1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 22 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 23 unsigned int open_flags, int opcode, 24 struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 FUSE_ARGS(args); 28 29 memset(&inarg, 0, sizeof(inarg)); 30 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 31 if (!fm->fc->atomic_o_trunc) 32 inarg.flags &= ~O_TRUNC; 33 34 if (fm->fc->handle_killpriv_v2 && 35 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 36 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 37 } 38 39 args.opcode = opcode; 40 args.nodeid = nodeid; 41 args.in_numargs = 1; 42 args.in_args[0].size = sizeof(inarg); 43 args.in_args[0].value = &inarg; 44 args.out_numargs = 1; 45 args.out_args[0].size = sizeof(*outargp); 46 args.out_args[0].value = outargp; 47 48 return fuse_simple_request(fm, &args); 49 } 50 51 struct fuse_release_args { 52 struct fuse_args args; 53 struct fuse_release_in inarg; 54 struct inode *inode; 55 }; 56 57 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm) 58 { 59 struct fuse_file *ff; 60 61 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 62 if (unlikely(!ff)) 63 return NULL; 64 65 ff->fm = fm; 66 ff->release_args = kzalloc(sizeof(*ff->release_args), 67 GFP_KERNEL_ACCOUNT); 68 if (!ff->release_args) { 69 kfree(ff); 70 return NULL; 71 } 72 73 INIT_LIST_HEAD(&ff->write_entry); 74 mutex_init(&ff->readdir.lock); 75 refcount_set(&ff->count, 1); 76 RB_CLEAR_NODE(&ff->polled_node); 77 init_waitqueue_head(&ff->poll_wait); 78 79 ff->kh = atomic64_inc_return(&fm->fc->khctr); 80 81 return ff; 82 } 83 84 void fuse_file_free(struct fuse_file *ff) 85 { 86 kfree(ff->release_args); 87 mutex_destroy(&ff->readdir.lock); 88 kfree(ff); 89 } 90 91 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 92 { 93 refcount_inc(&ff->count); 94 return ff; 95 } 96 97 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 98 int error) 99 { 100 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 101 102 iput(ra->inode); 103 kfree(ra); 104 } 105 106 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 107 { 108 if (refcount_dec_and_test(&ff->count)) { 109 struct fuse_args *args = &ff->release_args->args; 110 111 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) { 112 /* Do nothing when client does not implement 'open' */ 113 fuse_release_end(ff->fm, args, 0); 114 } else if (sync) { 115 fuse_simple_request(ff->fm, args); 116 fuse_release_end(ff->fm, args, 0); 117 } else { 118 args->end = fuse_release_end; 119 if (fuse_simple_background(ff->fm, args, 120 GFP_KERNEL | __GFP_NOFAIL)) 121 fuse_release_end(ff->fm, args, -ENOTCONN); 122 } 123 kfree(ff); 124 } 125 } 126 127 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 128 unsigned int open_flags, bool isdir) 129 { 130 struct fuse_conn *fc = fm->fc; 131 struct fuse_file *ff; 132 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 133 134 ff = fuse_file_alloc(fm); 135 if (!ff) 136 return ERR_PTR(-ENOMEM); 137 138 ff->fh = 0; 139 /* Default for no-open */ 140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 141 if (isdir ? !fc->no_opendir : !fc->no_open) { 142 struct fuse_open_out outarg; 143 int err; 144 145 err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg); 146 if (!err) { 147 ff->fh = outarg.fh; 148 ff->open_flags = outarg.open_flags; 149 150 } else if (err != -ENOSYS) { 151 fuse_file_free(ff); 152 return ERR_PTR(err); 153 } else { 154 if (isdir) 155 fc->no_opendir = 1; 156 else 157 fc->no_open = 1; 158 } 159 } 160 161 if (isdir) 162 ff->open_flags &= ~FOPEN_DIRECT_IO; 163 164 ff->nodeid = nodeid; 165 166 return ff; 167 } 168 169 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 170 bool isdir) 171 { 172 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 173 174 if (!IS_ERR(ff)) 175 file->private_data = ff; 176 177 return PTR_ERR_OR_ZERO(ff); 178 } 179 EXPORT_SYMBOL_GPL(fuse_do_open); 180 181 static void fuse_link_write_file(struct file *file) 182 { 183 struct inode *inode = file_inode(file); 184 struct fuse_inode *fi = get_fuse_inode(inode); 185 struct fuse_file *ff = file->private_data; 186 /* 187 * file may be written through mmap, so chain it onto the 188 * inodes's write_file list 189 */ 190 spin_lock(&fi->lock); 191 if (list_empty(&ff->write_entry)) 192 list_add(&ff->write_entry, &fi->write_files); 193 spin_unlock(&fi->lock); 194 } 195 196 void fuse_finish_open(struct inode *inode, struct file *file) 197 { 198 struct fuse_file *ff = file->private_data; 199 struct fuse_conn *fc = get_fuse_conn(inode); 200 201 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 202 invalidate_inode_pages2(inode->i_mapping); 203 if (ff->open_flags & FOPEN_STREAM) 204 stream_open(inode, file); 205 else if (ff->open_flags & FOPEN_NONSEEKABLE) 206 nonseekable_open(inode, file); 207 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 208 struct fuse_inode *fi = get_fuse_inode(inode); 209 210 spin_lock(&fi->lock); 211 fi->attr_version = atomic64_inc_return(&fc->attr_version); 212 i_size_write(inode, 0); 213 spin_unlock(&fi->lock); 214 fuse_invalidate_attr(inode); 215 if (fc->writeback_cache) 216 file_update_time(file); 217 } 218 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 219 fuse_link_write_file(file); 220 } 221 222 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 223 { 224 struct fuse_mount *fm = get_fuse_mount(inode); 225 struct fuse_conn *fc = fm->fc; 226 int err; 227 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 228 fc->atomic_o_trunc && 229 fc->writeback_cache; 230 bool dax_truncate = (file->f_flags & O_TRUNC) && 231 fc->atomic_o_trunc && FUSE_IS_DAX(inode); 232 233 if (fuse_is_bad(inode)) 234 return -EIO; 235 236 err = generic_file_open(inode, file); 237 if (err) 238 return err; 239 240 if (is_wb_truncate || dax_truncate) { 241 inode_lock(inode); 242 fuse_set_nowrite(inode); 243 } 244 245 if (dax_truncate) { 246 down_write(&get_fuse_inode(inode)->i_mmap_sem); 247 err = fuse_dax_break_layouts(inode, 0, 0); 248 if (err) 249 goto out; 250 } 251 252 err = fuse_do_open(fm, get_node_id(inode), file, isdir); 253 if (!err) 254 fuse_finish_open(inode, file); 255 256 out: 257 if (dax_truncate) 258 up_write(&get_fuse_inode(inode)->i_mmap_sem); 259 260 if (is_wb_truncate | dax_truncate) { 261 fuse_release_nowrite(inode); 262 inode_unlock(inode); 263 } 264 265 return err; 266 } 267 268 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 269 unsigned int flags, int opcode) 270 { 271 struct fuse_conn *fc = ff->fm->fc; 272 struct fuse_release_args *ra = ff->release_args; 273 274 /* Inode is NULL on error path of fuse_create_open() */ 275 if (likely(fi)) { 276 spin_lock(&fi->lock); 277 list_del(&ff->write_entry); 278 spin_unlock(&fi->lock); 279 } 280 spin_lock(&fc->lock); 281 if (!RB_EMPTY_NODE(&ff->polled_node)) 282 rb_erase(&ff->polled_node, &fc->polled_files); 283 spin_unlock(&fc->lock); 284 285 wake_up_interruptible_all(&ff->poll_wait); 286 287 ra->inarg.fh = ff->fh; 288 ra->inarg.flags = flags; 289 ra->args.in_numargs = 1; 290 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 291 ra->args.in_args[0].value = &ra->inarg; 292 ra->args.opcode = opcode; 293 ra->args.nodeid = ff->nodeid; 294 ra->args.force = true; 295 ra->args.nocreds = true; 296 } 297 298 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 299 unsigned int open_flags, fl_owner_t id, bool isdir) 300 { 301 struct fuse_inode *fi = get_fuse_inode(inode); 302 struct fuse_release_args *ra = ff->release_args; 303 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 304 305 fuse_prepare_release(fi, ff, open_flags, opcode); 306 307 if (ff->flock) { 308 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 309 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 310 } 311 /* Hold inode until release is finished */ 312 ra->inode = igrab(inode); 313 314 /* 315 * Normally this will send the RELEASE request, however if 316 * some asynchronous READ or WRITE requests are outstanding, 317 * the sending will be delayed. 318 * 319 * Make the release synchronous if this is a fuseblk mount, 320 * synchronous RELEASE is allowed (and desirable) in this case 321 * because the server can be trusted not to screw up. 322 */ 323 fuse_file_put(ff, ff->fm->fc->destroy, isdir); 324 } 325 326 void fuse_release_common(struct file *file, bool isdir) 327 { 328 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 329 (fl_owner_t) file, isdir); 330 } 331 332 static int fuse_open(struct inode *inode, struct file *file) 333 { 334 return fuse_open_common(inode, file, false); 335 } 336 337 static int fuse_release(struct inode *inode, struct file *file) 338 { 339 struct fuse_conn *fc = get_fuse_conn(inode); 340 341 /* see fuse_vma_close() for !writeback_cache case */ 342 if (fc->writeback_cache) 343 write_inode_now(inode, 1); 344 345 fuse_release_common(file, false); 346 347 /* return value is ignored by VFS */ 348 return 0; 349 } 350 351 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 352 unsigned int flags) 353 { 354 WARN_ON(refcount_read(&ff->count) > 1); 355 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 356 /* 357 * iput(NULL) is a no-op and since the refcount is 1 and everything's 358 * synchronous, we are fine with not doing igrab() here" 359 */ 360 fuse_file_put(ff, true, false); 361 } 362 EXPORT_SYMBOL_GPL(fuse_sync_release); 363 364 /* 365 * Scramble the ID space with XTEA, so that the value of the files_struct 366 * pointer is not exposed to userspace. 367 */ 368 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 369 { 370 u32 *k = fc->scramble_key; 371 u64 v = (unsigned long) id; 372 u32 v0 = v; 373 u32 v1 = v >> 32; 374 u32 sum = 0; 375 int i; 376 377 for (i = 0; i < 32; i++) { 378 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 379 sum += 0x9E3779B9; 380 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 381 } 382 383 return (u64) v0 + ((u64) v1 << 32); 384 } 385 386 struct fuse_writepage_args { 387 struct fuse_io_args ia; 388 struct rb_node writepages_entry; 389 struct list_head queue_entry; 390 struct fuse_writepage_args *next; 391 struct inode *inode; 392 }; 393 394 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 395 pgoff_t idx_from, pgoff_t idx_to) 396 { 397 struct rb_node *n; 398 399 n = fi->writepages.rb_node; 400 401 while (n) { 402 struct fuse_writepage_args *wpa; 403 pgoff_t curr_index; 404 405 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 406 WARN_ON(get_fuse_inode(wpa->inode) != fi); 407 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 408 if (idx_from >= curr_index + wpa->ia.ap.num_pages) 409 n = n->rb_right; 410 else if (idx_to < curr_index) 411 n = n->rb_left; 412 else 413 return wpa; 414 } 415 return NULL; 416 } 417 418 /* 419 * Check if any page in a range is under writeback 420 * 421 * This is currently done by walking the list of writepage requests 422 * for the inode, which can be pretty inefficient. 423 */ 424 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 425 pgoff_t idx_to) 426 { 427 struct fuse_inode *fi = get_fuse_inode(inode); 428 bool found; 429 430 spin_lock(&fi->lock); 431 found = fuse_find_writeback(fi, idx_from, idx_to); 432 spin_unlock(&fi->lock); 433 434 return found; 435 } 436 437 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 438 { 439 return fuse_range_is_writeback(inode, index, index); 440 } 441 442 /* 443 * Wait for page writeback to be completed. 444 * 445 * Since fuse doesn't rely on the VM writeback tracking, this has to 446 * use some other means. 447 */ 448 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 449 { 450 struct fuse_inode *fi = get_fuse_inode(inode); 451 452 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 453 } 454 455 /* 456 * Wait for all pending writepages on the inode to finish. 457 * 458 * This is currently done by blocking further writes with FUSE_NOWRITE 459 * and waiting for all sent writes to complete. 460 * 461 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 462 * could conflict with truncation. 463 */ 464 static void fuse_sync_writes(struct inode *inode) 465 { 466 fuse_set_nowrite(inode); 467 fuse_release_nowrite(inode); 468 } 469 470 static int fuse_flush(struct file *file, fl_owner_t id) 471 { 472 struct inode *inode = file_inode(file); 473 struct fuse_mount *fm = get_fuse_mount(inode); 474 struct fuse_file *ff = file->private_data; 475 struct fuse_flush_in inarg; 476 FUSE_ARGS(args); 477 int err; 478 479 if (fuse_is_bad(inode)) 480 return -EIO; 481 482 err = write_inode_now(inode, 1); 483 if (err) 484 return err; 485 486 inode_lock(inode); 487 fuse_sync_writes(inode); 488 inode_unlock(inode); 489 490 err = filemap_check_errors(file->f_mapping); 491 if (err) 492 return err; 493 494 err = 0; 495 if (fm->fc->no_flush) 496 goto inval_attr_out; 497 498 memset(&inarg, 0, sizeof(inarg)); 499 inarg.fh = ff->fh; 500 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 501 args.opcode = FUSE_FLUSH; 502 args.nodeid = get_node_id(inode); 503 args.in_numargs = 1; 504 args.in_args[0].size = sizeof(inarg); 505 args.in_args[0].value = &inarg; 506 args.force = true; 507 508 err = fuse_simple_request(fm, &args); 509 if (err == -ENOSYS) { 510 fm->fc->no_flush = 1; 511 err = 0; 512 } 513 514 inval_attr_out: 515 /* 516 * In memory i_blocks is not maintained by fuse, if writeback cache is 517 * enabled, i_blocks from cached attr may not be accurate. 518 */ 519 if (!err && fm->fc->writeback_cache) 520 fuse_invalidate_attr(inode); 521 return err; 522 } 523 524 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 525 int datasync, int opcode) 526 { 527 struct inode *inode = file->f_mapping->host; 528 struct fuse_mount *fm = get_fuse_mount(inode); 529 struct fuse_file *ff = file->private_data; 530 FUSE_ARGS(args); 531 struct fuse_fsync_in inarg; 532 533 memset(&inarg, 0, sizeof(inarg)); 534 inarg.fh = ff->fh; 535 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 536 args.opcode = opcode; 537 args.nodeid = get_node_id(inode); 538 args.in_numargs = 1; 539 args.in_args[0].size = sizeof(inarg); 540 args.in_args[0].value = &inarg; 541 return fuse_simple_request(fm, &args); 542 } 543 544 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 545 int datasync) 546 { 547 struct inode *inode = file->f_mapping->host; 548 struct fuse_conn *fc = get_fuse_conn(inode); 549 int err; 550 551 if (fuse_is_bad(inode)) 552 return -EIO; 553 554 inode_lock(inode); 555 556 /* 557 * Start writeback against all dirty pages of the inode, then 558 * wait for all outstanding writes, before sending the FSYNC 559 * request. 560 */ 561 err = file_write_and_wait_range(file, start, end); 562 if (err) 563 goto out; 564 565 fuse_sync_writes(inode); 566 567 /* 568 * Due to implementation of fuse writeback 569 * file_write_and_wait_range() does not catch errors. 570 * We have to do this directly after fuse_sync_writes() 571 */ 572 err = file_check_and_advance_wb_err(file); 573 if (err) 574 goto out; 575 576 err = sync_inode_metadata(inode, 1); 577 if (err) 578 goto out; 579 580 if (fc->no_fsync) 581 goto out; 582 583 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 584 if (err == -ENOSYS) { 585 fc->no_fsync = 1; 586 err = 0; 587 } 588 out: 589 inode_unlock(inode); 590 591 return err; 592 } 593 594 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 595 size_t count, int opcode) 596 { 597 struct fuse_file *ff = file->private_data; 598 struct fuse_args *args = &ia->ap.args; 599 600 ia->read.in.fh = ff->fh; 601 ia->read.in.offset = pos; 602 ia->read.in.size = count; 603 ia->read.in.flags = file->f_flags; 604 args->opcode = opcode; 605 args->nodeid = ff->nodeid; 606 args->in_numargs = 1; 607 args->in_args[0].size = sizeof(ia->read.in); 608 args->in_args[0].value = &ia->read.in; 609 args->out_argvar = true; 610 args->out_numargs = 1; 611 args->out_args[0].size = count; 612 } 613 614 static void fuse_release_user_pages(struct fuse_args_pages *ap, 615 bool should_dirty) 616 { 617 unsigned int i; 618 619 for (i = 0; i < ap->num_pages; i++) { 620 if (should_dirty) 621 set_page_dirty_lock(ap->pages[i]); 622 put_page(ap->pages[i]); 623 } 624 } 625 626 static void fuse_io_release(struct kref *kref) 627 { 628 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 629 } 630 631 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 632 { 633 if (io->err) 634 return io->err; 635 636 if (io->bytes >= 0 && io->write) 637 return -EIO; 638 639 return io->bytes < 0 ? io->size : io->bytes; 640 } 641 642 /** 643 * In case of short read, the caller sets 'pos' to the position of 644 * actual end of fuse request in IO request. Otherwise, if bytes_requested 645 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 646 * 647 * An example: 648 * User requested DIO read of 64K. It was split into two 32K fuse requests, 649 * both submitted asynchronously. The first of them was ACKed by userspace as 650 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 651 * second request was ACKed as short, e.g. only 1K was read, resulting in 652 * pos == 33K. 653 * 654 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 655 * will be equal to the length of the longest contiguous fragment of 656 * transferred data starting from the beginning of IO request. 657 */ 658 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 659 { 660 int left; 661 662 spin_lock(&io->lock); 663 if (err) 664 io->err = io->err ? : err; 665 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 666 io->bytes = pos; 667 668 left = --io->reqs; 669 if (!left && io->blocking) 670 complete(io->done); 671 spin_unlock(&io->lock); 672 673 if (!left && !io->blocking) { 674 ssize_t res = fuse_get_res_by_io(io); 675 676 if (res >= 0) { 677 struct inode *inode = file_inode(io->iocb->ki_filp); 678 struct fuse_conn *fc = get_fuse_conn(inode); 679 struct fuse_inode *fi = get_fuse_inode(inode); 680 681 spin_lock(&fi->lock); 682 fi->attr_version = atomic64_inc_return(&fc->attr_version); 683 spin_unlock(&fi->lock); 684 } 685 686 io->iocb->ki_complete(io->iocb, res, 0); 687 } 688 689 kref_put(&io->refcnt, fuse_io_release); 690 } 691 692 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 693 unsigned int npages) 694 { 695 struct fuse_io_args *ia; 696 697 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 698 if (ia) { 699 ia->io = io; 700 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 701 &ia->ap.descs); 702 if (!ia->ap.pages) { 703 kfree(ia); 704 ia = NULL; 705 } 706 } 707 return ia; 708 } 709 710 static void fuse_io_free(struct fuse_io_args *ia) 711 { 712 kfree(ia->ap.pages); 713 kfree(ia); 714 } 715 716 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 717 int err) 718 { 719 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 720 struct fuse_io_priv *io = ia->io; 721 ssize_t pos = -1; 722 723 fuse_release_user_pages(&ia->ap, io->should_dirty); 724 725 if (err) { 726 /* Nothing */ 727 } else if (io->write) { 728 if (ia->write.out.size > ia->write.in.size) { 729 err = -EIO; 730 } else if (ia->write.in.size != ia->write.out.size) { 731 pos = ia->write.in.offset - io->offset + 732 ia->write.out.size; 733 } 734 } else { 735 u32 outsize = args->out_args[0].size; 736 737 if (ia->read.in.size != outsize) 738 pos = ia->read.in.offset - io->offset + outsize; 739 } 740 741 fuse_aio_complete(io, err, pos); 742 fuse_io_free(ia); 743 } 744 745 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 746 struct fuse_io_args *ia, size_t num_bytes) 747 { 748 ssize_t err; 749 struct fuse_io_priv *io = ia->io; 750 751 spin_lock(&io->lock); 752 kref_get(&io->refcnt); 753 io->size += num_bytes; 754 io->reqs++; 755 spin_unlock(&io->lock); 756 757 ia->ap.args.end = fuse_aio_complete_req; 758 ia->ap.args.may_block = io->should_dirty; 759 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 760 if (err) 761 fuse_aio_complete_req(fm, &ia->ap.args, err); 762 763 return num_bytes; 764 } 765 766 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 767 fl_owner_t owner) 768 { 769 struct file *file = ia->io->iocb->ki_filp; 770 struct fuse_file *ff = file->private_data; 771 struct fuse_mount *fm = ff->fm; 772 773 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 774 if (owner != NULL) { 775 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 776 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 777 } 778 779 if (ia->io->async) 780 return fuse_async_req_send(fm, ia, count); 781 782 return fuse_simple_request(fm, &ia->ap.args); 783 } 784 785 static void fuse_read_update_size(struct inode *inode, loff_t size, 786 u64 attr_ver) 787 { 788 struct fuse_conn *fc = get_fuse_conn(inode); 789 struct fuse_inode *fi = get_fuse_inode(inode); 790 791 spin_lock(&fi->lock); 792 if (attr_ver == fi->attr_version && size < inode->i_size && 793 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 794 fi->attr_version = atomic64_inc_return(&fc->attr_version); 795 i_size_write(inode, size); 796 } 797 spin_unlock(&fi->lock); 798 } 799 800 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 801 struct fuse_args_pages *ap) 802 { 803 struct fuse_conn *fc = get_fuse_conn(inode); 804 805 /* 806 * If writeback_cache is enabled, a short read means there's a hole in 807 * the file. Some data after the hole is in page cache, but has not 808 * reached the client fs yet. So the hole is not present there. 809 */ 810 if (!fc->writeback_cache) { 811 loff_t pos = page_offset(ap->pages[0]) + num_read; 812 fuse_read_update_size(inode, pos, attr_ver); 813 } 814 } 815 816 static int fuse_do_readpage(struct file *file, struct page *page) 817 { 818 struct inode *inode = page->mapping->host; 819 struct fuse_mount *fm = get_fuse_mount(inode); 820 loff_t pos = page_offset(page); 821 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 822 struct fuse_io_args ia = { 823 .ap.args.page_zeroing = true, 824 .ap.args.out_pages = true, 825 .ap.num_pages = 1, 826 .ap.pages = &page, 827 .ap.descs = &desc, 828 }; 829 ssize_t res; 830 u64 attr_ver; 831 832 /* 833 * Page writeback can extend beyond the lifetime of the 834 * page-cache page, so make sure we read a properly synced 835 * page. 836 */ 837 fuse_wait_on_page_writeback(inode, page->index); 838 839 attr_ver = fuse_get_attr_version(fm->fc); 840 841 /* Don't overflow end offset */ 842 if (pos + (desc.length - 1) == LLONG_MAX) 843 desc.length--; 844 845 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 846 res = fuse_simple_request(fm, &ia.ap.args); 847 if (res < 0) 848 return res; 849 /* 850 * Short read means EOF. If file size is larger, truncate it 851 */ 852 if (res < desc.length) 853 fuse_short_read(inode, attr_ver, res, &ia.ap); 854 855 SetPageUptodate(page); 856 857 return 0; 858 } 859 860 static int fuse_readpage(struct file *file, struct page *page) 861 { 862 struct inode *inode = page->mapping->host; 863 int err; 864 865 err = -EIO; 866 if (fuse_is_bad(inode)) 867 goto out; 868 869 err = fuse_do_readpage(file, page); 870 fuse_invalidate_atime(inode); 871 out: 872 unlock_page(page); 873 return err; 874 } 875 876 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 877 int err) 878 { 879 int i; 880 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 881 struct fuse_args_pages *ap = &ia->ap; 882 size_t count = ia->read.in.size; 883 size_t num_read = args->out_args[0].size; 884 struct address_space *mapping = NULL; 885 886 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 887 mapping = ap->pages[i]->mapping; 888 889 if (mapping) { 890 struct inode *inode = mapping->host; 891 892 /* 893 * Short read means EOF. If file size is larger, truncate it 894 */ 895 if (!err && num_read < count) 896 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 897 898 fuse_invalidate_atime(inode); 899 } 900 901 for (i = 0; i < ap->num_pages; i++) { 902 struct page *page = ap->pages[i]; 903 904 if (!err) 905 SetPageUptodate(page); 906 else 907 SetPageError(page); 908 unlock_page(page); 909 put_page(page); 910 } 911 if (ia->ff) 912 fuse_file_put(ia->ff, false, false); 913 914 fuse_io_free(ia); 915 } 916 917 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 918 { 919 struct fuse_file *ff = file->private_data; 920 struct fuse_mount *fm = ff->fm; 921 struct fuse_args_pages *ap = &ia->ap; 922 loff_t pos = page_offset(ap->pages[0]); 923 size_t count = ap->num_pages << PAGE_SHIFT; 924 ssize_t res; 925 int err; 926 927 ap->args.out_pages = true; 928 ap->args.page_zeroing = true; 929 ap->args.page_replace = true; 930 931 /* Don't overflow end offset */ 932 if (pos + (count - 1) == LLONG_MAX) { 933 count--; 934 ap->descs[ap->num_pages - 1].length--; 935 } 936 WARN_ON((loff_t) (pos + count) < 0); 937 938 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 939 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 940 if (fm->fc->async_read) { 941 ia->ff = fuse_file_get(ff); 942 ap->args.end = fuse_readpages_end; 943 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 944 if (!err) 945 return; 946 } else { 947 res = fuse_simple_request(fm, &ap->args); 948 err = res < 0 ? res : 0; 949 } 950 fuse_readpages_end(fm, &ap->args, err); 951 } 952 953 static void fuse_readahead(struct readahead_control *rac) 954 { 955 struct inode *inode = rac->mapping->host; 956 struct fuse_conn *fc = get_fuse_conn(inode); 957 unsigned int i, max_pages, nr_pages = 0; 958 959 if (fuse_is_bad(inode)) 960 return; 961 962 max_pages = min_t(unsigned int, fc->max_pages, 963 fc->max_read / PAGE_SIZE); 964 965 for (;;) { 966 struct fuse_io_args *ia; 967 struct fuse_args_pages *ap; 968 969 nr_pages = readahead_count(rac) - nr_pages; 970 if (nr_pages > max_pages) 971 nr_pages = max_pages; 972 if (nr_pages == 0) 973 break; 974 ia = fuse_io_alloc(NULL, nr_pages); 975 if (!ia) 976 return; 977 ap = &ia->ap; 978 nr_pages = __readahead_batch(rac, ap->pages, nr_pages); 979 for (i = 0; i < nr_pages; i++) { 980 fuse_wait_on_page_writeback(inode, 981 readahead_index(rac) + i); 982 ap->descs[i].length = PAGE_SIZE; 983 } 984 ap->num_pages = nr_pages; 985 fuse_send_readpages(ia, rac->file); 986 } 987 } 988 989 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 990 { 991 struct inode *inode = iocb->ki_filp->f_mapping->host; 992 struct fuse_conn *fc = get_fuse_conn(inode); 993 994 /* 995 * In auto invalidate mode, always update attributes on read. 996 * Otherwise, only update if we attempt to read past EOF (to ensure 997 * i_size is up to date). 998 */ 999 if (fc->auto_inval_data || 1000 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1001 int err; 1002 err = fuse_update_attributes(inode, iocb->ki_filp); 1003 if (err) 1004 return err; 1005 } 1006 1007 return generic_file_read_iter(iocb, to); 1008 } 1009 1010 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1011 loff_t pos, size_t count) 1012 { 1013 struct fuse_args *args = &ia->ap.args; 1014 1015 ia->write.in.fh = ff->fh; 1016 ia->write.in.offset = pos; 1017 ia->write.in.size = count; 1018 args->opcode = FUSE_WRITE; 1019 args->nodeid = ff->nodeid; 1020 args->in_numargs = 2; 1021 if (ff->fm->fc->minor < 9) 1022 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1023 else 1024 args->in_args[0].size = sizeof(ia->write.in); 1025 args->in_args[0].value = &ia->write.in; 1026 args->in_args[1].size = count; 1027 args->out_numargs = 1; 1028 args->out_args[0].size = sizeof(ia->write.out); 1029 args->out_args[0].value = &ia->write.out; 1030 } 1031 1032 static unsigned int fuse_write_flags(struct kiocb *iocb) 1033 { 1034 unsigned int flags = iocb->ki_filp->f_flags; 1035 1036 if (iocb->ki_flags & IOCB_DSYNC) 1037 flags |= O_DSYNC; 1038 if (iocb->ki_flags & IOCB_SYNC) 1039 flags |= O_SYNC; 1040 1041 return flags; 1042 } 1043 1044 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1045 size_t count, fl_owner_t owner) 1046 { 1047 struct kiocb *iocb = ia->io->iocb; 1048 struct file *file = iocb->ki_filp; 1049 struct fuse_file *ff = file->private_data; 1050 struct fuse_mount *fm = ff->fm; 1051 struct fuse_write_in *inarg = &ia->write.in; 1052 ssize_t err; 1053 1054 fuse_write_args_fill(ia, ff, pos, count); 1055 inarg->flags = fuse_write_flags(iocb); 1056 if (owner != NULL) { 1057 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1058 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1059 } 1060 1061 if (ia->io->async) 1062 return fuse_async_req_send(fm, ia, count); 1063 1064 err = fuse_simple_request(fm, &ia->ap.args); 1065 if (!err && ia->write.out.size > count) 1066 err = -EIO; 1067 1068 return err ?: ia->write.out.size; 1069 } 1070 1071 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1072 { 1073 struct fuse_conn *fc = get_fuse_conn(inode); 1074 struct fuse_inode *fi = get_fuse_inode(inode); 1075 bool ret = false; 1076 1077 spin_lock(&fi->lock); 1078 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1079 if (pos > inode->i_size) { 1080 i_size_write(inode, pos); 1081 ret = true; 1082 } 1083 spin_unlock(&fi->lock); 1084 1085 return ret; 1086 } 1087 1088 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1089 struct kiocb *iocb, struct inode *inode, 1090 loff_t pos, size_t count) 1091 { 1092 struct fuse_args_pages *ap = &ia->ap; 1093 struct file *file = iocb->ki_filp; 1094 struct fuse_file *ff = file->private_data; 1095 struct fuse_mount *fm = ff->fm; 1096 unsigned int offset, i; 1097 bool short_write; 1098 int err; 1099 1100 for (i = 0; i < ap->num_pages; i++) 1101 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1102 1103 fuse_write_args_fill(ia, ff, pos, count); 1104 ia->write.in.flags = fuse_write_flags(iocb); 1105 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1106 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1107 1108 err = fuse_simple_request(fm, &ap->args); 1109 if (!err && ia->write.out.size > count) 1110 err = -EIO; 1111 1112 short_write = ia->write.out.size < count; 1113 offset = ap->descs[0].offset; 1114 count = ia->write.out.size; 1115 for (i = 0; i < ap->num_pages; i++) { 1116 struct page *page = ap->pages[i]; 1117 1118 if (err) { 1119 ClearPageUptodate(page); 1120 } else { 1121 if (count >= PAGE_SIZE - offset) 1122 count -= PAGE_SIZE - offset; 1123 else { 1124 if (short_write) 1125 ClearPageUptodate(page); 1126 count = 0; 1127 } 1128 offset = 0; 1129 } 1130 if (ia->write.page_locked && (i == ap->num_pages - 1)) 1131 unlock_page(page); 1132 put_page(page); 1133 } 1134 1135 return err; 1136 } 1137 1138 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia, 1139 struct address_space *mapping, 1140 struct iov_iter *ii, loff_t pos, 1141 unsigned int max_pages) 1142 { 1143 struct fuse_args_pages *ap = &ia->ap; 1144 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1145 unsigned offset = pos & (PAGE_SIZE - 1); 1146 size_t count = 0; 1147 int err; 1148 1149 ap->args.in_pages = true; 1150 ap->descs[0].offset = offset; 1151 1152 do { 1153 size_t tmp; 1154 struct page *page; 1155 pgoff_t index = pos >> PAGE_SHIFT; 1156 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1157 iov_iter_count(ii)); 1158 1159 bytes = min_t(size_t, bytes, fc->max_write - count); 1160 1161 again: 1162 err = -EFAULT; 1163 if (iov_iter_fault_in_readable(ii, bytes)) 1164 break; 1165 1166 err = -ENOMEM; 1167 page = grab_cache_page_write_begin(mapping, index, 0); 1168 if (!page) 1169 break; 1170 1171 if (mapping_writably_mapped(mapping)) 1172 flush_dcache_page(page); 1173 1174 tmp = copy_page_from_iter_atomic(page, offset, bytes, ii); 1175 flush_dcache_page(page); 1176 1177 if (!tmp) { 1178 unlock_page(page); 1179 put_page(page); 1180 goto again; 1181 } 1182 1183 err = 0; 1184 ap->pages[ap->num_pages] = page; 1185 ap->descs[ap->num_pages].length = tmp; 1186 ap->num_pages++; 1187 1188 count += tmp; 1189 pos += tmp; 1190 offset += tmp; 1191 if (offset == PAGE_SIZE) 1192 offset = 0; 1193 1194 /* If we copied full page, mark it uptodate */ 1195 if (tmp == PAGE_SIZE) 1196 SetPageUptodate(page); 1197 1198 if (PageUptodate(page)) { 1199 unlock_page(page); 1200 } else { 1201 ia->write.page_locked = true; 1202 break; 1203 } 1204 if (!fc->big_writes) 1205 break; 1206 } while (iov_iter_count(ii) && count < fc->max_write && 1207 ap->num_pages < max_pages && offset == 0); 1208 1209 return count > 0 ? count : err; 1210 } 1211 1212 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1213 unsigned int max_pages) 1214 { 1215 return min_t(unsigned int, 1216 ((pos + len - 1) >> PAGE_SHIFT) - 1217 (pos >> PAGE_SHIFT) + 1, 1218 max_pages); 1219 } 1220 1221 static ssize_t fuse_perform_write(struct kiocb *iocb, 1222 struct address_space *mapping, 1223 struct iov_iter *ii, loff_t pos) 1224 { 1225 struct inode *inode = mapping->host; 1226 struct fuse_conn *fc = get_fuse_conn(inode); 1227 struct fuse_inode *fi = get_fuse_inode(inode); 1228 int err = 0; 1229 ssize_t res = 0; 1230 1231 if (inode->i_size < pos + iov_iter_count(ii)) 1232 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1233 1234 do { 1235 ssize_t count; 1236 struct fuse_io_args ia = {}; 1237 struct fuse_args_pages *ap = &ia.ap; 1238 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1239 fc->max_pages); 1240 1241 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1242 if (!ap->pages) { 1243 err = -ENOMEM; 1244 break; 1245 } 1246 1247 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages); 1248 if (count <= 0) { 1249 err = count; 1250 } else { 1251 err = fuse_send_write_pages(&ia, iocb, inode, 1252 pos, count); 1253 if (!err) { 1254 size_t num_written = ia.write.out.size; 1255 1256 res += num_written; 1257 pos += num_written; 1258 1259 /* break out of the loop on short write */ 1260 if (num_written != count) 1261 err = -EIO; 1262 } 1263 } 1264 kfree(ap->pages); 1265 } while (!err && iov_iter_count(ii)); 1266 1267 if (res > 0) 1268 fuse_write_update_size(inode, pos); 1269 1270 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1271 fuse_invalidate_attr(inode); 1272 1273 return res > 0 ? res : err; 1274 } 1275 1276 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1277 { 1278 struct file *file = iocb->ki_filp; 1279 struct address_space *mapping = file->f_mapping; 1280 ssize_t written = 0; 1281 ssize_t written_buffered = 0; 1282 struct inode *inode = mapping->host; 1283 ssize_t err; 1284 struct fuse_conn *fc = get_fuse_conn(inode); 1285 loff_t endbyte = 0; 1286 1287 if (fc->writeback_cache) { 1288 /* Update size (EOF optimization) and mode (SUID clearing) */ 1289 err = fuse_update_attributes(mapping->host, file); 1290 if (err) 1291 return err; 1292 1293 if (fc->handle_killpriv_v2 && 1294 should_remove_suid(file_dentry(file))) { 1295 goto writethrough; 1296 } 1297 1298 return generic_file_write_iter(iocb, from); 1299 } 1300 1301 writethrough: 1302 inode_lock(inode); 1303 1304 /* We can write back this queue in page reclaim */ 1305 current->backing_dev_info = inode_to_bdi(inode); 1306 1307 err = generic_write_checks(iocb, from); 1308 if (err <= 0) 1309 goto out; 1310 1311 err = file_remove_privs(file); 1312 if (err) 1313 goto out; 1314 1315 err = file_update_time(file); 1316 if (err) 1317 goto out; 1318 1319 if (iocb->ki_flags & IOCB_DIRECT) { 1320 loff_t pos = iocb->ki_pos; 1321 written = generic_file_direct_write(iocb, from); 1322 if (written < 0 || !iov_iter_count(from)) 1323 goto out; 1324 1325 pos += written; 1326 1327 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1328 if (written_buffered < 0) { 1329 err = written_buffered; 1330 goto out; 1331 } 1332 endbyte = pos + written_buffered - 1; 1333 1334 err = filemap_write_and_wait_range(file->f_mapping, pos, 1335 endbyte); 1336 if (err) 1337 goto out; 1338 1339 invalidate_mapping_pages(file->f_mapping, 1340 pos >> PAGE_SHIFT, 1341 endbyte >> PAGE_SHIFT); 1342 1343 written += written_buffered; 1344 iocb->ki_pos = pos + written_buffered; 1345 } else { 1346 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1347 if (written >= 0) 1348 iocb->ki_pos += written; 1349 } 1350 out: 1351 current->backing_dev_info = NULL; 1352 inode_unlock(inode); 1353 if (written > 0) 1354 written = generic_write_sync(iocb, written); 1355 1356 return written ? written : err; 1357 } 1358 1359 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1360 { 1361 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1362 } 1363 1364 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1365 size_t max_size) 1366 { 1367 return min(iov_iter_single_seg_count(ii), max_size); 1368 } 1369 1370 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1371 size_t *nbytesp, int write, 1372 unsigned int max_pages) 1373 { 1374 size_t nbytes = 0; /* # bytes already packed in req */ 1375 ssize_t ret = 0; 1376 1377 /* Special case for kernel I/O: can copy directly into the buffer */ 1378 if (iov_iter_is_kvec(ii)) { 1379 unsigned long user_addr = fuse_get_user_addr(ii); 1380 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1381 1382 if (write) 1383 ap->args.in_args[1].value = (void *) user_addr; 1384 else 1385 ap->args.out_args[0].value = (void *) user_addr; 1386 1387 iov_iter_advance(ii, frag_size); 1388 *nbytesp = frag_size; 1389 return 0; 1390 } 1391 1392 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1393 unsigned npages; 1394 size_t start; 1395 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1396 *nbytesp - nbytes, 1397 max_pages - ap->num_pages, 1398 &start); 1399 if (ret < 0) 1400 break; 1401 1402 iov_iter_advance(ii, ret); 1403 nbytes += ret; 1404 1405 ret += start; 1406 npages = DIV_ROUND_UP(ret, PAGE_SIZE); 1407 1408 ap->descs[ap->num_pages].offset = start; 1409 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1410 1411 ap->num_pages += npages; 1412 ap->descs[ap->num_pages - 1].length -= 1413 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1414 } 1415 1416 if (write) 1417 ap->args.in_pages = true; 1418 else 1419 ap->args.out_pages = true; 1420 1421 *nbytesp = nbytes; 1422 1423 return ret < 0 ? ret : 0; 1424 } 1425 1426 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1427 loff_t *ppos, int flags) 1428 { 1429 int write = flags & FUSE_DIO_WRITE; 1430 int cuse = flags & FUSE_DIO_CUSE; 1431 struct file *file = io->iocb->ki_filp; 1432 struct inode *inode = file->f_mapping->host; 1433 struct fuse_file *ff = file->private_data; 1434 struct fuse_conn *fc = ff->fm->fc; 1435 size_t nmax = write ? fc->max_write : fc->max_read; 1436 loff_t pos = *ppos; 1437 size_t count = iov_iter_count(iter); 1438 pgoff_t idx_from = pos >> PAGE_SHIFT; 1439 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1440 ssize_t res = 0; 1441 int err = 0; 1442 struct fuse_io_args *ia; 1443 unsigned int max_pages; 1444 1445 max_pages = iov_iter_npages(iter, fc->max_pages); 1446 ia = fuse_io_alloc(io, max_pages); 1447 if (!ia) 1448 return -ENOMEM; 1449 1450 ia->io = io; 1451 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1452 if (!write) 1453 inode_lock(inode); 1454 fuse_sync_writes(inode); 1455 if (!write) 1456 inode_unlock(inode); 1457 } 1458 1459 io->should_dirty = !write && iter_is_iovec(iter); 1460 while (count) { 1461 ssize_t nres; 1462 fl_owner_t owner = current->files; 1463 size_t nbytes = min(count, nmax); 1464 1465 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1466 max_pages); 1467 if (err && !nbytes) 1468 break; 1469 1470 if (write) { 1471 if (!capable(CAP_FSETID)) 1472 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1473 1474 nres = fuse_send_write(ia, pos, nbytes, owner); 1475 } else { 1476 nres = fuse_send_read(ia, pos, nbytes, owner); 1477 } 1478 1479 if (!io->async || nres < 0) { 1480 fuse_release_user_pages(&ia->ap, io->should_dirty); 1481 fuse_io_free(ia); 1482 } 1483 ia = NULL; 1484 if (nres < 0) { 1485 iov_iter_revert(iter, nbytes); 1486 err = nres; 1487 break; 1488 } 1489 WARN_ON(nres > nbytes); 1490 1491 count -= nres; 1492 res += nres; 1493 pos += nres; 1494 if (nres != nbytes) { 1495 iov_iter_revert(iter, nbytes - nres); 1496 break; 1497 } 1498 if (count) { 1499 max_pages = iov_iter_npages(iter, fc->max_pages); 1500 ia = fuse_io_alloc(io, max_pages); 1501 if (!ia) 1502 break; 1503 } 1504 } 1505 if (ia) 1506 fuse_io_free(ia); 1507 if (res > 0) 1508 *ppos = pos; 1509 1510 return res > 0 ? res : err; 1511 } 1512 EXPORT_SYMBOL_GPL(fuse_direct_io); 1513 1514 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1515 struct iov_iter *iter, 1516 loff_t *ppos) 1517 { 1518 ssize_t res; 1519 struct inode *inode = file_inode(io->iocb->ki_filp); 1520 1521 res = fuse_direct_io(io, iter, ppos, 0); 1522 1523 fuse_invalidate_atime(inode); 1524 1525 return res; 1526 } 1527 1528 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1529 1530 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1531 { 1532 ssize_t res; 1533 1534 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1535 res = fuse_direct_IO(iocb, to); 1536 } else { 1537 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1538 1539 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1540 } 1541 1542 return res; 1543 } 1544 1545 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1546 { 1547 struct inode *inode = file_inode(iocb->ki_filp); 1548 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1549 ssize_t res; 1550 1551 /* Don't allow parallel writes to the same file */ 1552 inode_lock(inode); 1553 res = generic_write_checks(iocb, from); 1554 if (res > 0) { 1555 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1556 res = fuse_direct_IO(iocb, from); 1557 } else { 1558 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1559 FUSE_DIO_WRITE); 1560 } 1561 } 1562 fuse_invalidate_attr(inode); 1563 if (res > 0) 1564 fuse_write_update_size(inode, iocb->ki_pos); 1565 inode_unlock(inode); 1566 1567 return res; 1568 } 1569 1570 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1571 { 1572 struct file *file = iocb->ki_filp; 1573 struct fuse_file *ff = file->private_data; 1574 struct inode *inode = file_inode(file); 1575 1576 if (fuse_is_bad(inode)) 1577 return -EIO; 1578 1579 if (FUSE_IS_DAX(inode)) 1580 return fuse_dax_read_iter(iocb, to); 1581 1582 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1583 return fuse_cache_read_iter(iocb, to); 1584 else 1585 return fuse_direct_read_iter(iocb, to); 1586 } 1587 1588 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1589 { 1590 struct file *file = iocb->ki_filp; 1591 struct fuse_file *ff = file->private_data; 1592 struct inode *inode = file_inode(file); 1593 1594 if (fuse_is_bad(inode)) 1595 return -EIO; 1596 1597 if (FUSE_IS_DAX(inode)) 1598 return fuse_dax_write_iter(iocb, from); 1599 1600 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1601 return fuse_cache_write_iter(iocb, from); 1602 else 1603 return fuse_direct_write_iter(iocb, from); 1604 } 1605 1606 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1607 { 1608 struct fuse_args_pages *ap = &wpa->ia.ap; 1609 int i; 1610 1611 for (i = 0; i < ap->num_pages; i++) 1612 __free_page(ap->pages[i]); 1613 1614 if (wpa->ia.ff) 1615 fuse_file_put(wpa->ia.ff, false, false); 1616 1617 kfree(ap->pages); 1618 kfree(wpa); 1619 } 1620 1621 static void fuse_writepage_finish(struct fuse_mount *fm, 1622 struct fuse_writepage_args *wpa) 1623 { 1624 struct fuse_args_pages *ap = &wpa->ia.ap; 1625 struct inode *inode = wpa->inode; 1626 struct fuse_inode *fi = get_fuse_inode(inode); 1627 struct backing_dev_info *bdi = inode_to_bdi(inode); 1628 int i; 1629 1630 for (i = 0; i < ap->num_pages; i++) { 1631 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1632 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1633 wb_writeout_inc(&bdi->wb); 1634 } 1635 wake_up(&fi->page_waitq); 1636 } 1637 1638 /* Called under fi->lock, may release and reacquire it */ 1639 static void fuse_send_writepage(struct fuse_mount *fm, 1640 struct fuse_writepage_args *wpa, loff_t size) 1641 __releases(fi->lock) 1642 __acquires(fi->lock) 1643 { 1644 struct fuse_writepage_args *aux, *next; 1645 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1646 struct fuse_write_in *inarg = &wpa->ia.write.in; 1647 struct fuse_args *args = &wpa->ia.ap.args; 1648 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1649 int err; 1650 1651 fi->writectr++; 1652 if (inarg->offset + data_size <= size) { 1653 inarg->size = data_size; 1654 } else if (inarg->offset < size) { 1655 inarg->size = size - inarg->offset; 1656 } else { 1657 /* Got truncated off completely */ 1658 goto out_free; 1659 } 1660 1661 args->in_args[1].size = inarg->size; 1662 args->force = true; 1663 args->nocreds = true; 1664 1665 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1666 if (err == -ENOMEM) { 1667 spin_unlock(&fi->lock); 1668 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1669 spin_lock(&fi->lock); 1670 } 1671 1672 /* Fails on broken connection only */ 1673 if (unlikely(err)) 1674 goto out_free; 1675 1676 return; 1677 1678 out_free: 1679 fi->writectr--; 1680 rb_erase(&wpa->writepages_entry, &fi->writepages); 1681 fuse_writepage_finish(fm, wpa); 1682 spin_unlock(&fi->lock); 1683 1684 /* After fuse_writepage_finish() aux request list is private */ 1685 for (aux = wpa->next; aux; aux = next) { 1686 next = aux->next; 1687 aux->next = NULL; 1688 fuse_writepage_free(aux); 1689 } 1690 1691 fuse_writepage_free(wpa); 1692 spin_lock(&fi->lock); 1693 } 1694 1695 /* 1696 * If fi->writectr is positive (no truncate or fsync going on) send 1697 * all queued writepage requests. 1698 * 1699 * Called with fi->lock 1700 */ 1701 void fuse_flush_writepages(struct inode *inode) 1702 __releases(fi->lock) 1703 __acquires(fi->lock) 1704 { 1705 struct fuse_mount *fm = get_fuse_mount(inode); 1706 struct fuse_inode *fi = get_fuse_inode(inode); 1707 loff_t crop = i_size_read(inode); 1708 struct fuse_writepage_args *wpa; 1709 1710 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1711 wpa = list_entry(fi->queued_writes.next, 1712 struct fuse_writepage_args, queue_entry); 1713 list_del_init(&wpa->queue_entry); 1714 fuse_send_writepage(fm, wpa, crop); 1715 } 1716 } 1717 1718 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1719 struct fuse_writepage_args *wpa) 1720 { 1721 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1722 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1; 1723 struct rb_node **p = &root->rb_node; 1724 struct rb_node *parent = NULL; 1725 1726 WARN_ON(!wpa->ia.ap.num_pages); 1727 while (*p) { 1728 struct fuse_writepage_args *curr; 1729 pgoff_t curr_index; 1730 1731 parent = *p; 1732 curr = rb_entry(parent, struct fuse_writepage_args, 1733 writepages_entry); 1734 WARN_ON(curr->inode != wpa->inode); 1735 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1736 1737 if (idx_from >= curr_index + curr->ia.ap.num_pages) 1738 p = &(*p)->rb_right; 1739 else if (idx_to < curr_index) 1740 p = &(*p)->rb_left; 1741 else 1742 return curr; 1743 } 1744 1745 rb_link_node(&wpa->writepages_entry, parent, p); 1746 rb_insert_color(&wpa->writepages_entry, root); 1747 return NULL; 1748 } 1749 1750 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1751 { 1752 WARN_ON(fuse_insert_writeback(root, wpa)); 1753 } 1754 1755 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1756 int error) 1757 { 1758 struct fuse_writepage_args *wpa = 1759 container_of(args, typeof(*wpa), ia.ap.args); 1760 struct inode *inode = wpa->inode; 1761 struct fuse_inode *fi = get_fuse_inode(inode); 1762 struct fuse_conn *fc = get_fuse_conn(inode); 1763 1764 mapping_set_error(inode->i_mapping, error); 1765 /* 1766 * A writeback finished and this might have updated mtime/ctime on 1767 * server making local mtime/ctime stale. Hence invalidate attrs. 1768 * Do this only if writeback_cache is not enabled. If writeback_cache 1769 * is enabled, we trust local ctime/mtime. 1770 */ 1771 if (!fc->writeback_cache) 1772 fuse_invalidate_attr(inode); 1773 spin_lock(&fi->lock); 1774 rb_erase(&wpa->writepages_entry, &fi->writepages); 1775 while (wpa->next) { 1776 struct fuse_mount *fm = get_fuse_mount(inode); 1777 struct fuse_write_in *inarg = &wpa->ia.write.in; 1778 struct fuse_writepage_args *next = wpa->next; 1779 1780 wpa->next = next->next; 1781 next->next = NULL; 1782 next->ia.ff = fuse_file_get(wpa->ia.ff); 1783 tree_insert(&fi->writepages, next); 1784 1785 /* 1786 * Skip fuse_flush_writepages() to make it easy to crop requests 1787 * based on primary request size. 1788 * 1789 * 1st case (trivial): there are no concurrent activities using 1790 * fuse_set/release_nowrite. Then we're on safe side because 1791 * fuse_flush_writepages() would call fuse_send_writepage() 1792 * anyway. 1793 * 1794 * 2nd case: someone called fuse_set_nowrite and it is waiting 1795 * now for completion of all in-flight requests. This happens 1796 * rarely and no more than once per page, so this should be 1797 * okay. 1798 * 1799 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1800 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1801 * that fuse_set_nowrite returned implies that all in-flight 1802 * requests were completed along with all of their secondary 1803 * requests. Further primary requests are blocked by negative 1804 * writectr. Hence there cannot be any in-flight requests and 1805 * no invocations of fuse_writepage_end() while we're in 1806 * fuse_set_nowrite..fuse_release_nowrite section. 1807 */ 1808 fuse_send_writepage(fm, next, inarg->offset + inarg->size); 1809 } 1810 fi->writectr--; 1811 fuse_writepage_finish(fm, wpa); 1812 spin_unlock(&fi->lock); 1813 fuse_writepage_free(wpa); 1814 } 1815 1816 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1817 struct fuse_inode *fi) 1818 { 1819 struct fuse_file *ff = NULL; 1820 1821 spin_lock(&fi->lock); 1822 if (!list_empty(&fi->write_files)) { 1823 ff = list_entry(fi->write_files.next, struct fuse_file, 1824 write_entry); 1825 fuse_file_get(ff); 1826 } 1827 spin_unlock(&fi->lock); 1828 1829 return ff; 1830 } 1831 1832 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1833 struct fuse_inode *fi) 1834 { 1835 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1836 WARN_ON(!ff); 1837 return ff; 1838 } 1839 1840 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1841 { 1842 struct fuse_conn *fc = get_fuse_conn(inode); 1843 struct fuse_inode *fi = get_fuse_inode(inode); 1844 struct fuse_file *ff; 1845 int err; 1846 1847 ff = __fuse_write_file_get(fc, fi); 1848 err = fuse_flush_times(inode, ff); 1849 if (ff) 1850 fuse_file_put(ff, false, false); 1851 1852 return err; 1853 } 1854 1855 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1856 { 1857 struct fuse_writepage_args *wpa; 1858 struct fuse_args_pages *ap; 1859 1860 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1861 if (wpa) { 1862 ap = &wpa->ia.ap; 1863 ap->num_pages = 0; 1864 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1865 if (!ap->pages) { 1866 kfree(wpa); 1867 wpa = NULL; 1868 } 1869 } 1870 return wpa; 1871 1872 } 1873 1874 static int fuse_writepage_locked(struct page *page) 1875 { 1876 struct address_space *mapping = page->mapping; 1877 struct inode *inode = mapping->host; 1878 struct fuse_conn *fc = get_fuse_conn(inode); 1879 struct fuse_inode *fi = get_fuse_inode(inode); 1880 struct fuse_writepage_args *wpa; 1881 struct fuse_args_pages *ap; 1882 struct page *tmp_page; 1883 int error = -ENOMEM; 1884 1885 set_page_writeback(page); 1886 1887 wpa = fuse_writepage_args_alloc(); 1888 if (!wpa) 1889 goto err; 1890 ap = &wpa->ia.ap; 1891 1892 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1893 if (!tmp_page) 1894 goto err_free; 1895 1896 error = -EIO; 1897 wpa->ia.ff = fuse_write_file_get(fc, fi); 1898 if (!wpa->ia.ff) 1899 goto err_nofile; 1900 1901 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1902 1903 copy_highpage(tmp_page, page); 1904 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1905 wpa->next = NULL; 1906 ap->args.in_pages = true; 1907 ap->num_pages = 1; 1908 ap->pages[0] = tmp_page; 1909 ap->descs[0].offset = 0; 1910 ap->descs[0].length = PAGE_SIZE; 1911 ap->args.end = fuse_writepage_end; 1912 wpa->inode = inode; 1913 1914 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1915 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1916 1917 spin_lock(&fi->lock); 1918 tree_insert(&fi->writepages, wpa); 1919 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1920 fuse_flush_writepages(inode); 1921 spin_unlock(&fi->lock); 1922 1923 end_page_writeback(page); 1924 1925 return 0; 1926 1927 err_nofile: 1928 __free_page(tmp_page); 1929 err_free: 1930 kfree(wpa); 1931 err: 1932 mapping_set_error(page->mapping, error); 1933 end_page_writeback(page); 1934 return error; 1935 } 1936 1937 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1938 { 1939 int err; 1940 1941 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1942 /* 1943 * ->writepages() should be called for sync() and friends. We 1944 * should only get here on direct reclaim and then we are 1945 * allowed to skip a page which is already in flight 1946 */ 1947 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1948 1949 redirty_page_for_writepage(wbc, page); 1950 unlock_page(page); 1951 return 0; 1952 } 1953 1954 err = fuse_writepage_locked(page); 1955 unlock_page(page); 1956 1957 return err; 1958 } 1959 1960 struct fuse_fill_wb_data { 1961 struct fuse_writepage_args *wpa; 1962 struct fuse_file *ff; 1963 struct inode *inode; 1964 struct page **orig_pages; 1965 unsigned int max_pages; 1966 }; 1967 1968 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1969 { 1970 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1971 struct fuse_conn *fc = get_fuse_conn(data->inode); 1972 struct page **pages; 1973 struct fuse_page_desc *descs; 1974 unsigned int npages = min_t(unsigned int, 1975 max_t(unsigned int, data->max_pages * 2, 1976 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 1977 fc->max_pages); 1978 WARN_ON(npages <= data->max_pages); 1979 1980 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 1981 if (!pages) 1982 return false; 1983 1984 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 1985 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 1986 kfree(ap->pages); 1987 ap->pages = pages; 1988 ap->descs = descs; 1989 data->max_pages = npages; 1990 1991 return true; 1992 } 1993 1994 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1995 { 1996 struct fuse_writepage_args *wpa = data->wpa; 1997 struct inode *inode = data->inode; 1998 struct fuse_inode *fi = get_fuse_inode(inode); 1999 int num_pages = wpa->ia.ap.num_pages; 2000 int i; 2001 2002 wpa->ia.ff = fuse_file_get(data->ff); 2003 spin_lock(&fi->lock); 2004 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2005 fuse_flush_writepages(inode); 2006 spin_unlock(&fi->lock); 2007 2008 for (i = 0; i < num_pages; i++) 2009 end_page_writeback(data->orig_pages[i]); 2010 } 2011 2012 /* 2013 * Check under fi->lock if the page is under writeback, and insert it onto the 2014 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 2015 * one already added for a page at this offset. If there's none, then insert 2016 * this new request onto the auxiliary list, otherwise reuse the existing one by 2017 * swapping the new temp page with the old one. 2018 */ 2019 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 2020 struct page *page) 2021 { 2022 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 2023 struct fuse_writepage_args *tmp; 2024 struct fuse_writepage_args *old_wpa; 2025 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 2026 2027 WARN_ON(new_ap->num_pages != 0); 2028 new_ap->num_pages = 1; 2029 2030 spin_lock(&fi->lock); 2031 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 2032 if (!old_wpa) { 2033 spin_unlock(&fi->lock); 2034 return true; 2035 } 2036 2037 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 2038 pgoff_t curr_index; 2039 2040 WARN_ON(tmp->inode != new_wpa->inode); 2041 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 2042 if (curr_index == page->index) { 2043 WARN_ON(tmp->ia.ap.num_pages != 1); 2044 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 2045 break; 2046 } 2047 } 2048 2049 if (!tmp) { 2050 new_wpa->next = old_wpa->next; 2051 old_wpa->next = new_wpa; 2052 } 2053 2054 spin_unlock(&fi->lock); 2055 2056 if (tmp) { 2057 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 2058 2059 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 2060 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 2061 wb_writeout_inc(&bdi->wb); 2062 fuse_writepage_free(new_wpa); 2063 } 2064 2065 return false; 2066 } 2067 2068 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page, 2069 struct fuse_args_pages *ap, 2070 struct fuse_fill_wb_data *data) 2071 { 2072 WARN_ON(!ap->num_pages); 2073 2074 /* 2075 * Being under writeback is unlikely but possible. For example direct 2076 * read to an mmaped fuse file will set the page dirty twice; once when 2077 * the pages are faulted with get_user_pages(), and then after the read 2078 * completed. 2079 */ 2080 if (fuse_page_is_writeback(data->inode, page->index)) 2081 return true; 2082 2083 /* Reached max pages */ 2084 if (ap->num_pages == fc->max_pages) 2085 return true; 2086 2087 /* Reached max write bytes */ 2088 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write) 2089 return true; 2090 2091 /* Discontinuity */ 2092 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index) 2093 return true; 2094 2095 /* Need to grow the pages array? If so, did the expansion fail? */ 2096 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data)) 2097 return true; 2098 2099 return false; 2100 } 2101 2102 static int fuse_writepages_fill(struct page *page, 2103 struct writeback_control *wbc, void *_data) 2104 { 2105 struct fuse_fill_wb_data *data = _data; 2106 struct fuse_writepage_args *wpa = data->wpa; 2107 struct fuse_args_pages *ap = &wpa->ia.ap; 2108 struct inode *inode = data->inode; 2109 struct fuse_inode *fi = get_fuse_inode(inode); 2110 struct fuse_conn *fc = get_fuse_conn(inode); 2111 struct page *tmp_page; 2112 int err; 2113 2114 if (!data->ff) { 2115 err = -EIO; 2116 data->ff = fuse_write_file_get(fc, fi); 2117 if (!data->ff) 2118 goto out_unlock; 2119 } 2120 2121 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) { 2122 fuse_writepages_send(data); 2123 data->wpa = NULL; 2124 } 2125 2126 err = -ENOMEM; 2127 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2128 if (!tmp_page) 2129 goto out_unlock; 2130 2131 /* 2132 * The page must not be redirtied until the writeout is completed 2133 * (i.e. userspace has sent a reply to the write request). Otherwise 2134 * there could be more than one temporary page instance for each real 2135 * page. 2136 * 2137 * This is ensured by holding the page lock in page_mkwrite() while 2138 * checking fuse_page_is_writeback(). We already hold the page lock 2139 * since clear_page_dirty_for_io() and keep it held until we add the 2140 * request to the fi->writepages list and increment ap->num_pages. 2141 * After this fuse_page_is_writeback() will indicate that the page is 2142 * under writeback, so we can release the page lock. 2143 */ 2144 if (data->wpa == NULL) { 2145 err = -ENOMEM; 2146 wpa = fuse_writepage_args_alloc(); 2147 if (!wpa) { 2148 __free_page(tmp_page); 2149 goto out_unlock; 2150 } 2151 data->max_pages = 1; 2152 2153 ap = &wpa->ia.ap; 2154 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2155 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2156 wpa->next = NULL; 2157 ap->args.in_pages = true; 2158 ap->args.end = fuse_writepage_end; 2159 ap->num_pages = 0; 2160 wpa->inode = inode; 2161 } 2162 set_page_writeback(page); 2163 2164 copy_highpage(tmp_page, page); 2165 ap->pages[ap->num_pages] = tmp_page; 2166 ap->descs[ap->num_pages].offset = 0; 2167 ap->descs[ap->num_pages].length = PAGE_SIZE; 2168 data->orig_pages[ap->num_pages] = page; 2169 2170 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2171 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2172 2173 err = 0; 2174 if (data->wpa) { 2175 /* 2176 * Protected by fi->lock against concurrent access by 2177 * fuse_page_is_writeback(). 2178 */ 2179 spin_lock(&fi->lock); 2180 ap->num_pages++; 2181 spin_unlock(&fi->lock); 2182 } else if (fuse_writepage_add(wpa, page)) { 2183 data->wpa = wpa; 2184 } else { 2185 end_page_writeback(page); 2186 } 2187 out_unlock: 2188 unlock_page(page); 2189 2190 return err; 2191 } 2192 2193 static int fuse_writepages(struct address_space *mapping, 2194 struct writeback_control *wbc) 2195 { 2196 struct inode *inode = mapping->host; 2197 struct fuse_conn *fc = get_fuse_conn(inode); 2198 struct fuse_fill_wb_data data; 2199 int err; 2200 2201 err = -EIO; 2202 if (fuse_is_bad(inode)) 2203 goto out; 2204 2205 data.inode = inode; 2206 data.wpa = NULL; 2207 data.ff = NULL; 2208 2209 err = -ENOMEM; 2210 data.orig_pages = kcalloc(fc->max_pages, 2211 sizeof(struct page *), 2212 GFP_NOFS); 2213 if (!data.orig_pages) 2214 goto out; 2215 2216 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2217 if (data.wpa) { 2218 WARN_ON(!data.wpa->ia.ap.num_pages); 2219 fuse_writepages_send(&data); 2220 } 2221 if (data.ff) 2222 fuse_file_put(data.ff, false, false); 2223 2224 kfree(data.orig_pages); 2225 out: 2226 return err; 2227 } 2228 2229 /* 2230 * It's worthy to make sure that space is reserved on disk for the write, 2231 * but how to implement it without killing performance need more thinking. 2232 */ 2233 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2234 loff_t pos, unsigned len, unsigned flags, 2235 struct page **pagep, void **fsdata) 2236 { 2237 pgoff_t index = pos >> PAGE_SHIFT; 2238 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2239 struct page *page; 2240 loff_t fsize; 2241 int err = -ENOMEM; 2242 2243 WARN_ON(!fc->writeback_cache); 2244 2245 page = grab_cache_page_write_begin(mapping, index, flags); 2246 if (!page) 2247 goto error; 2248 2249 fuse_wait_on_page_writeback(mapping->host, page->index); 2250 2251 if (PageUptodate(page) || len == PAGE_SIZE) 2252 goto success; 2253 /* 2254 * Check if the start this page comes after the end of file, in which 2255 * case the readpage can be optimized away. 2256 */ 2257 fsize = i_size_read(mapping->host); 2258 if (fsize <= (pos & PAGE_MASK)) { 2259 size_t off = pos & ~PAGE_MASK; 2260 if (off) 2261 zero_user_segment(page, 0, off); 2262 goto success; 2263 } 2264 err = fuse_do_readpage(file, page); 2265 if (err) 2266 goto cleanup; 2267 success: 2268 *pagep = page; 2269 return 0; 2270 2271 cleanup: 2272 unlock_page(page); 2273 put_page(page); 2274 error: 2275 return err; 2276 } 2277 2278 static int fuse_write_end(struct file *file, struct address_space *mapping, 2279 loff_t pos, unsigned len, unsigned copied, 2280 struct page *page, void *fsdata) 2281 { 2282 struct inode *inode = page->mapping->host; 2283 2284 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2285 if (!copied) 2286 goto unlock; 2287 2288 if (!PageUptodate(page)) { 2289 /* Zero any unwritten bytes at the end of the page */ 2290 size_t endoff = (pos + copied) & ~PAGE_MASK; 2291 if (endoff) 2292 zero_user_segment(page, endoff, PAGE_SIZE); 2293 SetPageUptodate(page); 2294 } 2295 2296 fuse_write_update_size(inode, pos + copied); 2297 set_page_dirty(page); 2298 2299 unlock: 2300 unlock_page(page); 2301 put_page(page); 2302 2303 return copied; 2304 } 2305 2306 static int fuse_launder_page(struct page *page) 2307 { 2308 int err = 0; 2309 if (clear_page_dirty_for_io(page)) { 2310 struct inode *inode = page->mapping->host; 2311 2312 /* Serialize with pending writeback for the same page */ 2313 fuse_wait_on_page_writeback(inode, page->index); 2314 err = fuse_writepage_locked(page); 2315 if (!err) 2316 fuse_wait_on_page_writeback(inode, page->index); 2317 } 2318 return err; 2319 } 2320 2321 /* 2322 * Write back dirty pages now, because there may not be any suitable 2323 * open files later 2324 */ 2325 static void fuse_vma_close(struct vm_area_struct *vma) 2326 { 2327 filemap_write_and_wait(vma->vm_file->f_mapping); 2328 } 2329 2330 /* 2331 * Wait for writeback against this page to complete before allowing it 2332 * to be marked dirty again, and hence written back again, possibly 2333 * before the previous writepage completed. 2334 * 2335 * Block here, instead of in ->writepage(), so that the userspace fs 2336 * can only block processes actually operating on the filesystem. 2337 * 2338 * Otherwise unprivileged userspace fs would be able to block 2339 * unrelated: 2340 * 2341 * - page migration 2342 * - sync(2) 2343 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2344 */ 2345 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2346 { 2347 struct page *page = vmf->page; 2348 struct inode *inode = file_inode(vmf->vma->vm_file); 2349 2350 file_update_time(vmf->vma->vm_file); 2351 lock_page(page); 2352 if (page->mapping != inode->i_mapping) { 2353 unlock_page(page); 2354 return VM_FAULT_NOPAGE; 2355 } 2356 2357 fuse_wait_on_page_writeback(inode, page->index); 2358 return VM_FAULT_LOCKED; 2359 } 2360 2361 static const struct vm_operations_struct fuse_file_vm_ops = { 2362 .close = fuse_vma_close, 2363 .fault = filemap_fault, 2364 .map_pages = filemap_map_pages, 2365 .page_mkwrite = fuse_page_mkwrite, 2366 }; 2367 2368 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2369 { 2370 struct fuse_file *ff = file->private_data; 2371 2372 /* DAX mmap is superior to direct_io mmap */ 2373 if (FUSE_IS_DAX(file_inode(file))) 2374 return fuse_dax_mmap(file, vma); 2375 2376 if (ff->open_flags & FOPEN_DIRECT_IO) { 2377 /* Can't provide the coherency needed for MAP_SHARED */ 2378 if (vma->vm_flags & VM_MAYSHARE) 2379 return -ENODEV; 2380 2381 invalidate_inode_pages2(file->f_mapping); 2382 2383 return generic_file_mmap(file, vma); 2384 } 2385 2386 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2387 fuse_link_write_file(file); 2388 2389 file_accessed(file); 2390 vma->vm_ops = &fuse_file_vm_ops; 2391 return 0; 2392 } 2393 2394 static int convert_fuse_file_lock(struct fuse_conn *fc, 2395 const struct fuse_file_lock *ffl, 2396 struct file_lock *fl) 2397 { 2398 switch (ffl->type) { 2399 case F_UNLCK: 2400 break; 2401 2402 case F_RDLCK: 2403 case F_WRLCK: 2404 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2405 ffl->end < ffl->start) 2406 return -EIO; 2407 2408 fl->fl_start = ffl->start; 2409 fl->fl_end = ffl->end; 2410 2411 /* 2412 * Convert pid into init's pid namespace. The locks API will 2413 * translate it into the caller's pid namespace. 2414 */ 2415 rcu_read_lock(); 2416 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2417 rcu_read_unlock(); 2418 break; 2419 2420 default: 2421 return -EIO; 2422 } 2423 fl->fl_type = ffl->type; 2424 return 0; 2425 } 2426 2427 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2428 const struct file_lock *fl, int opcode, pid_t pid, 2429 int flock, struct fuse_lk_in *inarg) 2430 { 2431 struct inode *inode = file_inode(file); 2432 struct fuse_conn *fc = get_fuse_conn(inode); 2433 struct fuse_file *ff = file->private_data; 2434 2435 memset(inarg, 0, sizeof(*inarg)); 2436 inarg->fh = ff->fh; 2437 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2438 inarg->lk.start = fl->fl_start; 2439 inarg->lk.end = fl->fl_end; 2440 inarg->lk.type = fl->fl_type; 2441 inarg->lk.pid = pid; 2442 if (flock) 2443 inarg->lk_flags |= FUSE_LK_FLOCK; 2444 args->opcode = opcode; 2445 args->nodeid = get_node_id(inode); 2446 args->in_numargs = 1; 2447 args->in_args[0].size = sizeof(*inarg); 2448 args->in_args[0].value = inarg; 2449 } 2450 2451 static int fuse_getlk(struct file *file, struct file_lock *fl) 2452 { 2453 struct inode *inode = file_inode(file); 2454 struct fuse_mount *fm = get_fuse_mount(inode); 2455 FUSE_ARGS(args); 2456 struct fuse_lk_in inarg; 2457 struct fuse_lk_out outarg; 2458 int err; 2459 2460 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2461 args.out_numargs = 1; 2462 args.out_args[0].size = sizeof(outarg); 2463 args.out_args[0].value = &outarg; 2464 err = fuse_simple_request(fm, &args); 2465 if (!err) 2466 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2467 2468 return err; 2469 } 2470 2471 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2472 { 2473 struct inode *inode = file_inode(file); 2474 struct fuse_mount *fm = get_fuse_mount(inode); 2475 FUSE_ARGS(args); 2476 struct fuse_lk_in inarg; 2477 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2478 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2479 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2480 int err; 2481 2482 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2483 /* NLM needs asynchronous locks, which we don't support yet */ 2484 return -ENOLCK; 2485 } 2486 2487 /* Unlock on close is handled by the flush method */ 2488 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2489 return 0; 2490 2491 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2492 err = fuse_simple_request(fm, &args); 2493 2494 /* locking is restartable */ 2495 if (err == -EINTR) 2496 err = -ERESTARTSYS; 2497 2498 return err; 2499 } 2500 2501 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2502 { 2503 struct inode *inode = file_inode(file); 2504 struct fuse_conn *fc = get_fuse_conn(inode); 2505 int err; 2506 2507 if (cmd == F_CANCELLK) { 2508 err = 0; 2509 } else if (cmd == F_GETLK) { 2510 if (fc->no_lock) { 2511 posix_test_lock(file, fl); 2512 err = 0; 2513 } else 2514 err = fuse_getlk(file, fl); 2515 } else { 2516 if (fc->no_lock) 2517 err = posix_lock_file(file, fl, NULL); 2518 else 2519 err = fuse_setlk(file, fl, 0); 2520 } 2521 return err; 2522 } 2523 2524 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2525 { 2526 struct inode *inode = file_inode(file); 2527 struct fuse_conn *fc = get_fuse_conn(inode); 2528 int err; 2529 2530 if (fc->no_flock) { 2531 err = locks_lock_file_wait(file, fl); 2532 } else { 2533 struct fuse_file *ff = file->private_data; 2534 2535 /* emulate flock with POSIX locks */ 2536 ff->flock = true; 2537 err = fuse_setlk(file, fl, 1); 2538 } 2539 2540 return err; 2541 } 2542 2543 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2544 { 2545 struct inode *inode = mapping->host; 2546 struct fuse_mount *fm = get_fuse_mount(inode); 2547 FUSE_ARGS(args); 2548 struct fuse_bmap_in inarg; 2549 struct fuse_bmap_out outarg; 2550 int err; 2551 2552 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2553 return 0; 2554 2555 memset(&inarg, 0, sizeof(inarg)); 2556 inarg.block = block; 2557 inarg.blocksize = inode->i_sb->s_blocksize; 2558 args.opcode = FUSE_BMAP; 2559 args.nodeid = get_node_id(inode); 2560 args.in_numargs = 1; 2561 args.in_args[0].size = sizeof(inarg); 2562 args.in_args[0].value = &inarg; 2563 args.out_numargs = 1; 2564 args.out_args[0].size = sizeof(outarg); 2565 args.out_args[0].value = &outarg; 2566 err = fuse_simple_request(fm, &args); 2567 if (err == -ENOSYS) 2568 fm->fc->no_bmap = 1; 2569 2570 return err ? 0 : outarg.block; 2571 } 2572 2573 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2574 { 2575 struct inode *inode = file->f_mapping->host; 2576 struct fuse_mount *fm = get_fuse_mount(inode); 2577 struct fuse_file *ff = file->private_data; 2578 FUSE_ARGS(args); 2579 struct fuse_lseek_in inarg = { 2580 .fh = ff->fh, 2581 .offset = offset, 2582 .whence = whence 2583 }; 2584 struct fuse_lseek_out outarg; 2585 int err; 2586 2587 if (fm->fc->no_lseek) 2588 goto fallback; 2589 2590 args.opcode = FUSE_LSEEK; 2591 args.nodeid = ff->nodeid; 2592 args.in_numargs = 1; 2593 args.in_args[0].size = sizeof(inarg); 2594 args.in_args[0].value = &inarg; 2595 args.out_numargs = 1; 2596 args.out_args[0].size = sizeof(outarg); 2597 args.out_args[0].value = &outarg; 2598 err = fuse_simple_request(fm, &args); 2599 if (err) { 2600 if (err == -ENOSYS) { 2601 fm->fc->no_lseek = 1; 2602 goto fallback; 2603 } 2604 return err; 2605 } 2606 2607 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2608 2609 fallback: 2610 err = fuse_update_attributes(inode, file); 2611 if (!err) 2612 return generic_file_llseek(file, offset, whence); 2613 else 2614 return err; 2615 } 2616 2617 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2618 { 2619 loff_t retval; 2620 struct inode *inode = file_inode(file); 2621 2622 switch (whence) { 2623 case SEEK_SET: 2624 case SEEK_CUR: 2625 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2626 retval = generic_file_llseek(file, offset, whence); 2627 break; 2628 case SEEK_END: 2629 inode_lock(inode); 2630 retval = fuse_update_attributes(inode, file); 2631 if (!retval) 2632 retval = generic_file_llseek(file, offset, whence); 2633 inode_unlock(inode); 2634 break; 2635 case SEEK_HOLE: 2636 case SEEK_DATA: 2637 inode_lock(inode); 2638 retval = fuse_lseek(file, offset, whence); 2639 inode_unlock(inode); 2640 break; 2641 default: 2642 retval = -EINVAL; 2643 } 2644 2645 return retval; 2646 } 2647 2648 /* 2649 * All files which have been polled are linked to RB tree 2650 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2651 * find the matching one. 2652 */ 2653 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2654 struct rb_node **parent_out) 2655 { 2656 struct rb_node **link = &fc->polled_files.rb_node; 2657 struct rb_node *last = NULL; 2658 2659 while (*link) { 2660 struct fuse_file *ff; 2661 2662 last = *link; 2663 ff = rb_entry(last, struct fuse_file, polled_node); 2664 2665 if (kh < ff->kh) 2666 link = &last->rb_left; 2667 else if (kh > ff->kh) 2668 link = &last->rb_right; 2669 else 2670 return link; 2671 } 2672 2673 if (parent_out) 2674 *parent_out = last; 2675 return link; 2676 } 2677 2678 /* 2679 * The file is about to be polled. Make sure it's on the polled_files 2680 * RB tree. Note that files once added to the polled_files tree are 2681 * not removed before the file is released. This is because a file 2682 * polled once is likely to be polled again. 2683 */ 2684 static void fuse_register_polled_file(struct fuse_conn *fc, 2685 struct fuse_file *ff) 2686 { 2687 spin_lock(&fc->lock); 2688 if (RB_EMPTY_NODE(&ff->polled_node)) { 2689 struct rb_node **link, *parent; 2690 2691 link = fuse_find_polled_node(fc, ff->kh, &parent); 2692 BUG_ON(*link); 2693 rb_link_node(&ff->polled_node, parent, link); 2694 rb_insert_color(&ff->polled_node, &fc->polled_files); 2695 } 2696 spin_unlock(&fc->lock); 2697 } 2698 2699 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2700 { 2701 struct fuse_file *ff = file->private_data; 2702 struct fuse_mount *fm = ff->fm; 2703 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2704 struct fuse_poll_out outarg; 2705 FUSE_ARGS(args); 2706 int err; 2707 2708 if (fm->fc->no_poll) 2709 return DEFAULT_POLLMASK; 2710 2711 poll_wait(file, &ff->poll_wait, wait); 2712 inarg.events = mangle_poll(poll_requested_events(wait)); 2713 2714 /* 2715 * Ask for notification iff there's someone waiting for it. 2716 * The client may ignore the flag and always notify. 2717 */ 2718 if (waitqueue_active(&ff->poll_wait)) { 2719 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2720 fuse_register_polled_file(fm->fc, ff); 2721 } 2722 2723 args.opcode = FUSE_POLL; 2724 args.nodeid = ff->nodeid; 2725 args.in_numargs = 1; 2726 args.in_args[0].size = sizeof(inarg); 2727 args.in_args[0].value = &inarg; 2728 args.out_numargs = 1; 2729 args.out_args[0].size = sizeof(outarg); 2730 args.out_args[0].value = &outarg; 2731 err = fuse_simple_request(fm, &args); 2732 2733 if (!err) 2734 return demangle_poll(outarg.revents); 2735 if (err == -ENOSYS) { 2736 fm->fc->no_poll = 1; 2737 return DEFAULT_POLLMASK; 2738 } 2739 return EPOLLERR; 2740 } 2741 EXPORT_SYMBOL_GPL(fuse_file_poll); 2742 2743 /* 2744 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2745 * wakes up the poll waiters. 2746 */ 2747 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2748 struct fuse_notify_poll_wakeup_out *outarg) 2749 { 2750 u64 kh = outarg->kh; 2751 struct rb_node **link; 2752 2753 spin_lock(&fc->lock); 2754 2755 link = fuse_find_polled_node(fc, kh, NULL); 2756 if (*link) { 2757 struct fuse_file *ff; 2758 2759 ff = rb_entry(*link, struct fuse_file, polled_node); 2760 wake_up_interruptible_sync(&ff->poll_wait); 2761 } 2762 2763 spin_unlock(&fc->lock); 2764 return 0; 2765 } 2766 2767 static void fuse_do_truncate(struct file *file) 2768 { 2769 struct inode *inode = file->f_mapping->host; 2770 struct iattr attr; 2771 2772 attr.ia_valid = ATTR_SIZE; 2773 attr.ia_size = i_size_read(inode); 2774 2775 attr.ia_file = file; 2776 attr.ia_valid |= ATTR_FILE; 2777 2778 fuse_do_setattr(file_dentry(file), &attr, file); 2779 } 2780 2781 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 2782 { 2783 return round_up(off, fc->max_pages << PAGE_SHIFT); 2784 } 2785 2786 static ssize_t 2787 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2788 { 2789 DECLARE_COMPLETION_ONSTACK(wait); 2790 ssize_t ret = 0; 2791 struct file *file = iocb->ki_filp; 2792 struct fuse_file *ff = file->private_data; 2793 loff_t pos = 0; 2794 struct inode *inode; 2795 loff_t i_size; 2796 size_t count = iov_iter_count(iter), shortened = 0; 2797 loff_t offset = iocb->ki_pos; 2798 struct fuse_io_priv *io; 2799 2800 pos = offset; 2801 inode = file->f_mapping->host; 2802 i_size = i_size_read(inode); 2803 2804 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 2805 return 0; 2806 2807 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2808 if (!io) 2809 return -ENOMEM; 2810 spin_lock_init(&io->lock); 2811 kref_init(&io->refcnt); 2812 io->reqs = 1; 2813 io->bytes = -1; 2814 io->size = 0; 2815 io->offset = offset; 2816 io->write = (iov_iter_rw(iter) == WRITE); 2817 io->err = 0; 2818 /* 2819 * By default, we want to optimize all I/Os with async request 2820 * submission to the client filesystem if supported. 2821 */ 2822 io->async = ff->fm->fc->async_dio; 2823 io->iocb = iocb; 2824 io->blocking = is_sync_kiocb(iocb); 2825 2826 /* optimization for short read */ 2827 if (io->async && !io->write && offset + count > i_size) { 2828 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 2829 shortened = count - iov_iter_count(iter); 2830 count -= shortened; 2831 } 2832 2833 /* 2834 * We cannot asynchronously extend the size of a file. 2835 * In such case the aio will behave exactly like sync io. 2836 */ 2837 if ((offset + count > i_size) && io->write) 2838 io->blocking = true; 2839 2840 if (io->async && io->blocking) { 2841 /* 2842 * Additional reference to keep io around after 2843 * calling fuse_aio_complete() 2844 */ 2845 kref_get(&io->refcnt); 2846 io->done = &wait; 2847 } 2848 2849 if (iov_iter_rw(iter) == WRITE) { 2850 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2851 fuse_invalidate_attr(inode); 2852 } else { 2853 ret = __fuse_direct_read(io, iter, &pos); 2854 } 2855 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 2856 2857 if (io->async) { 2858 bool blocking = io->blocking; 2859 2860 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2861 2862 /* we have a non-extending, async request, so return */ 2863 if (!blocking) 2864 return -EIOCBQUEUED; 2865 2866 wait_for_completion(&wait); 2867 ret = fuse_get_res_by_io(io); 2868 } 2869 2870 kref_put(&io->refcnt, fuse_io_release); 2871 2872 if (iov_iter_rw(iter) == WRITE) { 2873 if (ret > 0) 2874 fuse_write_update_size(inode, pos); 2875 else if (ret < 0 && offset + count > i_size) 2876 fuse_do_truncate(file); 2877 } 2878 2879 return ret; 2880 } 2881 2882 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 2883 { 2884 int err = filemap_write_and_wait_range(inode->i_mapping, start, end); 2885 2886 if (!err) 2887 fuse_sync_writes(inode); 2888 2889 return err; 2890 } 2891 2892 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2893 loff_t length) 2894 { 2895 struct fuse_file *ff = file->private_data; 2896 struct inode *inode = file_inode(file); 2897 struct fuse_inode *fi = get_fuse_inode(inode); 2898 struct fuse_mount *fm = ff->fm; 2899 FUSE_ARGS(args); 2900 struct fuse_fallocate_in inarg = { 2901 .fh = ff->fh, 2902 .offset = offset, 2903 .length = length, 2904 .mode = mode 2905 }; 2906 int err; 2907 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2908 (mode & (FALLOC_FL_PUNCH_HOLE | 2909 FALLOC_FL_ZERO_RANGE)); 2910 2911 bool block_faults = FUSE_IS_DAX(inode) && lock_inode; 2912 2913 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 2914 FALLOC_FL_ZERO_RANGE)) 2915 return -EOPNOTSUPP; 2916 2917 if (fm->fc->no_fallocate) 2918 return -EOPNOTSUPP; 2919 2920 if (lock_inode) { 2921 inode_lock(inode); 2922 if (block_faults) { 2923 down_write(&fi->i_mmap_sem); 2924 err = fuse_dax_break_layouts(inode, 0, 0); 2925 if (err) 2926 goto out; 2927 } 2928 2929 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) { 2930 loff_t endbyte = offset + length - 1; 2931 2932 err = fuse_writeback_range(inode, offset, endbyte); 2933 if (err) 2934 goto out; 2935 } 2936 } 2937 2938 if (!(mode & FALLOC_FL_KEEP_SIZE) && 2939 offset + length > i_size_read(inode)) { 2940 err = inode_newsize_ok(inode, offset + length); 2941 if (err) 2942 goto out; 2943 } 2944 2945 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2946 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2947 2948 args.opcode = FUSE_FALLOCATE; 2949 args.nodeid = ff->nodeid; 2950 args.in_numargs = 1; 2951 args.in_args[0].size = sizeof(inarg); 2952 args.in_args[0].value = &inarg; 2953 err = fuse_simple_request(fm, &args); 2954 if (err == -ENOSYS) { 2955 fm->fc->no_fallocate = 1; 2956 err = -EOPNOTSUPP; 2957 } 2958 if (err) 2959 goto out; 2960 2961 /* we could have extended the file */ 2962 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 2963 bool changed = fuse_write_update_size(inode, offset + length); 2964 2965 if (changed && fm->fc->writeback_cache) 2966 file_update_time(file); 2967 } 2968 2969 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) 2970 truncate_pagecache_range(inode, offset, offset + length - 1); 2971 2972 fuse_invalidate_attr(inode); 2973 2974 out: 2975 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2976 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2977 2978 if (block_faults) 2979 up_write(&fi->i_mmap_sem); 2980 2981 if (lock_inode) 2982 inode_unlock(inode); 2983 2984 return err; 2985 } 2986 2987 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 2988 struct file *file_out, loff_t pos_out, 2989 size_t len, unsigned int flags) 2990 { 2991 struct fuse_file *ff_in = file_in->private_data; 2992 struct fuse_file *ff_out = file_out->private_data; 2993 struct inode *inode_in = file_inode(file_in); 2994 struct inode *inode_out = file_inode(file_out); 2995 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 2996 struct fuse_mount *fm = ff_in->fm; 2997 struct fuse_conn *fc = fm->fc; 2998 FUSE_ARGS(args); 2999 struct fuse_copy_file_range_in inarg = { 3000 .fh_in = ff_in->fh, 3001 .off_in = pos_in, 3002 .nodeid_out = ff_out->nodeid, 3003 .fh_out = ff_out->fh, 3004 .off_out = pos_out, 3005 .len = len, 3006 .flags = flags 3007 }; 3008 struct fuse_write_out outarg; 3009 ssize_t err; 3010 /* mark unstable when write-back is not used, and file_out gets 3011 * extended */ 3012 bool is_unstable = (!fc->writeback_cache) && 3013 ((pos_out + len) > inode_out->i_size); 3014 3015 if (fc->no_copy_file_range) 3016 return -EOPNOTSUPP; 3017 3018 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3019 return -EXDEV; 3020 3021 inode_lock(inode_in); 3022 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3023 inode_unlock(inode_in); 3024 if (err) 3025 return err; 3026 3027 inode_lock(inode_out); 3028 3029 err = file_modified(file_out); 3030 if (err) 3031 goto out; 3032 3033 /* 3034 * Write out dirty pages in the destination file before sending the COPY 3035 * request to userspace. After the request is completed, truncate off 3036 * pages (including partial ones) from the cache that have been copied, 3037 * since these contain stale data at that point. 3038 * 3039 * This should be mostly correct, but if the COPY writes to partial 3040 * pages (at the start or end) and the parts not covered by the COPY are 3041 * written through a memory map after calling fuse_writeback_range(), 3042 * then these partial page modifications will be lost on truncation. 3043 * 3044 * It is unlikely that someone would rely on such mixed style 3045 * modifications. Yet this does give less guarantees than if the 3046 * copying was performed with write(2). 3047 * 3048 * To fix this a i_mmap_sem style lock could be used to prevent new 3049 * faults while the copy is ongoing. 3050 */ 3051 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3052 if (err) 3053 goto out; 3054 3055 if (is_unstable) 3056 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3057 3058 args.opcode = FUSE_COPY_FILE_RANGE; 3059 args.nodeid = ff_in->nodeid; 3060 args.in_numargs = 1; 3061 args.in_args[0].size = sizeof(inarg); 3062 args.in_args[0].value = &inarg; 3063 args.out_numargs = 1; 3064 args.out_args[0].size = sizeof(outarg); 3065 args.out_args[0].value = &outarg; 3066 err = fuse_simple_request(fm, &args); 3067 if (err == -ENOSYS) { 3068 fc->no_copy_file_range = 1; 3069 err = -EOPNOTSUPP; 3070 } 3071 if (err) 3072 goto out; 3073 3074 truncate_inode_pages_range(inode_out->i_mapping, 3075 ALIGN_DOWN(pos_out, PAGE_SIZE), 3076 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3077 3078 if (fc->writeback_cache) { 3079 fuse_write_update_size(inode_out, pos_out + outarg.size); 3080 file_update_time(file_out); 3081 } 3082 3083 fuse_invalidate_attr(inode_out); 3084 3085 err = outarg.size; 3086 out: 3087 if (is_unstable) 3088 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3089 3090 inode_unlock(inode_out); 3091 file_accessed(file_in); 3092 3093 return err; 3094 } 3095 3096 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3097 struct file *dst_file, loff_t dst_off, 3098 size_t len, unsigned int flags) 3099 { 3100 ssize_t ret; 3101 3102 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3103 len, flags); 3104 3105 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3106 ret = generic_copy_file_range(src_file, src_off, dst_file, 3107 dst_off, len, flags); 3108 return ret; 3109 } 3110 3111 static const struct file_operations fuse_file_operations = { 3112 .llseek = fuse_file_llseek, 3113 .read_iter = fuse_file_read_iter, 3114 .write_iter = fuse_file_write_iter, 3115 .mmap = fuse_file_mmap, 3116 .open = fuse_open, 3117 .flush = fuse_flush, 3118 .release = fuse_release, 3119 .fsync = fuse_fsync, 3120 .lock = fuse_file_lock, 3121 .get_unmapped_area = thp_get_unmapped_area, 3122 .flock = fuse_file_flock, 3123 .splice_read = generic_file_splice_read, 3124 .splice_write = iter_file_splice_write, 3125 .unlocked_ioctl = fuse_file_ioctl, 3126 .compat_ioctl = fuse_file_compat_ioctl, 3127 .poll = fuse_file_poll, 3128 .fallocate = fuse_file_fallocate, 3129 .copy_file_range = fuse_copy_file_range, 3130 }; 3131 3132 static const struct address_space_operations fuse_file_aops = { 3133 .readpage = fuse_readpage, 3134 .readahead = fuse_readahead, 3135 .writepage = fuse_writepage, 3136 .writepages = fuse_writepages, 3137 .launder_page = fuse_launder_page, 3138 .set_page_dirty = __set_page_dirty_nobuffers, 3139 .bmap = fuse_bmap, 3140 .direct_IO = fuse_direct_IO, 3141 .write_begin = fuse_write_begin, 3142 .write_end = fuse_write_end, 3143 }; 3144 3145 void fuse_init_file_inode(struct inode *inode) 3146 { 3147 struct fuse_inode *fi = get_fuse_inode(inode); 3148 3149 inode->i_fop = &fuse_file_operations; 3150 inode->i_data.a_ops = &fuse_file_aops; 3151 3152 INIT_LIST_HEAD(&fi->write_files); 3153 INIT_LIST_HEAD(&fi->queued_writes); 3154 fi->writectr = 0; 3155 init_waitqueue_head(&fi->page_waitq); 3156 fi->writepages = RB_ROOT; 3157 3158 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3159 fuse_dax_inode_init(inode); 3160 } 3161