err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true);
2599  out:
2600 	if (req)
2601 		fuse_put_request(fc, req);
2602 	free_page((unsigned long) iov_page);
2603 	while (num_pages)
2604 		__free_page(pages[--num_pages]);
2605 	kfree(pages);
2606 
2607 	return err ? err : outarg.result;
2608 }
2609 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2610 
2611 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2612 		       unsigned long arg, unsigned int flags)
2613 {
2614 	struct inode *inode = file_inode(file);
2615 	struct fuse_conn *fc = get_fuse_conn(inode);
2616 
2617 	if (!fuse_allow_current_process(fc))
2618 		return -EACCES;
2619 
2620 	if (is_bad_inode(inode))
2621 		return -EIO;
2622 
2623 	return fuse_do_ioctl(file, cmd, arg, flags);
2624 }
2625 
2626 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2627 			    unsigned long arg)
2628 {
2629 	return fuse_ioctl_common(file, cmd, arg, 0);
2630 }
2631 
2632 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2633 				   unsigned long arg)
2634 {
2635 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2636 }
2637 
2638 /*
2639  * All files which have been polled are linked to RB tree
2640  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2641  * find the matching one.
2642  */
2643 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2644 					      struct rb_node **parent_out)
2645 {
2646 	struct rb_node **link = &fc->polled_files.rb_node;
2647 	struct rb_node *last = NULL;
2648 
2649 	while (*link) {
2650 		struct fuse_file *ff;
2651 
2652 		last = *link;
2653 		ff = rb_entry(last, struct fuse_file, polled_node);
2654 
2655 		if (kh < ff->kh)
2656 			link = &last->rb_left;
2657 		else if (kh > ff->kh)
2658 			link = &last->rb_right;
2659 		else
2660 			return link;
2661 	}
2662 
2663 	if (parent_out)
2664 		*parent_out = last;
2665 	return link;
2666 }
2667 
2668 /*
2669  * The file is about to be polled.  Make sure it's on the polled_files
2670  * RB tree.  Note that files once added to the polled_files tree are
2671  * not removed before the file is released.  This is because a file
2672  * polled once is likely to be polled again.
2673  */
2674 static void fuse_register_polled_file(struct fuse_conn *fc,
2675 				      struct fuse_file *ff)
2676 {
2677 	spin_lock(&fc->lock);
2678 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2679 		struct rb_node **link, *uninitialized_var(parent);
2680 
2681 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2682 		BUG_ON(*link);
2683 		rb_link_node(&ff->polled_node, parent, link);
2684 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2685 	}
2686 	spin_unlock(&fc->lock);
2687 }
2688 
2689 unsigned fuse_file_poll(struct file *file, poll_table *wait)
2690 {
2691 	struct fuse_file *ff = file->private_data;
2692 	struct fuse_conn *fc = ff->fc;
2693 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2694 	struct fuse_poll_out outarg;
2695 	FUSE_ARGS(args);
2696 	int err;
2697 
2698 	if (fc->no_poll)
2699 		return DEFAULT_POLLMASK;
2700 
2701 	poll_wait(file, &ff->poll_wait, wait);
2702 	inarg.events = (__u32)poll_requested_events(wait);
2703 
2704 	/*
2705 	 * Ask for notification iff there's someone waiting for it.
2706 	 * The client may ignore the flag and always notify.
2707 	 */
2708 	if (waitqueue_active(&ff->poll_wait)) {
2709 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2710 		fuse_register_polled_file(fc, ff);
2711 	}
2712 
2713 	args.in.h.opcode = FUSE_POLL;
2714 	args.in.h.nodeid = ff->nodeid;
2715 	args.in.numargs = 1;
2716 	args.in.args[0].size = sizeof(inarg);
2717 	args.in.args[0].value = &inarg;
2718 	args.out.numargs = 1;
2719 	args.out.args[0].size = sizeof(outarg);
2720 	args.out.args[0].value = &outarg;
2721 	err = fuse_simple_request(fc, &args);
2722 
2723 	if (!err)
2724 		return outarg.revents;
2725 	if (err == -ENOSYS) {
2726 		fc->no_poll = 1;
2727 		return DEFAULT_POLLMASK;
2728 	}
2729 	return POLLERR;
2730 }
2731 EXPORT_SYMBOL_GPL(fuse_file_poll);
2732 
2733 /*
2734  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2735  * wakes up the poll waiters.
2736  */
2737 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2738 			    struct fuse_notify_poll_wakeup_out *outarg)
2739 {
2740 	u64 kh = outarg->kh;
2741 	struct rb_node **link;
2742 
2743 	spin_lock(&fc->lock);
2744 
2745 	link = fuse_find_polled_node(fc, kh, NULL);
2746 	if (*link) {
2747 		struct fuse_file *ff;
2748 
2749 		ff = rb_entry(*link, struct fuse_file, polled_node);
2750 		wake_up_interruptible_sync(&ff->poll_wait);
2751 	}
2752 
2753 	spin_unlock(&fc->lock);
2754 	return 0;
2755 }
2756 
2757 static void fuse_do_truncate(struct file *file)
2758 {
2759 	struct inode *inode = file->f_mapping->host;
2760 	struct iattr attr;
2761 
2762 	attr.ia_valid = ATTR_SIZE;
2763 	attr.ia_size = i_size_read(inode);
2764 
2765 	attr.ia_file = file;
2766 	attr.ia_valid |= ATTR_FILE;
2767 
2768 	fuse_do_setattr(inode, &attr, file);
2769 }
2770 
2771 static inline loff_t fuse_round_up(loff_t off)
2772 {
2773 	return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
2774 }
2775 
2776 static ssize_t
2777 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
2778 {
2779 	DECLARE_COMPLETION_ONSTACK(wait);
2780 	ssize_t ret = 0;
2781 	struct file *file = iocb->ki_filp;
2782 	struct fuse_file *ff = file->private_data;
2783 	bool async_dio = ff->fc->async_dio;
2784 	loff_t pos = 0;
2785 	struct inode *inode;
2786 	loff_t i_size;
2787 	size_t count = iov_iter_count(iter);
2788 	struct fuse_io_priv *io;
2789 
2790 	pos = offset;
2791 	inode = file->f_mapping->host;
2792 	i_size = i_size_read(inode);
2793 
2794 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
2795 		return 0;
2796 
2797 	/* optimization for short read */
2798 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
2799 		if (offset >= i_size)
2800 			return 0;
2801 		iov_iter_truncate(iter, fuse_round_up(i_size - offset));
2802 		count = iov_iter_count(iter);
2803 	}
2804 
2805 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2806 	if (!io)
2807 		return -ENOMEM;
2808 	spin_lock_init(&io->lock);
2809 	io->reqs = 1;
2810 	io->bytes = -1;
2811 	io->size = 0;
2812 	io->offset = offset;
2813 	io->write = (iov_iter_rw(iter) == WRITE);
2814 	io->err = 0;
2815 	io->file = file;
2816 	/*
2817 	 * By default, we want to optimize all I/Os with async request
2818 	 * submission to the client filesystem if supported.
2819 	 */
2820 	io->async = async_dio;
2821 	io->iocb = iocb;
2822 
2823 	/*
2824 	 * We cannot asynchronously extend the size of a file. We have no method
2825 	 * to wait on real async I/O requests, so we must submit this request
2826 	 * synchronously.
2827 	 */
2828 	if (!is_sync_kiocb(iocb) && (offset + count > i_size) &&
2829 	    iov_iter_rw(iter) == WRITE)
2830 		io->async = false;
2831 
2832 	if (io->async && is_sync_kiocb(iocb))
2833 		io->done = &wait;
2834 
2835 	if (iov_iter_rw(iter) == WRITE) {
2836 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2837 		fuse_invalidate_attr(inode);
2838 	} else {
2839 		ret = __fuse_direct_read(io, iter, &pos);
2840 	}
2841 
2842 	if (io->async) {
2843 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2844 
2845 		/* we have a non-extending, async request, so return */
2846 		if (!is_sync_kiocb(iocb))
2847 			return -EIOCBQUEUED;
2848 
2849 		wait_for_completion(&wait);
2850 		ret = fuse_get_res_by_io(io);
2851 	}
2852 
2853 	kfree(io);
2854 
2855 	if (iov_iter_rw(iter) == WRITE) {
2856 		if (ret > 0)
2857 			fuse_write_update_size(inode, pos);
2858 		else if (ret < 0 && offset + count > i_size)
2859 			fuse_do_truncate(file);
2860 	}
2861 
2862 	return ret;
2863 }
2864 
2865 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2866 				loff_t length)
2867 {
2868 	struct fuse_file *ff = file->private_data;
2869 	struct inode *inode = file_inode(file);
2870 	struct fuse_inode *fi = get_fuse_inode(inode);
2871 	struct fuse_conn *fc = ff->fc;
2872 	FUSE_ARGS(args);
2873 	struct fuse_fallocate_in inarg = {
2874 		.fh = ff->fh,
2875 		.offset = offset,
2876 		.length = length,
2877 		.mode = mode
2878 	};
2879 	int err;
2880 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2881 			   (mode & FALLOC_FL_PUNCH_HOLE);
2882 
2883 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2884 		return -EOPNOTSUPP;
2885 
2886 	if (fc->no_fallocate)
2887 		return -EOPNOTSUPP;
2888 
2889 	if (lock_inode) {
2890 		mutex_lock(&inode->i_mutex);
2891 		if (mode & FALLOC_FL_PUNCH_HOLE) {
2892 			loff_t endbyte = offset + length - 1;
2893 			err = filemap_write_and_wait_range(inode->i_mapping,
2894 							   offset, endbyte);
2895 			if (err)
2896 				goto out;
2897 
2898 			fuse_sync_writes(inode);
2899 		}
2900 	}
2901 
2902 	if (!(mode & FALLOC_FL_KEEP_SIZE))
2903 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2904 
2905 	args.in.h.opcode = FUSE_FALLOCATE;
2906 	args.in.h.nodeid = ff->nodeid;
2907 	args.in.numargs = 1;
2908 	args.in.args[0].size = sizeof(inarg);
2909 	args.in.args[0].value = &inarg;
2910 	err = fuse_simple_request(fc, &args);
2911 	if (err == -ENOSYS) {
2912 		fc->no_fallocate = 1;
2913 		err = -EOPNOTSUPP;
2914 	}
2915 	if (err)
2916 		goto out;
2917 
2918 	/* we could have extended the file */
2919 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2920 		bool changed = fuse_write_update_size(inode, offset + length);
2921 
2922 		if (changed && fc->writeback_cache)
2923 			file_update_time(file);
2924 	}
2925 
2926 	if (mode & FALLOC_FL_PUNCH_HOLE)
2927 		truncate_pagecache_range(inode, offset, offset + length - 1);
2928 
2929 	fuse_invalidate_attr(inode);
2930 
2931 out:
2932 	if (!(mode & FALLOC_FL_KEEP_SIZE))
2933 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2934 
2935 	if (lock_inode)
2936 		mutex_unlock(&inode->i_mutex);
2937 
2938 	return err;
2939 }
2940 
2941 static const struct file_operations fuse_file_operations = {
2942 	.llseek		= fuse_file_llseek,
2943 	.read_iter	= fuse_file_read_iter,
2944 	.write_iter	= fuse_file_write_iter,
2945 	.mmap		= fuse_file_mmap,
2946 	.open		= fuse_open,
2947 	.flush		= fuse_flush,
2948 	.release	= fuse_release,
2949 	.fsync		= fuse_fsync,
2950 	.lock		= fuse_file_lock,
2951 	.flock		= fuse_file_flock,
2952 	.splice_read	= generic_file_splice_read,
2953 	.unlocked_ioctl	= fuse_file_ioctl,
2954 	.compat_ioctl	= fuse_file_compat_ioctl,
2955 	.poll		= fuse_file_poll,
2956 	.fallocate	= fuse_file_fallocate,
2957 };
2958 
2959 static const struct file_operations fuse_direct_io_file_operations = {
2960 	.llseek		= fuse_file_llseek,
2961 	.read_iter	= fuse_direct_read_iter,
2962 	.write_iter	= fuse_direct_write_iter,
2963 	.mmap		= fuse_direct_mmap,
2964 	.open		= fuse_open,
2965 	.flush		= fuse_flush,
2966 	.release	= fuse_release,
2967 	.fsync		= fuse_fsync,
2968 	.lock		= fuse_file_lock,
2969 	.flock		= fuse_file_flock,
2970 	.unlocked_ioctl	= fuse_file_ioctl,
2971 	.compat_ioctl	= fuse_file_compat_ioctl,
2972 	.poll		= fuse_file_poll,
2973 	.fallocate	= fuse_file_fallocate,
2974 	/* no splice_read */
2975 };
2976 
2977 static const struct address_space_operations fuse_file_aops  = {
2978 	.readpage	= fuse_readpage,
2979 	.writepage	= fuse_writepage,
2980 	.writepages	= fuse_writepages,
2981 	.launder_page	= fuse_launder_page,
2982 	.readpages	= fuse_readpages,
2983 	.set_page_dirty	= __set_page_dirty_nobuffers,
2984 	.bmap		= fuse_bmap,
2985 	.direct_IO	= fuse_direct_IO,
2986 	.write_begin	= fuse_write_begin,
2987 	.write_end	= fuse_write_end,
2988 };
2989 
2990 void fuse_init_file_inode(struct inode *inode)
2991 {
2992 	inode->i_fop = &fuse_file_operations;
2993 	inode->i_data.a_ops = &fuse_file_aops;
2994 }
2995