xref: /openbmc/linux/fs/fuse/file.c (revision dc6a81c3)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 				      struct fuse_page_desc **desc)
24 {
25 	struct page **pages;
26 
27 	pages = kzalloc(npages * (sizeof(struct page *) +
28 				  sizeof(struct fuse_page_desc)), flags);
29 	*desc = (void *) (pages + npages);
30 
31 	return pages;
32 }
33 
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 			  int opcode, struct fuse_open_out *outargp)
36 {
37 	struct fuse_open_in inarg;
38 	FUSE_ARGS(args);
39 
40 	memset(&inarg, 0, sizeof(inarg));
41 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 	if (!fc->atomic_o_trunc)
43 		inarg.flags &= ~O_TRUNC;
44 	args.opcode = opcode;
45 	args.nodeid = nodeid;
46 	args.in_numargs = 1;
47 	args.in_args[0].size = sizeof(inarg);
48 	args.in_args[0].value = &inarg;
49 	args.out_numargs = 1;
50 	args.out_args[0].size = sizeof(*outargp);
51 	args.out_args[0].value = outargp;
52 
53 	return fuse_simple_request(fc, &args);
54 }
55 
56 struct fuse_release_args {
57 	struct fuse_args args;
58 	struct fuse_release_in inarg;
59 	struct inode *inode;
60 };
61 
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
63 {
64 	struct fuse_file *ff;
65 
66 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
67 	if (unlikely(!ff))
68 		return NULL;
69 
70 	ff->fc = fc;
71 	ff->release_args = kzalloc(sizeof(*ff->release_args),
72 				   GFP_KERNEL_ACCOUNT);
73 	if (!ff->release_args) {
74 		kfree(ff);
75 		return NULL;
76 	}
77 
78 	INIT_LIST_HEAD(&ff->write_entry);
79 	mutex_init(&ff->readdir.lock);
80 	refcount_set(&ff->count, 1);
81 	RB_CLEAR_NODE(&ff->polled_node);
82 	init_waitqueue_head(&ff->poll_wait);
83 
84 	ff->kh = atomic64_inc_return(&fc->khctr);
85 
86 	return ff;
87 }
88 
89 void fuse_file_free(struct fuse_file *ff)
90 {
91 	kfree(ff->release_args);
92 	mutex_destroy(&ff->readdir.lock);
93 	kfree(ff);
94 }
95 
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
97 {
98 	refcount_inc(&ff->count);
99 	return ff;
100 }
101 
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
103 			     int error)
104 {
105 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
106 
107 	iput(ra->inode);
108 	kfree(ra);
109 }
110 
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
112 {
113 	if (refcount_dec_and_test(&ff->count)) {
114 		struct fuse_args *args = &ff->release_args->args;
115 
116 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 			/* Do nothing when client does not implement 'open' */
118 			fuse_release_end(ff->fc, args, 0);
119 		} else if (sync) {
120 			fuse_simple_request(ff->fc, args);
121 			fuse_release_end(ff->fc, args, 0);
122 		} else {
123 			args->end = fuse_release_end;
124 			if (fuse_simple_background(ff->fc, args,
125 						   GFP_KERNEL | __GFP_NOFAIL))
126 				fuse_release_end(ff->fc, args, -ENOTCONN);
127 		}
128 		kfree(ff);
129 	}
130 }
131 
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
133 		 bool isdir)
134 {
135 	struct fuse_file *ff;
136 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
137 
138 	ff = fuse_file_alloc(fc);
139 	if (!ff)
140 		return -ENOMEM;
141 
142 	ff->fh = 0;
143 	/* Default for no-open */
144 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 	if (isdir ? !fc->no_opendir : !fc->no_open) {
146 		struct fuse_open_out outarg;
147 		int err;
148 
149 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
150 		if (!err) {
151 			ff->fh = outarg.fh;
152 			ff->open_flags = outarg.open_flags;
153 
154 		} else if (err != -ENOSYS) {
155 			fuse_file_free(ff);
156 			return err;
157 		} else {
158 			if (isdir)
159 				fc->no_opendir = 1;
160 			else
161 				fc->no_open = 1;
162 		}
163 	}
164 
165 	if (isdir)
166 		ff->open_flags &= ~FOPEN_DIRECT_IO;
167 
168 	ff->nodeid = nodeid;
169 	file->private_data = ff;
170 
171 	return 0;
172 }
173 EXPORT_SYMBOL_GPL(fuse_do_open);
174 
175 static void fuse_link_write_file(struct file *file)
176 {
177 	struct inode *inode = file_inode(file);
178 	struct fuse_inode *fi = get_fuse_inode(inode);
179 	struct fuse_file *ff = file->private_data;
180 	/*
181 	 * file may be written through mmap, so chain it onto the
182 	 * inodes's write_file list
183 	 */
184 	spin_lock(&fi->lock);
185 	if (list_empty(&ff->write_entry))
186 		list_add(&ff->write_entry, &fi->write_files);
187 	spin_unlock(&fi->lock);
188 }
189 
190 void fuse_finish_open(struct inode *inode, struct file *file)
191 {
192 	struct fuse_file *ff = file->private_data;
193 	struct fuse_conn *fc = get_fuse_conn(inode);
194 
195 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 		invalidate_inode_pages2(inode->i_mapping);
197 	if (ff->open_flags & FOPEN_STREAM)
198 		stream_open(inode, file);
199 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 		nonseekable_open(inode, file);
201 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 		struct fuse_inode *fi = get_fuse_inode(inode);
203 
204 		spin_lock(&fi->lock);
205 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 		i_size_write(inode, 0);
207 		spin_unlock(&fi->lock);
208 		fuse_invalidate_attr(inode);
209 		if (fc->writeback_cache)
210 			file_update_time(file);
211 	}
212 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 		fuse_link_write_file(file);
214 }
215 
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
217 {
218 	struct fuse_conn *fc = get_fuse_conn(inode);
219 	int err;
220 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 			  fc->atomic_o_trunc &&
222 			  fc->writeback_cache;
223 
224 	err = generic_file_open(inode, file);
225 	if (err)
226 		return err;
227 
228 	if (is_wb_truncate) {
229 		inode_lock(inode);
230 		fuse_set_nowrite(inode);
231 	}
232 
233 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
234 
235 	if (!err)
236 		fuse_finish_open(inode, file);
237 
238 	if (is_wb_truncate) {
239 		fuse_release_nowrite(inode);
240 		inode_unlock(inode);
241 	}
242 
243 	return err;
244 }
245 
246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 				 int flags, int opcode)
248 {
249 	struct fuse_conn *fc = ff->fc;
250 	struct fuse_release_args *ra = ff->release_args;
251 
252 	/* Inode is NULL on error path of fuse_create_open() */
253 	if (likely(fi)) {
254 		spin_lock(&fi->lock);
255 		list_del(&ff->write_entry);
256 		spin_unlock(&fi->lock);
257 	}
258 	spin_lock(&fc->lock);
259 	if (!RB_EMPTY_NODE(&ff->polled_node))
260 		rb_erase(&ff->polled_node, &fc->polled_files);
261 	spin_unlock(&fc->lock);
262 
263 	wake_up_interruptible_all(&ff->poll_wait);
264 
265 	ra->inarg.fh = ff->fh;
266 	ra->inarg.flags = flags;
267 	ra->args.in_numargs = 1;
268 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 	ra->args.in_args[0].value = &ra->inarg;
270 	ra->args.opcode = opcode;
271 	ra->args.nodeid = ff->nodeid;
272 	ra->args.force = true;
273 	ra->args.nocreds = true;
274 }
275 
276 void fuse_release_common(struct file *file, bool isdir)
277 {
278 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 	struct fuse_file *ff = file->private_data;
280 	struct fuse_release_args *ra = ff->release_args;
281 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
282 
283 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
284 
285 	if (ff->flock) {
286 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
288 							  (fl_owner_t) file);
289 	}
290 	/* Hold inode until release is finished */
291 	ra->inode = igrab(file_inode(file));
292 
293 	/*
294 	 * Normally this will send the RELEASE request, however if
295 	 * some asynchronous READ or WRITE requests are outstanding,
296 	 * the sending will be delayed.
297 	 *
298 	 * Make the release synchronous if this is a fuseblk mount,
299 	 * synchronous RELEASE is allowed (and desirable) in this case
300 	 * because the server can be trusted not to screw up.
301 	 */
302 	fuse_file_put(ff, ff->fc->destroy, isdir);
303 }
304 
305 static int fuse_open(struct inode *inode, struct file *file)
306 {
307 	return fuse_open_common(inode, file, false);
308 }
309 
310 static int fuse_release(struct inode *inode, struct file *file)
311 {
312 	struct fuse_conn *fc = get_fuse_conn(inode);
313 
314 	/* see fuse_vma_close() for !writeback_cache case */
315 	if (fc->writeback_cache)
316 		write_inode_now(inode, 1);
317 
318 	fuse_release_common(file, false);
319 
320 	/* return value is ignored by VFS */
321 	return 0;
322 }
323 
324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
325 {
326 	WARN_ON(refcount_read(&ff->count) > 1);
327 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
328 	/*
329 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 	 * synchronous, we are fine with not doing igrab() here"
331 	 */
332 	fuse_file_put(ff, true, false);
333 }
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
335 
336 /*
337  * Scramble the ID space with XTEA, so that the value of the files_struct
338  * pointer is not exposed to userspace.
339  */
340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
341 {
342 	u32 *k = fc->scramble_key;
343 	u64 v = (unsigned long) id;
344 	u32 v0 = v;
345 	u32 v1 = v >> 32;
346 	u32 sum = 0;
347 	int i;
348 
349 	for (i = 0; i < 32; i++) {
350 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
351 		sum += 0x9E3779B9;
352 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
353 	}
354 
355 	return (u64) v0 + ((u64) v1 << 32);
356 }
357 
358 struct fuse_writepage_args {
359 	struct fuse_io_args ia;
360 	struct list_head writepages_entry;
361 	struct list_head queue_entry;
362 	struct fuse_writepage_args *next;
363 	struct inode *inode;
364 };
365 
366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 					    pgoff_t idx_from, pgoff_t idx_to)
368 {
369 	struct fuse_writepage_args *wpa;
370 
371 	list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
372 		pgoff_t curr_index;
373 
374 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
375 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
376 		if (idx_from < curr_index + wpa->ia.ap.num_pages &&
377 		    curr_index <= idx_to) {
378 			return wpa;
379 		}
380 	}
381 	return NULL;
382 }
383 
384 /*
385  * Check if any page in a range is under writeback
386  *
387  * This is currently done by walking the list of writepage requests
388  * for the inode, which can be pretty inefficient.
389  */
390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
391 				   pgoff_t idx_to)
392 {
393 	struct fuse_inode *fi = get_fuse_inode(inode);
394 	bool found;
395 
396 	spin_lock(&fi->lock);
397 	found = fuse_find_writeback(fi, idx_from, idx_to);
398 	spin_unlock(&fi->lock);
399 
400 	return found;
401 }
402 
403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
404 {
405 	return fuse_range_is_writeback(inode, index, index);
406 }
407 
408 /*
409  * Wait for page writeback to be completed.
410  *
411  * Since fuse doesn't rely on the VM writeback tracking, this has to
412  * use some other means.
413  */
414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
415 {
416 	struct fuse_inode *fi = get_fuse_inode(inode);
417 
418 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
419 }
420 
421 /*
422  * Wait for all pending writepages on the inode to finish.
423  *
424  * This is currently done by blocking further writes with FUSE_NOWRITE
425  * and waiting for all sent writes to complete.
426  *
427  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
428  * could conflict with truncation.
429  */
430 static void fuse_sync_writes(struct inode *inode)
431 {
432 	fuse_set_nowrite(inode);
433 	fuse_release_nowrite(inode);
434 }
435 
436 static int fuse_flush(struct file *file, fl_owner_t id)
437 {
438 	struct inode *inode = file_inode(file);
439 	struct fuse_conn *fc = get_fuse_conn(inode);
440 	struct fuse_file *ff = file->private_data;
441 	struct fuse_flush_in inarg;
442 	FUSE_ARGS(args);
443 	int err;
444 
445 	if (is_bad_inode(inode))
446 		return -EIO;
447 
448 	if (fc->no_flush)
449 		return 0;
450 
451 	err = write_inode_now(inode, 1);
452 	if (err)
453 		return err;
454 
455 	inode_lock(inode);
456 	fuse_sync_writes(inode);
457 	inode_unlock(inode);
458 
459 	err = filemap_check_errors(file->f_mapping);
460 	if (err)
461 		return err;
462 
463 	memset(&inarg, 0, sizeof(inarg));
464 	inarg.fh = ff->fh;
465 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
466 	args.opcode = FUSE_FLUSH;
467 	args.nodeid = get_node_id(inode);
468 	args.in_numargs = 1;
469 	args.in_args[0].size = sizeof(inarg);
470 	args.in_args[0].value = &inarg;
471 	args.force = true;
472 
473 	err = fuse_simple_request(fc, &args);
474 	if (err == -ENOSYS) {
475 		fc->no_flush = 1;
476 		err = 0;
477 	}
478 	return err;
479 }
480 
481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
482 		      int datasync, int opcode)
483 {
484 	struct inode *inode = file->f_mapping->host;
485 	struct fuse_conn *fc = get_fuse_conn(inode);
486 	struct fuse_file *ff = file->private_data;
487 	FUSE_ARGS(args);
488 	struct fuse_fsync_in inarg;
489 
490 	memset(&inarg, 0, sizeof(inarg));
491 	inarg.fh = ff->fh;
492 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
493 	args.opcode = opcode;
494 	args.nodeid = get_node_id(inode);
495 	args.in_numargs = 1;
496 	args.in_args[0].size = sizeof(inarg);
497 	args.in_args[0].value = &inarg;
498 	return fuse_simple_request(fc, &args);
499 }
500 
501 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
502 		      int datasync)
503 {
504 	struct inode *inode = file->f_mapping->host;
505 	struct fuse_conn *fc = get_fuse_conn(inode);
506 	int err;
507 
508 	if (is_bad_inode(inode))
509 		return -EIO;
510 
511 	inode_lock(inode);
512 
513 	/*
514 	 * Start writeback against all dirty pages of the inode, then
515 	 * wait for all outstanding writes, before sending the FSYNC
516 	 * request.
517 	 */
518 	err = file_write_and_wait_range(file, start, end);
519 	if (err)
520 		goto out;
521 
522 	fuse_sync_writes(inode);
523 
524 	/*
525 	 * Due to implementation of fuse writeback
526 	 * file_write_and_wait_range() does not catch errors.
527 	 * We have to do this directly after fuse_sync_writes()
528 	 */
529 	err = file_check_and_advance_wb_err(file);
530 	if (err)
531 		goto out;
532 
533 	err = sync_inode_metadata(inode, 1);
534 	if (err)
535 		goto out;
536 
537 	if (fc->no_fsync)
538 		goto out;
539 
540 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
541 	if (err == -ENOSYS) {
542 		fc->no_fsync = 1;
543 		err = 0;
544 	}
545 out:
546 	inode_unlock(inode);
547 
548 	return err;
549 }
550 
551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
552 			 size_t count, int opcode)
553 {
554 	struct fuse_file *ff = file->private_data;
555 	struct fuse_args *args = &ia->ap.args;
556 
557 	ia->read.in.fh = ff->fh;
558 	ia->read.in.offset = pos;
559 	ia->read.in.size = count;
560 	ia->read.in.flags = file->f_flags;
561 	args->opcode = opcode;
562 	args->nodeid = ff->nodeid;
563 	args->in_numargs = 1;
564 	args->in_args[0].size = sizeof(ia->read.in);
565 	args->in_args[0].value = &ia->read.in;
566 	args->out_argvar = true;
567 	args->out_numargs = 1;
568 	args->out_args[0].size = count;
569 }
570 
571 static void fuse_release_user_pages(struct fuse_args_pages *ap,
572 				    bool should_dirty)
573 {
574 	unsigned int i;
575 
576 	for (i = 0; i < ap->num_pages; i++) {
577 		if (should_dirty)
578 			set_page_dirty_lock(ap->pages[i]);
579 		put_page(ap->pages[i]);
580 	}
581 }
582 
583 static void fuse_io_release(struct kref *kref)
584 {
585 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
586 }
587 
588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
589 {
590 	if (io->err)
591 		return io->err;
592 
593 	if (io->bytes >= 0 && io->write)
594 		return -EIO;
595 
596 	return io->bytes < 0 ? io->size : io->bytes;
597 }
598 
599 /**
600  * In case of short read, the caller sets 'pos' to the position of
601  * actual end of fuse request in IO request. Otherwise, if bytes_requested
602  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
603  *
604  * An example:
605  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
606  * both submitted asynchronously. The first of them was ACKed by userspace as
607  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
608  * second request was ACKed as short, e.g. only 1K was read, resulting in
609  * pos == 33K.
610  *
611  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
612  * will be equal to the length of the longest contiguous fragment of
613  * transferred data starting from the beginning of IO request.
614  */
615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
616 {
617 	int left;
618 
619 	spin_lock(&io->lock);
620 	if (err)
621 		io->err = io->err ? : err;
622 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
623 		io->bytes = pos;
624 
625 	left = --io->reqs;
626 	if (!left && io->blocking)
627 		complete(io->done);
628 	spin_unlock(&io->lock);
629 
630 	if (!left && !io->blocking) {
631 		ssize_t res = fuse_get_res_by_io(io);
632 
633 		if (res >= 0) {
634 			struct inode *inode = file_inode(io->iocb->ki_filp);
635 			struct fuse_conn *fc = get_fuse_conn(inode);
636 			struct fuse_inode *fi = get_fuse_inode(inode);
637 
638 			spin_lock(&fi->lock);
639 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
640 			spin_unlock(&fi->lock);
641 		}
642 
643 		io->iocb->ki_complete(io->iocb, res, 0);
644 	}
645 
646 	kref_put(&io->refcnt, fuse_io_release);
647 }
648 
649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
650 					  unsigned int npages)
651 {
652 	struct fuse_io_args *ia;
653 
654 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
655 	if (ia) {
656 		ia->io = io;
657 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
658 						&ia->ap.descs);
659 		if (!ia->ap.pages) {
660 			kfree(ia);
661 			ia = NULL;
662 		}
663 	}
664 	return ia;
665 }
666 
667 static void fuse_io_free(struct fuse_io_args *ia)
668 {
669 	kfree(ia->ap.pages);
670 	kfree(ia);
671 }
672 
673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
674 				  int err)
675 {
676 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
677 	struct fuse_io_priv *io = ia->io;
678 	ssize_t pos = -1;
679 
680 	fuse_release_user_pages(&ia->ap, io->should_dirty);
681 
682 	if (err) {
683 		/* Nothing */
684 	} else if (io->write) {
685 		if (ia->write.out.size > ia->write.in.size) {
686 			err = -EIO;
687 		} else if (ia->write.in.size != ia->write.out.size) {
688 			pos = ia->write.in.offset - io->offset +
689 				ia->write.out.size;
690 		}
691 	} else {
692 		u32 outsize = args->out_args[0].size;
693 
694 		if (ia->read.in.size != outsize)
695 			pos = ia->read.in.offset - io->offset + outsize;
696 	}
697 
698 	fuse_aio_complete(io, err, pos);
699 	fuse_io_free(ia);
700 }
701 
702 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
703 				   struct fuse_io_args *ia, size_t num_bytes)
704 {
705 	ssize_t err;
706 	struct fuse_io_priv *io = ia->io;
707 
708 	spin_lock(&io->lock);
709 	kref_get(&io->refcnt);
710 	io->size += num_bytes;
711 	io->reqs++;
712 	spin_unlock(&io->lock);
713 
714 	ia->ap.args.end = fuse_aio_complete_req;
715 	err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
716 	if (err)
717 		fuse_aio_complete_req(fc, &ia->ap.args, err);
718 
719 	return num_bytes;
720 }
721 
722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
723 			      fl_owner_t owner)
724 {
725 	struct file *file = ia->io->iocb->ki_filp;
726 	struct fuse_file *ff = file->private_data;
727 	struct fuse_conn *fc = ff->fc;
728 
729 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
730 	if (owner != NULL) {
731 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
732 		ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
733 	}
734 
735 	if (ia->io->async)
736 		return fuse_async_req_send(fc, ia, count);
737 
738 	return fuse_simple_request(fc, &ia->ap.args);
739 }
740 
741 static void fuse_read_update_size(struct inode *inode, loff_t size,
742 				  u64 attr_ver)
743 {
744 	struct fuse_conn *fc = get_fuse_conn(inode);
745 	struct fuse_inode *fi = get_fuse_inode(inode);
746 
747 	spin_lock(&fi->lock);
748 	if (attr_ver == fi->attr_version && size < inode->i_size &&
749 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
750 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
751 		i_size_write(inode, size);
752 	}
753 	spin_unlock(&fi->lock);
754 }
755 
756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
757 			    struct fuse_args_pages *ap)
758 {
759 	struct fuse_conn *fc = get_fuse_conn(inode);
760 
761 	if (fc->writeback_cache) {
762 		/*
763 		 * A hole in a file. Some data after the hole are in page cache,
764 		 * but have not reached the client fs yet. So, the hole is not
765 		 * present there.
766 		 */
767 		int i;
768 		int start_idx = num_read >> PAGE_SHIFT;
769 		size_t off = num_read & (PAGE_SIZE - 1);
770 
771 		for (i = start_idx; i < ap->num_pages; i++) {
772 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
773 			off = 0;
774 		}
775 	} else {
776 		loff_t pos = page_offset(ap->pages[0]) + num_read;
777 		fuse_read_update_size(inode, pos, attr_ver);
778 	}
779 }
780 
781 static int fuse_do_readpage(struct file *file, struct page *page)
782 {
783 	struct inode *inode = page->mapping->host;
784 	struct fuse_conn *fc = get_fuse_conn(inode);
785 	loff_t pos = page_offset(page);
786 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
787 	struct fuse_io_args ia = {
788 		.ap.args.page_zeroing = true,
789 		.ap.args.out_pages = true,
790 		.ap.num_pages = 1,
791 		.ap.pages = &page,
792 		.ap.descs = &desc,
793 	};
794 	ssize_t res;
795 	u64 attr_ver;
796 
797 	/*
798 	 * Page writeback can extend beyond the lifetime of the
799 	 * page-cache page, so make sure we read a properly synced
800 	 * page.
801 	 */
802 	fuse_wait_on_page_writeback(inode, page->index);
803 
804 	attr_ver = fuse_get_attr_version(fc);
805 
806 	/* Don't overflow end offset */
807 	if (pos + (desc.length - 1) == LLONG_MAX)
808 		desc.length--;
809 
810 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
811 	res = fuse_simple_request(fc, &ia.ap.args);
812 	if (res < 0)
813 		return res;
814 	/*
815 	 * Short read means EOF.  If file size is larger, truncate it
816 	 */
817 	if (res < desc.length)
818 		fuse_short_read(inode, attr_ver, res, &ia.ap);
819 
820 	SetPageUptodate(page);
821 
822 	return 0;
823 }
824 
825 static int fuse_readpage(struct file *file, struct page *page)
826 {
827 	struct inode *inode = page->mapping->host;
828 	int err;
829 
830 	err = -EIO;
831 	if (is_bad_inode(inode))
832 		goto out;
833 
834 	err = fuse_do_readpage(file, page);
835 	fuse_invalidate_atime(inode);
836  out:
837 	unlock_page(page);
838 	return err;
839 }
840 
841 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
842 			       int err)
843 {
844 	int i;
845 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
846 	struct fuse_args_pages *ap = &ia->ap;
847 	size_t count = ia->read.in.size;
848 	size_t num_read = args->out_args[0].size;
849 	struct address_space *mapping = NULL;
850 
851 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
852 		mapping = ap->pages[i]->mapping;
853 
854 	if (mapping) {
855 		struct inode *inode = mapping->host;
856 
857 		/*
858 		 * Short read means EOF. If file size is larger, truncate it
859 		 */
860 		if (!err && num_read < count)
861 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
862 
863 		fuse_invalidate_atime(inode);
864 	}
865 
866 	for (i = 0; i < ap->num_pages; i++) {
867 		struct page *page = ap->pages[i];
868 
869 		if (!err)
870 			SetPageUptodate(page);
871 		else
872 			SetPageError(page);
873 		unlock_page(page);
874 		put_page(page);
875 	}
876 	if (ia->ff)
877 		fuse_file_put(ia->ff, false, false);
878 
879 	fuse_io_free(ia);
880 }
881 
882 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
883 {
884 	struct fuse_file *ff = file->private_data;
885 	struct fuse_conn *fc = ff->fc;
886 	struct fuse_args_pages *ap = &ia->ap;
887 	loff_t pos = page_offset(ap->pages[0]);
888 	size_t count = ap->num_pages << PAGE_SHIFT;
889 	ssize_t res;
890 	int err;
891 
892 	ap->args.out_pages = true;
893 	ap->args.page_zeroing = true;
894 	ap->args.page_replace = true;
895 
896 	/* Don't overflow end offset */
897 	if (pos + (count - 1) == LLONG_MAX) {
898 		count--;
899 		ap->descs[ap->num_pages - 1].length--;
900 	}
901 	WARN_ON((loff_t) (pos + count) < 0);
902 
903 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
904 	ia->read.attr_ver = fuse_get_attr_version(fc);
905 	if (fc->async_read) {
906 		ia->ff = fuse_file_get(ff);
907 		ap->args.end = fuse_readpages_end;
908 		err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
909 		if (!err)
910 			return;
911 	} else {
912 		res = fuse_simple_request(fc, &ap->args);
913 		err = res < 0 ? res : 0;
914 	}
915 	fuse_readpages_end(fc, &ap->args, err);
916 }
917 
918 struct fuse_fill_data {
919 	struct fuse_io_args *ia;
920 	struct file *file;
921 	struct inode *inode;
922 	unsigned int nr_pages;
923 	unsigned int max_pages;
924 };
925 
926 static int fuse_readpages_fill(void *_data, struct page *page)
927 {
928 	struct fuse_fill_data *data = _data;
929 	struct fuse_io_args *ia = data->ia;
930 	struct fuse_args_pages *ap = &ia->ap;
931 	struct inode *inode = data->inode;
932 	struct fuse_conn *fc = get_fuse_conn(inode);
933 
934 	fuse_wait_on_page_writeback(inode, page->index);
935 
936 	if (ap->num_pages &&
937 	    (ap->num_pages == fc->max_pages ||
938 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
939 	     ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
940 		data->max_pages = min_t(unsigned int, data->nr_pages,
941 					fc->max_pages);
942 		fuse_send_readpages(ia, data->file);
943 		data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
944 		if (!ia) {
945 			unlock_page(page);
946 			return -ENOMEM;
947 		}
948 		ap = &ia->ap;
949 	}
950 
951 	if (WARN_ON(ap->num_pages >= data->max_pages)) {
952 		unlock_page(page);
953 		fuse_io_free(ia);
954 		return -EIO;
955 	}
956 
957 	get_page(page);
958 	ap->pages[ap->num_pages] = page;
959 	ap->descs[ap->num_pages].length = PAGE_SIZE;
960 	ap->num_pages++;
961 	data->nr_pages--;
962 	return 0;
963 }
964 
965 static int fuse_readpages(struct file *file, struct address_space *mapping,
966 			  struct list_head *pages, unsigned nr_pages)
967 {
968 	struct inode *inode = mapping->host;
969 	struct fuse_conn *fc = get_fuse_conn(inode);
970 	struct fuse_fill_data data;
971 	int err;
972 
973 	err = -EIO;
974 	if (is_bad_inode(inode))
975 		goto out;
976 
977 	data.file = file;
978 	data.inode = inode;
979 	data.nr_pages = nr_pages;
980 	data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
981 ;
982 	data.ia = fuse_io_alloc(NULL, data.max_pages);
983 	err = -ENOMEM;
984 	if (!data.ia)
985 		goto out;
986 
987 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
988 	if (!err) {
989 		if (data.ia->ap.num_pages)
990 			fuse_send_readpages(data.ia, file);
991 		else
992 			fuse_io_free(data.ia);
993 	}
994 out:
995 	return err;
996 }
997 
998 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
999 {
1000 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1001 	struct fuse_conn *fc = get_fuse_conn(inode);
1002 
1003 	/*
1004 	 * In auto invalidate mode, always update attributes on read.
1005 	 * Otherwise, only update if we attempt to read past EOF (to ensure
1006 	 * i_size is up to date).
1007 	 */
1008 	if (fc->auto_inval_data ||
1009 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1010 		int err;
1011 		err = fuse_update_attributes(inode, iocb->ki_filp);
1012 		if (err)
1013 			return err;
1014 	}
1015 
1016 	return generic_file_read_iter(iocb, to);
1017 }
1018 
1019 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1020 				 loff_t pos, size_t count)
1021 {
1022 	struct fuse_args *args = &ia->ap.args;
1023 
1024 	ia->write.in.fh = ff->fh;
1025 	ia->write.in.offset = pos;
1026 	ia->write.in.size = count;
1027 	args->opcode = FUSE_WRITE;
1028 	args->nodeid = ff->nodeid;
1029 	args->in_numargs = 2;
1030 	if (ff->fc->minor < 9)
1031 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1032 	else
1033 		args->in_args[0].size = sizeof(ia->write.in);
1034 	args->in_args[0].value = &ia->write.in;
1035 	args->in_args[1].size = count;
1036 	args->out_numargs = 1;
1037 	args->out_args[0].size = sizeof(ia->write.out);
1038 	args->out_args[0].value = &ia->write.out;
1039 }
1040 
1041 static unsigned int fuse_write_flags(struct kiocb *iocb)
1042 {
1043 	unsigned int flags = iocb->ki_filp->f_flags;
1044 
1045 	if (iocb->ki_flags & IOCB_DSYNC)
1046 		flags |= O_DSYNC;
1047 	if (iocb->ki_flags & IOCB_SYNC)
1048 		flags |= O_SYNC;
1049 
1050 	return flags;
1051 }
1052 
1053 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1054 			       size_t count, fl_owner_t owner)
1055 {
1056 	struct kiocb *iocb = ia->io->iocb;
1057 	struct file *file = iocb->ki_filp;
1058 	struct fuse_file *ff = file->private_data;
1059 	struct fuse_conn *fc = ff->fc;
1060 	struct fuse_write_in *inarg = &ia->write.in;
1061 	ssize_t err;
1062 
1063 	fuse_write_args_fill(ia, ff, pos, count);
1064 	inarg->flags = fuse_write_flags(iocb);
1065 	if (owner != NULL) {
1066 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1067 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1068 	}
1069 
1070 	if (ia->io->async)
1071 		return fuse_async_req_send(fc, ia, count);
1072 
1073 	err = fuse_simple_request(fc, &ia->ap.args);
1074 	if (!err && ia->write.out.size > count)
1075 		err = -EIO;
1076 
1077 	return err ?: ia->write.out.size;
1078 }
1079 
1080 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1081 {
1082 	struct fuse_conn *fc = get_fuse_conn(inode);
1083 	struct fuse_inode *fi = get_fuse_inode(inode);
1084 	bool ret = false;
1085 
1086 	spin_lock(&fi->lock);
1087 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1088 	if (pos > inode->i_size) {
1089 		i_size_write(inode, pos);
1090 		ret = true;
1091 	}
1092 	spin_unlock(&fi->lock);
1093 
1094 	return ret;
1095 }
1096 
1097 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1098 				     struct kiocb *iocb, struct inode *inode,
1099 				     loff_t pos, size_t count)
1100 {
1101 	struct fuse_args_pages *ap = &ia->ap;
1102 	struct file *file = iocb->ki_filp;
1103 	struct fuse_file *ff = file->private_data;
1104 	struct fuse_conn *fc = ff->fc;
1105 	unsigned int offset, i;
1106 	int err;
1107 
1108 	for (i = 0; i < ap->num_pages; i++)
1109 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1110 
1111 	fuse_write_args_fill(ia, ff, pos, count);
1112 	ia->write.in.flags = fuse_write_flags(iocb);
1113 
1114 	err = fuse_simple_request(fc, &ap->args);
1115 	if (!err && ia->write.out.size > count)
1116 		err = -EIO;
1117 
1118 	offset = ap->descs[0].offset;
1119 	count = ia->write.out.size;
1120 	for (i = 0; i < ap->num_pages; i++) {
1121 		struct page *page = ap->pages[i];
1122 
1123 		if (!err && !offset && count >= PAGE_SIZE)
1124 			SetPageUptodate(page);
1125 
1126 		if (count > PAGE_SIZE - offset)
1127 			count -= PAGE_SIZE - offset;
1128 		else
1129 			count = 0;
1130 		offset = 0;
1131 
1132 		unlock_page(page);
1133 		put_page(page);
1134 	}
1135 
1136 	return err;
1137 }
1138 
1139 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1140 				     struct address_space *mapping,
1141 				     struct iov_iter *ii, loff_t pos,
1142 				     unsigned int max_pages)
1143 {
1144 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1145 	unsigned offset = pos & (PAGE_SIZE - 1);
1146 	size_t count = 0;
1147 	int err;
1148 
1149 	ap->args.in_pages = true;
1150 	ap->descs[0].offset = offset;
1151 
1152 	do {
1153 		size_t tmp;
1154 		struct page *page;
1155 		pgoff_t index = pos >> PAGE_SHIFT;
1156 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1157 				     iov_iter_count(ii));
1158 
1159 		bytes = min_t(size_t, bytes, fc->max_write - count);
1160 
1161  again:
1162 		err = -EFAULT;
1163 		if (iov_iter_fault_in_readable(ii, bytes))
1164 			break;
1165 
1166 		err = -ENOMEM;
1167 		page = grab_cache_page_write_begin(mapping, index, 0);
1168 		if (!page)
1169 			break;
1170 
1171 		if (mapping_writably_mapped(mapping))
1172 			flush_dcache_page(page);
1173 
1174 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1175 		flush_dcache_page(page);
1176 
1177 		iov_iter_advance(ii, tmp);
1178 		if (!tmp) {
1179 			unlock_page(page);
1180 			put_page(page);
1181 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1182 			goto again;
1183 		}
1184 
1185 		err = 0;
1186 		ap->pages[ap->num_pages] = page;
1187 		ap->descs[ap->num_pages].length = tmp;
1188 		ap->num_pages++;
1189 
1190 		count += tmp;
1191 		pos += tmp;
1192 		offset += tmp;
1193 		if (offset == PAGE_SIZE)
1194 			offset = 0;
1195 
1196 		if (!fc->big_writes)
1197 			break;
1198 	} while (iov_iter_count(ii) && count < fc->max_write &&
1199 		 ap->num_pages < max_pages && offset == 0);
1200 
1201 	return count > 0 ? count : err;
1202 }
1203 
1204 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1205 				     unsigned int max_pages)
1206 {
1207 	return min_t(unsigned int,
1208 		     ((pos + len - 1) >> PAGE_SHIFT) -
1209 		     (pos >> PAGE_SHIFT) + 1,
1210 		     max_pages);
1211 }
1212 
1213 static ssize_t fuse_perform_write(struct kiocb *iocb,
1214 				  struct address_space *mapping,
1215 				  struct iov_iter *ii, loff_t pos)
1216 {
1217 	struct inode *inode = mapping->host;
1218 	struct fuse_conn *fc = get_fuse_conn(inode);
1219 	struct fuse_inode *fi = get_fuse_inode(inode);
1220 	int err = 0;
1221 	ssize_t res = 0;
1222 
1223 	if (inode->i_size < pos + iov_iter_count(ii))
1224 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1225 
1226 	do {
1227 		ssize_t count;
1228 		struct fuse_io_args ia = {};
1229 		struct fuse_args_pages *ap = &ia.ap;
1230 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1231 						      fc->max_pages);
1232 
1233 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1234 		if (!ap->pages) {
1235 			err = -ENOMEM;
1236 			break;
1237 		}
1238 
1239 		count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1240 		if (count <= 0) {
1241 			err = count;
1242 		} else {
1243 			err = fuse_send_write_pages(&ia, iocb, inode,
1244 						    pos, count);
1245 			if (!err) {
1246 				size_t num_written = ia.write.out.size;
1247 
1248 				res += num_written;
1249 				pos += num_written;
1250 
1251 				/* break out of the loop on short write */
1252 				if (num_written != count)
1253 					err = -EIO;
1254 			}
1255 		}
1256 		kfree(ap->pages);
1257 	} while (!err && iov_iter_count(ii));
1258 
1259 	if (res > 0)
1260 		fuse_write_update_size(inode, pos);
1261 
1262 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1263 	fuse_invalidate_attr(inode);
1264 
1265 	return res > 0 ? res : err;
1266 }
1267 
1268 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1269 {
1270 	struct file *file = iocb->ki_filp;
1271 	struct address_space *mapping = file->f_mapping;
1272 	ssize_t written = 0;
1273 	ssize_t written_buffered = 0;
1274 	struct inode *inode = mapping->host;
1275 	ssize_t err;
1276 	loff_t endbyte = 0;
1277 
1278 	if (get_fuse_conn(inode)->writeback_cache) {
1279 		/* Update size (EOF optimization) and mode (SUID clearing) */
1280 		err = fuse_update_attributes(mapping->host, file);
1281 		if (err)
1282 			return err;
1283 
1284 		return generic_file_write_iter(iocb, from);
1285 	}
1286 
1287 	inode_lock(inode);
1288 
1289 	/* We can write back this queue in page reclaim */
1290 	current->backing_dev_info = inode_to_bdi(inode);
1291 
1292 	err = generic_write_checks(iocb, from);
1293 	if (err <= 0)
1294 		goto out;
1295 
1296 	err = file_remove_privs(file);
1297 	if (err)
1298 		goto out;
1299 
1300 	err = file_update_time(file);
1301 	if (err)
1302 		goto out;
1303 
1304 	if (iocb->ki_flags & IOCB_DIRECT) {
1305 		loff_t pos = iocb->ki_pos;
1306 		written = generic_file_direct_write(iocb, from);
1307 		if (written < 0 || !iov_iter_count(from))
1308 			goto out;
1309 
1310 		pos += written;
1311 
1312 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1313 		if (written_buffered < 0) {
1314 			err = written_buffered;
1315 			goto out;
1316 		}
1317 		endbyte = pos + written_buffered - 1;
1318 
1319 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1320 						   endbyte);
1321 		if (err)
1322 			goto out;
1323 
1324 		invalidate_mapping_pages(file->f_mapping,
1325 					 pos >> PAGE_SHIFT,
1326 					 endbyte >> PAGE_SHIFT);
1327 
1328 		written += written_buffered;
1329 		iocb->ki_pos = pos + written_buffered;
1330 	} else {
1331 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1332 		if (written >= 0)
1333 			iocb->ki_pos += written;
1334 	}
1335 out:
1336 	current->backing_dev_info = NULL;
1337 	inode_unlock(inode);
1338 	if (written > 0)
1339 		written = generic_write_sync(iocb, written);
1340 
1341 	return written ? written : err;
1342 }
1343 
1344 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1345 					       unsigned int index,
1346 					       unsigned int nr_pages)
1347 {
1348 	int i;
1349 
1350 	for (i = index; i < index + nr_pages; i++)
1351 		descs[i].length = PAGE_SIZE - descs[i].offset;
1352 }
1353 
1354 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1355 {
1356 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1357 }
1358 
1359 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1360 					size_t max_size)
1361 {
1362 	return min(iov_iter_single_seg_count(ii), max_size);
1363 }
1364 
1365 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1366 			       size_t *nbytesp, int write,
1367 			       unsigned int max_pages)
1368 {
1369 	size_t nbytes = 0;  /* # bytes already packed in req */
1370 	ssize_t ret = 0;
1371 
1372 	/* Special case for kernel I/O: can copy directly into the buffer */
1373 	if (iov_iter_is_kvec(ii)) {
1374 		unsigned long user_addr = fuse_get_user_addr(ii);
1375 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1376 
1377 		if (write)
1378 			ap->args.in_args[1].value = (void *) user_addr;
1379 		else
1380 			ap->args.out_args[0].value = (void *) user_addr;
1381 
1382 		iov_iter_advance(ii, frag_size);
1383 		*nbytesp = frag_size;
1384 		return 0;
1385 	}
1386 
1387 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1388 		unsigned npages;
1389 		size_t start;
1390 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1391 					*nbytesp - nbytes,
1392 					max_pages - ap->num_pages,
1393 					&start);
1394 		if (ret < 0)
1395 			break;
1396 
1397 		iov_iter_advance(ii, ret);
1398 		nbytes += ret;
1399 
1400 		ret += start;
1401 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1402 
1403 		ap->descs[ap->num_pages].offset = start;
1404 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1405 
1406 		ap->num_pages += npages;
1407 		ap->descs[ap->num_pages - 1].length -=
1408 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1409 	}
1410 
1411 	if (write)
1412 		ap->args.in_pages = true;
1413 	else
1414 		ap->args.out_pages = true;
1415 
1416 	*nbytesp = nbytes;
1417 
1418 	return ret < 0 ? ret : 0;
1419 }
1420 
1421 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1422 		       loff_t *ppos, int flags)
1423 {
1424 	int write = flags & FUSE_DIO_WRITE;
1425 	int cuse = flags & FUSE_DIO_CUSE;
1426 	struct file *file = io->iocb->ki_filp;
1427 	struct inode *inode = file->f_mapping->host;
1428 	struct fuse_file *ff = file->private_data;
1429 	struct fuse_conn *fc = ff->fc;
1430 	size_t nmax = write ? fc->max_write : fc->max_read;
1431 	loff_t pos = *ppos;
1432 	size_t count = iov_iter_count(iter);
1433 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1434 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1435 	ssize_t res = 0;
1436 	int err = 0;
1437 	struct fuse_io_args *ia;
1438 	unsigned int max_pages;
1439 
1440 	max_pages = iov_iter_npages(iter, fc->max_pages);
1441 	ia = fuse_io_alloc(io, max_pages);
1442 	if (!ia)
1443 		return -ENOMEM;
1444 
1445 	ia->io = io;
1446 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1447 		if (!write)
1448 			inode_lock(inode);
1449 		fuse_sync_writes(inode);
1450 		if (!write)
1451 			inode_unlock(inode);
1452 	}
1453 
1454 	io->should_dirty = !write && iter_is_iovec(iter);
1455 	while (count) {
1456 		ssize_t nres;
1457 		fl_owner_t owner = current->files;
1458 		size_t nbytes = min(count, nmax);
1459 
1460 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1461 					  max_pages);
1462 		if (err && !nbytes)
1463 			break;
1464 
1465 		if (write) {
1466 			if (!capable(CAP_FSETID))
1467 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1468 
1469 			nres = fuse_send_write(ia, pos, nbytes, owner);
1470 		} else {
1471 			nres = fuse_send_read(ia, pos, nbytes, owner);
1472 		}
1473 
1474 		if (!io->async || nres < 0) {
1475 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1476 			fuse_io_free(ia);
1477 		}
1478 		ia = NULL;
1479 		if (nres < 0) {
1480 			iov_iter_revert(iter, nbytes);
1481 			err = nres;
1482 			break;
1483 		}
1484 		WARN_ON(nres > nbytes);
1485 
1486 		count -= nres;
1487 		res += nres;
1488 		pos += nres;
1489 		if (nres != nbytes) {
1490 			iov_iter_revert(iter, nbytes - nres);
1491 			break;
1492 		}
1493 		if (count) {
1494 			max_pages = iov_iter_npages(iter, fc->max_pages);
1495 			ia = fuse_io_alloc(io, max_pages);
1496 			if (!ia)
1497 				break;
1498 		}
1499 	}
1500 	if (ia)
1501 		fuse_io_free(ia);
1502 	if (res > 0)
1503 		*ppos = pos;
1504 
1505 	return res > 0 ? res : err;
1506 }
1507 EXPORT_SYMBOL_GPL(fuse_direct_io);
1508 
1509 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1510 				  struct iov_iter *iter,
1511 				  loff_t *ppos)
1512 {
1513 	ssize_t res;
1514 	struct inode *inode = file_inode(io->iocb->ki_filp);
1515 
1516 	res = fuse_direct_io(io, iter, ppos, 0);
1517 
1518 	fuse_invalidate_atime(inode);
1519 
1520 	return res;
1521 }
1522 
1523 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1524 
1525 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1526 {
1527 	ssize_t res;
1528 
1529 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1530 		res = fuse_direct_IO(iocb, to);
1531 	} else {
1532 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1533 
1534 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1535 	}
1536 
1537 	return res;
1538 }
1539 
1540 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1541 {
1542 	struct inode *inode = file_inode(iocb->ki_filp);
1543 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1544 	ssize_t res;
1545 
1546 	/* Don't allow parallel writes to the same file */
1547 	inode_lock(inode);
1548 	res = generic_write_checks(iocb, from);
1549 	if (res > 0) {
1550 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1551 			res = fuse_direct_IO(iocb, from);
1552 		} else {
1553 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1554 					     FUSE_DIO_WRITE);
1555 		}
1556 	}
1557 	fuse_invalidate_attr(inode);
1558 	if (res > 0)
1559 		fuse_write_update_size(inode, iocb->ki_pos);
1560 	inode_unlock(inode);
1561 
1562 	return res;
1563 }
1564 
1565 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1566 {
1567 	struct file *file = iocb->ki_filp;
1568 	struct fuse_file *ff = file->private_data;
1569 
1570 	if (is_bad_inode(file_inode(file)))
1571 		return -EIO;
1572 
1573 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1574 		return fuse_cache_read_iter(iocb, to);
1575 	else
1576 		return fuse_direct_read_iter(iocb, to);
1577 }
1578 
1579 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1580 {
1581 	struct file *file = iocb->ki_filp;
1582 	struct fuse_file *ff = file->private_data;
1583 
1584 	if (is_bad_inode(file_inode(file)))
1585 		return -EIO;
1586 
1587 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1588 		return fuse_cache_write_iter(iocb, from);
1589 	else
1590 		return fuse_direct_write_iter(iocb, from);
1591 }
1592 
1593 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1594 {
1595 	struct fuse_args_pages *ap = &wpa->ia.ap;
1596 	int i;
1597 
1598 	for (i = 0; i < ap->num_pages; i++)
1599 		__free_page(ap->pages[i]);
1600 
1601 	if (wpa->ia.ff)
1602 		fuse_file_put(wpa->ia.ff, false, false);
1603 
1604 	kfree(ap->pages);
1605 	kfree(wpa);
1606 }
1607 
1608 static void fuse_writepage_finish(struct fuse_conn *fc,
1609 				  struct fuse_writepage_args *wpa)
1610 {
1611 	struct fuse_args_pages *ap = &wpa->ia.ap;
1612 	struct inode *inode = wpa->inode;
1613 	struct fuse_inode *fi = get_fuse_inode(inode);
1614 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1615 	int i;
1616 
1617 	list_del(&wpa->writepages_entry);
1618 	for (i = 0; i < ap->num_pages; i++) {
1619 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1620 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1621 		wb_writeout_inc(&bdi->wb);
1622 	}
1623 	wake_up(&fi->page_waitq);
1624 }
1625 
1626 /* Called under fi->lock, may release and reacquire it */
1627 static void fuse_send_writepage(struct fuse_conn *fc,
1628 				struct fuse_writepage_args *wpa, loff_t size)
1629 __releases(fi->lock)
1630 __acquires(fi->lock)
1631 {
1632 	struct fuse_writepage_args *aux, *next;
1633 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1634 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1635 	struct fuse_args *args = &wpa->ia.ap.args;
1636 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1637 	int err;
1638 
1639 	fi->writectr++;
1640 	if (inarg->offset + data_size <= size) {
1641 		inarg->size = data_size;
1642 	} else if (inarg->offset < size) {
1643 		inarg->size = size - inarg->offset;
1644 	} else {
1645 		/* Got truncated off completely */
1646 		goto out_free;
1647 	}
1648 
1649 	args->in_args[1].size = inarg->size;
1650 	args->force = true;
1651 	args->nocreds = true;
1652 
1653 	err = fuse_simple_background(fc, args, GFP_ATOMIC);
1654 	if (err == -ENOMEM) {
1655 		spin_unlock(&fi->lock);
1656 		err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1657 		spin_lock(&fi->lock);
1658 	}
1659 
1660 	/* Fails on broken connection only */
1661 	if (unlikely(err))
1662 		goto out_free;
1663 
1664 	return;
1665 
1666  out_free:
1667 	fi->writectr--;
1668 	fuse_writepage_finish(fc, wpa);
1669 	spin_unlock(&fi->lock);
1670 
1671 	/* After fuse_writepage_finish() aux request list is private */
1672 	for (aux = wpa->next; aux; aux = next) {
1673 		next = aux->next;
1674 		aux->next = NULL;
1675 		fuse_writepage_free(aux);
1676 	}
1677 
1678 	fuse_writepage_free(wpa);
1679 	spin_lock(&fi->lock);
1680 }
1681 
1682 /*
1683  * If fi->writectr is positive (no truncate or fsync going on) send
1684  * all queued writepage requests.
1685  *
1686  * Called with fi->lock
1687  */
1688 void fuse_flush_writepages(struct inode *inode)
1689 __releases(fi->lock)
1690 __acquires(fi->lock)
1691 {
1692 	struct fuse_conn *fc = get_fuse_conn(inode);
1693 	struct fuse_inode *fi = get_fuse_inode(inode);
1694 	loff_t crop = i_size_read(inode);
1695 	struct fuse_writepage_args *wpa;
1696 
1697 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1698 		wpa = list_entry(fi->queued_writes.next,
1699 				 struct fuse_writepage_args, queue_entry);
1700 		list_del_init(&wpa->queue_entry);
1701 		fuse_send_writepage(fc, wpa, crop);
1702 	}
1703 }
1704 
1705 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1706 			       int error)
1707 {
1708 	struct fuse_writepage_args *wpa =
1709 		container_of(args, typeof(*wpa), ia.ap.args);
1710 	struct inode *inode = wpa->inode;
1711 	struct fuse_inode *fi = get_fuse_inode(inode);
1712 
1713 	mapping_set_error(inode->i_mapping, error);
1714 	spin_lock(&fi->lock);
1715 	while (wpa->next) {
1716 		struct fuse_conn *fc = get_fuse_conn(inode);
1717 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1718 		struct fuse_writepage_args *next = wpa->next;
1719 
1720 		wpa->next = next->next;
1721 		next->next = NULL;
1722 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1723 		list_add(&next->writepages_entry, &fi->writepages);
1724 
1725 		/*
1726 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1727 		 * based on primary request size.
1728 		 *
1729 		 * 1st case (trivial): there are no concurrent activities using
1730 		 * fuse_set/release_nowrite.  Then we're on safe side because
1731 		 * fuse_flush_writepages() would call fuse_send_writepage()
1732 		 * anyway.
1733 		 *
1734 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1735 		 * now for completion of all in-flight requests.  This happens
1736 		 * rarely and no more than once per page, so this should be
1737 		 * okay.
1738 		 *
1739 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1740 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1741 		 * that fuse_set_nowrite returned implies that all in-flight
1742 		 * requests were completed along with all of their secondary
1743 		 * requests.  Further primary requests are blocked by negative
1744 		 * writectr.  Hence there cannot be any in-flight requests and
1745 		 * no invocations of fuse_writepage_end() while we're in
1746 		 * fuse_set_nowrite..fuse_release_nowrite section.
1747 		 */
1748 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1749 	}
1750 	fi->writectr--;
1751 	fuse_writepage_finish(fc, wpa);
1752 	spin_unlock(&fi->lock);
1753 	fuse_writepage_free(wpa);
1754 }
1755 
1756 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1757 					       struct fuse_inode *fi)
1758 {
1759 	struct fuse_file *ff = NULL;
1760 
1761 	spin_lock(&fi->lock);
1762 	if (!list_empty(&fi->write_files)) {
1763 		ff = list_entry(fi->write_files.next, struct fuse_file,
1764 				write_entry);
1765 		fuse_file_get(ff);
1766 	}
1767 	spin_unlock(&fi->lock);
1768 
1769 	return ff;
1770 }
1771 
1772 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1773 					     struct fuse_inode *fi)
1774 {
1775 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1776 	WARN_ON(!ff);
1777 	return ff;
1778 }
1779 
1780 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1781 {
1782 	struct fuse_conn *fc = get_fuse_conn(inode);
1783 	struct fuse_inode *fi = get_fuse_inode(inode);
1784 	struct fuse_file *ff;
1785 	int err;
1786 
1787 	ff = __fuse_write_file_get(fc, fi);
1788 	err = fuse_flush_times(inode, ff);
1789 	if (ff)
1790 		fuse_file_put(ff, false, false);
1791 
1792 	return err;
1793 }
1794 
1795 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1796 {
1797 	struct fuse_writepage_args *wpa;
1798 	struct fuse_args_pages *ap;
1799 
1800 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1801 	if (wpa) {
1802 		ap = &wpa->ia.ap;
1803 		ap->num_pages = 0;
1804 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1805 		if (!ap->pages) {
1806 			kfree(wpa);
1807 			wpa = NULL;
1808 		}
1809 	}
1810 	return wpa;
1811 
1812 }
1813 
1814 static int fuse_writepage_locked(struct page *page)
1815 {
1816 	struct address_space *mapping = page->mapping;
1817 	struct inode *inode = mapping->host;
1818 	struct fuse_conn *fc = get_fuse_conn(inode);
1819 	struct fuse_inode *fi = get_fuse_inode(inode);
1820 	struct fuse_writepage_args *wpa;
1821 	struct fuse_args_pages *ap;
1822 	struct page *tmp_page;
1823 	int error = -ENOMEM;
1824 
1825 	set_page_writeback(page);
1826 
1827 	wpa = fuse_writepage_args_alloc();
1828 	if (!wpa)
1829 		goto err;
1830 	ap = &wpa->ia.ap;
1831 
1832 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1833 	if (!tmp_page)
1834 		goto err_free;
1835 
1836 	error = -EIO;
1837 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1838 	if (!wpa->ia.ff)
1839 		goto err_nofile;
1840 
1841 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1842 
1843 	copy_highpage(tmp_page, page);
1844 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1845 	wpa->next = NULL;
1846 	ap->args.in_pages = true;
1847 	ap->num_pages = 1;
1848 	ap->pages[0] = tmp_page;
1849 	ap->descs[0].offset = 0;
1850 	ap->descs[0].length = PAGE_SIZE;
1851 	ap->args.end = fuse_writepage_end;
1852 	wpa->inode = inode;
1853 
1854 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1855 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1856 
1857 	spin_lock(&fi->lock);
1858 	list_add(&wpa->writepages_entry, &fi->writepages);
1859 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1860 	fuse_flush_writepages(inode);
1861 	spin_unlock(&fi->lock);
1862 
1863 	end_page_writeback(page);
1864 
1865 	return 0;
1866 
1867 err_nofile:
1868 	__free_page(tmp_page);
1869 err_free:
1870 	kfree(wpa);
1871 err:
1872 	mapping_set_error(page->mapping, error);
1873 	end_page_writeback(page);
1874 	return error;
1875 }
1876 
1877 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1878 {
1879 	int err;
1880 
1881 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1882 		/*
1883 		 * ->writepages() should be called for sync() and friends.  We
1884 		 * should only get here on direct reclaim and then we are
1885 		 * allowed to skip a page which is already in flight
1886 		 */
1887 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1888 
1889 		redirty_page_for_writepage(wbc, page);
1890 		unlock_page(page);
1891 		return 0;
1892 	}
1893 
1894 	err = fuse_writepage_locked(page);
1895 	unlock_page(page);
1896 
1897 	return err;
1898 }
1899 
1900 struct fuse_fill_wb_data {
1901 	struct fuse_writepage_args *wpa;
1902 	struct fuse_file *ff;
1903 	struct inode *inode;
1904 	struct page **orig_pages;
1905 	unsigned int max_pages;
1906 };
1907 
1908 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1909 {
1910 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1911 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1912 	struct page **pages;
1913 	struct fuse_page_desc *descs;
1914 	unsigned int npages = min_t(unsigned int,
1915 				    max_t(unsigned int, data->max_pages * 2,
1916 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1917 				    fc->max_pages);
1918 	WARN_ON(npages <= data->max_pages);
1919 
1920 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1921 	if (!pages)
1922 		return false;
1923 
1924 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1925 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1926 	kfree(ap->pages);
1927 	ap->pages = pages;
1928 	ap->descs = descs;
1929 	data->max_pages = npages;
1930 
1931 	return true;
1932 }
1933 
1934 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1935 {
1936 	struct fuse_writepage_args *wpa = data->wpa;
1937 	struct inode *inode = data->inode;
1938 	struct fuse_inode *fi = get_fuse_inode(inode);
1939 	int num_pages = wpa->ia.ap.num_pages;
1940 	int i;
1941 
1942 	wpa->ia.ff = fuse_file_get(data->ff);
1943 	spin_lock(&fi->lock);
1944 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1945 	fuse_flush_writepages(inode);
1946 	spin_unlock(&fi->lock);
1947 
1948 	for (i = 0; i < num_pages; i++)
1949 		end_page_writeback(data->orig_pages[i]);
1950 }
1951 
1952 /*
1953  * First recheck under fi->lock if the offending offset is still under
1954  * writeback.  If yes, then iterate auxiliary write requests, to see if there's
1955  * one already added for a page at this offset.  If there's none, then insert
1956  * this new request onto the auxiliary list, otherwise reuse the existing one by
1957  * copying the new page contents over to the old temporary page.
1958  */
1959 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1960 				     struct page *page)
1961 {
1962 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1963 	struct fuse_writepage_args *tmp;
1964 	struct fuse_writepage_args *old_wpa;
1965 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1966 
1967 	WARN_ON(new_ap->num_pages != 0);
1968 
1969 	spin_lock(&fi->lock);
1970 	list_del(&new_wpa->writepages_entry);
1971 	old_wpa = fuse_find_writeback(fi, page->index, page->index);
1972 	if (!old_wpa) {
1973 		list_add(&new_wpa->writepages_entry, &fi->writepages);
1974 		spin_unlock(&fi->lock);
1975 		return false;
1976 	}
1977 
1978 	new_ap->num_pages = 1;
1979 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1980 		pgoff_t curr_index;
1981 
1982 		WARN_ON(tmp->inode != new_wpa->inode);
1983 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1984 		if (curr_index == page->index) {
1985 			WARN_ON(tmp->ia.ap.num_pages != 1);
1986 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1987 			break;
1988 		}
1989 	}
1990 
1991 	if (!tmp) {
1992 		new_wpa->next = old_wpa->next;
1993 		old_wpa->next = new_wpa;
1994 	}
1995 
1996 	spin_unlock(&fi->lock);
1997 
1998 	if (tmp) {
1999 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2000 
2001 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2002 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2003 		wb_writeout_inc(&bdi->wb);
2004 		fuse_writepage_free(new_wpa);
2005 	}
2006 
2007 	return true;
2008 }
2009 
2010 static int fuse_writepages_fill(struct page *page,
2011 		struct writeback_control *wbc, void *_data)
2012 {
2013 	struct fuse_fill_wb_data *data = _data;
2014 	struct fuse_writepage_args *wpa = data->wpa;
2015 	struct fuse_args_pages *ap = &wpa->ia.ap;
2016 	struct inode *inode = data->inode;
2017 	struct fuse_inode *fi = get_fuse_inode(inode);
2018 	struct fuse_conn *fc = get_fuse_conn(inode);
2019 	struct page *tmp_page;
2020 	bool is_writeback;
2021 	int err;
2022 
2023 	if (!data->ff) {
2024 		err = -EIO;
2025 		data->ff = fuse_write_file_get(fc, fi);
2026 		if (!data->ff)
2027 			goto out_unlock;
2028 	}
2029 
2030 	/*
2031 	 * Being under writeback is unlikely but possible.  For example direct
2032 	 * read to an mmaped fuse file will set the page dirty twice; once when
2033 	 * the pages are faulted with get_user_pages(), and then after the read
2034 	 * completed.
2035 	 */
2036 	is_writeback = fuse_page_is_writeback(inode, page->index);
2037 
2038 	if (wpa && ap->num_pages &&
2039 	    (is_writeback || ap->num_pages == fc->max_pages ||
2040 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2041 	     data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2042 		fuse_writepages_send(data);
2043 		data->wpa = NULL;
2044 	} else if (wpa && ap->num_pages == data->max_pages) {
2045 		if (!fuse_pages_realloc(data)) {
2046 			fuse_writepages_send(data);
2047 			data->wpa = NULL;
2048 		}
2049 	}
2050 
2051 	err = -ENOMEM;
2052 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2053 	if (!tmp_page)
2054 		goto out_unlock;
2055 
2056 	/*
2057 	 * The page must not be redirtied until the writeout is completed
2058 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2059 	 * there could be more than one temporary page instance for each real
2060 	 * page.
2061 	 *
2062 	 * This is ensured by holding the page lock in page_mkwrite() while
2063 	 * checking fuse_page_is_writeback().  We already hold the page lock
2064 	 * since clear_page_dirty_for_io() and keep it held until we add the
2065 	 * request to the fi->writepages list and increment ap->num_pages.
2066 	 * After this fuse_page_is_writeback() will indicate that the page is
2067 	 * under writeback, so we can release the page lock.
2068 	 */
2069 	if (data->wpa == NULL) {
2070 		err = -ENOMEM;
2071 		wpa = fuse_writepage_args_alloc();
2072 		if (!wpa) {
2073 			__free_page(tmp_page);
2074 			goto out_unlock;
2075 		}
2076 		data->max_pages = 1;
2077 
2078 		ap = &wpa->ia.ap;
2079 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2080 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2081 		wpa->next = NULL;
2082 		ap->args.in_pages = true;
2083 		ap->args.end = fuse_writepage_end;
2084 		ap->num_pages = 0;
2085 		wpa->inode = inode;
2086 
2087 		spin_lock(&fi->lock);
2088 		list_add(&wpa->writepages_entry, &fi->writepages);
2089 		spin_unlock(&fi->lock);
2090 
2091 		data->wpa = wpa;
2092 	}
2093 	set_page_writeback(page);
2094 
2095 	copy_highpage(tmp_page, page);
2096 	ap->pages[ap->num_pages] = tmp_page;
2097 	ap->descs[ap->num_pages].offset = 0;
2098 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2099 
2100 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2101 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2102 
2103 	err = 0;
2104 	if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2105 		end_page_writeback(page);
2106 		data->wpa = NULL;
2107 		goto out_unlock;
2108 	}
2109 	data->orig_pages[ap->num_pages] = page;
2110 
2111 	/*
2112 	 * Protected by fi->lock against concurrent access by
2113 	 * fuse_page_is_writeback().
2114 	 */
2115 	spin_lock(&fi->lock);
2116 	ap->num_pages++;
2117 	spin_unlock(&fi->lock);
2118 
2119 out_unlock:
2120 	unlock_page(page);
2121 
2122 	return err;
2123 }
2124 
2125 static int fuse_writepages(struct address_space *mapping,
2126 			   struct writeback_control *wbc)
2127 {
2128 	struct inode *inode = mapping->host;
2129 	struct fuse_conn *fc = get_fuse_conn(inode);
2130 	struct fuse_fill_wb_data data;
2131 	int err;
2132 
2133 	err = -EIO;
2134 	if (is_bad_inode(inode))
2135 		goto out;
2136 
2137 	data.inode = inode;
2138 	data.wpa = NULL;
2139 	data.ff = NULL;
2140 
2141 	err = -ENOMEM;
2142 	data.orig_pages = kcalloc(fc->max_pages,
2143 				  sizeof(struct page *),
2144 				  GFP_NOFS);
2145 	if (!data.orig_pages)
2146 		goto out;
2147 
2148 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2149 	if (data.wpa) {
2150 		/* Ignore errors if we can write at least one page */
2151 		WARN_ON(!data.wpa->ia.ap.num_pages);
2152 		fuse_writepages_send(&data);
2153 		err = 0;
2154 	}
2155 	if (data.ff)
2156 		fuse_file_put(data.ff, false, false);
2157 
2158 	kfree(data.orig_pages);
2159 out:
2160 	return err;
2161 }
2162 
2163 /*
2164  * It's worthy to make sure that space is reserved on disk for the write,
2165  * but how to implement it without killing performance need more thinking.
2166  */
2167 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2168 		loff_t pos, unsigned len, unsigned flags,
2169 		struct page **pagep, void **fsdata)
2170 {
2171 	pgoff_t index = pos >> PAGE_SHIFT;
2172 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2173 	struct page *page;
2174 	loff_t fsize;
2175 	int err = -ENOMEM;
2176 
2177 	WARN_ON(!fc->writeback_cache);
2178 
2179 	page = grab_cache_page_write_begin(mapping, index, flags);
2180 	if (!page)
2181 		goto error;
2182 
2183 	fuse_wait_on_page_writeback(mapping->host, page->index);
2184 
2185 	if (PageUptodate(page) || len == PAGE_SIZE)
2186 		goto success;
2187 	/*
2188 	 * Check if the start this page comes after the end of file, in which
2189 	 * case the readpage can be optimized away.
2190 	 */
2191 	fsize = i_size_read(mapping->host);
2192 	if (fsize <= (pos & PAGE_MASK)) {
2193 		size_t off = pos & ~PAGE_MASK;
2194 		if (off)
2195 			zero_user_segment(page, 0, off);
2196 		goto success;
2197 	}
2198 	err = fuse_do_readpage(file, page);
2199 	if (err)
2200 		goto cleanup;
2201 success:
2202 	*pagep = page;
2203 	return 0;
2204 
2205 cleanup:
2206 	unlock_page(page);
2207 	put_page(page);
2208 error:
2209 	return err;
2210 }
2211 
2212 static int fuse_write_end(struct file *file, struct address_space *mapping,
2213 		loff_t pos, unsigned len, unsigned copied,
2214 		struct page *page, void *fsdata)
2215 {
2216 	struct inode *inode = page->mapping->host;
2217 
2218 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2219 	if (!copied)
2220 		goto unlock;
2221 
2222 	if (!PageUptodate(page)) {
2223 		/* Zero any unwritten bytes at the end of the page */
2224 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2225 		if (endoff)
2226 			zero_user_segment(page, endoff, PAGE_SIZE);
2227 		SetPageUptodate(page);
2228 	}
2229 
2230 	fuse_write_update_size(inode, pos + copied);
2231 	set_page_dirty(page);
2232 
2233 unlock:
2234 	unlock_page(page);
2235 	put_page(page);
2236 
2237 	return copied;
2238 }
2239 
2240 static int fuse_launder_page(struct page *page)
2241 {
2242 	int err = 0;
2243 	if (clear_page_dirty_for_io(page)) {
2244 		struct inode *inode = page->mapping->host;
2245 		err = fuse_writepage_locked(page);
2246 		if (!err)
2247 			fuse_wait_on_page_writeback(inode, page->index);
2248 	}
2249 	return err;
2250 }
2251 
2252 /*
2253  * Write back dirty pages now, because there may not be any suitable
2254  * open files later
2255  */
2256 static void fuse_vma_close(struct vm_area_struct *vma)
2257 {
2258 	filemap_write_and_wait(vma->vm_file->f_mapping);
2259 }
2260 
2261 /*
2262  * Wait for writeback against this page to complete before allowing it
2263  * to be marked dirty again, and hence written back again, possibly
2264  * before the previous writepage completed.
2265  *
2266  * Block here, instead of in ->writepage(), so that the userspace fs
2267  * can only block processes actually operating on the filesystem.
2268  *
2269  * Otherwise unprivileged userspace fs would be able to block
2270  * unrelated:
2271  *
2272  * - page migration
2273  * - sync(2)
2274  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2275  */
2276 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2277 {
2278 	struct page *page = vmf->page;
2279 	struct inode *inode = file_inode(vmf->vma->vm_file);
2280 
2281 	file_update_time(vmf->vma->vm_file);
2282 	lock_page(page);
2283 	if (page->mapping != inode->i_mapping) {
2284 		unlock_page(page);
2285 		return VM_FAULT_NOPAGE;
2286 	}
2287 
2288 	fuse_wait_on_page_writeback(inode, page->index);
2289 	return VM_FAULT_LOCKED;
2290 }
2291 
2292 static const struct vm_operations_struct fuse_file_vm_ops = {
2293 	.close		= fuse_vma_close,
2294 	.fault		= filemap_fault,
2295 	.map_pages	= filemap_map_pages,
2296 	.page_mkwrite	= fuse_page_mkwrite,
2297 };
2298 
2299 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2300 {
2301 	struct fuse_file *ff = file->private_data;
2302 
2303 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2304 		/* Can't provide the coherency needed for MAP_SHARED */
2305 		if (vma->vm_flags & VM_MAYSHARE)
2306 			return -ENODEV;
2307 
2308 		invalidate_inode_pages2(file->f_mapping);
2309 
2310 		return generic_file_mmap(file, vma);
2311 	}
2312 
2313 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2314 		fuse_link_write_file(file);
2315 
2316 	file_accessed(file);
2317 	vma->vm_ops = &fuse_file_vm_ops;
2318 	return 0;
2319 }
2320 
2321 static int convert_fuse_file_lock(struct fuse_conn *fc,
2322 				  const struct fuse_file_lock *ffl,
2323 				  struct file_lock *fl)
2324 {
2325 	switch (ffl->type) {
2326 	case F_UNLCK:
2327 		break;
2328 
2329 	case F_RDLCK:
2330 	case F_WRLCK:
2331 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2332 		    ffl->end < ffl->start)
2333 			return -EIO;
2334 
2335 		fl->fl_start = ffl->start;
2336 		fl->fl_end = ffl->end;
2337 
2338 		/*
2339 		 * Convert pid into init's pid namespace.  The locks API will
2340 		 * translate it into the caller's pid namespace.
2341 		 */
2342 		rcu_read_lock();
2343 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2344 		rcu_read_unlock();
2345 		break;
2346 
2347 	default:
2348 		return -EIO;
2349 	}
2350 	fl->fl_type = ffl->type;
2351 	return 0;
2352 }
2353 
2354 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2355 			 const struct file_lock *fl, int opcode, pid_t pid,
2356 			 int flock, struct fuse_lk_in *inarg)
2357 {
2358 	struct inode *inode = file_inode(file);
2359 	struct fuse_conn *fc = get_fuse_conn(inode);
2360 	struct fuse_file *ff = file->private_data;
2361 
2362 	memset(inarg, 0, sizeof(*inarg));
2363 	inarg->fh = ff->fh;
2364 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2365 	inarg->lk.start = fl->fl_start;
2366 	inarg->lk.end = fl->fl_end;
2367 	inarg->lk.type = fl->fl_type;
2368 	inarg->lk.pid = pid;
2369 	if (flock)
2370 		inarg->lk_flags |= FUSE_LK_FLOCK;
2371 	args->opcode = opcode;
2372 	args->nodeid = get_node_id(inode);
2373 	args->in_numargs = 1;
2374 	args->in_args[0].size = sizeof(*inarg);
2375 	args->in_args[0].value = inarg;
2376 }
2377 
2378 static int fuse_getlk(struct file *file, struct file_lock *fl)
2379 {
2380 	struct inode *inode = file_inode(file);
2381 	struct fuse_conn *fc = get_fuse_conn(inode);
2382 	FUSE_ARGS(args);
2383 	struct fuse_lk_in inarg;
2384 	struct fuse_lk_out outarg;
2385 	int err;
2386 
2387 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2388 	args.out_numargs = 1;
2389 	args.out_args[0].size = sizeof(outarg);
2390 	args.out_args[0].value = &outarg;
2391 	err = fuse_simple_request(fc, &args);
2392 	if (!err)
2393 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2394 
2395 	return err;
2396 }
2397 
2398 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2399 {
2400 	struct inode *inode = file_inode(file);
2401 	struct fuse_conn *fc = get_fuse_conn(inode);
2402 	FUSE_ARGS(args);
2403 	struct fuse_lk_in inarg;
2404 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2405 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2406 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2407 	int err;
2408 
2409 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2410 		/* NLM needs asynchronous locks, which we don't support yet */
2411 		return -ENOLCK;
2412 	}
2413 
2414 	/* Unlock on close is handled by the flush method */
2415 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2416 		return 0;
2417 
2418 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2419 	err = fuse_simple_request(fc, &args);
2420 
2421 	/* locking is restartable */
2422 	if (err == -EINTR)
2423 		err = -ERESTARTSYS;
2424 
2425 	return err;
2426 }
2427 
2428 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2429 {
2430 	struct inode *inode = file_inode(file);
2431 	struct fuse_conn *fc = get_fuse_conn(inode);
2432 	int err;
2433 
2434 	if (cmd == F_CANCELLK) {
2435 		err = 0;
2436 	} else if (cmd == F_GETLK) {
2437 		if (fc->no_lock) {
2438 			posix_test_lock(file, fl);
2439 			err = 0;
2440 		} else
2441 			err = fuse_getlk(file, fl);
2442 	} else {
2443 		if (fc->no_lock)
2444 			err = posix_lock_file(file, fl, NULL);
2445 		else
2446 			err = fuse_setlk(file, fl, 0);
2447 	}
2448 	return err;
2449 }
2450 
2451 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2452 {
2453 	struct inode *inode = file_inode(file);
2454 	struct fuse_conn *fc = get_fuse_conn(inode);
2455 	int err;
2456 
2457 	if (fc->no_flock) {
2458 		err = locks_lock_file_wait(file, fl);
2459 	} else {
2460 		struct fuse_file *ff = file->private_data;
2461 
2462 		/* emulate flock with POSIX locks */
2463 		ff->flock = true;
2464 		err = fuse_setlk(file, fl, 1);
2465 	}
2466 
2467 	return err;
2468 }
2469 
2470 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2471 {
2472 	struct inode *inode = mapping->host;
2473 	struct fuse_conn *fc = get_fuse_conn(inode);
2474 	FUSE_ARGS(args);
2475 	struct fuse_bmap_in inarg;
2476 	struct fuse_bmap_out outarg;
2477 	int err;
2478 
2479 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2480 		return 0;
2481 
2482 	memset(&inarg, 0, sizeof(inarg));
2483 	inarg.block = block;
2484 	inarg.blocksize = inode->i_sb->s_blocksize;
2485 	args.opcode = FUSE_BMAP;
2486 	args.nodeid = get_node_id(inode);
2487 	args.in_numargs = 1;
2488 	args.in_args[0].size = sizeof(inarg);
2489 	args.in_args[0].value = &inarg;
2490 	args.out_numargs = 1;
2491 	args.out_args[0].size = sizeof(outarg);
2492 	args.out_args[0].value = &outarg;
2493 	err = fuse_simple_request(fc, &args);
2494 	if (err == -ENOSYS)
2495 		fc->no_bmap = 1;
2496 
2497 	return err ? 0 : outarg.block;
2498 }
2499 
2500 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2501 {
2502 	struct inode *inode = file->f_mapping->host;
2503 	struct fuse_conn *fc = get_fuse_conn(inode);
2504 	struct fuse_file *ff = file->private_data;
2505 	FUSE_ARGS(args);
2506 	struct fuse_lseek_in inarg = {
2507 		.fh = ff->fh,
2508 		.offset = offset,
2509 		.whence = whence
2510 	};
2511 	struct fuse_lseek_out outarg;
2512 	int err;
2513 
2514 	if (fc->no_lseek)
2515 		goto fallback;
2516 
2517 	args.opcode = FUSE_LSEEK;
2518 	args.nodeid = ff->nodeid;
2519 	args.in_numargs = 1;
2520 	args.in_args[0].size = sizeof(inarg);
2521 	args.in_args[0].value = &inarg;
2522 	args.out_numargs = 1;
2523 	args.out_args[0].size = sizeof(outarg);
2524 	args.out_args[0].value = &outarg;
2525 	err = fuse_simple_request(fc, &args);
2526 	if (err) {
2527 		if (err == -ENOSYS) {
2528 			fc->no_lseek = 1;
2529 			goto fallback;
2530 		}
2531 		return err;
2532 	}
2533 
2534 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2535 
2536 fallback:
2537 	err = fuse_update_attributes(inode, file);
2538 	if (!err)
2539 		return generic_file_llseek(file, offset, whence);
2540 	else
2541 		return err;
2542 }
2543 
2544 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2545 {
2546 	loff_t retval;
2547 	struct inode *inode = file_inode(file);
2548 
2549 	switch (whence) {
2550 	case SEEK_SET:
2551 	case SEEK_CUR:
2552 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2553 		retval = generic_file_llseek(file, offset, whence);
2554 		break;
2555 	case SEEK_END:
2556 		inode_lock(inode);
2557 		retval = fuse_update_attributes(inode, file);
2558 		if (!retval)
2559 			retval = generic_file_llseek(file, offset, whence);
2560 		inode_unlock(inode);
2561 		break;
2562 	case SEEK_HOLE:
2563 	case SEEK_DATA:
2564 		inode_lock(inode);
2565 		retval = fuse_lseek(file, offset, whence);
2566 		inode_unlock(inode);
2567 		break;
2568 	default:
2569 		retval = -EINVAL;
2570 	}
2571 
2572 	return retval;
2573 }
2574 
2575 /*
2576  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2577  * ABI was defined to be 'struct iovec' which is different on 32bit
2578  * and 64bit.  Fortunately we can determine which structure the server
2579  * used from the size of the reply.
2580  */
2581 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2582 				     size_t transferred, unsigned count,
2583 				     bool is_compat)
2584 {
2585 #ifdef CONFIG_COMPAT
2586 	if (count * sizeof(struct compat_iovec) == transferred) {
2587 		struct compat_iovec *ciov = src;
2588 		unsigned i;
2589 
2590 		/*
2591 		 * With this interface a 32bit server cannot support
2592 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2593 		 * requests
2594 		 */
2595 		if (!is_compat)
2596 			return -EINVAL;
2597 
2598 		for (i = 0; i < count; i++) {
2599 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2600 			dst[i].iov_len = ciov[i].iov_len;
2601 		}
2602 		return 0;
2603 	}
2604 #endif
2605 
2606 	if (count * sizeof(struct iovec) != transferred)
2607 		return -EIO;
2608 
2609 	memcpy(dst, src, transferred);
2610 	return 0;
2611 }
2612 
2613 /* Make sure iov_length() won't overflow */
2614 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2615 				 size_t count)
2616 {
2617 	size_t n;
2618 	u32 max = fc->max_pages << PAGE_SHIFT;
2619 
2620 	for (n = 0; n < count; n++, iov++) {
2621 		if (iov->iov_len > (size_t) max)
2622 			return -ENOMEM;
2623 		max -= iov->iov_len;
2624 	}
2625 	return 0;
2626 }
2627 
2628 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2629 				 void *src, size_t transferred, unsigned count,
2630 				 bool is_compat)
2631 {
2632 	unsigned i;
2633 	struct fuse_ioctl_iovec *fiov = src;
2634 
2635 	if (fc->minor < 16) {
2636 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2637 						 count, is_compat);
2638 	}
2639 
2640 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2641 		return -EIO;
2642 
2643 	for (i = 0; i < count; i++) {
2644 		/* Did the server supply an inappropriate value? */
2645 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2646 		    fiov[i].len != (unsigned long) fiov[i].len)
2647 			return -EIO;
2648 
2649 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2650 		dst[i].iov_len = (size_t) fiov[i].len;
2651 
2652 #ifdef CONFIG_COMPAT
2653 		if (is_compat &&
2654 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2655 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2656 			return -EIO;
2657 #endif
2658 	}
2659 
2660 	return 0;
2661 }
2662 
2663 
2664 /*
2665  * For ioctls, there is no generic way to determine how much memory
2666  * needs to be read and/or written.  Furthermore, ioctls are allowed
2667  * to dereference the passed pointer, so the parameter requires deep
2668  * copying but FUSE has no idea whatsoever about what to copy in or
2669  * out.
2670  *
2671  * This is solved by allowing FUSE server to retry ioctl with
2672  * necessary in/out iovecs.  Let's assume the ioctl implementation
2673  * needs to read in the following structure.
2674  *
2675  * struct a {
2676  *	char	*buf;
2677  *	size_t	buflen;
2678  * }
2679  *
2680  * On the first callout to FUSE server, inarg->in_size and
2681  * inarg->out_size will be NULL; then, the server completes the ioctl
2682  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2683  * the actual iov array to
2684  *
2685  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2686  *
2687  * which tells FUSE to copy in the requested area and retry the ioctl.
2688  * On the second round, the server has access to the structure and
2689  * from that it can tell what to look for next, so on the invocation,
2690  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2691  *
2692  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2693  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2694  *
2695  * FUSE will copy both struct a and the pointed buffer from the
2696  * process doing the ioctl and retry ioctl with both struct a and the
2697  * buffer.
2698  *
2699  * This time, FUSE server has everything it needs and completes ioctl
2700  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2701  *
2702  * Copying data out works the same way.
2703  *
2704  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2705  * automatically initializes in and out iovs by decoding @cmd with
2706  * _IOC_* macros and the server is not allowed to request RETRY.  This
2707  * limits ioctl data transfers to well-formed ioctls and is the forced
2708  * behavior for all FUSE servers.
2709  */
2710 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2711 		   unsigned int flags)
2712 {
2713 	struct fuse_file *ff = file->private_data;
2714 	struct fuse_conn *fc = ff->fc;
2715 	struct fuse_ioctl_in inarg = {
2716 		.fh = ff->fh,
2717 		.cmd = cmd,
2718 		.arg = arg,
2719 		.flags = flags
2720 	};
2721 	struct fuse_ioctl_out outarg;
2722 	struct iovec *iov_page = NULL;
2723 	struct iovec *in_iov = NULL, *out_iov = NULL;
2724 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2725 	size_t in_size, out_size, c;
2726 	ssize_t transferred;
2727 	int err, i;
2728 	struct iov_iter ii;
2729 	struct fuse_args_pages ap = {};
2730 
2731 #if BITS_PER_LONG == 32
2732 	inarg.flags |= FUSE_IOCTL_32BIT;
2733 #else
2734 	if (flags & FUSE_IOCTL_COMPAT) {
2735 		inarg.flags |= FUSE_IOCTL_32BIT;
2736 #ifdef CONFIG_X86_X32
2737 		if (in_x32_syscall())
2738 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2739 #endif
2740 	}
2741 #endif
2742 
2743 	/* assume all the iovs returned by client always fits in a page */
2744 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2745 
2746 	err = -ENOMEM;
2747 	ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2748 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2749 	if (!ap.pages || !iov_page)
2750 		goto out;
2751 
2752 	fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2753 
2754 	/*
2755 	 * If restricted, initialize IO parameters as encoded in @cmd.
2756 	 * RETRY from server is not allowed.
2757 	 */
2758 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2759 		struct iovec *iov = iov_page;
2760 
2761 		iov->iov_base = (void __user *)arg;
2762 		iov->iov_len = _IOC_SIZE(cmd);
2763 
2764 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2765 			in_iov = iov;
2766 			in_iovs = 1;
2767 		}
2768 
2769 		if (_IOC_DIR(cmd) & _IOC_READ) {
2770 			out_iov = iov;
2771 			out_iovs = 1;
2772 		}
2773 	}
2774 
2775  retry:
2776 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2777 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2778 
2779 	/*
2780 	 * Out data can be used either for actual out data or iovs,
2781 	 * make sure there always is at least one page.
2782 	 */
2783 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2784 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2785 
2786 	/* make sure there are enough buffer pages and init request with them */
2787 	err = -ENOMEM;
2788 	if (max_pages > fc->max_pages)
2789 		goto out;
2790 	while (ap.num_pages < max_pages) {
2791 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2792 		if (!ap.pages[ap.num_pages])
2793 			goto out;
2794 		ap.num_pages++;
2795 	}
2796 
2797 
2798 	/* okay, let's send it to the client */
2799 	ap.args.opcode = FUSE_IOCTL;
2800 	ap.args.nodeid = ff->nodeid;
2801 	ap.args.in_numargs = 1;
2802 	ap.args.in_args[0].size = sizeof(inarg);
2803 	ap.args.in_args[0].value = &inarg;
2804 	if (in_size) {
2805 		ap.args.in_numargs++;
2806 		ap.args.in_args[1].size = in_size;
2807 		ap.args.in_pages = true;
2808 
2809 		err = -EFAULT;
2810 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2811 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2812 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2813 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2814 				goto out;
2815 		}
2816 	}
2817 
2818 	ap.args.out_numargs = 2;
2819 	ap.args.out_args[0].size = sizeof(outarg);
2820 	ap.args.out_args[0].value = &outarg;
2821 	ap.args.out_args[1].size = out_size;
2822 	ap.args.out_pages = true;
2823 	ap.args.out_argvar = true;
2824 
2825 	transferred = fuse_simple_request(fc, &ap.args);
2826 	err = transferred;
2827 	if (transferred < 0)
2828 		goto out;
2829 
2830 	/* did it ask for retry? */
2831 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2832 		void *vaddr;
2833 
2834 		/* no retry if in restricted mode */
2835 		err = -EIO;
2836 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2837 			goto out;
2838 
2839 		in_iovs = outarg.in_iovs;
2840 		out_iovs = outarg.out_iovs;
2841 
2842 		/*
2843 		 * Make sure things are in boundary, separate checks
2844 		 * are to protect against overflow.
2845 		 */
2846 		err = -ENOMEM;
2847 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2848 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2849 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2850 			goto out;
2851 
2852 		vaddr = kmap_atomic(ap.pages[0]);
2853 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2854 					    transferred, in_iovs + out_iovs,
2855 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2856 		kunmap_atomic(vaddr);
2857 		if (err)
2858 			goto out;
2859 
2860 		in_iov = iov_page;
2861 		out_iov = in_iov + in_iovs;
2862 
2863 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2864 		if (err)
2865 			goto out;
2866 
2867 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2868 		if (err)
2869 			goto out;
2870 
2871 		goto retry;
2872 	}
2873 
2874 	err = -EIO;
2875 	if (transferred > inarg.out_size)
2876 		goto out;
2877 
2878 	err = -EFAULT;
2879 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2880 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2881 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2882 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2883 			goto out;
2884 	}
2885 	err = 0;
2886  out:
2887 	free_page((unsigned long) iov_page);
2888 	while (ap.num_pages)
2889 		__free_page(ap.pages[--ap.num_pages]);
2890 	kfree(ap.pages);
2891 
2892 	return err ? err : outarg.result;
2893 }
2894 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2895 
2896 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2897 		       unsigned long arg, unsigned int flags)
2898 {
2899 	struct inode *inode = file_inode(file);
2900 	struct fuse_conn *fc = get_fuse_conn(inode);
2901 
2902 	if (!fuse_allow_current_process(fc))
2903 		return -EACCES;
2904 
2905 	if (is_bad_inode(inode))
2906 		return -EIO;
2907 
2908 	return fuse_do_ioctl(file, cmd, arg, flags);
2909 }
2910 
2911 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2912 			    unsigned long arg)
2913 {
2914 	return fuse_ioctl_common(file, cmd, arg, 0);
2915 }
2916 
2917 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2918 				   unsigned long arg)
2919 {
2920 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2921 }
2922 
2923 /*
2924  * All files which have been polled are linked to RB tree
2925  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2926  * find the matching one.
2927  */
2928 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2929 					      struct rb_node **parent_out)
2930 {
2931 	struct rb_node **link = &fc->polled_files.rb_node;
2932 	struct rb_node *last = NULL;
2933 
2934 	while (*link) {
2935 		struct fuse_file *ff;
2936 
2937 		last = *link;
2938 		ff = rb_entry(last, struct fuse_file, polled_node);
2939 
2940 		if (kh < ff->kh)
2941 			link = &last->rb_left;
2942 		else if (kh > ff->kh)
2943 			link = &last->rb_right;
2944 		else
2945 			return link;
2946 	}
2947 
2948 	if (parent_out)
2949 		*parent_out = last;
2950 	return link;
2951 }
2952 
2953 /*
2954  * The file is about to be polled.  Make sure it's on the polled_files
2955  * RB tree.  Note that files once added to the polled_files tree are
2956  * not removed before the file is released.  This is because a file
2957  * polled once is likely to be polled again.
2958  */
2959 static void fuse_register_polled_file(struct fuse_conn *fc,
2960 				      struct fuse_file *ff)
2961 {
2962 	spin_lock(&fc->lock);
2963 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2964 		struct rb_node **link, *uninitialized_var(parent);
2965 
2966 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2967 		BUG_ON(*link);
2968 		rb_link_node(&ff->polled_node, parent, link);
2969 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2970 	}
2971 	spin_unlock(&fc->lock);
2972 }
2973 
2974 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2975 {
2976 	struct fuse_file *ff = file->private_data;
2977 	struct fuse_conn *fc = ff->fc;
2978 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2979 	struct fuse_poll_out outarg;
2980 	FUSE_ARGS(args);
2981 	int err;
2982 
2983 	if (fc->no_poll)
2984 		return DEFAULT_POLLMASK;
2985 
2986 	poll_wait(file, &ff->poll_wait, wait);
2987 	inarg.events = mangle_poll(poll_requested_events(wait));
2988 
2989 	/*
2990 	 * Ask for notification iff there's someone waiting for it.
2991 	 * The client may ignore the flag and always notify.
2992 	 */
2993 	if (waitqueue_active(&ff->poll_wait)) {
2994 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2995 		fuse_register_polled_file(fc, ff);
2996 	}
2997 
2998 	args.opcode = FUSE_POLL;
2999 	args.nodeid = ff->nodeid;
3000 	args.in_numargs = 1;
3001 	args.in_args[0].size = sizeof(inarg);
3002 	args.in_args[0].value = &inarg;
3003 	args.out_numargs = 1;
3004 	args.out_args[0].size = sizeof(outarg);
3005 	args.out_args[0].value = &outarg;
3006 	err = fuse_simple_request(fc, &args);
3007 
3008 	if (!err)
3009 		return demangle_poll(outarg.revents);
3010 	if (err == -ENOSYS) {
3011 		fc->no_poll = 1;
3012 		return DEFAULT_POLLMASK;
3013 	}
3014 	return EPOLLERR;
3015 }
3016 EXPORT_SYMBOL_GPL(fuse_file_poll);
3017 
3018 /*
3019  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3020  * wakes up the poll waiters.
3021  */
3022 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3023 			    struct fuse_notify_poll_wakeup_out *outarg)
3024 {
3025 	u64 kh = outarg->kh;
3026 	struct rb_node **link;
3027 
3028 	spin_lock(&fc->lock);
3029 
3030 	link = fuse_find_polled_node(fc, kh, NULL);
3031 	if (*link) {
3032 		struct fuse_file *ff;
3033 
3034 		ff = rb_entry(*link, struct fuse_file, polled_node);
3035 		wake_up_interruptible_sync(&ff->poll_wait);
3036 	}
3037 
3038 	spin_unlock(&fc->lock);
3039 	return 0;
3040 }
3041 
3042 static void fuse_do_truncate(struct file *file)
3043 {
3044 	struct inode *inode = file->f_mapping->host;
3045 	struct iattr attr;
3046 
3047 	attr.ia_valid = ATTR_SIZE;
3048 	attr.ia_size = i_size_read(inode);
3049 
3050 	attr.ia_file = file;
3051 	attr.ia_valid |= ATTR_FILE;
3052 
3053 	fuse_do_setattr(file_dentry(file), &attr, file);
3054 }
3055 
3056 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3057 {
3058 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3059 }
3060 
3061 static ssize_t
3062 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3063 {
3064 	DECLARE_COMPLETION_ONSTACK(wait);
3065 	ssize_t ret = 0;
3066 	struct file *file = iocb->ki_filp;
3067 	struct fuse_file *ff = file->private_data;
3068 	bool async_dio = ff->fc->async_dio;
3069 	loff_t pos = 0;
3070 	struct inode *inode;
3071 	loff_t i_size;
3072 	size_t count = iov_iter_count(iter);
3073 	loff_t offset = iocb->ki_pos;
3074 	struct fuse_io_priv *io;
3075 
3076 	pos = offset;
3077 	inode = file->f_mapping->host;
3078 	i_size = i_size_read(inode);
3079 
3080 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3081 		return 0;
3082 
3083 	/* optimization for short read */
3084 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3085 		if (offset >= i_size)
3086 			return 0;
3087 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3088 		count = iov_iter_count(iter);
3089 	}
3090 
3091 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3092 	if (!io)
3093 		return -ENOMEM;
3094 	spin_lock_init(&io->lock);
3095 	kref_init(&io->refcnt);
3096 	io->reqs = 1;
3097 	io->bytes = -1;
3098 	io->size = 0;
3099 	io->offset = offset;
3100 	io->write = (iov_iter_rw(iter) == WRITE);
3101 	io->err = 0;
3102 	/*
3103 	 * By default, we want to optimize all I/Os with async request
3104 	 * submission to the client filesystem if supported.
3105 	 */
3106 	io->async = async_dio;
3107 	io->iocb = iocb;
3108 	io->blocking = is_sync_kiocb(iocb);
3109 
3110 	/*
3111 	 * We cannot asynchronously extend the size of a file.
3112 	 * In such case the aio will behave exactly like sync io.
3113 	 */
3114 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3115 		io->blocking = true;
3116 
3117 	if (io->async && io->blocking) {
3118 		/*
3119 		 * Additional reference to keep io around after
3120 		 * calling fuse_aio_complete()
3121 		 */
3122 		kref_get(&io->refcnt);
3123 		io->done = &wait;
3124 	}
3125 
3126 	if (iov_iter_rw(iter) == WRITE) {
3127 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3128 		fuse_invalidate_attr(inode);
3129 	} else {
3130 		ret = __fuse_direct_read(io, iter, &pos);
3131 	}
3132 
3133 	if (io->async) {
3134 		bool blocking = io->blocking;
3135 
3136 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3137 
3138 		/* we have a non-extending, async request, so return */
3139 		if (!blocking)
3140 			return -EIOCBQUEUED;
3141 
3142 		wait_for_completion(&wait);
3143 		ret = fuse_get_res_by_io(io);
3144 	}
3145 
3146 	kref_put(&io->refcnt, fuse_io_release);
3147 
3148 	if (iov_iter_rw(iter) == WRITE) {
3149 		if (ret > 0)
3150 			fuse_write_update_size(inode, pos);
3151 		else if (ret < 0 && offset + count > i_size)
3152 			fuse_do_truncate(file);
3153 	}
3154 
3155 	return ret;
3156 }
3157 
3158 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3159 {
3160 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3161 
3162 	if (!err)
3163 		fuse_sync_writes(inode);
3164 
3165 	return err;
3166 }
3167 
3168 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3169 				loff_t length)
3170 {
3171 	struct fuse_file *ff = file->private_data;
3172 	struct inode *inode = file_inode(file);
3173 	struct fuse_inode *fi = get_fuse_inode(inode);
3174 	struct fuse_conn *fc = ff->fc;
3175 	FUSE_ARGS(args);
3176 	struct fuse_fallocate_in inarg = {
3177 		.fh = ff->fh,
3178 		.offset = offset,
3179 		.length = length,
3180 		.mode = mode
3181 	};
3182 	int err;
3183 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3184 			   (mode & FALLOC_FL_PUNCH_HOLE);
3185 
3186 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3187 		return -EOPNOTSUPP;
3188 
3189 	if (fc->no_fallocate)
3190 		return -EOPNOTSUPP;
3191 
3192 	if (lock_inode) {
3193 		inode_lock(inode);
3194 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3195 			loff_t endbyte = offset + length - 1;
3196 
3197 			err = fuse_writeback_range(inode, offset, endbyte);
3198 			if (err)
3199 				goto out;
3200 		}
3201 	}
3202 
3203 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3204 	    offset + length > i_size_read(inode)) {
3205 		err = inode_newsize_ok(inode, offset + length);
3206 		if (err)
3207 			goto out;
3208 	}
3209 
3210 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3211 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3212 
3213 	args.opcode = FUSE_FALLOCATE;
3214 	args.nodeid = ff->nodeid;
3215 	args.in_numargs = 1;
3216 	args.in_args[0].size = sizeof(inarg);
3217 	args.in_args[0].value = &inarg;
3218 	err = fuse_simple_request(fc, &args);
3219 	if (err == -ENOSYS) {
3220 		fc->no_fallocate = 1;
3221 		err = -EOPNOTSUPP;
3222 	}
3223 	if (err)
3224 		goto out;
3225 
3226 	/* we could have extended the file */
3227 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3228 		bool changed = fuse_write_update_size(inode, offset + length);
3229 
3230 		if (changed && fc->writeback_cache)
3231 			file_update_time(file);
3232 	}
3233 
3234 	if (mode & FALLOC_FL_PUNCH_HOLE)
3235 		truncate_pagecache_range(inode, offset, offset + length - 1);
3236 
3237 	fuse_invalidate_attr(inode);
3238 
3239 out:
3240 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3241 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3242 
3243 	if (lock_inode)
3244 		inode_unlock(inode);
3245 
3246 	return err;
3247 }
3248 
3249 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3250 				      struct file *file_out, loff_t pos_out,
3251 				      size_t len, unsigned int flags)
3252 {
3253 	struct fuse_file *ff_in = file_in->private_data;
3254 	struct fuse_file *ff_out = file_out->private_data;
3255 	struct inode *inode_in = file_inode(file_in);
3256 	struct inode *inode_out = file_inode(file_out);
3257 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3258 	struct fuse_conn *fc = ff_in->fc;
3259 	FUSE_ARGS(args);
3260 	struct fuse_copy_file_range_in inarg = {
3261 		.fh_in = ff_in->fh,
3262 		.off_in = pos_in,
3263 		.nodeid_out = ff_out->nodeid,
3264 		.fh_out = ff_out->fh,
3265 		.off_out = pos_out,
3266 		.len = len,
3267 		.flags = flags
3268 	};
3269 	struct fuse_write_out outarg;
3270 	ssize_t err;
3271 	/* mark unstable when write-back is not used, and file_out gets
3272 	 * extended */
3273 	bool is_unstable = (!fc->writeback_cache) &&
3274 			   ((pos_out + len) > inode_out->i_size);
3275 
3276 	if (fc->no_copy_file_range)
3277 		return -EOPNOTSUPP;
3278 
3279 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3280 		return -EXDEV;
3281 
3282 	if (fc->writeback_cache) {
3283 		inode_lock(inode_in);
3284 		err = fuse_writeback_range(inode_in, pos_in, pos_in + len);
3285 		inode_unlock(inode_in);
3286 		if (err)
3287 			return err;
3288 	}
3289 
3290 	inode_lock(inode_out);
3291 
3292 	err = file_modified(file_out);
3293 	if (err)
3294 		goto out;
3295 
3296 	if (fc->writeback_cache) {
3297 		err = fuse_writeback_range(inode_out, pos_out, pos_out + len);
3298 		if (err)
3299 			goto out;
3300 	}
3301 
3302 	if (is_unstable)
3303 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3304 
3305 	args.opcode = FUSE_COPY_FILE_RANGE;
3306 	args.nodeid = ff_in->nodeid;
3307 	args.in_numargs = 1;
3308 	args.in_args[0].size = sizeof(inarg);
3309 	args.in_args[0].value = &inarg;
3310 	args.out_numargs = 1;
3311 	args.out_args[0].size = sizeof(outarg);
3312 	args.out_args[0].value = &outarg;
3313 	err = fuse_simple_request(fc, &args);
3314 	if (err == -ENOSYS) {
3315 		fc->no_copy_file_range = 1;
3316 		err = -EOPNOTSUPP;
3317 	}
3318 	if (err)
3319 		goto out;
3320 
3321 	if (fc->writeback_cache) {
3322 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3323 		file_update_time(file_out);
3324 	}
3325 
3326 	fuse_invalidate_attr(inode_out);
3327 
3328 	err = outarg.size;
3329 out:
3330 	if (is_unstable)
3331 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3332 
3333 	inode_unlock(inode_out);
3334 	file_accessed(file_in);
3335 
3336 	return err;
3337 }
3338 
3339 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3340 				    struct file *dst_file, loff_t dst_off,
3341 				    size_t len, unsigned int flags)
3342 {
3343 	ssize_t ret;
3344 
3345 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3346 				     len, flags);
3347 
3348 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3349 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3350 					      dst_off, len, flags);
3351 	return ret;
3352 }
3353 
3354 static const struct file_operations fuse_file_operations = {
3355 	.llseek		= fuse_file_llseek,
3356 	.read_iter	= fuse_file_read_iter,
3357 	.write_iter	= fuse_file_write_iter,
3358 	.mmap		= fuse_file_mmap,
3359 	.open		= fuse_open,
3360 	.flush		= fuse_flush,
3361 	.release	= fuse_release,
3362 	.fsync		= fuse_fsync,
3363 	.lock		= fuse_file_lock,
3364 	.flock		= fuse_file_flock,
3365 	.splice_read	= generic_file_splice_read,
3366 	.splice_write	= iter_file_splice_write,
3367 	.unlocked_ioctl	= fuse_file_ioctl,
3368 	.compat_ioctl	= fuse_file_compat_ioctl,
3369 	.poll		= fuse_file_poll,
3370 	.fallocate	= fuse_file_fallocate,
3371 	.copy_file_range = fuse_copy_file_range,
3372 };
3373 
3374 static const struct address_space_operations fuse_file_aops  = {
3375 	.readpage	= fuse_readpage,
3376 	.writepage	= fuse_writepage,
3377 	.writepages	= fuse_writepages,
3378 	.launder_page	= fuse_launder_page,
3379 	.readpages	= fuse_readpages,
3380 	.set_page_dirty	= __set_page_dirty_nobuffers,
3381 	.bmap		= fuse_bmap,
3382 	.direct_IO	= fuse_direct_IO,
3383 	.write_begin	= fuse_write_begin,
3384 	.write_end	= fuse_write_end,
3385 };
3386 
3387 void fuse_init_file_inode(struct inode *inode)
3388 {
3389 	struct fuse_inode *fi = get_fuse_inode(inode);
3390 
3391 	inode->i_fop = &fuse_file_operations;
3392 	inode->i_data.a_ops = &fuse_file_aops;
3393 
3394 	INIT_LIST_HEAD(&fi->write_files);
3395 	INIT_LIST_HEAD(&fi->queued_writes);
3396 	fi->writectr = 0;
3397 	init_waitqueue_head(&fi->page_waitq);
3398 	INIT_LIST_HEAD(&fi->writepages);
3399 }
3400