xref: /openbmc/linux/fs/fuse/file.c (revision e8e0929d)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16 
17 static const struct file_operations fuse_direct_io_file_operations;
18 
19 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
20 			  int opcode, struct fuse_open_out *outargp)
21 {
22 	struct fuse_open_in inarg;
23 	struct fuse_req *req;
24 	int err;
25 
26 	req = fuse_get_req(fc);
27 	if (IS_ERR(req))
28 		return PTR_ERR(req);
29 
30 	memset(&inarg, 0, sizeof(inarg));
31 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
32 	if (!fc->atomic_o_trunc)
33 		inarg.flags &= ~O_TRUNC;
34 	req->in.h.opcode = opcode;
35 	req->in.h.nodeid = nodeid;
36 	req->in.numargs = 1;
37 	req->in.args[0].size = sizeof(inarg);
38 	req->in.args[0].value = &inarg;
39 	req->out.numargs = 1;
40 	req->out.args[0].size = sizeof(*outargp);
41 	req->out.args[0].value = outargp;
42 	fuse_request_send(fc, req);
43 	err = req->out.h.error;
44 	fuse_put_request(fc, req);
45 
46 	return err;
47 }
48 
49 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
50 {
51 	struct fuse_file *ff;
52 
53 	ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL);
54 	if (unlikely(!ff))
55 		return NULL;
56 
57 	ff->fc = fc;
58 	ff->reserved_req = fuse_request_alloc();
59 	if (unlikely(!ff->reserved_req)) {
60 		kfree(ff);
61 		return NULL;
62 	}
63 
64 	INIT_LIST_HEAD(&ff->write_entry);
65 	atomic_set(&ff->count, 0);
66 	RB_CLEAR_NODE(&ff->polled_node);
67 	init_waitqueue_head(&ff->poll_wait);
68 
69 	spin_lock(&fc->lock);
70 	ff->kh = ++fc->khctr;
71 	spin_unlock(&fc->lock);
72 
73 	return ff;
74 }
75 
76 void fuse_file_free(struct fuse_file *ff)
77 {
78 	fuse_request_free(ff->reserved_req);
79 	kfree(ff);
80 }
81 
82 struct fuse_file *fuse_file_get(struct fuse_file *ff)
83 {
84 	atomic_inc(&ff->count);
85 	return ff;
86 }
87 
88 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
89 {
90 	path_put(&req->misc.release.path);
91 }
92 
93 static void fuse_file_put(struct fuse_file *ff)
94 {
95 	if (atomic_dec_and_test(&ff->count)) {
96 		struct fuse_req *req = ff->reserved_req;
97 
98 		req->end = fuse_release_end;
99 		fuse_request_send_background(ff->fc, req);
100 		kfree(ff);
101 	}
102 }
103 
104 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
105 		 bool isdir)
106 {
107 	struct fuse_open_out outarg;
108 	struct fuse_file *ff;
109 	int err;
110 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
111 
112 	ff = fuse_file_alloc(fc);
113 	if (!ff)
114 		return -ENOMEM;
115 
116 	err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
117 	if (err) {
118 		fuse_file_free(ff);
119 		return err;
120 	}
121 
122 	if (isdir)
123 		outarg.open_flags &= ~FOPEN_DIRECT_IO;
124 
125 	ff->fh = outarg.fh;
126 	ff->nodeid = nodeid;
127 	ff->open_flags = outarg.open_flags;
128 	file->private_data = fuse_file_get(ff);
129 
130 	return 0;
131 }
132 EXPORT_SYMBOL_GPL(fuse_do_open);
133 
134 void fuse_finish_open(struct inode *inode, struct file *file)
135 {
136 	struct fuse_file *ff = file->private_data;
137 
138 	if (ff->open_flags & FOPEN_DIRECT_IO)
139 		file->f_op = &fuse_direct_io_file_operations;
140 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
141 		invalidate_inode_pages2(inode->i_mapping);
142 	if (ff->open_flags & FOPEN_NONSEEKABLE)
143 		nonseekable_open(inode, file);
144 }
145 
146 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
147 {
148 	struct fuse_conn *fc = get_fuse_conn(inode);
149 	int err;
150 
151 	/* VFS checks this, but only _after_ ->open() */
152 	if (file->f_flags & O_DIRECT)
153 		return -EINVAL;
154 
155 	err = generic_file_open(inode, file);
156 	if (err)
157 		return err;
158 
159 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
160 	if (err)
161 		return err;
162 
163 	fuse_finish_open(inode, file);
164 
165 	return 0;
166 }
167 
168 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
169 {
170 	struct fuse_conn *fc = ff->fc;
171 	struct fuse_req *req = ff->reserved_req;
172 	struct fuse_release_in *inarg = &req->misc.release.in;
173 
174 	spin_lock(&fc->lock);
175 	list_del(&ff->write_entry);
176 	if (!RB_EMPTY_NODE(&ff->polled_node))
177 		rb_erase(&ff->polled_node, &fc->polled_files);
178 	spin_unlock(&fc->lock);
179 
180 	wake_up_interruptible_sync(&ff->poll_wait);
181 
182 	inarg->fh = ff->fh;
183 	inarg->flags = flags;
184 	req->in.h.opcode = opcode;
185 	req->in.h.nodeid = ff->nodeid;
186 	req->in.numargs = 1;
187 	req->in.args[0].size = sizeof(struct fuse_release_in);
188 	req->in.args[0].value = inarg;
189 }
190 
191 void fuse_release_common(struct file *file, int opcode)
192 {
193 	struct fuse_file *ff;
194 	struct fuse_req *req;
195 
196 	ff = file->private_data;
197 	if (unlikely(!ff))
198 		return;
199 
200 	req = ff->reserved_req;
201 	fuse_prepare_release(ff, file->f_flags, opcode);
202 
203 	/* Hold vfsmount and dentry until release is finished */
204 	path_get(&file->f_path);
205 	req->misc.release.path = file->f_path;
206 
207 	/*
208 	 * Normally this will send the RELEASE request, however if
209 	 * some asynchronous READ or WRITE requests are outstanding,
210 	 * the sending will be delayed.
211 	 */
212 	fuse_file_put(ff);
213 }
214 
215 static int fuse_open(struct inode *inode, struct file *file)
216 {
217 	return fuse_open_common(inode, file, false);
218 }
219 
220 static int fuse_release(struct inode *inode, struct file *file)
221 {
222 	fuse_release_common(file, FUSE_RELEASE);
223 
224 	/* return value is ignored by VFS */
225 	return 0;
226 }
227 
228 void fuse_sync_release(struct fuse_file *ff, int flags)
229 {
230 	WARN_ON(atomic_read(&ff->count) > 1);
231 	fuse_prepare_release(ff, flags, FUSE_RELEASE);
232 	ff->reserved_req->force = 1;
233 	fuse_request_send(ff->fc, ff->reserved_req);
234 	fuse_put_request(ff->fc, ff->reserved_req);
235 	kfree(ff);
236 }
237 EXPORT_SYMBOL_GPL(fuse_sync_release);
238 
239 /*
240  * Scramble the ID space with XTEA, so that the value of the files_struct
241  * pointer is not exposed to userspace.
242  */
243 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
244 {
245 	u32 *k = fc->scramble_key;
246 	u64 v = (unsigned long) id;
247 	u32 v0 = v;
248 	u32 v1 = v >> 32;
249 	u32 sum = 0;
250 	int i;
251 
252 	for (i = 0; i < 32; i++) {
253 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
254 		sum += 0x9E3779B9;
255 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
256 	}
257 
258 	return (u64) v0 + ((u64) v1 << 32);
259 }
260 
261 /*
262  * Check if page is under writeback
263  *
264  * This is currently done by walking the list of writepage requests
265  * for the inode, which can be pretty inefficient.
266  */
267 static bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
268 {
269 	struct fuse_conn *fc = get_fuse_conn(inode);
270 	struct fuse_inode *fi = get_fuse_inode(inode);
271 	struct fuse_req *req;
272 	bool found = false;
273 
274 	spin_lock(&fc->lock);
275 	list_for_each_entry(req, &fi->writepages, writepages_entry) {
276 		pgoff_t curr_index;
277 
278 		BUG_ON(req->inode != inode);
279 		curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
280 		if (curr_index == index) {
281 			found = true;
282 			break;
283 		}
284 	}
285 	spin_unlock(&fc->lock);
286 
287 	return found;
288 }
289 
290 /*
291  * Wait for page writeback to be completed.
292  *
293  * Since fuse doesn't rely on the VM writeback tracking, this has to
294  * use some other means.
295  */
296 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
297 {
298 	struct fuse_inode *fi = get_fuse_inode(inode);
299 
300 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
301 	return 0;
302 }
303 
304 static int fuse_flush(struct file *file, fl_owner_t id)
305 {
306 	struct inode *inode = file->f_path.dentry->d_inode;
307 	struct fuse_conn *fc = get_fuse_conn(inode);
308 	struct fuse_file *ff = file->private_data;
309 	struct fuse_req *req;
310 	struct fuse_flush_in inarg;
311 	int err;
312 
313 	if (is_bad_inode(inode))
314 		return -EIO;
315 
316 	if (fc->no_flush)
317 		return 0;
318 
319 	req = fuse_get_req_nofail(fc, file);
320 	memset(&inarg, 0, sizeof(inarg));
321 	inarg.fh = ff->fh;
322 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
323 	req->in.h.opcode = FUSE_FLUSH;
324 	req->in.h.nodeid = get_node_id(inode);
325 	req->in.numargs = 1;
326 	req->in.args[0].size = sizeof(inarg);
327 	req->in.args[0].value = &inarg;
328 	req->force = 1;
329 	fuse_request_send(fc, req);
330 	err = req->out.h.error;
331 	fuse_put_request(fc, req);
332 	if (err == -ENOSYS) {
333 		fc->no_flush = 1;
334 		err = 0;
335 	}
336 	return err;
337 }
338 
339 /*
340  * Wait for all pending writepages on the inode to finish.
341  *
342  * This is currently done by blocking further writes with FUSE_NOWRITE
343  * and waiting for all sent writes to complete.
344  *
345  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
346  * could conflict with truncation.
347  */
348 static void fuse_sync_writes(struct inode *inode)
349 {
350 	fuse_set_nowrite(inode);
351 	fuse_release_nowrite(inode);
352 }
353 
354 int fuse_fsync_common(struct file *file, struct dentry *de, int datasync,
355 		      int isdir)
356 {
357 	struct inode *inode = de->d_inode;
358 	struct fuse_conn *fc = get_fuse_conn(inode);
359 	struct fuse_file *ff = file->private_data;
360 	struct fuse_req *req;
361 	struct fuse_fsync_in inarg;
362 	int err;
363 
364 	if (is_bad_inode(inode))
365 		return -EIO;
366 
367 	if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
368 		return 0;
369 
370 	/*
371 	 * Start writeback against all dirty pages of the inode, then
372 	 * wait for all outstanding writes, before sending the FSYNC
373 	 * request.
374 	 */
375 	err = write_inode_now(inode, 0);
376 	if (err)
377 		return err;
378 
379 	fuse_sync_writes(inode);
380 
381 	req = fuse_get_req(fc);
382 	if (IS_ERR(req))
383 		return PTR_ERR(req);
384 
385 	memset(&inarg, 0, sizeof(inarg));
386 	inarg.fh = ff->fh;
387 	inarg.fsync_flags = datasync ? 1 : 0;
388 	req->in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
389 	req->in.h.nodeid = get_node_id(inode);
390 	req->in.numargs = 1;
391 	req->in.args[0].size = sizeof(inarg);
392 	req->in.args[0].value = &inarg;
393 	fuse_request_send(fc, req);
394 	err = req->out.h.error;
395 	fuse_put_request(fc, req);
396 	if (err == -ENOSYS) {
397 		if (isdir)
398 			fc->no_fsyncdir = 1;
399 		else
400 			fc->no_fsync = 1;
401 		err = 0;
402 	}
403 	return err;
404 }
405 
406 static int fuse_fsync(struct file *file, struct dentry *de, int datasync)
407 {
408 	return fuse_fsync_common(file, de, datasync, 0);
409 }
410 
411 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
412 		    size_t count, int opcode)
413 {
414 	struct fuse_read_in *inarg = &req->misc.read.in;
415 	struct fuse_file *ff = file->private_data;
416 
417 	inarg->fh = ff->fh;
418 	inarg->offset = pos;
419 	inarg->size = count;
420 	inarg->flags = file->f_flags;
421 	req->in.h.opcode = opcode;
422 	req->in.h.nodeid = ff->nodeid;
423 	req->in.numargs = 1;
424 	req->in.args[0].size = sizeof(struct fuse_read_in);
425 	req->in.args[0].value = inarg;
426 	req->out.argvar = 1;
427 	req->out.numargs = 1;
428 	req->out.args[0].size = count;
429 }
430 
431 static size_t fuse_send_read(struct fuse_req *req, struct file *file,
432 			     loff_t pos, size_t count, fl_owner_t owner)
433 {
434 	struct fuse_file *ff = file->private_data;
435 	struct fuse_conn *fc = ff->fc;
436 
437 	fuse_read_fill(req, file, pos, count, FUSE_READ);
438 	if (owner != NULL) {
439 		struct fuse_read_in *inarg = &req->misc.read.in;
440 
441 		inarg->read_flags |= FUSE_READ_LOCKOWNER;
442 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
443 	}
444 	fuse_request_send(fc, req);
445 	return req->out.args[0].size;
446 }
447 
448 static void fuse_read_update_size(struct inode *inode, loff_t size,
449 				  u64 attr_ver)
450 {
451 	struct fuse_conn *fc = get_fuse_conn(inode);
452 	struct fuse_inode *fi = get_fuse_inode(inode);
453 
454 	spin_lock(&fc->lock);
455 	if (attr_ver == fi->attr_version && size < inode->i_size) {
456 		fi->attr_version = ++fc->attr_version;
457 		i_size_write(inode, size);
458 	}
459 	spin_unlock(&fc->lock);
460 }
461 
462 static int fuse_readpage(struct file *file, struct page *page)
463 {
464 	struct inode *inode = page->mapping->host;
465 	struct fuse_conn *fc = get_fuse_conn(inode);
466 	struct fuse_req *req;
467 	size_t num_read;
468 	loff_t pos = page_offset(page);
469 	size_t count = PAGE_CACHE_SIZE;
470 	u64 attr_ver;
471 	int err;
472 
473 	err = -EIO;
474 	if (is_bad_inode(inode))
475 		goto out;
476 
477 	/*
478 	 * Page writeback can extend beyond the liftime of the
479 	 * page-cache page, so make sure we read a properly synced
480 	 * page.
481 	 */
482 	fuse_wait_on_page_writeback(inode, page->index);
483 
484 	req = fuse_get_req(fc);
485 	err = PTR_ERR(req);
486 	if (IS_ERR(req))
487 		goto out;
488 
489 	attr_ver = fuse_get_attr_version(fc);
490 
491 	req->out.page_zeroing = 1;
492 	req->out.argpages = 1;
493 	req->num_pages = 1;
494 	req->pages[0] = page;
495 	num_read = fuse_send_read(req, file, pos, count, NULL);
496 	err = req->out.h.error;
497 	fuse_put_request(fc, req);
498 
499 	if (!err) {
500 		/*
501 		 * Short read means EOF.  If file size is larger, truncate it
502 		 */
503 		if (num_read < count)
504 			fuse_read_update_size(inode, pos + num_read, attr_ver);
505 
506 		SetPageUptodate(page);
507 	}
508 
509 	fuse_invalidate_attr(inode); /* atime changed */
510  out:
511 	unlock_page(page);
512 	return err;
513 }
514 
515 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
516 {
517 	int i;
518 	size_t count = req->misc.read.in.size;
519 	size_t num_read = req->out.args[0].size;
520 	struct inode *inode = req->pages[0]->mapping->host;
521 
522 	/*
523 	 * Short read means EOF.  If file size is larger, truncate it
524 	 */
525 	if (!req->out.h.error && num_read < count) {
526 		loff_t pos = page_offset(req->pages[0]) + num_read;
527 		fuse_read_update_size(inode, pos, req->misc.read.attr_ver);
528 	}
529 
530 	fuse_invalidate_attr(inode); /* atime changed */
531 
532 	for (i = 0; i < req->num_pages; i++) {
533 		struct page *page = req->pages[i];
534 		if (!req->out.h.error)
535 			SetPageUptodate(page);
536 		else
537 			SetPageError(page);
538 		unlock_page(page);
539 	}
540 	if (req->ff)
541 		fuse_file_put(req->ff);
542 }
543 
544 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
545 {
546 	struct fuse_file *ff = file->private_data;
547 	struct fuse_conn *fc = ff->fc;
548 	loff_t pos = page_offset(req->pages[0]);
549 	size_t count = req->num_pages << PAGE_CACHE_SHIFT;
550 
551 	req->out.argpages = 1;
552 	req->out.page_zeroing = 1;
553 	fuse_read_fill(req, file, pos, count, FUSE_READ);
554 	req->misc.read.attr_ver = fuse_get_attr_version(fc);
555 	if (fc->async_read) {
556 		req->ff = fuse_file_get(ff);
557 		req->end = fuse_readpages_end;
558 		fuse_request_send_background(fc, req);
559 	} else {
560 		fuse_request_send(fc, req);
561 		fuse_readpages_end(fc, req);
562 		fuse_put_request(fc, req);
563 	}
564 }
565 
566 struct fuse_fill_data {
567 	struct fuse_req *req;
568 	struct file *file;
569 	struct inode *inode;
570 };
571 
572 static int fuse_readpages_fill(void *_data, struct page *page)
573 {
574 	struct fuse_fill_data *data = _data;
575 	struct fuse_req *req = data->req;
576 	struct inode *inode = data->inode;
577 	struct fuse_conn *fc = get_fuse_conn(inode);
578 
579 	fuse_wait_on_page_writeback(inode, page->index);
580 
581 	if (req->num_pages &&
582 	    (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
583 	     (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read ||
584 	     req->pages[req->num_pages - 1]->index + 1 != page->index)) {
585 		fuse_send_readpages(req, data->file);
586 		data->req = req = fuse_get_req(fc);
587 		if (IS_ERR(req)) {
588 			unlock_page(page);
589 			return PTR_ERR(req);
590 		}
591 	}
592 	req->pages[req->num_pages] = page;
593 	req->num_pages++;
594 	return 0;
595 }
596 
597 static int fuse_readpages(struct file *file, struct address_space *mapping,
598 			  struct list_head *pages, unsigned nr_pages)
599 {
600 	struct inode *inode = mapping->host;
601 	struct fuse_conn *fc = get_fuse_conn(inode);
602 	struct fuse_fill_data data;
603 	int err;
604 
605 	err = -EIO;
606 	if (is_bad_inode(inode))
607 		goto out;
608 
609 	data.file = file;
610 	data.inode = inode;
611 	data.req = fuse_get_req(fc);
612 	err = PTR_ERR(data.req);
613 	if (IS_ERR(data.req))
614 		goto out;
615 
616 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
617 	if (!err) {
618 		if (data.req->num_pages)
619 			fuse_send_readpages(data.req, file);
620 		else
621 			fuse_put_request(fc, data.req);
622 	}
623 out:
624 	return err;
625 }
626 
627 static ssize_t fuse_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
628 				  unsigned long nr_segs, loff_t pos)
629 {
630 	struct inode *inode = iocb->ki_filp->f_mapping->host;
631 
632 	if (pos + iov_length(iov, nr_segs) > i_size_read(inode)) {
633 		int err;
634 		/*
635 		 * If trying to read past EOF, make sure the i_size
636 		 * attribute is up-to-date.
637 		 */
638 		err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL);
639 		if (err)
640 			return err;
641 	}
642 
643 	return generic_file_aio_read(iocb, iov, nr_segs, pos);
644 }
645 
646 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
647 			    loff_t pos, size_t count)
648 {
649 	struct fuse_write_in *inarg = &req->misc.write.in;
650 	struct fuse_write_out *outarg = &req->misc.write.out;
651 
652 	inarg->fh = ff->fh;
653 	inarg->offset = pos;
654 	inarg->size = count;
655 	req->in.h.opcode = FUSE_WRITE;
656 	req->in.h.nodeid = ff->nodeid;
657 	req->in.numargs = 2;
658 	if (ff->fc->minor < 9)
659 		req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
660 	else
661 		req->in.args[0].size = sizeof(struct fuse_write_in);
662 	req->in.args[0].value = inarg;
663 	req->in.args[1].size = count;
664 	req->out.numargs = 1;
665 	req->out.args[0].size = sizeof(struct fuse_write_out);
666 	req->out.args[0].value = outarg;
667 }
668 
669 static size_t fuse_send_write(struct fuse_req *req, struct file *file,
670 			      loff_t pos, size_t count, fl_owner_t owner)
671 {
672 	struct fuse_file *ff = file->private_data;
673 	struct fuse_conn *fc = ff->fc;
674 	struct fuse_write_in *inarg = &req->misc.write.in;
675 
676 	fuse_write_fill(req, ff, pos, count);
677 	inarg->flags = file->f_flags;
678 	if (owner != NULL) {
679 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
680 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
681 	}
682 	fuse_request_send(fc, req);
683 	return req->misc.write.out.size;
684 }
685 
686 static int fuse_write_begin(struct file *file, struct address_space *mapping,
687 			loff_t pos, unsigned len, unsigned flags,
688 			struct page **pagep, void **fsdata)
689 {
690 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
691 
692 	*pagep = grab_cache_page_write_begin(mapping, index, flags);
693 	if (!*pagep)
694 		return -ENOMEM;
695 	return 0;
696 }
697 
698 static void fuse_write_update_size(struct inode *inode, loff_t pos)
699 {
700 	struct fuse_conn *fc = get_fuse_conn(inode);
701 	struct fuse_inode *fi = get_fuse_inode(inode);
702 
703 	spin_lock(&fc->lock);
704 	fi->attr_version = ++fc->attr_version;
705 	if (pos > inode->i_size)
706 		i_size_write(inode, pos);
707 	spin_unlock(&fc->lock);
708 }
709 
710 static int fuse_buffered_write(struct file *file, struct inode *inode,
711 			       loff_t pos, unsigned count, struct page *page)
712 {
713 	int err;
714 	size_t nres;
715 	struct fuse_conn *fc = get_fuse_conn(inode);
716 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
717 	struct fuse_req *req;
718 
719 	if (is_bad_inode(inode))
720 		return -EIO;
721 
722 	/*
723 	 * Make sure writepages on the same page are not mixed up with
724 	 * plain writes.
725 	 */
726 	fuse_wait_on_page_writeback(inode, page->index);
727 
728 	req = fuse_get_req(fc);
729 	if (IS_ERR(req))
730 		return PTR_ERR(req);
731 
732 	req->in.argpages = 1;
733 	req->num_pages = 1;
734 	req->pages[0] = page;
735 	req->page_offset = offset;
736 	nres = fuse_send_write(req, file, pos, count, NULL);
737 	err = req->out.h.error;
738 	fuse_put_request(fc, req);
739 	if (!err && !nres)
740 		err = -EIO;
741 	if (!err) {
742 		pos += nres;
743 		fuse_write_update_size(inode, pos);
744 		if (count == PAGE_CACHE_SIZE)
745 			SetPageUptodate(page);
746 	}
747 	fuse_invalidate_attr(inode);
748 	return err ? err : nres;
749 }
750 
751 static int fuse_write_end(struct file *file, struct address_space *mapping,
752 			loff_t pos, unsigned len, unsigned copied,
753 			struct page *page, void *fsdata)
754 {
755 	struct inode *inode = mapping->host;
756 	int res = 0;
757 
758 	if (copied)
759 		res = fuse_buffered_write(file, inode, pos, copied, page);
760 
761 	unlock_page(page);
762 	page_cache_release(page);
763 	return res;
764 }
765 
766 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file,
767 				    struct inode *inode, loff_t pos,
768 				    size_t count)
769 {
770 	size_t res;
771 	unsigned offset;
772 	unsigned i;
773 
774 	for (i = 0; i < req->num_pages; i++)
775 		fuse_wait_on_page_writeback(inode, req->pages[i]->index);
776 
777 	res = fuse_send_write(req, file, pos, count, NULL);
778 
779 	offset = req->page_offset;
780 	count = res;
781 	for (i = 0; i < req->num_pages; i++) {
782 		struct page *page = req->pages[i];
783 
784 		if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE)
785 			SetPageUptodate(page);
786 
787 		if (count > PAGE_CACHE_SIZE - offset)
788 			count -= PAGE_CACHE_SIZE - offset;
789 		else
790 			count = 0;
791 		offset = 0;
792 
793 		unlock_page(page);
794 		page_cache_release(page);
795 	}
796 
797 	return res;
798 }
799 
800 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
801 			       struct address_space *mapping,
802 			       struct iov_iter *ii, loff_t pos)
803 {
804 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
805 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
806 	size_t count = 0;
807 	int err;
808 
809 	req->in.argpages = 1;
810 	req->page_offset = offset;
811 
812 	do {
813 		size_t tmp;
814 		struct page *page;
815 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
816 		size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset,
817 				     iov_iter_count(ii));
818 
819 		bytes = min_t(size_t, bytes, fc->max_write - count);
820 
821  again:
822 		err = -EFAULT;
823 		if (iov_iter_fault_in_readable(ii, bytes))
824 			break;
825 
826 		err = -ENOMEM;
827 		page = grab_cache_page_write_begin(mapping, index, 0);
828 		if (!page)
829 			break;
830 
831 		pagefault_disable();
832 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
833 		pagefault_enable();
834 		flush_dcache_page(page);
835 
836 		if (!tmp) {
837 			unlock_page(page);
838 			page_cache_release(page);
839 			bytes = min(bytes, iov_iter_single_seg_count(ii));
840 			goto again;
841 		}
842 
843 		err = 0;
844 		req->pages[req->num_pages] = page;
845 		req->num_pages++;
846 
847 		iov_iter_advance(ii, tmp);
848 		count += tmp;
849 		pos += tmp;
850 		offset += tmp;
851 		if (offset == PAGE_CACHE_SIZE)
852 			offset = 0;
853 
854 		if (!fc->big_writes)
855 			break;
856 	} while (iov_iter_count(ii) && count < fc->max_write &&
857 		 req->num_pages < FUSE_MAX_PAGES_PER_REQ && offset == 0);
858 
859 	return count > 0 ? count : err;
860 }
861 
862 static ssize_t fuse_perform_write(struct file *file,
863 				  struct address_space *mapping,
864 				  struct iov_iter *ii, loff_t pos)
865 {
866 	struct inode *inode = mapping->host;
867 	struct fuse_conn *fc = get_fuse_conn(inode);
868 	int err = 0;
869 	ssize_t res = 0;
870 
871 	if (is_bad_inode(inode))
872 		return -EIO;
873 
874 	do {
875 		struct fuse_req *req;
876 		ssize_t count;
877 
878 		req = fuse_get_req(fc);
879 		if (IS_ERR(req)) {
880 			err = PTR_ERR(req);
881 			break;
882 		}
883 
884 		count = fuse_fill_write_pages(req, mapping, ii, pos);
885 		if (count <= 0) {
886 			err = count;
887 		} else {
888 			size_t num_written;
889 
890 			num_written = fuse_send_write_pages(req, file, inode,
891 							    pos, count);
892 			err = req->out.h.error;
893 			if (!err) {
894 				res += num_written;
895 				pos += num_written;
896 
897 				/* break out of the loop on short write */
898 				if (num_written != count)
899 					err = -EIO;
900 			}
901 		}
902 		fuse_put_request(fc, req);
903 	} while (!err && iov_iter_count(ii));
904 
905 	if (res > 0)
906 		fuse_write_update_size(inode, pos);
907 
908 	fuse_invalidate_attr(inode);
909 
910 	return res > 0 ? res : err;
911 }
912 
913 static ssize_t fuse_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
914 				   unsigned long nr_segs, loff_t pos)
915 {
916 	struct file *file = iocb->ki_filp;
917 	struct address_space *mapping = file->f_mapping;
918 	size_t count = 0;
919 	ssize_t written = 0;
920 	struct inode *inode = mapping->host;
921 	ssize_t err;
922 	struct iov_iter i;
923 
924 	WARN_ON(iocb->ki_pos != pos);
925 
926 	err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
927 	if (err)
928 		return err;
929 
930 	mutex_lock(&inode->i_mutex);
931 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
932 
933 	/* We can write back this queue in page reclaim */
934 	current->backing_dev_info = mapping->backing_dev_info;
935 
936 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
937 	if (err)
938 		goto out;
939 
940 	if (count == 0)
941 		goto out;
942 
943 	err = file_remove_suid(file);
944 	if (err)
945 		goto out;
946 
947 	file_update_time(file);
948 
949 	iov_iter_init(&i, iov, nr_segs, count, 0);
950 	written = fuse_perform_write(file, mapping, &i, pos);
951 	if (written >= 0)
952 		iocb->ki_pos = pos + written;
953 
954 out:
955 	current->backing_dev_info = NULL;
956 	mutex_unlock(&inode->i_mutex);
957 
958 	return written ? written : err;
959 }
960 
961 static void fuse_release_user_pages(struct fuse_req *req, int write)
962 {
963 	unsigned i;
964 
965 	for (i = 0; i < req->num_pages; i++) {
966 		struct page *page = req->pages[i];
967 		if (write)
968 			set_page_dirty_lock(page);
969 		put_page(page);
970 	}
971 }
972 
973 static int fuse_get_user_pages(struct fuse_req *req, const char __user *buf,
974 			       size_t *nbytesp, int write)
975 {
976 	size_t nbytes = *nbytesp;
977 	unsigned long user_addr = (unsigned long) buf;
978 	unsigned offset = user_addr & ~PAGE_MASK;
979 	int npages;
980 
981 	/* Special case for kernel I/O: can copy directly into the buffer */
982 	if (segment_eq(get_fs(), KERNEL_DS)) {
983 		if (write)
984 			req->in.args[1].value = (void *) user_addr;
985 		else
986 			req->out.args[0].value = (void *) user_addr;
987 
988 		return 0;
989 	}
990 
991 	nbytes = min_t(size_t, nbytes, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
992 	npages = (nbytes + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
993 	npages = clamp(npages, 1, FUSE_MAX_PAGES_PER_REQ);
994 	down_read(&current->mm->mmap_sem);
995 	npages = get_user_pages(current, current->mm, user_addr, npages, !write,
996 				0, req->pages, NULL);
997 	up_read(&current->mm->mmap_sem);
998 	if (npages < 0)
999 		return npages;
1000 
1001 	req->num_pages = npages;
1002 	req->page_offset = offset;
1003 
1004 	if (write)
1005 		req->in.argpages = 1;
1006 	else
1007 		req->out.argpages = 1;
1008 
1009 	nbytes = (req->num_pages << PAGE_SHIFT) - req->page_offset;
1010 	*nbytesp = min(*nbytesp, nbytes);
1011 
1012 	return 0;
1013 }
1014 
1015 ssize_t fuse_direct_io(struct file *file, const char __user *buf,
1016 		       size_t count, loff_t *ppos, int write)
1017 {
1018 	struct fuse_file *ff = file->private_data;
1019 	struct fuse_conn *fc = ff->fc;
1020 	size_t nmax = write ? fc->max_write : fc->max_read;
1021 	loff_t pos = *ppos;
1022 	ssize_t res = 0;
1023 	struct fuse_req *req;
1024 
1025 	req = fuse_get_req(fc);
1026 	if (IS_ERR(req))
1027 		return PTR_ERR(req);
1028 
1029 	while (count) {
1030 		size_t nres;
1031 		fl_owner_t owner = current->files;
1032 		size_t nbytes = min(count, nmax);
1033 		int err = fuse_get_user_pages(req, buf, &nbytes, write);
1034 		if (err) {
1035 			res = err;
1036 			break;
1037 		}
1038 
1039 		if (write)
1040 			nres = fuse_send_write(req, file, pos, nbytes, owner);
1041 		else
1042 			nres = fuse_send_read(req, file, pos, nbytes, owner);
1043 
1044 		fuse_release_user_pages(req, !write);
1045 		if (req->out.h.error) {
1046 			if (!res)
1047 				res = req->out.h.error;
1048 			break;
1049 		} else if (nres > nbytes) {
1050 			res = -EIO;
1051 			break;
1052 		}
1053 		count -= nres;
1054 		res += nres;
1055 		pos += nres;
1056 		buf += nres;
1057 		if (nres != nbytes)
1058 			break;
1059 		if (count) {
1060 			fuse_put_request(fc, req);
1061 			req = fuse_get_req(fc);
1062 			if (IS_ERR(req))
1063 				break;
1064 		}
1065 	}
1066 	fuse_put_request(fc, req);
1067 	if (res > 0)
1068 		*ppos = pos;
1069 
1070 	return res;
1071 }
1072 EXPORT_SYMBOL_GPL(fuse_direct_io);
1073 
1074 static ssize_t fuse_direct_read(struct file *file, char __user *buf,
1075 				     size_t count, loff_t *ppos)
1076 {
1077 	ssize_t res;
1078 	struct inode *inode = file->f_path.dentry->d_inode;
1079 
1080 	if (is_bad_inode(inode))
1081 		return -EIO;
1082 
1083 	res = fuse_direct_io(file, buf, count, ppos, 0);
1084 
1085 	fuse_invalidate_attr(inode);
1086 
1087 	return res;
1088 }
1089 
1090 static ssize_t fuse_direct_write(struct file *file, const char __user *buf,
1091 				 size_t count, loff_t *ppos)
1092 {
1093 	struct inode *inode = file->f_path.dentry->d_inode;
1094 	ssize_t res;
1095 
1096 	if (is_bad_inode(inode))
1097 		return -EIO;
1098 
1099 	/* Don't allow parallel writes to the same file */
1100 	mutex_lock(&inode->i_mutex);
1101 	res = generic_write_checks(file, ppos, &count, 0);
1102 	if (!res) {
1103 		res = fuse_direct_io(file, buf, count, ppos, 1);
1104 		if (res > 0)
1105 			fuse_write_update_size(inode, *ppos);
1106 	}
1107 	mutex_unlock(&inode->i_mutex);
1108 
1109 	fuse_invalidate_attr(inode);
1110 
1111 	return res;
1112 }
1113 
1114 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1115 {
1116 	__free_page(req->pages[0]);
1117 	fuse_file_put(req->ff);
1118 }
1119 
1120 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1121 {
1122 	struct inode *inode = req->inode;
1123 	struct fuse_inode *fi = get_fuse_inode(inode);
1124 	struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info;
1125 
1126 	list_del(&req->writepages_entry);
1127 	dec_bdi_stat(bdi, BDI_WRITEBACK);
1128 	dec_zone_page_state(req->pages[0], NR_WRITEBACK_TEMP);
1129 	bdi_writeout_inc(bdi);
1130 	wake_up(&fi->page_waitq);
1131 }
1132 
1133 /* Called under fc->lock, may release and reacquire it */
1134 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req)
1135 __releases(&fc->lock)
1136 __acquires(&fc->lock)
1137 {
1138 	struct fuse_inode *fi = get_fuse_inode(req->inode);
1139 	loff_t size = i_size_read(req->inode);
1140 	struct fuse_write_in *inarg = &req->misc.write.in;
1141 
1142 	if (!fc->connected)
1143 		goto out_free;
1144 
1145 	if (inarg->offset + PAGE_CACHE_SIZE <= size) {
1146 		inarg->size = PAGE_CACHE_SIZE;
1147 	} else if (inarg->offset < size) {
1148 		inarg->size = size & (PAGE_CACHE_SIZE - 1);
1149 	} else {
1150 		/* Got truncated off completely */
1151 		goto out_free;
1152 	}
1153 
1154 	req->in.args[1].size = inarg->size;
1155 	fi->writectr++;
1156 	fuse_request_send_background_locked(fc, req);
1157 	return;
1158 
1159  out_free:
1160 	fuse_writepage_finish(fc, req);
1161 	spin_unlock(&fc->lock);
1162 	fuse_writepage_free(fc, req);
1163 	fuse_put_request(fc, req);
1164 	spin_lock(&fc->lock);
1165 }
1166 
1167 /*
1168  * If fi->writectr is positive (no truncate or fsync going on) send
1169  * all queued writepage requests.
1170  *
1171  * Called with fc->lock
1172  */
1173 void fuse_flush_writepages(struct inode *inode)
1174 __releases(&fc->lock)
1175 __acquires(&fc->lock)
1176 {
1177 	struct fuse_conn *fc = get_fuse_conn(inode);
1178 	struct fuse_inode *fi = get_fuse_inode(inode);
1179 	struct fuse_req *req;
1180 
1181 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1182 		req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1183 		list_del_init(&req->list);
1184 		fuse_send_writepage(fc, req);
1185 	}
1186 }
1187 
1188 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1189 {
1190 	struct inode *inode = req->inode;
1191 	struct fuse_inode *fi = get_fuse_inode(inode);
1192 
1193 	mapping_set_error(inode->i_mapping, req->out.h.error);
1194 	spin_lock(&fc->lock);
1195 	fi->writectr--;
1196 	fuse_writepage_finish(fc, req);
1197 	spin_unlock(&fc->lock);
1198 	fuse_writepage_free(fc, req);
1199 }
1200 
1201 static int fuse_writepage_locked(struct page *page)
1202 {
1203 	struct address_space *mapping = page->mapping;
1204 	struct inode *inode = mapping->host;
1205 	struct fuse_conn *fc = get_fuse_conn(inode);
1206 	struct fuse_inode *fi = get_fuse_inode(inode);
1207 	struct fuse_req *req;
1208 	struct fuse_file *ff;
1209 	struct page *tmp_page;
1210 
1211 	set_page_writeback(page);
1212 
1213 	req = fuse_request_alloc_nofs();
1214 	if (!req)
1215 		goto err;
1216 
1217 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1218 	if (!tmp_page)
1219 		goto err_free;
1220 
1221 	spin_lock(&fc->lock);
1222 	BUG_ON(list_empty(&fi->write_files));
1223 	ff = list_entry(fi->write_files.next, struct fuse_file, write_entry);
1224 	req->ff = fuse_file_get(ff);
1225 	spin_unlock(&fc->lock);
1226 
1227 	fuse_write_fill(req, ff, page_offset(page), 0);
1228 
1229 	copy_highpage(tmp_page, page);
1230 	req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1231 	req->in.argpages = 1;
1232 	req->num_pages = 1;
1233 	req->pages[0] = tmp_page;
1234 	req->page_offset = 0;
1235 	req->end = fuse_writepage_end;
1236 	req->inode = inode;
1237 
1238 	inc_bdi_stat(mapping->backing_dev_info, BDI_WRITEBACK);
1239 	inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1240 	end_page_writeback(page);
1241 
1242 	spin_lock(&fc->lock);
1243 	list_add(&req->writepages_entry, &fi->writepages);
1244 	list_add_tail(&req->list, &fi->queued_writes);
1245 	fuse_flush_writepages(inode);
1246 	spin_unlock(&fc->lock);
1247 
1248 	return 0;
1249 
1250 err_free:
1251 	fuse_request_free(req);
1252 err:
1253 	end_page_writeback(page);
1254 	return -ENOMEM;
1255 }
1256 
1257 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1258 {
1259 	int err;
1260 
1261 	err = fuse_writepage_locked(page);
1262 	unlock_page(page);
1263 
1264 	return err;
1265 }
1266 
1267 static int fuse_launder_page(struct page *page)
1268 {
1269 	int err = 0;
1270 	if (clear_page_dirty_for_io(page)) {
1271 		struct inode *inode = page->mapping->host;
1272 		err = fuse_writepage_locked(page);
1273 		if (!err)
1274 			fuse_wait_on_page_writeback(inode, page->index);
1275 	}
1276 	return err;
1277 }
1278 
1279 /*
1280  * Write back dirty pages now, because there may not be any suitable
1281  * open files later
1282  */
1283 static void fuse_vma_close(struct vm_area_struct *vma)
1284 {
1285 	filemap_write_and_wait(vma->vm_file->f_mapping);
1286 }
1287 
1288 /*
1289  * Wait for writeback against this page to complete before allowing it
1290  * to be marked dirty again, and hence written back again, possibly
1291  * before the previous writepage completed.
1292  *
1293  * Block here, instead of in ->writepage(), so that the userspace fs
1294  * can only block processes actually operating on the filesystem.
1295  *
1296  * Otherwise unprivileged userspace fs would be able to block
1297  * unrelated:
1298  *
1299  * - page migration
1300  * - sync(2)
1301  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
1302  */
1303 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1304 {
1305 	struct page *page = vmf->page;
1306 	/*
1307 	 * Don't use page->mapping as it may become NULL from a
1308 	 * concurrent truncate.
1309 	 */
1310 	struct inode *inode = vma->vm_file->f_mapping->host;
1311 
1312 	fuse_wait_on_page_writeback(inode, page->index);
1313 	return 0;
1314 }
1315 
1316 static const struct vm_operations_struct fuse_file_vm_ops = {
1317 	.close		= fuse_vma_close,
1318 	.fault		= filemap_fault,
1319 	.page_mkwrite	= fuse_page_mkwrite,
1320 };
1321 
1322 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
1323 {
1324 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) {
1325 		struct inode *inode = file->f_dentry->d_inode;
1326 		struct fuse_conn *fc = get_fuse_conn(inode);
1327 		struct fuse_inode *fi = get_fuse_inode(inode);
1328 		struct fuse_file *ff = file->private_data;
1329 		/*
1330 		 * file may be written through mmap, so chain it onto the
1331 		 * inodes's write_file list
1332 		 */
1333 		spin_lock(&fc->lock);
1334 		if (list_empty(&ff->write_entry))
1335 			list_add(&ff->write_entry, &fi->write_files);
1336 		spin_unlock(&fc->lock);
1337 	}
1338 	file_accessed(file);
1339 	vma->vm_ops = &fuse_file_vm_ops;
1340 	return 0;
1341 }
1342 
1343 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
1344 {
1345 	/* Can't provide the coherency needed for MAP_SHARED */
1346 	if (vma->vm_flags & VM_MAYSHARE)
1347 		return -ENODEV;
1348 
1349 	invalidate_inode_pages2(file->f_mapping);
1350 
1351 	return generic_file_mmap(file, vma);
1352 }
1353 
1354 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl,
1355 				  struct file_lock *fl)
1356 {
1357 	switch (ffl->type) {
1358 	case F_UNLCK:
1359 		break;
1360 
1361 	case F_RDLCK:
1362 	case F_WRLCK:
1363 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
1364 		    ffl->end < ffl->start)
1365 			return -EIO;
1366 
1367 		fl->fl_start = ffl->start;
1368 		fl->fl_end = ffl->end;
1369 		fl->fl_pid = ffl->pid;
1370 		break;
1371 
1372 	default:
1373 		return -EIO;
1374 	}
1375 	fl->fl_type = ffl->type;
1376 	return 0;
1377 }
1378 
1379 static void fuse_lk_fill(struct fuse_req *req, struct file *file,
1380 			 const struct file_lock *fl, int opcode, pid_t pid,
1381 			 int flock)
1382 {
1383 	struct inode *inode = file->f_path.dentry->d_inode;
1384 	struct fuse_conn *fc = get_fuse_conn(inode);
1385 	struct fuse_file *ff = file->private_data;
1386 	struct fuse_lk_in *arg = &req->misc.lk_in;
1387 
1388 	arg->fh = ff->fh;
1389 	arg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
1390 	arg->lk.start = fl->fl_start;
1391 	arg->lk.end = fl->fl_end;
1392 	arg->lk.type = fl->fl_type;
1393 	arg->lk.pid = pid;
1394 	if (flock)
1395 		arg->lk_flags |= FUSE_LK_FLOCK;
1396 	req->in.h.opcode = opcode;
1397 	req->in.h.nodeid = get_node_id(inode);
1398 	req->in.numargs = 1;
1399 	req->in.args[0].size = sizeof(*arg);
1400 	req->in.args[0].value = arg;
1401 }
1402 
1403 static int fuse_getlk(struct file *file, struct file_lock *fl)
1404 {
1405 	struct inode *inode = file->f_path.dentry->d_inode;
1406 	struct fuse_conn *fc = get_fuse_conn(inode);
1407 	struct fuse_req *req;
1408 	struct fuse_lk_out outarg;
1409 	int err;
1410 
1411 	req = fuse_get_req(fc);
1412 	if (IS_ERR(req))
1413 		return PTR_ERR(req);
1414 
1415 	fuse_lk_fill(req, file, fl, FUSE_GETLK, 0, 0);
1416 	req->out.numargs = 1;
1417 	req->out.args[0].size = sizeof(outarg);
1418 	req->out.args[0].value = &outarg;
1419 	fuse_request_send(fc, req);
1420 	err = req->out.h.error;
1421 	fuse_put_request(fc, req);
1422 	if (!err)
1423 		err = convert_fuse_file_lock(&outarg.lk, fl);
1424 
1425 	return err;
1426 }
1427 
1428 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
1429 {
1430 	struct inode *inode = file->f_path.dentry->d_inode;
1431 	struct fuse_conn *fc = get_fuse_conn(inode);
1432 	struct fuse_req *req;
1433 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
1434 	pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0;
1435 	int err;
1436 
1437 	if (fl->fl_lmops && fl->fl_lmops->fl_grant) {
1438 		/* NLM needs asynchronous locks, which we don't support yet */
1439 		return -ENOLCK;
1440 	}
1441 
1442 	/* Unlock on close is handled by the flush method */
1443 	if (fl->fl_flags & FL_CLOSE)
1444 		return 0;
1445 
1446 	req = fuse_get_req(fc);
1447 	if (IS_ERR(req))
1448 		return PTR_ERR(req);
1449 
1450 	fuse_lk_fill(req, file, fl, opcode, pid, flock);
1451 	fuse_request_send(fc, req);
1452 	err = req->out.h.error;
1453 	/* locking is restartable */
1454 	if (err == -EINTR)
1455 		err = -ERESTARTSYS;
1456 	fuse_put_request(fc, req);
1457 	return err;
1458 }
1459 
1460 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
1461 {
1462 	struct inode *inode = file->f_path.dentry->d_inode;
1463 	struct fuse_conn *fc = get_fuse_conn(inode);
1464 	int err;
1465 
1466 	if (cmd == F_CANCELLK) {
1467 		err = 0;
1468 	} else if (cmd == F_GETLK) {
1469 		if (fc->no_lock) {
1470 			posix_test_lock(file, fl);
1471 			err = 0;
1472 		} else
1473 			err = fuse_getlk(file, fl);
1474 	} else {
1475 		if (fc->no_lock)
1476 			err = posix_lock_file(file, fl, NULL);
1477 		else
1478 			err = fuse_setlk(file, fl, 0);
1479 	}
1480 	return err;
1481 }
1482 
1483 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
1484 {
1485 	struct inode *inode = file->f_path.dentry->d_inode;
1486 	struct fuse_conn *fc = get_fuse_conn(inode);
1487 	int err;
1488 
1489 	if (fc->no_lock) {
1490 		err = flock_lock_file_wait(file, fl);
1491 	} else {
1492 		/* emulate flock with POSIX locks */
1493 		fl->fl_owner = (fl_owner_t) file;
1494 		err = fuse_setlk(file, fl, 1);
1495 	}
1496 
1497 	return err;
1498 }
1499 
1500 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
1501 {
1502 	struct inode *inode = mapping->host;
1503 	struct fuse_conn *fc = get_fuse_conn(inode);
1504 	struct fuse_req *req;
1505 	struct fuse_bmap_in inarg;
1506 	struct fuse_bmap_out outarg;
1507 	int err;
1508 
1509 	if (!inode->i_sb->s_bdev || fc->no_bmap)
1510 		return 0;
1511 
1512 	req = fuse_get_req(fc);
1513 	if (IS_ERR(req))
1514 		return 0;
1515 
1516 	memset(&inarg, 0, sizeof(inarg));
1517 	inarg.block = block;
1518 	inarg.blocksize = inode->i_sb->s_blocksize;
1519 	req->in.h.opcode = FUSE_BMAP;
1520 	req->in.h.nodeid = get_node_id(inode);
1521 	req->in.numargs = 1;
1522 	req->in.args[0].size = sizeof(inarg);
1523 	req->in.args[0].value = &inarg;
1524 	req->out.numargs = 1;
1525 	req->out.args[0].size = sizeof(outarg);
1526 	req->out.args[0].value = &outarg;
1527 	fuse_request_send(fc, req);
1528 	err = req->out.h.error;
1529 	fuse_put_request(fc, req);
1530 	if (err == -ENOSYS)
1531 		fc->no_bmap = 1;
1532 
1533 	return err ? 0 : outarg.block;
1534 }
1535 
1536 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int origin)
1537 {
1538 	loff_t retval;
1539 	struct inode *inode = file->f_path.dentry->d_inode;
1540 
1541 	mutex_lock(&inode->i_mutex);
1542 	switch (origin) {
1543 	case SEEK_END:
1544 		retval = fuse_update_attributes(inode, NULL, file, NULL);
1545 		if (retval)
1546 			goto exit;
1547 		offset += i_size_read(inode);
1548 		break;
1549 	case SEEK_CUR:
1550 		offset += file->f_pos;
1551 	}
1552 	retval = -EINVAL;
1553 	if (offset >= 0 && offset <= inode->i_sb->s_maxbytes) {
1554 		if (offset != file->f_pos) {
1555 			file->f_pos = offset;
1556 			file->f_version = 0;
1557 		}
1558 		retval = offset;
1559 	}
1560 exit:
1561 	mutex_unlock(&inode->i_mutex);
1562 	return retval;
1563 }
1564 
1565 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov,
1566 			unsigned int nr_segs, size_t bytes, bool to_user)
1567 {
1568 	struct iov_iter ii;
1569 	int page_idx = 0;
1570 
1571 	if (!bytes)
1572 		return 0;
1573 
1574 	iov_iter_init(&ii, iov, nr_segs, bytes, 0);
1575 
1576 	while (iov_iter_count(&ii)) {
1577 		struct page *page = pages[page_idx++];
1578 		size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii));
1579 		void *kaddr, *map;
1580 
1581 		kaddr = map = kmap(page);
1582 
1583 		while (todo) {
1584 			char __user *uaddr = ii.iov->iov_base + ii.iov_offset;
1585 			size_t iov_len = ii.iov->iov_len - ii.iov_offset;
1586 			size_t copy = min(todo, iov_len);
1587 			size_t left;
1588 
1589 			if (!to_user)
1590 				left = copy_from_user(kaddr, uaddr, copy);
1591 			else
1592 				left = copy_to_user(uaddr, kaddr, copy);
1593 
1594 			if (unlikely(left))
1595 				return -EFAULT;
1596 
1597 			iov_iter_advance(&ii, copy);
1598 			todo -= copy;
1599 			kaddr += copy;
1600 		}
1601 
1602 		kunmap(map);
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 /*
1609  * For ioctls, there is no generic way to determine how much memory
1610  * needs to be read and/or written.  Furthermore, ioctls are allowed
1611  * to dereference the passed pointer, so the parameter requires deep
1612  * copying but FUSE has no idea whatsoever about what to copy in or
1613  * out.
1614  *
1615  * This is solved by allowing FUSE server to retry ioctl with
1616  * necessary in/out iovecs.  Let's assume the ioctl implementation
1617  * needs to read in the following structure.
1618  *
1619  * struct a {
1620  *	char	*buf;
1621  *	size_t	buflen;
1622  * }
1623  *
1624  * On the first callout to FUSE server, inarg->in_size and
1625  * inarg->out_size will be NULL; then, the server completes the ioctl
1626  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
1627  * the actual iov array to
1628  *
1629  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
1630  *
1631  * which tells FUSE to copy in the requested area and retry the ioctl.
1632  * On the second round, the server has access to the structure and
1633  * from that it can tell what to look for next, so on the invocation,
1634  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
1635  *
1636  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
1637  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
1638  *
1639  * FUSE will copy both struct a and the pointed buffer from the
1640  * process doing the ioctl and retry ioctl with both struct a and the
1641  * buffer.
1642  *
1643  * This time, FUSE server has everything it needs and completes ioctl
1644  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
1645  *
1646  * Copying data out works the same way.
1647  *
1648  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
1649  * automatically initializes in and out iovs by decoding @cmd with
1650  * _IOC_* macros and the server is not allowed to request RETRY.  This
1651  * limits ioctl data transfers to well-formed ioctls and is the forced
1652  * behavior for all FUSE servers.
1653  */
1654 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
1655 		   unsigned int flags)
1656 {
1657 	struct fuse_file *ff = file->private_data;
1658 	struct fuse_conn *fc = ff->fc;
1659 	struct fuse_ioctl_in inarg = {
1660 		.fh = ff->fh,
1661 		.cmd = cmd,
1662 		.arg = arg,
1663 		.flags = flags
1664 	};
1665 	struct fuse_ioctl_out outarg;
1666 	struct fuse_req *req = NULL;
1667 	struct page **pages = NULL;
1668 	struct page *iov_page = NULL;
1669 	struct iovec *in_iov = NULL, *out_iov = NULL;
1670 	unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
1671 	size_t in_size, out_size, transferred;
1672 	int err;
1673 
1674 	/* assume all the iovs returned by client always fits in a page */
1675 	BUILD_BUG_ON(sizeof(struct iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
1676 
1677 	err = -ENOMEM;
1678 	pages = kzalloc(sizeof(pages[0]) * FUSE_MAX_PAGES_PER_REQ, GFP_KERNEL);
1679 	iov_page = alloc_page(GFP_KERNEL);
1680 	if (!pages || !iov_page)
1681 		goto out;
1682 
1683 	/*
1684 	 * If restricted, initialize IO parameters as encoded in @cmd.
1685 	 * RETRY from server is not allowed.
1686 	 */
1687 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
1688 		struct iovec *iov = page_address(iov_page);
1689 
1690 		iov->iov_base = (void __user *)arg;
1691 		iov->iov_len = _IOC_SIZE(cmd);
1692 
1693 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
1694 			in_iov = iov;
1695 			in_iovs = 1;
1696 		}
1697 
1698 		if (_IOC_DIR(cmd) & _IOC_READ) {
1699 			out_iov = iov;
1700 			out_iovs = 1;
1701 		}
1702 	}
1703 
1704  retry:
1705 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
1706 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
1707 
1708 	/*
1709 	 * Out data can be used either for actual out data or iovs,
1710 	 * make sure there always is at least one page.
1711 	 */
1712 	out_size = max_t(size_t, out_size, PAGE_SIZE);
1713 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
1714 
1715 	/* make sure there are enough buffer pages and init request with them */
1716 	err = -ENOMEM;
1717 	if (max_pages > FUSE_MAX_PAGES_PER_REQ)
1718 		goto out;
1719 	while (num_pages < max_pages) {
1720 		pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
1721 		if (!pages[num_pages])
1722 			goto out;
1723 		num_pages++;
1724 	}
1725 
1726 	req = fuse_get_req(fc);
1727 	if (IS_ERR(req)) {
1728 		err = PTR_ERR(req);
1729 		req = NULL;
1730 		goto out;
1731 	}
1732 	memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
1733 	req->num_pages = num_pages;
1734 
1735 	/* okay, let's send it to the client */
1736 	req->in.h.opcode = FUSE_IOCTL;
1737 	req->in.h.nodeid = ff->nodeid;
1738 	req->in.numargs = 1;
1739 	req->in.args[0].size = sizeof(inarg);
1740 	req->in.args[0].value = &inarg;
1741 	if (in_size) {
1742 		req->in.numargs++;
1743 		req->in.args[1].size = in_size;
1744 		req->in.argpages = 1;
1745 
1746 		err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size,
1747 					   false);
1748 		if (err)
1749 			goto out;
1750 	}
1751 
1752 	req->out.numargs = 2;
1753 	req->out.args[0].size = sizeof(outarg);
1754 	req->out.args[0].value = &outarg;
1755 	req->out.args[1].size = out_size;
1756 	req->out.argpages = 1;
1757 	req->out.argvar = 1;
1758 
1759 	fuse_request_send(fc, req);
1760 	err = req->out.h.error;
1761 	transferred = req->out.args[1].size;
1762 	fuse_put_request(fc, req);
1763 	req = NULL;
1764 	if (err)
1765 		goto out;
1766 
1767 	/* did it ask for retry? */
1768 	if (outarg.flags & FUSE_IOCTL_RETRY) {
1769 		char *vaddr;
1770 
1771 		/* no retry if in restricted mode */
1772 		err = -EIO;
1773 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
1774 			goto out;
1775 
1776 		in_iovs = outarg.in_iovs;
1777 		out_iovs = outarg.out_iovs;
1778 
1779 		/*
1780 		 * Make sure things are in boundary, separate checks
1781 		 * are to protect against overflow.
1782 		 */
1783 		err = -ENOMEM;
1784 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
1785 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
1786 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
1787 			goto out;
1788 
1789 		err = -EIO;
1790 		if ((in_iovs + out_iovs) * sizeof(struct iovec) != transferred)
1791 			goto out;
1792 
1793 		/* okay, copy in iovs and retry */
1794 		vaddr = kmap_atomic(pages[0], KM_USER0);
1795 		memcpy(page_address(iov_page), vaddr, transferred);
1796 		kunmap_atomic(vaddr, KM_USER0);
1797 
1798 		in_iov = page_address(iov_page);
1799 		out_iov = in_iov + in_iovs;
1800 
1801 		goto retry;
1802 	}
1803 
1804 	err = -EIO;
1805 	if (transferred > inarg.out_size)
1806 		goto out;
1807 
1808 	err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true);
1809  out:
1810 	if (req)
1811 		fuse_put_request(fc, req);
1812 	if (iov_page)
1813 		__free_page(iov_page);
1814 	while (num_pages)
1815 		__free_page(pages[--num_pages]);
1816 	kfree(pages);
1817 
1818 	return err ? err : outarg.result;
1819 }
1820 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
1821 
1822 static long fuse_file_ioctl_common(struct file *file, unsigned int cmd,
1823 				   unsigned long arg, unsigned int flags)
1824 {
1825 	struct inode *inode = file->f_dentry->d_inode;
1826 	struct fuse_conn *fc = get_fuse_conn(inode);
1827 
1828 	if (!fuse_allow_task(fc, current))
1829 		return -EACCES;
1830 
1831 	if (is_bad_inode(inode))
1832 		return -EIO;
1833 
1834 	return fuse_do_ioctl(file, cmd, arg, flags);
1835 }
1836 
1837 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
1838 			    unsigned long arg)
1839 {
1840 	return fuse_file_ioctl_common(file, cmd, arg, 0);
1841 }
1842 
1843 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
1844 				   unsigned long arg)
1845 {
1846 	return fuse_file_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
1847 }
1848 
1849 /*
1850  * All files which have been polled are linked to RB tree
1851  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
1852  * find the matching one.
1853  */
1854 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
1855 					      struct rb_node **parent_out)
1856 {
1857 	struct rb_node **link = &fc->polled_files.rb_node;
1858 	struct rb_node *last = NULL;
1859 
1860 	while (*link) {
1861 		struct fuse_file *ff;
1862 
1863 		last = *link;
1864 		ff = rb_entry(last, struct fuse_file, polled_node);
1865 
1866 		if (kh < ff->kh)
1867 			link = &last->rb_left;
1868 		else if (kh > ff->kh)
1869 			link = &last->rb_right;
1870 		else
1871 			return link;
1872 	}
1873 
1874 	if (parent_out)
1875 		*parent_out = last;
1876 	return link;
1877 }
1878 
1879 /*
1880  * The file is about to be polled.  Make sure it's on the polled_files
1881  * RB tree.  Note that files once added to the polled_files tree are
1882  * not removed before the file is released.  This is because a file
1883  * polled once is likely to be polled again.
1884  */
1885 static void fuse_register_polled_file(struct fuse_conn *fc,
1886 				      struct fuse_file *ff)
1887 {
1888 	spin_lock(&fc->lock);
1889 	if (RB_EMPTY_NODE(&ff->polled_node)) {
1890 		struct rb_node **link, *parent;
1891 
1892 		link = fuse_find_polled_node(fc, ff->kh, &parent);
1893 		BUG_ON(*link);
1894 		rb_link_node(&ff->polled_node, parent, link);
1895 		rb_insert_color(&ff->polled_node, &fc->polled_files);
1896 	}
1897 	spin_unlock(&fc->lock);
1898 }
1899 
1900 unsigned fuse_file_poll(struct file *file, poll_table *wait)
1901 {
1902 	struct fuse_file *ff = file->private_data;
1903 	struct fuse_conn *fc = ff->fc;
1904 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
1905 	struct fuse_poll_out outarg;
1906 	struct fuse_req *req;
1907 	int err;
1908 
1909 	if (fc->no_poll)
1910 		return DEFAULT_POLLMASK;
1911 
1912 	poll_wait(file, &ff->poll_wait, wait);
1913 
1914 	/*
1915 	 * Ask for notification iff there's someone waiting for it.
1916 	 * The client may ignore the flag and always notify.
1917 	 */
1918 	if (waitqueue_active(&ff->poll_wait)) {
1919 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
1920 		fuse_register_polled_file(fc, ff);
1921 	}
1922 
1923 	req = fuse_get_req(fc);
1924 	if (IS_ERR(req))
1925 		return POLLERR;
1926 
1927 	req->in.h.opcode = FUSE_POLL;
1928 	req->in.h.nodeid = ff->nodeid;
1929 	req->in.numargs = 1;
1930 	req->in.args[0].size = sizeof(inarg);
1931 	req->in.args[0].value = &inarg;
1932 	req->out.numargs = 1;
1933 	req->out.args[0].size = sizeof(outarg);
1934 	req->out.args[0].value = &outarg;
1935 	fuse_request_send(fc, req);
1936 	err = req->out.h.error;
1937 	fuse_put_request(fc, req);
1938 
1939 	if (!err)
1940 		return outarg.revents;
1941 	if (err == -ENOSYS) {
1942 		fc->no_poll = 1;
1943 		return DEFAULT_POLLMASK;
1944 	}
1945 	return POLLERR;
1946 }
1947 EXPORT_SYMBOL_GPL(fuse_file_poll);
1948 
1949 /*
1950  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
1951  * wakes up the poll waiters.
1952  */
1953 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
1954 			    struct fuse_notify_poll_wakeup_out *outarg)
1955 {
1956 	u64 kh = outarg->kh;
1957 	struct rb_node **link;
1958 
1959 	spin_lock(&fc->lock);
1960 
1961 	link = fuse_find_polled_node(fc, kh, NULL);
1962 	if (*link) {
1963 		struct fuse_file *ff;
1964 
1965 		ff = rb_entry(*link, struct fuse_file, polled_node);
1966 		wake_up_interruptible_sync(&ff->poll_wait);
1967 	}
1968 
1969 	spin_unlock(&fc->lock);
1970 	return 0;
1971 }
1972 
1973 static const struct file_operations fuse_file_operations = {
1974 	.llseek		= fuse_file_llseek,
1975 	.read		= do_sync_read,
1976 	.aio_read	= fuse_file_aio_read,
1977 	.write		= do_sync_write,
1978 	.aio_write	= fuse_file_aio_write,
1979 	.mmap		= fuse_file_mmap,
1980 	.open		= fuse_open,
1981 	.flush		= fuse_flush,
1982 	.release	= fuse_release,
1983 	.fsync		= fuse_fsync,
1984 	.lock		= fuse_file_lock,
1985 	.flock		= fuse_file_flock,
1986 	.splice_read	= generic_file_splice_read,
1987 	.unlocked_ioctl	= fuse_file_ioctl,
1988 	.compat_ioctl	= fuse_file_compat_ioctl,
1989 	.poll		= fuse_file_poll,
1990 };
1991 
1992 static const struct file_operations fuse_direct_io_file_operations = {
1993 	.llseek		= fuse_file_llseek,
1994 	.read		= fuse_direct_read,
1995 	.write		= fuse_direct_write,
1996 	.mmap		= fuse_direct_mmap,
1997 	.open		= fuse_open,
1998 	.flush		= fuse_flush,
1999 	.release	= fuse_release,
2000 	.fsync		= fuse_fsync,
2001 	.lock		= fuse_file_lock,
2002 	.flock		= fuse_file_flock,
2003 	.unlocked_ioctl	= fuse_file_ioctl,
2004 	.compat_ioctl	= fuse_file_compat_ioctl,
2005 	.poll		= fuse_file_poll,
2006 	/* no splice_read */
2007 };
2008 
2009 static const struct address_space_operations fuse_file_aops  = {
2010 	.readpage	= fuse_readpage,
2011 	.writepage	= fuse_writepage,
2012 	.launder_page	= fuse_launder_page,
2013 	.write_begin	= fuse_write_begin,
2014 	.write_end	= fuse_write_end,
2015 	.readpages	= fuse_readpages,
2016 	.set_page_dirty	= __set_page_dirty_nobuffers,
2017 	.bmap		= fuse_bmap,
2018 };
2019 
2020 void fuse_init_file_inode(struct inode *inode)
2021 {
2022 	inode->i_fop = &fuse_file_operations;
2023 	inode->i_data.a_ops = &fuse_file_aops;
2024 }
2025