1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/compat.h> 18 #include <linux/swap.h> 19 #include <linux/falloc.h> 20 #include <linux/uio.h> 21 22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags, 23 struct fuse_page_desc **desc) 24 { 25 struct page **pages; 26 27 pages = kzalloc(npages * (sizeof(struct page *) + 28 sizeof(struct fuse_page_desc)), flags); 29 *desc = (void *) (pages + npages); 30 31 return pages; 32 } 33 34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 35 int opcode, struct fuse_open_out *outargp) 36 { 37 struct fuse_open_in inarg; 38 FUSE_ARGS(args); 39 40 memset(&inarg, 0, sizeof(inarg)); 41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 42 if (!fc->atomic_o_trunc) 43 inarg.flags &= ~O_TRUNC; 44 args.opcode = opcode; 45 args.nodeid = nodeid; 46 args.in_numargs = 1; 47 args.in_args[0].size = sizeof(inarg); 48 args.in_args[0].value = &inarg; 49 args.out_numargs = 1; 50 args.out_args[0].size = sizeof(*outargp); 51 args.out_args[0].value = outargp; 52 53 return fuse_simple_request(fc, &args); 54 } 55 56 struct fuse_release_args { 57 struct fuse_args args; 58 struct fuse_release_in inarg; 59 struct inode *inode; 60 }; 61 62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 63 { 64 struct fuse_file *ff; 65 66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 67 if (unlikely(!ff)) 68 return NULL; 69 70 ff->fc = fc; 71 ff->release_args = kzalloc(sizeof(*ff->release_args), 72 GFP_KERNEL_ACCOUNT); 73 if (!ff->release_args) { 74 kfree(ff); 75 return NULL; 76 } 77 78 INIT_LIST_HEAD(&ff->write_entry); 79 mutex_init(&ff->readdir.lock); 80 refcount_set(&ff->count, 1); 81 RB_CLEAR_NODE(&ff->polled_node); 82 init_waitqueue_head(&ff->poll_wait); 83 84 ff->kh = atomic64_inc_return(&fc->khctr); 85 86 return ff; 87 } 88 89 void fuse_file_free(struct fuse_file *ff) 90 { 91 kfree(ff->release_args); 92 mutex_destroy(&ff->readdir.lock); 93 kfree(ff); 94 } 95 96 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 97 { 98 refcount_inc(&ff->count); 99 return ff; 100 } 101 102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args, 103 int error) 104 { 105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 106 107 iput(ra->inode); 108 kfree(ra); 109 } 110 111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 112 { 113 if (refcount_dec_and_test(&ff->count)) { 114 struct fuse_args *args = &ff->release_args->args; 115 116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) { 117 /* Do nothing when client does not implement 'open' */ 118 fuse_release_end(ff->fc, args, 0); 119 } else if (sync) { 120 fuse_simple_request(ff->fc, args); 121 fuse_release_end(ff->fc, args, 0); 122 } else { 123 args->end = fuse_release_end; 124 if (fuse_simple_background(ff->fc, args, 125 GFP_KERNEL | __GFP_NOFAIL)) 126 fuse_release_end(ff->fc, args, -ENOTCONN); 127 } 128 kfree(ff); 129 } 130 } 131 132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 133 bool isdir) 134 { 135 struct fuse_file *ff; 136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 137 138 ff = fuse_file_alloc(fc); 139 if (!ff) 140 return -ENOMEM; 141 142 ff->fh = 0; 143 /* Default for no-open */ 144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 145 if (isdir ? !fc->no_opendir : !fc->no_open) { 146 struct fuse_open_out outarg; 147 int err; 148 149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 150 if (!err) { 151 ff->fh = outarg.fh; 152 ff->open_flags = outarg.open_flags; 153 154 } else if (err != -ENOSYS) { 155 fuse_file_free(ff); 156 return err; 157 } else { 158 if (isdir) 159 fc->no_opendir = 1; 160 else 161 fc->no_open = 1; 162 } 163 } 164 165 if (isdir) 166 ff->open_flags &= ~FOPEN_DIRECT_IO; 167 168 ff->nodeid = nodeid; 169 file->private_data = ff; 170 171 return 0; 172 } 173 EXPORT_SYMBOL_GPL(fuse_do_open); 174 175 static void fuse_link_write_file(struct file *file) 176 { 177 struct inode *inode = file_inode(file); 178 struct fuse_inode *fi = get_fuse_inode(inode); 179 struct fuse_file *ff = file->private_data; 180 /* 181 * file may be written through mmap, so chain it onto the 182 * inodes's write_file list 183 */ 184 spin_lock(&fi->lock); 185 if (list_empty(&ff->write_entry)) 186 list_add(&ff->write_entry, &fi->write_files); 187 spin_unlock(&fi->lock); 188 } 189 190 void fuse_finish_open(struct inode *inode, struct file *file) 191 { 192 struct fuse_file *ff = file->private_data; 193 struct fuse_conn *fc = get_fuse_conn(inode); 194 195 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 196 invalidate_inode_pages2(inode->i_mapping); 197 if (ff->open_flags & FOPEN_STREAM) 198 stream_open(inode, file); 199 else if (ff->open_flags & FOPEN_NONSEEKABLE) 200 nonseekable_open(inode, file); 201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 202 struct fuse_inode *fi = get_fuse_inode(inode); 203 204 spin_lock(&fi->lock); 205 fi->attr_version = atomic64_inc_return(&fc->attr_version); 206 i_size_write(inode, 0); 207 spin_unlock(&fi->lock); 208 fuse_invalidate_attr(inode); 209 if (fc->writeback_cache) 210 file_update_time(file); 211 } 212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 213 fuse_link_write_file(file); 214 } 215 216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 217 { 218 struct fuse_conn *fc = get_fuse_conn(inode); 219 int err; 220 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 221 fc->atomic_o_trunc && 222 fc->writeback_cache; 223 224 err = generic_file_open(inode, file); 225 if (err) 226 return err; 227 228 if (is_wb_truncate) { 229 inode_lock(inode); 230 fuse_set_nowrite(inode); 231 } 232 233 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 234 235 if (!err) 236 fuse_finish_open(inode, file); 237 238 if (is_wb_truncate) { 239 fuse_release_nowrite(inode); 240 inode_unlock(inode); 241 } 242 243 return err; 244 } 245 246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 247 int flags, int opcode) 248 { 249 struct fuse_conn *fc = ff->fc; 250 struct fuse_release_args *ra = ff->release_args; 251 252 /* Inode is NULL on error path of fuse_create_open() */ 253 if (likely(fi)) { 254 spin_lock(&fi->lock); 255 list_del(&ff->write_entry); 256 spin_unlock(&fi->lock); 257 } 258 spin_lock(&fc->lock); 259 if (!RB_EMPTY_NODE(&ff->polled_node)) 260 rb_erase(&ff->polled_node, &fc->polled_files); 261 spin_unlock(&fc->lock); 262 263 wake_up_interruptible_all(&ff->poll_wait); 264 265 ra->inarg.fh = ff->fh; 266 ra->inarg.flags = flags; 267 ra->args.in_numargs = 1; 268 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 269 ra->args.in_args[0].value = &ra->inarg; 270 ra->args.opcode = opcode; 271 ra->args.nodeid = ff->nodeid; 272 ra->args.force = true; 273 ra->args.nocreds = true; 274 } 275 276 void fuse_release_common(struct file *file, bool isdir) 277 { 278 struct fuse_inode *fi = get_fuse_inode(file_inode(file)); 279 struct fuse_file *ff = file->private_data; 280 struct fuse_release_args *ra = ff->release_args; 281 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 282 283 fuse_prepare_release(fi, ff, file->f_flags, opcode); 284 285 if (ff->flock) { 286 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 287 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc, 288 (fl_owner_t) file); 289 } 290 /* Hold inode until release is finished */ 291 ra->inode = igrab(file_inode(file)); 292 293 /* 294 * Normally this will send the RELEASE request, however if 295 * some asynchronous READ or WRITE requests are outstanding, 296 * the sending will be delayed. 297 * 298 * Make the release synchronous if this is a fuseblk mount, 299 * synchronous RELEASE is allowed (and desirable) in this case 300 * because the server can be trusted not to screw up. 301 */ 302 fuse_file_put(ff, ff->fc->destroy, isdir); 303 } 304 305 static int fuse_open(struct inode *inode, struct file *file) 306 { 307 return fuse_open_common(inode, file, false); 308 } 309 310 static int fuse_release(struct inode *inode, struct file *file) 311 { 312 struct fuse_conn *fc = get_fuse_conn(inode); 313 314 /* see fuse_vma_close() for !writeback_cache case */ 315 if (fc->writeback_cache) 316 write_inode_now(inode, 1); 317 318 fuse_release_common(file, false); 319 320 /* return value is ignored by VFS */ 321 return 0; 322 } 323 324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags) 325 { 326 WARN_ON(refcount_read(&ff->count) > 1); 327 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 328 /* 329 * iput(NULL) is a no-op and since the refcount is 1 and everything's 330 * synchronous, we are fine with not doing igrab() here" 331 */ 332 fuse_file_put(ff, true, false); 333 } 334 EXPORT_SYMBOL_GPL(fuse_sync_release); 335 336 /* 337 * Scramble the ID space with XTEA, so that the value of the files_struct 338 * pointer is not exposed to userspace. 339 */ 340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 341 { 342 u32 *k = fc->scramble_key; 343 u64 v = (unsigned long) id; 344 u32 v0 = v; 345 u32 v1 = v >> 32; 346 u32 sum = 0; 347 int i; 348 349 for (i = 0; i < 32; i++) { 350 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 351 sum += 0x9E3779B9; 352 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 353 } 354 355 return (u64) v0 + ((u64) v1 << 32); 356 } 357 358 struct fuse_writepage_args { 359 struct fuse_io_args ia; 360 struct list_head writepages_entry; 361 struct list_head queue_entry; 362 struct fuse_writepage_args *next; 363 struct inode *inode; 364 }; 365 366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 367 pgoff_t idx_from, pgoff_t idx_to) 368 { 369 struct fuse_writepage_args *wpa; 370 371 list_for_each_entry(wpa, &fi->writepages, writepages_entry) { 372 pgoff_t curr_index; 373 374 WARN_ON(get_fuse_inode(wpa->inode) != fi); 375 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 376 if (idx_from < curr_index + wpa->ia.ap.num_pages && 377 curr_index <= idx_to) { 378 return wpa; 379 } 380 } 381 return NULL; 382 } 383 384 /* 385 * Check if any page in a range is under writeback 386 * 387 * This is currently done by walking the list of writepage requests 388 * for the inode, which can be pretty inefficient. 389 */ 390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 391 pgoff_t idx_to) 392 { 393 struct fuse_inode *fi = get_fuse_inode(inode); 394 bool found; 395 396 spin_lock(&fi->lock); 397 found = fuse_find_writeback(fi, idx_from, idx_to); 398 spin_unlock(&fi->lock); 399 400 return found; 401 } 402 403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 404 { 405 return fuse_range_is_writeback(inode, index, index); 406 } 407 408 /* 409 * Wait for page writeback to be completed. 410 * 411 * Since fuse doesn't rely on the VM writeback tracking, this has to 412 * use some other means. 413 */ 414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 415 { 416 struct fuse_inode *fi = get_fuse_inode(inode); 417 418 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 419 } 420 421 /* 422 * Wait for all pending writepages on the inode to finish. 423 * 424 * This is currently done by blocking further writes with FUSE_NOWRITE 425 * and waiting for all sent writes to complete. 426 * 427 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 428 * could conflict with truncation. 429 */ 430 static void fuse_sync_writes(struct inode *inode) 431 { 432 fuse_set_nowrite(inode); 433 fuse_release_nowrite(inode); 434 } 435 436 static int fuse_flush(struct file *file, fl_owner_t id) 437 { 438 struct inode *inode = file_inode(file); 439 struct fuse_conn *fc = get_fuse_conn(inode); 440 struct fuse_file *ff = file->private_data; 441 struct fuse_flush_in inarg; 442 FUSE_ARGS(args); 443 int err; 444 445 if (is_bad_inode(inode)) 446 return -EIO; 447 448 if (fc->no_flush) 449 return 0; 450 451 err = write_inode_now(inode, 1); 452 if (err) 453 return err; 454 455 inode_lock(inode); 456 fuse_sync_writes(inode); 457 inode_unlock(inode); 458 459 err = filemap_check_errors(file->f_mapping); 460 if (err) 461 return err; 462 463 memset(&inarg, 0, sizeof(inarg)); 464 inarg.fh = ff->fh; 465 inarg.lock_owner = fuse_lock_owner_id(fc, id); 466 args.opcode = FUSE_FLUSH; 467 args.nodeid = get_node_id(inode); 468 args.in_numargs = 1; 469 args.in_args[0].size = sizeof(inarg); 470 args.in_args[0].value = &inarg; 471 args.force = true; 472 473 err = fuse_simple_request(fc, &args); 474 if (err == -ENOSYS) { 475 fc->no_flush = 1; 476 err = 0; 477 } 478 return err; 479 } 480 481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 482 int datasync, int opcode) 483 { 484 struct inode *inode = file->f_mapping->host; 485 struct fuse_conn *fc = get_fuse_conn(inode); 486 struct fuse_file *ff = file->private_data; 487 FUSE_ARGS(args); 488 struct fuse_fsync_in inarg; 489 490 memset(&inarg, 0, sizeof(inarg)); 491 inarg.fh = ff->fh; 492 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 493 args.opcode = opcode; 494 args.nodeid = get_node_id(inode); 495 args.in_numargs = 1; 496 args.in_args[0].size = sizeof(inarg); 497 args.in_args[0].value = &inarg; 498 return fuse_simple_request(fc, &args); 499 } 500 501 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 502 int datasync) 503 { 504 struct inode *inode = file->f_mapping->host; 505 struct fuse_conn *fc = get_fuse_conn(inode); 506 int err; 507 508 if (is_bad_inode(inode)) 509 return -EIO; 510 511 inode_lock(inode); 512 513 /* 514 * Start writeback against all dirty pages of the inode, then 515 * wait for all outstanding writes, before sending the FSYNC 516 * request. 517 */ 518 err = file_write_and_wait_range(file, start, end); 519 if (err) 520 goto out; 521 522 fuse_sync_writes(inode); 523 524 /* 525 * Due to implementation of fuse writeback 526 * file_write_and_wait_range() does not catch errors. 527 * We have to do this directly after fuse_sync_writes() 528 */ 529 err = file_check_and_advance_wb_err(file); 530 if (err) 531 goto out; 532 533 err = sync_inode_metadata(inode, 1); 534 if (err) 535 goto out; 536 537 if (fc->no_fsync) 538 goto out; 539 540 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 541 if (err == -ENOSYS) { 542 fc->no_fsync = 1; 543 err = 0; 544 } 545 out: 546 inode_unlock(inode); 547 548 return err; 549 } 550 551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 552 size_t count, int opcode) 553 { 554 struct fuse_file *ff = file->private_data; 555 struct fuse_args *args = &ia->ap.args; 556 557 ia->read.in.fh = ff->fh; 558 ia->read.in.offset = pos; 559 ia->read.in.size = count; 560 ia->read.in.flags = file->f_flags; 561 args->opcode = opcode; 562 args->nodeid = ff->nodeid; 563 args->in_numargs = 1; 564 args->in_args[0].size = sizeof(ia->read.in); 565 args->in_args[0].value = &ia->read.in; 566 args->out_argvar = true; 567 args->out_numargs = 1; 568 args->out_args[0].size = count; 569 } 570 571 static void fuse_release_user_pages(struct fuse_args_pages *ap, 572 bool should_dirty) 573 { 574 unsigned int i; 575 576 for (i = 0; i < ap->num_pages; i++) { 577 if (should_dirty) 578 set_page_dirty_lock(ap->pages[i]); 579 put_page(ap->pages[i]); 580 } 581 } 582 583 static void fuse_io_release(struct kref *kref) 584 { 585 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 586 } 587 588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 589 { 590 if (io->err) 591 return io->err; 592 593 if (io->bytes >= 0 && io->write) 594 return -EIO; 595 596 return io->bytes < 0 ? io->size : io->bytes; 597 } 598 599 /** 600 * In case of short read, the caller sets 'pos' to the position of 601 * actual end of fuse request in IO request. Otherwise, if bytes_requested 602 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 603 * 604 * An example: 605 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 606 * both submitted asynchronously. The first of them was ACKed by userspace as 607 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 608 * second request was ACKed as short, e.g. only 1K was read, resulting in 609 * pos == 33K. 610 * 611 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 612 * will be equal to the length of the longest contiguous fragment of 613 * transferred data starting from the beginning of IO request. 614 */ 615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 616 { 617 int left; 618 619 spin_lock(&io->lock); 620 if (err) 621 io->err = io->err ? : err; 622 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 623 io->bytes = pos; 624 625 left = --io->reqs; 626 if (!left && io->blocking) 627 complete(io->done); 628 spin_unlock(&io->lock); 629 630 if (!left && !io->blocking) { 631 ssize_t res = fuse_get_res_by_io(io); 632 633 if (res >= 0) { 634 struct inode *inode = file_inode(io->iocb->ki_filp); 635 struct fuse_conn *fc = get_fuse_conn(inode); 636 struct fuse_inode *fi = get_fuse_inode(inode); 637 638 spin_lock(&fi->lock); 639 fi->attr_version = atomic64_inc_return(&fc->attr_version); 640 spin_unlock(&fi->lock); 641 } 642 643 io->iocb->ki_complete(io->iocb, res, 0); 644 } 645 646 kref_put(&io->refcnt, fuse_io_release); 647 } 648 649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 650 unsigned int npages) 651 { 652 struct fuse_io_args *ia; 653 654 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 655 if (ia) { 656 ia->io = io; 657 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 658 &ia->ap.descs); 659 if (!ia->ap.pages) { 660 kfree(ia); 661 ia = NULL; 662 } 663 } 664 return ia; 665 } 666 667 static void fuse_io_free(struct fuse_io_args *ia) 668 { 669 kfree(ia->ap.pages); 670 kfree(ia); 671 } 672 673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args, 674 int err) 675 { 676 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 677 struct fuse_io_priv *io = ia->io; 678 ssize_t pos = -1; 679 680 fuse_release_user_pages(&ia->ap, io->should_dirty); 681 682 if (err) { 683 /* Nothing */ 684 } else if (io->write) { 685 if (ia->write.out.size > ia->write.in.size) { 686 err = -EIO; 687 } else if (ia->write.in.size != ia->write.out.size) { 688 pos = ia->write.in.offset - io->offset + 689 ia->write.out.size; 690 } 691 } else { 692 u32 outsize = args->out_args[0].size; 693 694 if (ia->read.in.size != outsize) 695 pos = ia->read.in.offset - io->offset + outsize; 696 } 697 698 fuse_aio_complete(io, err, pos); 699 fuse_io_free(ia); 700 } 701 702 static ssize_t fuse_async_req_send(struct fuse_conn *fc, 703 struct fuse_io_args *ia, size_t num_bytes) 704 { 705 ssize_t err; 706 struct fuse_io_priv *io = ia->io; 707 708 spin_lock(&io->lock); 709 kref_get(&io->refcnt); 710 io->size += num_bytes; 711 io->reqs++; 712 spin_unlock(&io->lock); 713 714 ia->ap.args.end = fuse_aio_complete_req; 715 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL); 716 if (err) 717 fuse_aio_complete_req(fc, &ia->ap.args, err); 718 719 return num_bytes; 720 } 721 722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 723 fl_owner_t owner) 724 { 725 struct file *file = ia->io->iocb->ki_filp; 726 struct fuse_file *ff = file->private_data; 727 struct fuse_conn *fc = ff->fc; 728 729 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 730 if (owner != NULL) { 731 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 732 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner); 733 } 734 735 if (ia->io->async) 736 return fuse_async_req_send(fc, ia, count); 737 738 return fuse_simple_request(fc, &ia->ap.args); 739 } 740 741 static void fuse_read_update_size(struct inode *inode, loff_t size, 742 u64 attr_ver) 743 { 744 struct fuse_conn *fc = get_fuse_conn(inode); 745 struct fuse_inode *fi = get_fuse_inode(inode); 746 747 spin_lock(&fi->lock); 748 if (attr_ver == fi->attr_version && size < inode->i_size && 749 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 750 fi->attr_version = atomic64_inc_return(&fc->attr_version); 751 i_size_write(inode, size); 752 } 753 spin_unlock(&fi->lock); 754 } 755 756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 757 struct fuse_args_pages *ap) 758 { 759 struct fuse_conn *fc = get_fuse_conn(inode); 760 761 if (fc->writeback_cache) { 762 /* 763 * A hole in a file. Some data after the hole are in page cache, 764 * but have not reached the client fs yet. So, the hole is not 765 * present there. 766 */ 767 int i; 768 int start_idx = num_read >> PAGE_SHIFT; 769 size_t off = num_read & (PAGE_SIZE - 1); 770 771 for (i = start_idx; i < ap->num_pages; i++) { 772 zero_user_segment(ap->pages[i], off, PAGE_SIZE); 773 off = 0; 774 } 775 } else { 776 loff_t pos = page_offset(ap->pages[0]) + num_read; 777 fuse_read_update_size(inode, pos, attr_ver); 778 } 779 } 780 781 static int fuse_do_readpage(struct file *file, struct page *page) 782 { 783 struct inode *inode = page->mapping->host; 784 struct fuse_conn *fc = get_fuse_conn(inode); 785 loff_t pos = page_offset(page); 786 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 787 struct fuse_io_args ia = { 788 .ap.args.page_zeroing = true, 789 .ap.args.out_pages = true, 790 .ap.num_pages = 1, 791 .ap.pages = &page, 792 .ap.descs = &desc, 793 }; 794 ssize_t res; 795 u64 attr_ver; 796 797 /* 798 * Page writeback can extend beyond the lifetime of the 799 * page-cache page, so make sure we read a properly synced 800 * page. 801 */ 802 fuse_wait_on_page_writeback(inode, page->index); 803 804 attr_ver = fuse_get_attr_version(fc); 805 806 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 807 res = fuse_simple_request(fc, &ia.ap.args); 808 if (res < 0) 809 return res; 810 /* 811 * Short read means EOF. If file size is larger, truncate it 812 */ 813 if (res < desc.length) 814 fuse_short_read(inode, attr_ver, res, &ia.ap); 815 816 SetPageUptodate(page); 817 818 return 0; 819 } 820 821 static int fuse_readpage(struct file *file, struct page *page) 822 { 823 struct inode *inode = page->mapping->host; 824 int err; 825 826 err = -EIO; 827 if (is_bad_inode(inode)) 828 goto out; 829 830 err = fuse_do_readpage(file, page); 831 fuse_invalidate_atime(inode); 832 out: 833 unlock_page(page); 834 return err; 835 } 836 837 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args, 838 int err) 839 { 840 int i; 841 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 842 struct fuse_args_pages *ap = &ia->ap; 843 size_t count = ia->read.in.size; 844 size_t num_read = args->out_args[0].size; 845 struct address_space *mapping = NULL; 846 847 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 848 mapping = ap->pages[i]->mapping; 849 850 if (mapping) { 851 struct inode *inode = mapping->host; 852 853 /* 854 * Short read means EOF. If file size is larger, truncate it 855 */ 856 if (!err && num_read < count) 857 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 858 859 fuse_invalidate_atime(inode); 860 } 861 862 for (i = 0; i < ap->num_pages; i++) { 863 struct page *page = ap->pages[i]; 864 865 if (!err) 866 SetPageUptodate(page); 867 else 868 SetPageError(page); 869 unlock_page(page); 870 put_page(page); 871 } 872 if (ia->ff) 873 fuse_file_put(ia->ff, false, false); 874 875 fuse_io_free(ia); 876 } 877 878 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 879 { 880 struct fuse_file *ff = file->private_data; 881 struct fuse_conn *fc = ff->fc; 882 struct fuse_args_pages *ap = &ia->ap; 883 loff_t pos = page_offset(ap->pages[0]); 884 size_t count = ap->num_pages << PAGE_SHIFT; 885 int err; 886 887 ap->args.out_pages = true; 888 ap->args.page_zeroing = true; 889 ap->args.page_replace = true; 890 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 891 ia->read.attr_ver = fuse_get_attr_version(fc); 892 if (fc->async_read) { 893 ia->ff = fuse_file_get(ff); 894 ap->args.end = fuse_readpages_end; 895 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL); 896 if (!err) 897 return; 898 } else { 899 err = fuse_simple_request(fc, &ap->args); 900 } 901 fuse_readpages_end(fc, &ap->args, err); 902 } 903 904 struct fuse_fill_data { 905 struct fuse_io_args *ia; 906 struct file *file; 907 struct inode *inode; 908 unsigned int nr_pages; 909 unsigned int max_pages; 910 }; 911 912 static int fuse_readpages_fill(void *_data, struct page *page) 913 { 914 struct fuse_fill_data *data = _data; 915 struct fuse_io_args *ia = data->ia; 916 struct fuse_args_pages *ap = &ia->ap; 917 struct inode *inode = data->inode; 918 struct fuse_conn *fc = get_fuse_conn(inode); 919 920 fuse_wait_on_page_writeback(inode, page->index); 921 922 if (ap->num_pages && 923 (ap->num_pages == fc->max_pages || 924 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read || 925 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) { 926 data->max_pages = min_t(unsigned int, data->nr_pages, 927 fc->max_pages); 928 fuse_send_readpages(ia, data->file); 929 data->ia = ia = fuse_io_alloc(NULL, data->max_pages); 930 if (!ia) { 931 unlock_page(page); 932 return -ENOMEM; 933 } 934 ap = &ia->ap; 935 } 936 937 if (WARN_ON(ap->num_pages >= data->max_pages)) { 938 unlock_page(page); 939 fuse_io_free(ia); 940 return -EIO; 941 } 942 943 get_page(page); 944 ap->pages[ap->num_pages] = page; 945 ap->descs[ap->num_pages].length = PAGE_SIZE; 946 ap->num_pages++; 947 data->nr_pages--; 948 return 0; 949 } 950 951 static int fuse_readpages(struct file *file, struct address_space *mapping, 952 struct list_head *pages, unsigned nr_pages) 953 { 954 struct inode *inode = mapping->host; 955 struct fuse_conn *fc = get_fuse_conn(inode); 956 struct fuse_fill_data data; 957 int err; 958 959 err = -EIO; 960 if (is_bad_inode(inode)) 961 goto out; 962 963 data.file = file; 964 data.inode = inode; 965 data.nr_pages = nr_pages; 966 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages); 967 ; 968 data.ia = fuse_io_alloc(NULL, data.max_pages); 969 err = -ENOMEM; 970 if (!data.ia) 971 goto out; 972 973 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 974 if (!err) { 975 if (data.ia->ap.num_pages) 976 fuse_send_readpages(data.ia, file); 977 else 978 fuse_io_free(data.ia); 979 } 980 out: 981 return err; 982 } 983 984 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 985 { 986 struct inode *inode = iocb->ki_filp->f_mapping->host; 987 struct fuse_conn *fc = get_fuse_conn(inode); 988 989 /* 990 * In auto invalidate mode, always update attributes on read. 991 * Otherwise, only update if we attempt to read past EOF (to ensure 992 * i_size is up to date). 993 */ 994 if (fc->auto_inval_data || 995 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 996 int err; 997 err = fuse_update_attributes(inode, iocb->ki_filp); 998 if (err) 999 return err; 1000 } 1001 1002 return generic_file_read_iter(iocb, to); 1003 } 1004 1005 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1006 loff_t pos, size_t count) 1007 { 1008 struct fuse_args *args = &ia->ap.args; 1009 1010 ia->write.in.fh = ff->fh; 1011 ia->write.in.offset = pos; 1012 ia->write.in.size = count; 1013 args->opcode = FUSE_WRITE; 1014 args->nodeid = ff->nodeid; 1015 args->in_numargs = 2; 1016 if (ff->fc->minor < 9) 1017 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1018 else 1019 args->in_args[0].size = sizeof(ia->write.in); 1020 args->in_args[0].value = &ia->write.in; 1021 args->in_args[1].size = count; 1022 args->out_numargs = 1; 1023 args->out_args[0].size = sizeof(ia->write.out); 1024 args->out_args[0].value = &ia->write.out; 1025 } 1026 1027 static unsigned int fuse_write_flags(struct kiocb *iocb) 1028 { 1029 unsigned int flags = iocb->ki_filp->f_flags; 1030 1031 if (iocb->ki_flags & IOCB_DSYNC) 1032 flags |= O_DSYNC; 1033 if (iocb->ki_flags & IOCB_SYNC) 1034 flags |= O_SYNC; 1035 1036 return flags; 1037 } 1038 1039 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1040 size_t count, fl_owner_t owner) 1041 { 1042 struct kiocb *iocb = ia->io->iocb; 1043 struct file *file = iocb->ki_filp; 1044 struct fuse_file *ff = file->private_data; 1045 struct fuse_conn *fc = ff->fc; 1046 struct fuse_write_in *inarg = &ia->write.in; 1047 ssize_t err; 1048 1049 fuse_write_args_fill(ia, ff, pos, count); 1050 inarg->flags = fuse_write_flags(iocb); 1051 if (owner != NULL) { 1052 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1053 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 1054 } 1055 1056 if (ia->io->async) 1057 return fuse_async_req_send(fc, ia, count); 1058 1059 err = fuse_simple_request(fc, &ia->ap.args); 1060 if (!err && ia->write.out.size > count) 1061 err = -EIO; 1062 1063 return err ?: ia->write.out.size; 1064 } 1065 1066 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1067 { 1068 struct fuse_conn *fc = get_fuse_conn(inode); 1069 struct fuse_inode *fi = get_fuse_inode(inode); 1070 bool ret = false; 1071 1072 spin_lock(&fi->lock); 1073 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1074 if (pos > inode->i_size) { 1075 i_size_write(inode, pos); 1076 ret = true; 1077 } 1078 spin_unlock(&fi->lock); 1079 1080 return ret; 1081 } 1082 1083 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1084 struct kiocb *iocb, struct inode *inode, 1085 loff_t pos, size_t count) 1086 { 1087 struct fuse_args_pages *ap = &ia->ap; 1088 struct file *file = iocb->ki_filp; 1089 struct fuse_file *ff = file->private_data; 1090 struct fuse_conn *fc = ff->fc; 1091 unsigned int offset, i; 1092 int err; 1093 1094 for (i = 0; i < ap->num_pages; i++) 1095 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1096 1097 fuse_write_args_fill(ia, ff, pos, count); 1098 ia->write.in.flags = fuse_write_flags(iocb); 1099 1100 err = fuse_simple_request(fc, &ap->args); 1101 if (!err && ia->write.out.size > count) 1102 err = -EIO; 1103 1104 offset = ap->descs[0].offset; 1105 count = ia->write.out.size; 1106 for (i = 0; i < ap->num_pages; i++) { 1107 struct page *page = ap->pages[i]; 1108 1109 if (!err && !offset && count >= PAGE_SIZE) 1110 SetPageUptodate(page); 1111 1112 if (count > PAGE_SIZE - offset) 1113 count -= PAGE_SIZE - offset; 1114 else 1115 count = 0; 1116 offset = 0; 1117 1118 unlock_page(page); 1119 put_page(page); 1120 } 1121 1122 return err; 1123 } 1124 1125 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap, 1126 struct address_space *mapping, 1127 struct iov_iter *ii, loff_t pos, 1128 unsigned int max_pages) 1129 { 1130 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1131 unsigned offset = pos & (PAGE_SIZE - 1); 1132 size_t count = 0; 1133 int err; 1134 1135 ap->args.in_pages = true; 1136 ap->descs[0].offset = offset; 1137 1138 do { 1139 size_t tmp; 1140 struct page *page; 1141 pgoff_t index = pos >> PAGE_SHIFT; 1142 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1143 iov_iter_count(ii)); 1144 1145 bytes = min_t(size_t, bytes, fc->max_write - count); 1146 1147 again: 1148 err = -EFAULT; 1149 if (iov_iter_fault_in_readable(ii, bytes)) 1150 break; 1151 1152 err = -ENOMEM; 1153 page = grab_cache_page_write_begin(mapping, index, 0); 1154 if (!page) 1155 break; 1156 1157 if (mapping_writably_mapped(mapping)) 1158 flush_dcache_page(page); 1159 1160 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1161 flush_dcache_page(page); 1162 1163 iov_iter_advance(ii, tmp); 1164 if (!tmp) { 1165 unlock_page(page); 1166 put_page(page); 1167 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1168 goto again; 1169 } 1170 1171 err = 0; 1172 ap->pages[ap->num_pages] = page; 1173 ap->descs[ap->num_pages].length = tmp; 1174 ap->num_pages++; 1175 1176 count += tmp; 1177 pos += tmp; 1178 offset += tmp; 1179 if (offset == PAGE_SIZE) 1180 offset = 0; 1181 1182 if (!fc->big_writes) 1183 break; 1184 } while (iov_iter_count(ii) && count < fc->max_write && 1185 ap->num_pages < max_pages && offset == 0); 1186 1187 return count > 0 ? count : err; 1188 } 1189 1190 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1191 unsigned int max_pages) 1192 { 1193 return min_t(unsigned int, 1194 ((pos + len - 1) >> PAGE_SHIFT) - 1195 (pos >> PAGE_SHIFT) + 1, 1196 max_pages); 1197 } 1198 1199 static ssize_t fuse_perform_write(struct kiocb *iocb, 1200 struct address_space *mapping, 1201 struct iov_iter *ii, loff_t pos) 1202 { 1203 struct inode *inode = mapping->host; 1204 struct fuse_conn *fc = get_fuse_conn(inode); 1205 struct fuse_inode *fi = get_fuse_inode(inode); 1206 int err = 0; 1207 ssize_t res = 0; 1208 1209 if (inode->i_size < pos + iov_iter_count(ii)) 1210 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1211 1212 do { 1213 ssize_t count; 1214 struct fuse_io_args ia = {}; 1215 struct fuse_args_pages *ap = &ia.ap; 1216 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1217 fc->max_pages); 1218 1219 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1220 if (!ap->pages) { 1221 err = -ENOMEM; 1222 break; 1223 } 1224 1225 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages); 1226 if (count <= 0) { 1227 err = count; 1228 } else { 1229 err = fuse_send_write_pages(&ia, iocb, inode, 1230 pos, count); 1231 if (!err) { 1232 size_t num_written = ia.write.out.size; 1233 1234 res += num_written; 1235 pos += num_written; 1236 1237 /* break out of the loop on short write */ 1238 if (num_written != count) 1239 err = -EIO; 1240 } 1241 } 1242 kfree(ap->pages); 1243 } while (!err && iov_iter_count(ii)); 1244 1245 if (res > 0) 1246 fuse_write_update_size(inode, pos); 1247 1248 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1249 fuse_invalidate_attr(inode); 1250 1251 return res > 0 ? res : err; 1252 } 1253 1254 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1255 { 1256 struct file *file = iocb->ki_filp; 1257 struct address_space *mapping = file->f_mapping; 1258 ssize_t written = 0; 1259 ssize_t written_buffered = 0; 1260 struct inode *inode = mapping->host; 1261 ssize_t err; 1262 loff_t endbyte = 0; 1263 1264 if (get_fuse_conn(inode)->writeback_cache) { 1265 /* Update size (EOF optimization) and mode (SUID clearing) */ 1266 err = fuse_update_attributes(mapping->host, file); 1267 if (err) 1268 return err; 1269 1270 return generic_file_write_iter(iocb, from); 1271 } 1272 1273 inode_lock(inode); 1274 1275 /* We can write back this queue in page reclaim */ 1276 current->backing_dev_info = inode_to_bdi(inode); 1277 1278 err = generic_write_checks(iocb, from); 1279 if (err <= 0) 1280 goto out; 1281 1282 err = file_remove_privs(file); 1283 if (err) 1284 goto out; 1285 1286 err = file_update_time(file); 1287 if (err) 1288 goto out; 1289 1290 if (iocb->ki_flags & IOCB_DIRECT) { 1291 loff_t pos = iocb->ki_pos; 1292 written = generic_file_direct_write(iocb, from); 1293 if (written < 0 || !iov_iter_count(from)) 1294 goto out; 1295 1296 pos += written; 1297 1298 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1299 if (written_buffered < 0) { 1300 err = written_buffered; 1301 goto out; 1302 } 1303 endbyte = pos + written_buffered - 1; 1304 1305 err = filemap_write_and_wait_range(file->f_mapping, pos, 1306 endbyte); 1307 if (err) 1308 goto out; 1309 1310 invalidate_mapping_pages(file->f_mapping, 1311 pos >> PAGE_SHIFT, 1312 endbyte >> PAGE_SHIFT); 1313 1314 written += written_buffered; 1315 iocb->ki_pos = pos + written_buffered; 1316 } else { 1317 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1318 if (written >= 0) 1319 iocb->ki_pos += written; 1320 } 1321 out: 1322 current->backing_dev_info = NULL; 1323 inode_unlock(inode); 1324 if (written > 0) 1325 written = generic_write_sync(iocb, written); 1326 1327 return written ? written : err; 1328 } 1329 1330 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs, 1331 unsigned int index, 1332 unsigned int nr_pages) 1333 { 1334 int i; 1335 1336 for (i = index; i < index + nr_pages; i++) 1337 descs[i].length = PAGE_SIZE - descs[i].offset; 1338 } 1339 1340 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1341 { 1342 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1343 } 1344 1345 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1346 size_t max_size) 1347 { 1348 return min(iov_iter_single_seg_count(ii), max_size); 1349 } 1350 1351 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1352 size_t *nbytesp, int write, 1353 unsigned int max_pages) 1354 { 1355 size_t nbytes = 0; /* # bytes already packed in req */ 1356 ssize_t ret = 0; 1357 1358 /* Special case for kernel I/O: can copy directly into the buffer */ 1359 if (iov_iter_is_kvec(ii)) { 1360 unsigned long user_addr = fuse_get_user_addr(ii); 1361 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1362 1363 if (write) 1364 ap->args.in_args[1].value = (void *) user_addr; 1365 else 1366 ap->args.out_args[0].value = (void *) user_addr; 1367 1368 iov_iter_advance(ii, frag_size); 1369 *nbytesp = frag_size; 1370 return 0; 1371 } 1372 1373 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1374 unsigned npages; 1375 size_t start; 1376 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1377 *nbytesp - nbytes, 1378 max_pages - ap->num_pages, 1379 &start); 1380 if (ret < 0) 1381 break; 1382 1383 iov_iter_advance(ii, ret); 1384 nbytes += ret; 1385 1386 ret += start; 1387 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1388 1389 ap->descs[ap->num_pages].offset = start; 1390 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1391 1392 ap->num_pages += npages; 1393 ap->descs[ap->num_pages - 1].length -= 1394 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1395 } 1396 1397 if (write) 1398 ap->args.in_pages = 1; 1399 else 1400 ap->args.out_pages = 1; 1401 1402 *nbytesp = nbytes; 1403 1404 return ret < 0 ? ret : 0; 1405 } 1406 1407 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1408 loff_t *ppos, int flags) 1409 { 1410 int write = flags & FUSE_DIO_WRITE; 1411 int cuse = flags & FUSE_DIO_CUSE; 1412 struct file *file = io->iocb->ki_filp; 1413 struct inode *inode = file->f_mapping->host; 1414 struct fuse_file *ff = file->private_data; 1415 struct fuse_conn *fc = ff->fc; 1416 size_t nmax = write ? fc->max_write : fc->max_read; 1417 loff_t pos = *ppos; 1418 size_t count = iov_iter_count(iter); 1419 pgoff_t idx_from = pos >> PAGE_SHIFT; 1420 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1421 ssize_t res = 0; 1422 int err = 0; 1423 struct fuse_io_args *ia; 1424 unsigned int max_pages; 1425 1426 max_pages = iov_iter_npages(iter, fc->max_pages); 1427 ia = fuse_io_alloc(io, max_pages); 1428 if (!ia) 1429 return -ENOMEM; 1430 1431 ia->io = io; 1432 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1433 if (!write) 1434 inode_lock(inode); 1435 fuse_sync_writes(inode); 1436 if (!write) 1437 inode_unlock(inode); 1438 } 1439 1440 io->should_dirty = !write && iter_is_iovec(iter); 1441 while (count) { 1442 ssize_t nres; 1443 fl_owner_t owner = current->files; 1444 size_t nbytes = min(count, nmax); 1445 1446 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1447 max_pages); 1448 if (err && !nbytes) 1449 break; 1450 1451 if (write) { 1452 if (!capable(CAP_FSETID)) 1453 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV; 1454 1455 nres = fuse_send_write(ia, pos, nbytes, owner); 1456 } else { 1457 nres = fuse_send_read(ia, pos, nbytes, owner); 1458 } 1459 1460 if (!io->async || nres < 0) { 1461 fuse_release_user_pages(&ia->ap, io->should_dirty); 1462 fuse_io_free(ia); 1463 } 1464 ia = NULL; 1465 if (nres < 0) { 1466 err = nres; 1467 break; 1468 } 1469 WARN_ON(nres > nbytes); 1470 1471 count -= nres; 1472 res += nres; 1473 pos += nres; 1474 if (nres != nbytes) 1475 break; 1476 if (count) { 1477 max_pages = iov_iter_npages(iter, fc->max_pages); 1478 ia = fuse_io_alloc(io, max_pages); 1479 if (!ia) 1480 break; 1481 } 1482 } 1483 if (ia) 1484 fuse_io_free(ia); 1485 if (res > 0) 1486 *ppos = pos; 1487 1488 return res > 0 ? res : err; 1489 } 1490 EXPORT_SYMBOL_GPL(fuse_direct_io); 1491 1492 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1493 struct iov_iter *iter, 1494 loff_t *ppos) 1495 { 1496 ssize_t res; 1497 struct inode *inode = file_inode(io->iocb->ki_filp); 1498 1499 res = fuse_direct_io(io, iter, ppos, 0); 1500 1501 fuse_invalidate_atime(inode); 1502 1503 return res; 1504 } 1505 1506 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1507 1508 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1509 { 1510 ssize_t res; 1511 1512 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1513 res = fuse_direct_IO(iocb, to); 1514 } else { 1515 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1516 1517 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1518 } 1519 1520 return res; 1521 } 1522 1523 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1524 { 1525 struct inode *inode = file_inode(iocb->ki_filp); 1526 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1527 ssize_t res; 1528 1529 /* Don't allow parallel writes to the same file */ 1530 inode_lock(inode); 1531 res = generic_write_checks(iocb, from); 1532 if (res > 0) { 1533 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1534 res = fuse_direct_IO(iocb, from); 1535 } else { 1536 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1537 FUSE_DIO_WRITE); 1538 } 1539 } 1540 fuse_invalidate_attr(inode); 1541 if (res > 0) 1542 fuse_write_update_size(inode, iocb->ki_pos); 1543 inode_unlock(inode); 1544 1545 return res; 1546 } 1547 1548 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1549 { 1550 struct file *file = iocb->ki_filp; 1551 struct fuse_file *ff = file->private_data; 1552 1553 if (is_bad_inode(file_inode(file))) 1554 return -EIO; 1555 1556 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1557 return fuse_cache_read_iter(iocb, to); 1558 else 1559 return fuse_direct_read_iter(iocb, to); 1560 } 1561 1562 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1563 { 1564 struct file *file = iocb->ki_filp; 1565 struct fuse_file *ff = file->private_data; 1566 1567 if (is_bad_inode(file_inode(file))) 1568 return -EIO; 1569 1570 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1571 return fuse_cache_write_iter(iocb, from); 1572 else 1573 return fuse_direct_write_iter(iocb, from); 1574 } 1575 1576 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1577 { 1578 struct fuse_args_pages *ap = &wpa->ia.ap; 1579 int i; 1580 1581 for (i = 0; i < ap->num_pages; i++) 1582 __free_page(ap->pages[i]); 1583 1584 if (wpa->ia.ff) 1585 fuse_file_put(wpa->ia.ff, false, false); 1586 1587 kfree(ap->pages); 1588 kfree(wpa); 1589 } 1590 1591 static void fuse_writepage_finish(struct fuse_conn *fc, 1592 struct fuse_writepage_args *wpa) 1593 { 1594 struct fuse_args_pages *ap = &wpa->ia.ap; 1595 struct inode *inode = wpa->inode; 1596 struct fuse_inode *fi = get_fuse_inode(inode); 1597 struct backing_dev_info *bdi = inode_to_bdi(inode); 1598 int i; 1599 1600 list_del(&wpa->writepages_entry); 1601 for (i = 0; i < ap->num_pages; i++) { 1602 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1603 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1604 wb_writeout_inc(&bdi->wb); 1605 } 1606 wake_up(&fi->page_waitq); 1607 } 1608 1609 /* Called under fi->lock, may release and reacquire it */ 1610 static void fuse_send_writepage(struct fuse_conn *fc, 1611 struct fuse_writepage_args *wpa, loff_t size) 1612 __releases(fi->lock) 1613 __acquires(fi->lock) 1614 { 1615 struct fuse_writepage_args *aux, *next; 1616 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1617 struct fuse_write_in *inarg = &wpa->ia.write.in; 1618 struct fuse_args *args = &wpa->ia.ap.args; 1619 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1620 int err; 1621 1622 fi->writectr++; 1623 if (inarg->offset + data_size <= size) { 1624 inarg->size = data_size; 1625 } else if (inarg->offset < size) { 1626 inarg->size = size - inarg->offset; 1627 } else { 1628 /* Got truncated off completely */ 1629 goto out_free; 1630 } 1631 1632 args->in_args[1].size = inarg->size; 1633 args->force = true; 1634 args->nocreds = true; 1635 1636 err = fuse_simple_background(fc, args, GFP_ATOMIC); 1637 if (err == -ENOMEM) { 1638 spin_unlock(&fi->lock); 1639 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL); 1640 spin_lock(&fi->lock); 1641 } 1642 1643 /* Fails on broken connection only */ 1644 if (unlikely(err)) 1645 goto out_free; 1646 1647 return; 1648 1649 out_free: 1650 fi->writectr--; 1651 fuse_writepage_finish(fc, wpa); 1652 spin_unlock(&fi->lock); 1653 1654 /* After fuse_writepage_finish() aux request list is private */ 1655 for (aux = wpa->next; aux; aux = next) { 1656 next = aux->next; 1657 aux->next = NULL; 1658 fuse_writepage_free(aux); 1659 } 1660 1661 fuse_writepage_free(wpa); 1662 spin_lock(&fi->lock); 1663 } 1664 1665 /* 1666 * If fi->writectr is positive (no truncate or fsync going on) send 1667 * all queued writepage requests. 1668 * 1669 * Called with fi->lock 1670 */ 1671 void fuse_flush_writepages(struct inode *inode) 1672 __releases(fi->lock) 1673 __acquires(fi->lock) 1674 { 1675 struct fuse_conn *fc = get_fuse_conn(inode); 1676 struct fuse_inode *fi = get_fuse_inode(inode); 1677 loff_t crop = i_size_read(inode); 1678 struct fuse_writepage_args *wpa; 1679 1680 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1681 wpa = list_entry(fi->queued_writes.next, 1682 struct fuse_writepage_args, queue_entry); 1683 list_del_init(&wpa->queue_entry); 1684 fuse_send_writepage(fc, wpa, crop); 1685 } 1686 } 1687 1688 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args, 1689 int error) 1690 { 1691 struct fuse_writepage_args *wpa = 1692 container_of(args, typeof(*wpa), ia.ap.args); 1693 struct inode *inode = wpa->inode; 1694 struct fuse_inode *fi = get_fuse_inode(inode); 1695 1696 mapping_set_error(inode->i_mapping, error); 1697 spin_lock(&fi->lock); 1698 while (wpa->next) { 1699 struct fuse_conn *fc = get_fuse_conn(inode); 1700 struct fuse_write_in *inarg = &wpa->ia.write.in; 1701 struct fuse_writepage_args *next = wpa->next; 1702 1703 wpa->next = next->next; 1704 next->next = NULL; 1705 next->ia.ff = fuse_file_get(wpa->ia.ff); 1706 list_add(&next->writepages_entry, &fi->writepages); 1707 1708 /* 1709 * Skip fuse_flush_writepages() to make it easy to crop requests 1710 * based on primary request size. 1711 * 1712 * 1st case (trivial): there are no concurrent activities using 1713 * fuse_set/release_nowrite. Then we're on safe side because 1714 * fuse_flush_writepages() would call fuse_send_writepage() 1715 * anyway. 1716 * 1717 * 2nd case: someone called fuse_set_nowrite and it is waiting 1718 * now for completion of all in-flight requests. This happens 1719 * rarely and no more than once per page, so this should be 1720 * okay. 1721 * 1722 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1723 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1724 * that fuse_set_nowrite returned implies that all in-flight 1725 * requests were completed along with all of their secondary 1726 * requests. Further primary requests are blocked by negative 1727 * writectr. Hence there cannot be any in-flight requests and 1728 * no invocations of fuse_writepage_end() while we're in 1729 * fuse_set_nowrite..fuse_release_nowrite section. 1730 */ 1731 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1732 } 1733 fi->writectr--; 1734 fuse_writepage_finish(fc, wpa); 1735 spin_unlock(&fi->lock); 1736 fuse_writepage_free(wpa); 1737 } 1738 1739 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1740 struct fuse_inode *fi) 1741 { 1742 struct fuse_file *ff = NULL; 1743 1744 spin_lock(&fi->lock); 1745 if (!list_empty(&fi->write_files)) { 1746 ff = list_entry(fi->write_files.next, struct fuse_file, 1747 write_entry); 1748 fuse_file_get(ff); 1749 } 1750 spin_unlock(&fi->lock); 1751 1752 return ff; 1753 } 1754 1755 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1756 struct fuse_inode *fi) 1757 { 1758 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1759 WARN_ON(!ff); 1760 return ff; 1761 } 1762 1763 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1764 { 1765 struct fuse_conn *fc = get_fuse_conn(inode); 1766 struct fuse_inode *fi = get_fuse_inode(inode); 1767 struct fuse_file *ff; 1768 int err; 1769 1770 ff = __fuse_write_file_get(fc, fi); 1771 err = fuse_flush_times(inode, ff); 1772 if (ff) 1773 fuse_file_put(ff, false, false); 1774 1775 return err; 1776 } 1777 1778 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1779 { 1780 struct fuse_writepage_args *wpa; 1781 struct fuse_args_pages *ap; 1782 1783 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1784 if (wpa) { 1785 ap = &wpa->ia.ap; 1786 ap->num_pages = 0; 1787 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1788 if (!ap->pages) { 1789 kfree(wpa); 1790 wpa = NULL; 1791 } 1792 } 1793 return wpa; 1794 1795 } 1796 1797 static int fuse_writepage_locked(struct page *page) 1798 { 1799 struct address_space *mapping = page->mapping; 1800 struct inode *inode = mapping->host; 1801 struct fuse_conn *fc = get_fuse_conn(inode); 1802 struct fuse_inode *fi = get_fuse_inode(inode); 1803 struct fuse_writepage_args *wpa; 1804 struct fuse_args_pages *ap; 1805 struct page *tmp_page; 1806 int error = -ENOMEM; 1807 1808 set_page_writeback(page); 1809 1810 wpa = fuse_writepage_args_alloc(); 1811 if (!wpa) 1812 goto err; 1813 ap = &wpa->ia.ap; 1814 1815 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1816 if (!tmp_page) 1817 goto err_free; 1818 1819 error = -EIO; 1820 wpa->ia.ff = fuse_write_file_get(fc, fi); 1821 if (!wpa->ia.ff) 1822 goto err_nofile; 1823 1824 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1825 1826 copy_highpage(tmp_page, page); 1827 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1828 wpa->next = NULL; 1829 ap->args.in_pages = true; 1830 ap->num_pages = 1; 1831 ap->pages[0] = tmp_page; 1832 ap->descs[0].offset = 0; 1833 ap->descs[0].length = PAGE_SIZE; 1834 ap->args.end = fuse_writepage_end; 1835 wpa->inode = inode; 1836 1837 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1838 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1839 1840 spin_lock(&fi->lock); 1841 list_add(&wpa->writepages_entry, &fi->writepages); 1842 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1843 fuse_flush_writepages(inode); 1844 spin_unlock(&fi->lock); 1845 1846 end_page_writeback(page); 1847 1848 return 0; 1849 1850 err_nofile: 1851 __free_page(tmp_page); 1852 err_free: 1853 kfree(wpa); 1854 err: 1855 mapping_set_error(page->mapping, error); 1856 end_page_writeback(page); 1857 return error; 1858 } 1859 1860 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1861 { 1862 int err; 1863 1864 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1865 /* 1866 * ->writepages() should be called for sync() and friends. We 1867 * should only get here on direct reclaim and then we are 1868 * allowed to skip a page which is already in flight 1869 */ 1870 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1871 1872 redirty_page_for_writepage(wbc, page); 1873 unlock_page(page); 1874 return 0; 1875 } 1876 1877 err = fuse_writepage_locked(page); 1878 unlock_page(page); 1879 1880 return err; 1881 } 1882 1883 struct fuse_fill_wb_data { 1884 struct fuse_writepage_args *wpa; 1885 struct fuse_file *ff; 1886 struct inode *inode; 1887 struct page **orig_pages; 1888 unsigned int max_pages; 1889 }; 1890 1891 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1892 { 1893 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1894 struct fuse_conn *fc = get_fuse_conn(data->inode); 1895 struct page **pages; 1896 struct fuse_page_desc *descs; 1897 unsigned int npages = min_t(unsigned int, 1898 max_t(unsigned int, data->max_pages * 2, 1899 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 1900 fc->max_pages); 1901 WARN_ON(npages <= data->max_pages); 1902 1903 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 1904 if (!pages) 1905 return false; 1906 1907 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 1908 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 1909 kfree(ap->pages); 1910 ap->pages = pages; 1911 ap->descs = descs; 1912 data->max_pages = npages; 1913 1914 return true; 1915 } 1916 1917 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1918 { 1919 struct fuse_writepage_args *wpa = data->wpa; 1920 struct inode *inode = data->inode; 1921 struct fuse_inode *fi = get_fuse_inode(inode); 1922 int num_pages = wpa->ia.ap.num_pages; 1923 int i; 1924 1925 wpa->ia.ff = fuse_file_get(data->ff); 1926 spin_lock(&fi->lock); 1927 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1928 fuse_flush_writepages(inode); 1929 spin_unlock(&fi->lock); 1930 1931 for (i = 0; i < num_pages; i++) 1932 end_page_writeback(data->orig_pages[i]); 1933 } 1934 1935 /* 1936 * First recheck under fi->lock if the offending offset is still under 1937 * writeback. If yes, then iterate auxiliary write requests, to see if there's 1938 * one already added for a page at this offset. If there's none, then insert 1939 * this new request onto the auxiliary list, otherwise reuse the existing one by 1940 * copying the new page contents over to the old temporary page. 1941 */ 1942 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa, 1943 struct page *page) 1944 { 1945 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 1946 struct fuse_writepage_args *tmp; 1947 struct fuse_writepage_args *old_wpa; 1948 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 1949 1950 WARN_ON(new_ap->num_pages != 0); 1951 1952 spin_lock(&fi->lock); 1953 list_del(&new_wpa->writepages_entry); 1954 old_wpa = fuse_find_writeback(fi, page->index, page->index); 1955 if (!old_wpa) { 1956 list_add(&new_wpa->writepages_entry, &fi->writepages); 1957 spin_unlock(&fi->lock); 1958 return false; 1959 } 1960 1961 new_ap->num_pages = 1; 1962 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 1963 pgoff_t curr_index; 1964 1965 WARN_ON(tmp->inode != new_wpa->inode); 1966 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 1967 if (curr_index == page->index) { 1968 WARN_ON(tmp->ia.ap.num_pages != 1); 1969 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 1970 break; 1971 } 1972 } 1973 1974 if (!tmp) { 1975 new_wpa->next = old_wpa->next; 1976 old_wpa->next = new_wpa; 1977 } 1978 1979 spin_unlock(&fi->lock); 1980 1981 if (tmp) { 1982 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 1983 1984 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1985 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 1986 wb_writeout_inc(&bdi->wb); 1987 fuse_writepage_free(new_wpa); 1988 } 1989 1990 return true; 1991 } 1992 1993 static int fuse_writepages_fill(struct page *page, 1994 struct writeback_control *wbc, void *_data) 1995 { 1996 struct fuse_fill_wb_data *data = _data; 1997 struct fuse_writepage_args *wpa = data->wpa; 1998 struct fuse_args_pages *ap = &wpa->ia.ap; 1999 struct inode *inode = data->inode; 2000 struct fuse_inode *fi = get_fuse_inode(inode); 2001 struct fuse_conn *fc = get_fuse_conn(inode); 2002 struct page *tmp_page; 2003 bool is_writeback; 2004 int err; 2005 2006 if (!data->ff) { 2007 err = -EIO; 2008 data->ff = fuse_write_file_get(fc, fi); 2009 if (!data->ff) 2010 goto out_unlock; 2011 } 2012 2013 /* 2014 * Being under writeback is unlikely but possible. For example direct 2015 * read to an mmaped fuse file will set the page dirty twice; once when 2016 * the pages are faulted with get_user_pages(), and then after the read 2017 * completed. 2018 */ 2019 is_writeback = fuse_page_is_writeback(inode, page->index); 2020 2021 if (wpa && ap->num_pages && 2022 (is_writeback || ap->num_pages == fc->max_pages || 2023 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write || 2024 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) { 2025 fuse_writepages_send(data); 2026 data->wpa = NULL; 2027 } else if (wpa && ap->num_pages == data->max_pages) { 2028 if (!fuse_pages_realloc(data)) { 2029 fuse_writepages_send(data); 2030 data->wpa = NULL; 2031 } 2032 } 2033 2034 err = -ENOMEM; 2035 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2036 if (!tmp_page) 2037 goto out_unlock; 2038 2039 /* 2040 * The page must not be redirtied until the writeout is completed 2041 * (i.e. userspace has sent a reply to the write request). Otherwise 2042 * there could be more than one temporary page instance for each real 2043 * page. 2044 * 2045 * This is ensured by holding the page lock in page_mkwrite() while 2046 * checking fuse_page_is_writeback(). We already hold the page lock 2047 * since clear_page_dirty_for_io() and keep it held until we add the 2048 * request to the fi->writepages list and increment ap->num_pages. 2049 * After this fuse_page_is_writeback() will indicate that the page is 2050 * under writeback, so we can release the page lock. 2051 */ 2052 if (data->wpa == NULL) { 2053 err = -ENOMEM; 2054 wpa = fuse_writepage_args_alloc(); 2055 if (!wpa) { 2056 __free_page(tmp_page); 2057 goto out_unlock; 2058 } 2059 data->max_pages = 1; 2060 2061 ap = &wpa->ia.ap; 2062 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2063 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2064 wpa->next = NULL; 2065 ap->args.in_pages = true; 2066 ap->args.end = fuse_writepage_end; 2067 ap->num_pages = 0; 2068 wpa->inode = inode; 2069 2070 spin_lock(&fi->lock); 2071 list_add(&wpa->writepages_entry, &fi->writepages); 2072 spin_unlock(&fi->lock); 2073 2074 data->wpa = wpa; 2075 } 2076 set_page_writeback(page); 2077 2078 copy_highpage(tmp_page, page); 2079 ap->pages[ap->num_pages] = tmp_page; 2080 ap->descs[ap->num_pages].offset = 0; 2081 ap->descs[ap->num_pages].length = PAGE_SIZE; 2082 2083 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2084 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2085 2086 err = 0; 2087 if (is_writeback && fuse_writepage_in_flight(wpa, page)) { 2088 end_page_writeback(page); 2089 data->wpa = NULL; 2090 goto out_unlock; 2091 } 2092 data->orig_pages[ap->num_pages] = page; 2093 2094 /* 2095 * Protected by fi->lock against concurrent access by 2096 * fuse_page_is_writeback(). 2097 */ 2098 spin_lock(&fi->lock); 2099 ap->num_pages++; 2100 spin_unlock(&fi->lock); 2101 2102 out_unlock: 2103 unlock_page(page); 2104 2105 return err; 2106 } 2107 2108 static int fuse_writepages(struct address_space *mapping, 2109 struct writeback_control *wbc) 2110 { 2111 struct inode *inode = mapping->host; 2112 struct fuse_conn *fc = get_fuse_conn(inode); 2113 struct fuse_fill_wb_data data; 2114 int err; 2115 2116 err = -EIO; 2117 if (is_bad_inode(inode)) 2118 goto out; 2119 2120 data.inode = inode; 2121 data.wpa = NULL; 2122 data.ff = NULL; 2123 2124 err = -ENOMEM; 2125 data.orig_pages = kcalloc(fc->max_pages, 2126 sizeof(struct page *), 2127 GFP_NOFS); 2128 if (!data.orig_pages) 2129 goto out; 2130 2131 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2132 if (data.wpa) { 2133 /* Ignore errors if we can write at least one page */ 2134 WARN_ON(!data.wpa->ia.ap.num_pages); 2135 fuse_writepages_send(&data); 2136 err = 0; 2137 } 2138 if (data.ff) 2139 fuse_file_put(data.ff, false, false); 2140 2141 kfree(data.orig_pages); 2142 out: 2143 return err; 2144 } 2145 2146 /* 2147 * It's worthy to make sure that space is reserved on disk for the write, 2148 * but how to implement it without killing performance need more thinking. 2149 */ 2150 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2151 loff_t pos, unsigned len, unsigned flags, 2152 struct page **pagep, void **fsdata) 2153 { 2154 pgoff_t index = pos >> PAGE_SHIFT; 2155 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2156 struct page *page; 2157 loff_t fsize; 2158 int err = -ENOMEM; 2159 2160 WARN_ON(!fc->writeback_cache); 2161 2162 page = grab_cache_page_write_begin(mapping, index, flags); 2163 if (!page) 2164 goto error; 2165 2166 fuse_wait_on_page_writeback(mapping->host, page->index); 2167 2168 if (PageUptodate(page) || len == PAGE_SIZE) 2169 goto success; 2170 /* 2171 * Check if the start this page comes after the end of file, in which 2172 * case the readpage can be optimized away. 2173 */ 2174 fsize = i_size_read(mapping->host); 2175 if (fsize <= (pos & PAGE_MASK)) { 2176 size_t off = pos & ~PAGE_MASK; 2177 if (off) 2178 zero_user_segment(page, 0, off); 2179 goto success; 2180 } 2181 err = fuse_do_readpage(file, page); 2182 if (err) 2183 goto cleanup; 2184 success: 2185 *pagep = page; 2186 return 0; 2187 2188 cleanup: 2189 unlock_page(page); 2190 put_page(page); 2191 error: 2192 return err; 2193 } 2194 2195 static int fuse_write_end(struct file *file, struct address_space *mapping, 2196 loff_t pos, unsigned len, unsigned copied, 2197 struct page *page, void *fsdata) 2198 { 2199 struct inode *inode = page->mapping->host; 2200 2201 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2202 if (!copied) 2203 goto unlock; 2204 2205 if (!PageUptodate(page)) { 2206 /* Zero any unwritten bytes at the end of the page */ 2207 size_t endoff = (pos + copied) & ~PAGE_MASK; 2208 if (endoff) 2209 zero_user_segment(page, endoff, PAGE_SIZE); 2210 SetPageUptodate(page); 2211 } 2212 2213 fuse_write_update_size(inode, pos + copied); 2214 set_page_dirty(page); 2215 2216 unlock: 2217 unlock_page(page); 2218 put_page(page); 2219 2220 return copied; 2221 } 2222 2223 static int fuse_launder_page(struct page *page) 2224 { 2225 int err = 0; 2226 if (clear_page_dirty_for_io(page)) { 2227 struct inode *inode = page->mapping->host; 2228 err = fuse_writepage_locked(page); 2229 if (!err) 2230 fuse_wait_on_page_writeback(inode, page->index); 2231 } 2232 return err; 2233 } 2234 2235 /* 2236 * Write back dirty pages now, because there may not be any suitable 2237 * open files later 2238 */ 2239 static void fuse_vma_close(struct vm_area_struct *vma) 2240 { 2241 filemap_write_and_wait(vma->vm_file->f_mapping); 2242 } 2243 2244 /* 2245 * Wait for writeback against this page to complete before allowing it 2246 * to be marked dirty again, and hence written back again, possibly 2247 * before the previous writepage completed. 2248 * 2249 * Block here, instead of in ->writepage(), so that the userspace fs 2250 * can only block processes actually operating on the filesystem. 2251 * 2252 * Otherwise unprivileged userspace fs would be able to block 2253 * unrelated: 2254 * 2255 * - page migration 2256 * - sync(2) 2257 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2258 */ 2259 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2260 { 2261 struct page *page = vmf->page; 2262 struct inode *inode = file_inode(vmf->vma->vm_file); 2263 2264 file_update_time(vmf->vma->vm_file); 2265 lock_page(page); 2266 if (page->mapping != inode->i_mapping) { 2267 unlock_page(page); 2268 return VM_FAULT_NOPAGE; 2269 } 2270 2271 fuse_wait_on_page_writeback(inode, page->index); 2272 return VM_FAULT_LOCKED; 2273 } 2274 2275 static const struct vm_operations_struct fuse_file_vm_ops = { 2276 .close = fuse_vma_close, 2277 .fault = filemap_fault, 2278 .map_pages = filemap_map_pages, 2279 .page_mkwrite = fuse_page_mkwrite, 2280 }; 2281 2282 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2283 { 2284 struct fuse_file *ff = file->private_data; 2285 2286 if (ff->open_flags & FOPEN_DIRECT_IO) { 2287 /* Can't provide the coherency needed for MAP_SHARED */ 2288 if (vma->vm_flags & VM_MAYSHARE) 2289 return -ENODEV; 2290 2291 invalidate_inode_pages2(file->f_mapping); 2292 2293 return generic_file_mmap(file, vma); 2294 } 2295 2296 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2297 fuse_link_write_file(file); 2298 2299 file_accessed(file); 2300 vma->vm_ops = &fuse_file_vm_ops; 2301 return 0; 2302 } 2303 2304 static int convert_fuse_file_lock(struct fuse_conn *fc, 2305 const struct fuse_file_lock *ffl, 2306 struct file_lock *fl) 2307 { 2308 switch (ffl->type) { 2309 case F_UNLCK: 2310 break; 2311 2312 case F_RDLCK: 2313 case F_WRLCK: 2314 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2315 ffl->end < ffl->start) 2316 return -EIO; 2317 2318 fl->fl_start = ffl->start; 2319 fl->fl_end = ffl->end; 2320 2321 /* 2322 * Convert pid into init's pid namespace. The locks API will 2323 * translate it into the caller's pid namespace. 2324 */ 2325 rcu_read_lock(); 2326 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2327 rcu_read_unlock(); 2328 break; 2329 2330 default: 2331 return -EIO; 2332 } 2333 fl->fl_type = ffl->type; 2334 return 0; 2335 } 2336 2337 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2338 const struct file_lock *fl, int opcode, pid_t pid, 2339 int flock, struct fuse_lk_in *inarg) 2340 { 2341 struct inode *inode = file_inode(file); 2342 struct fuse_conn *fc = get_fuse_conn(inode); 2343 struct fuse_file *ff = file->private_data; 2344 2345 memset(inarg, 0, sizeof(*inarg)); 2346 inarg->fh = ff->fh; 2347 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2348 inarg->lk.start = fl->fl_start; 2349 inarg->lk.end = fl->fl_end; 2350 inarg->lk.type = fl->fl_type; 2351 inarg->lk.pid = pid; 2352 if (flock) 2353 inarg->lk_flags |= FUSE_LK_FLOCK; 2354 args->opcode = opcode; 2355 args->nodeid = get_node_id(inode); 2356 args->in_numargs = 1; 2357 args->in_args[0].size = sizeof(*inarg); 2358 args->in_args[0].value = inarg; 2359 } 2360 2361 static int fuse_getlk(struct file *file, struct file_lock *fl) 2362 { 2363 struct inode *inode = file_inode(file); 2364 struct fuse_conn *fc = get_fuse_conn(inode); 2365 FUSE_ARGS(args); 2366 struct fuse_lk_in inarg; 2367 struct fuse_lk_out outarg; 2368 int err; 2369 2370 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2371 args.out_numargs = 1; 2372 args.out_args[0].size = sizeof(outarg); 2373 args.out_args[0].value = &outarg; 2374 err = fuse_simple_request(fc, &args); 2375 if (!err) 2376 err = convert_fuse_file_lock(fc, &outarg.lk, fl); 2377 2378 return err; 2379 } 2380 2381 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2382 { 2383 struct inode *inode = file_inode(file); 2384 struct fuse_conn *fc = get_fuse_conn(inode); 2385 FUSE_ARGS(args); 2386 struct fuse_lk_in inarg; 2387 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2388 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2389 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns); 2390 int err; 2391 2392 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2393 /* NLM needs asynchronous locks, which we don't support yet */ 2394 return -ENOLCK; 2395 } 2396 2397 /* Unlock on close is handled by the flush method */ 2398 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2399 return 0; 2400 2401 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2402 err = fuse_simple_request(fc, &args); 2403 2404 /* locking is restartable */ 2405 if (err == -EINTR) 2406 err = -ERESTARTSYS; 2407 2408 return err; 2409 } 2410 2411 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2412 { 2413 struct inode *inode = file_inode(file); 2414 struct fuse_conn *fc = get_fuse_conn(inode); 2415 int err; 2416 2417 if (cmd == F_CANCELLK) { 2418 err = 0; 2419 } else if (cmd == F_GETLK) { 2420 if (fc->no_lock) { 2421 posix_test_lock(file, fl); 2422 err = 0; 2423 } else 2424 err = fuse_getlk(file, fl); 2425 } else { 2426 if (fc->no_lock) 2427 err = posix_lock_file(file, fl, NULL); 2428 else 2429 err = fuse_setlk(file, fl, 0); 2430 } 2431 return err; 2432 } 2433 2434 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2435 { 2436 struct inode *inode = file_inode(file); 2437 struct fuse_conn *fc = get_fuse_conn(inode); 2438 int err; 2439 2440 if (fc->no_flock) { 2441 err = locks_lock_file_wait(file, fl); 2442 } else { 2443 struct fuse_file *ff = file->private_data; 2444 2445 /* emulate flock with POSIX locks */ 2446 ff->flock = true; 2447 err = fuse_setlk(file, fl, 1); 2448 } 2449 2450 return err; 2451 } 2452 2453 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2454 { 2455 struct inode *inode = mapping->host; 2456 struct fuse_conn *fc = get_fuse_conn(inode); 2457 FUSE_ARGS(args); 2458 struct fuse_bmap_in inarg; 2459 struct fuse_bmap_out outarg; 2460 int err; 2461 2462 if (!inode->i_sb->s_bdev || fc->no_bmap) 2463 return 0; 2464 2465 memset(&inarg, 0, sizeof(inarg)); 2466 inarg.block = block; 2467 inarg.blocksize = inode->i_sb->s_blocksize; 2468 args.opcode = FUSE_BMAP; 2469 args.nodeid = get_node_id(inode); 2470 args.in_numargs = 1; 2471 args.in_args[0].size = sizeof(inarg); 2472 args.in_args[0].value = &inarg; 2473 args.out_numargs = 1; 2474 args.out_args[0].size = sizeof(outarg); 2475 args.out_args[0].value = &outarg; 2476 err = fuse_simple_request(fc, &args); 2477 if (err == -ENOSYS) 2478 fc->no_bmap = 1; 2479 2480 return err ? 0 : outarg.block; 2481 } 2482 2483 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2484 { 2485 struct inode *inode = file->f_mapping->host; 2486 struct fuse_conn *fc = get_fuse_conn(inode); 2487 struct fuse_file *ff = file->private_data; 2488 FUSE_ARGS(args); 2489 struct fuse_lseek_in inarg = { 2490 .fh = ff->fh, 2491 .offset = offset, 2492 .whence = whence 2493 }; 2494 struct fuse_lseek_out outarg; 2495 int err; 2496 2497 if (fc->no_lseek) 2498 goto fallback; 2499 2500 args.opcode = FUSE_LSEEK; 2501 args.nodeid = ff->nodeid; 2502 args.in_numargs = 1; 2503 args.in_args[0].size = sizeof(inarg); 2504 args.in_args[0].value = &inarg; 2505 args.out_numargs = 1; 2506 args.out_args[0].size = sizeof(outarg); 2507 args.out_args[0].value = &outarg; 2508 err = fuse_simple_request(fc, &args); 2509 if (err) { 2510 if (err == -ENOSYS) { 2511 fc->no_lseek = 1; 2512 goto fallback; 2513 } 2514 return err; 2515 } 2516 2517 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2518 2519 fallback: 2520 err = fuse_update_attributes(inode, file); 2521 if (!err) 2522 return generic_file_llseek(file, offset, whence); 2523 else 2524 return err; 2525 } 2526 2527 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2528 { 2529 loff_t retval; 2530 struct inode *inode = file_inode(file); 2531 2532 switch (whence) { 2533 case SEEK_SET: 2534 case SEEK_CUR: 2535 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2536 retval = generic_file_llseek(file, offset, whence); 2537 break; 2538 case SEEK_END: 2539 inode_lock(inode); 2540 retval = fuse_update_attributes(inode, file); 2541 if (!retval) 2542 retval = generic_file_llseek(file, offset, whence); 2543 inode_unlock(inode); 2544 break; 2545 case SEEK_HOLE: 2546 case SEEK_DATA: 2547 inode_lock(inode); 2548 retval = fuse_lseek(file, offset, whence); 2549 inode_unlock(inode); 2550 break; 2551 default: 2552 retval = -EINVAL; 2553 } 2554 2555 return retval; 2556 } 2557 2558 /* 2559 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2560 * ABI was defined to be 'struct iovec' which is different on 32bit 2561 * and 64bit. Fortunately we can determine which structure the server 2562 * used from the size of the reply. 2563 */ 2564 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2565 size_t transferred, unsigned count, 2566 bool is_compat) 2567 { 2568 #ifdef CONFIG_COMPAT 2569 if (count * sizeof(struct compat_iovec) == transferred) { 2570 struct compat_iovec *ciov = src; 2571 unsigned i; 2572 2573 /* 2574 * With this interface a 32bit server cannot support 2575 * non-compat (i.e. ones coming from 64bit apps) ioctl 2576 * requests 2577 */ 2578 if (!is_compat) 2579 return -EINVAL; 2580 2581 for (i = 0; i < count; i++) { 2582 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2583 dst[i].iov_len = ciov[i].iov_len; 2584 } 2585 return 0; 2586 } 2587 #endif 2588 2589 if (count * sizeof(struct iovec) != transferred) 2590 return -EIO; 2591 2592 memcpy(dst, src, transferred); 2593 return 0; 2594 } 2595 2596 /* Make sure iov_length() won't overflow */ 2597 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov, 2598 size_t count) 2599 { 2600 size_t n; 2601 u32 max = fc->max_pages << PAGE_SHIFT; 2602 2603 for (n = 0; n < count; n++, iov++) { 2604 if (iov->iov_len > (size_t) max) 2605 return -ENOMEM; 2606 max -= iov->iov_len; 2607 } 2608 return 0; 2609 } 2610 2611 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2612 void *src, size_t transferred, unsigned count, 2613 bool is_compat) 2614 { 2615 unsigned i; 2616 struct fuse_ioctl_iovec *fiov = src; 2617 2618 if (fc->minor < 16) { 2619 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2620 count, is_compat); 2621 } 2622 2623 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2624 return -EIO; 2625 2626 for (i = 0; i < count; i++) { 2627 /* Did the server supply an inappropriate value? */ 2628 if (fiov[i].base != (unsigned long) fiov[i].base || 2629 fiov[i].len != (unsigned long) fiov[i].len) 2630 return -EIO; 2631 2632 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2633 dst[i].iov_len = (size_t) fiov[i].len; 2634 2635 #ifdef CONFIG_COMPAT 2636 if (is_compat && 2637 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2638 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2639 return -EIO; 2640 #endif 2641 } 2642 2643 return 0; 2644 } 2645 2646 2647 /* 2648 * For ioctls, there is no generic way to determine how much memory 2649 * needs to be read and/or written. Furthermore, ioctls are allowed 2650 * to dereference the passed pointer, so the parameter requires deep 2651 * copying but FUSE has no idea whatsoever about what to copy in or 2652 * out. 2653 * 2654 * This is solved by allowing FUSE server to retry ioctl with 2655 * necessary in/out iovecs. Let's assume the ioctl implementation 2656 * needs to read in the following structure. 2657 * 2658 * struct a { 2659 * char *buf; 2660 * size_t buflen; 2661 * } 2662 * 2663 * On the first callout to FUSE server, inarg->in_size and 2664 * inarg->out_size will be NULL; then, the server completes the ioctl 2665 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2666 * the actual iov array to 2667 * 2668 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2669 * 2670 * which tells FUSE to copy in the requested area and retry the ioctl. 2671 * On the second round, the server has access to the structure and 2672 * from that it can tell what to look for next, so on the invocation, 2673 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2674 * 2675 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2676 * { .iov_base = a.buf, .iov_len = a.buflen } } 2677 * 2678 * FUSE will copy both struct a and the pointed buffer from the 2679 * process doing the ioctl and retry ioctl with both struct a and the 2680 * buffer. 2681 * 2682 * This time, FUSE server has everything it needs and completes ioctl 2683 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2684 * 2685 * Copying data out works the same way. 2686 * 2687 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2688 * automatically initializes in and out iovs by decoding @cmd with 2689 * _IOC_* macros and the server is not allowed to request RETRY. This 2690 * limits ioctl data transfers to well-formed ioctls and is the forced 2691 * behavior for all FUSE servers. 2692 */ 2693 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2694 unsigned int flags) 2695 { 2696 struct fuse_file *ff = file->private_data; 2697 struct fuse_conn *fc = ff->fc; 2698 struct fuse_ioctl_in inarg = { 2699 .fh = ff->fh, 2700 .cmd = cmd, 2701 .arg = arg, 2702 .flags = flags 2703 }; 2704 struct fuse_ioctl_out outarg; 2705 struct iovec *iov_page = NULL; 2706 struct iovec *in_iov = NULL, *out_iov = NULL; 2707 unsigned int in_iovs = 0, out_iovs = 0, max_pages; 2708 size_t in_size, out_size, c; 2709 ssize_t transferred; 2710 int err, i; 2711 struct iov_iter ii; 2712 struct fuse_args_pages ap = {}; 2713 2714 #if BITS_PER_LONG == 32 2715 inarg.flags |= FUSE_IOCTL_32BIT; 2716 #else 2717 if (flags & FUSE_IOCTL_COMPAT) { 2718 inarg.flags |= FUSE_IOCTL_32BIT; 2719 #ifdef CONFIG_X86_X32 2720 if (in_x32_syscall()) 2721 inarg.flags |= FUSE_IOCTL_COMPAT_X32; 2722 #endif 2723 } 2724 #endif 2725 2726 /* assume all the iovs returned by client always fits in a page */ 2727 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2728 2729 err = -ENOMEM; 2730 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs); 2731 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2732 if (!ap.pages || !iov_page) 2733 goto out; 2734 2735 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages); 2736 2737 /* 2738 * If restricted, initialize IO parameters as encoded in @cmd. 2739 * RETRY from server is not allowed. 2740 */ 2741 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2742 struct iovec *iov = iov_page; 2743 2744 iov->iov_base = (void __user *)arg; 2745 iov->iov_len = _IOC_SIZE(cmd); 2746 2747 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2748 in_iov = iov; 2749 in_iovs = 1; 2750 } 2751 2752 if (_IOC_DIR(cmd) & _IOC_READ) { 2753 out_iov = iov; 2754 out_iovs = 1; 2755 } 2756 } 2757 2758 retry: 2759 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2760 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2761 2762 /* 2763 * Out data can be used either for actual out data or iovs, 2764 * make sure there always is at least one page. 2765 */ 2766 out_size = max_t(size_t, out_size, PAGE_SIZE); 2767 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2768 2769 /* make sure there are enough buffer pages and init request with them */ 2770 err = -ENOMEM; 2771 if (max_pages > fc->max_pages) 2772 goto out; 2773 while (ap.num_pages < max_pages) { 2774 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2775 if (!ap.pages[ap.num_pages]) 2776 goto out; 2777 ap.num_pages++; 2778 } 2779 2780 2781 /* okay, let's send it to the client */ 2782 ap.args.opcode = FUSE_IOCTL; 2783 ap.args.nodeid = ff->nodeid; 2784 ap.args.in_numargs = 1; 2785 ap.args.in_args[0].size = sizeof(inarg); 2786 ap.args.in_args[0].value = &inarg; 2787 if (in_size) { 2788 ap.args.in_numargs++; 2789 ap.args.in_args[1].size = in_size; 2790 ap.args.in_pages = true; 2791 2792 err = -EFAULT; 2793 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size); 2794 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2795 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2796 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2797 goto out; 2798 } 2799 } 2800 2801 ap.args.out_numargs = 2; 2802 ap.args.out_args[0].size = sizeof(outarg); 2803 ap.args.out_args[0].value = &outarg; 2804 ap.args.out_args[1].size = out_size; 2805 ap.args.out_pages = true; 2806 ap.args.out_argvar = true; 2807 2808 transferred = fuse_simple_request(fc, &ap.args); 2809 err = transferred; 2810 if (transferred < 0) 2811 goto out; 2812 2813 /* did it ask for retry? */ 2814 if (outarg.flags & FUSE_IOCTL_RETRY) { 2815 void *vaddr; 2816 2817 /* no retry if in restricted mode */ 2818 err = -EIO; 2819 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2820 goto out; 2821 2822 in_iovs = outarg.in_iovs; 2823 out_iovs = outarg.out_iovs; 2824 2825 /* 2826 * Make sure things are in boundary, separate checks 2827 * are to protect against overflow. 2828 */ 2829 err = -ENOMEM; 2830 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2831 out_iovs > FUSE_IOCTL_MAX_IOV || 2832 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2833 goto out; 2834 2835 vaddr = kmap_atomic(ap.pages[0]); 2836 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2837 transferred, in_iovs + out_iovs, 2838 (flags & FUSE_IOCTL_COMPAT) != 0); 2839 kunmap_atomic(vaddr); 2840 if (err) 2841 goto out; 2842 2843 in_iov = iov_page; 2844 out_iov = in_iov + in_iovs; 2845 2846 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs); 2847 if (err) 2848 goto out; 2849 2850 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs); 2851 if (err) 2852 goto out; 2853 2854 goto retry; 2855 } 2856 2857 err = -EIO; 2858 if (transferred > inarg.out_size) 2859 goto out; 2860 2861 err = -EFAULT; 2862 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred); 2863 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2864 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2865 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2866 goto out; 2867 } 2868 err = 0; 2869 out: 2870 free_page((unsigned long) iov_page); 2871 while (ap.num_pages) 2872 __free_page(ap.pages[--ap.num_pages]); 2873 kfree(ap.pages); 2874 2875 return err ? err : outarg.result; 2876 } 2877 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2878 2879 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2880 unsigned long arg, unsigned int flags) 2881 { 2882 struct inode *inode = file_inode(file); 2883 struct fuse_conn *fc = get_fuse_conn(inode); 2884 2885 if (!fuse_allow_current_process(fc)) 2886 return -EACCES; 2887 2888 if (is_bad_inode(inode)) 2889 return -EIO; 2890 2891 return fuse_do_ioctl(file, cmd, arg, flags); 2892 } 2893 2894 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2895 unsigned long arg) 2896 { 2897 return fuse_ioctl_common(file, cmd, arg, 0); 2898 } 2899 2900 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2901 unsigned long arg) 2902 { 2903 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2904 } 2905 2906 /* 2907 * All files which have been polled are linked to RB tree 2908 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2909 * find the matching one. 2910 */ 2911 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2912 struct rb_node **parent_out) 2913 { 2914 struct rb_node **link = &fc->polled_files.rb_node; 2915 struct rb_node *last = NULL; 2916 2917 while (*link) { 2918 struct fuse_file *ff; 2919 2920 last = *link; 2921 ff = rb_entry(last, struct fuse_file, polled_node); 2922 2923 if (kh < ff->kh) 2924 link = &last->rb_left; 2925 else if (kh > ff->kh) 2926 link = &last->rb_right; 2927 else 2928 return link; 2929 } 2930 2931 if (parent_out) 2932 *parent_out = last; 2933 return link; 2934 } 2935 2936 /* 2937 * The file is about to be polled. Make sure it's on the polled_files 2938 * RB tree. Note that files once added to the polled_files tree are 2939 * not removed before the file is released. This is because a file 2940 * polled once is likely to be polled again. 2941 */ 2942 static void fuse_register_polled_file(struct fuse_conn *fc, 2943 struct fuse_file *ff) 2944 { 2945 spin_lock(&fc->lock); 2946 if (RB_EMPTY_NODE(&ff->polled_node)) { 2947 struct rb_node **link, *uninitialized_var(parent); 2948 2949 link = fuse_find_polled_node(fc, ff->kh, &parent); 2950 BUG_ON(*link); 2951 rb_link_node(&ff->polled_node, parent, link); 2952 rb_insert_color(&ff->polled_node, &fc->polled_files); 2953 } 2954 spin_unlock(&fc->lock); 2955 } 2956 2957 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2958 { 2959 struct fuse_file *ff = file->private_data; 2960 struct fuse_conn *fc = ff->fc; 2961 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2962 struct fuse_poll_out outarg; 2963 FUSE_ARGS(args); 2964 int err; 2965 2966 if (fc->no_poll) 2967 return DEFAULT_POLLMASK; 2968 2969 poll_wait(file, &ff->poll_wait, wait); 2970 inarg.events = mangle_poll(poll_requested_events(wait)); 2971 2972 /* 2973 * Ask for notification iff there's someone waiting for it. 2974 * The client may ignore the flag and always notify. 2975 */ 2976 if (waitqueue_active(&ff->poll_wait)) { 2977 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2978 fuse_register_polled_file(fc, ff); 2979 } 2980 2981 args.opcode = FUSE_POLL; 2982 args.nodeid = ff->nodeid; 2983 args.in_numargs = 1; 2984 args.in_args[0].size = sizeof(inarg); 2985 args.in_args[0].value = &inarg; 2986 args.out_numargs = 1; 2987 args.out_args[0].size = sizeof(outarg); 2988 args.out_args[0].value = &outarg; 2989 err = fuse_simple_request(fc, &args); 2990 2991 if (!err) 2992 return demangle_poll(outarg.revents); 2993 if (err == -ENOSYS) { 2994 fc->no_poll = 1; 2995 return DEFAULT_POLLMASK; 2996 } 2997 return EPOLLERR; 2998 } 2999 EXPORT_SYMBOL_GPL(fuse_file_poll); 3000 3001 /* 3002 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 3003 * wakes up the poll waiters. 3004 */ 3005 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 3006 struct fuse_notify_poll_wakeup_out *outarg) 3007 { 3008 u64 kh = outarg->kh; 3009 struct rb_node **link; 3010 3011 spin_lock(&fc->lock); 3012 3013 link = fuse_find_polled_node(fc, kh, NULL); 3014 if (*link) { 3015 struct fuse_file *ff; 3016 3017 ff = rb_entry(*link, struct fuse_file, polled_node); 3018 wake_up_interruptible_sync(&ff->poll_wait); 3019 } 3020 3021 spin_unlock(&fc->lock); 3022 return 0; 3023 } 3024 3025 static void fuse_do_truncate(struct file *file) 3026 { 3027 struct inode *inode = file->f_mapping->host; 3028 struct iattr attr; 3029 3030 attr.ia_valid = ATTR_SIZE; 3031 attr.ia_size = i_size_read(inode); 3032 3033 attr.ia_file = file; 3034 attr.ia_valid |= ATTR_FILE; 3035 3036 fuse_do_setattr(file_dentry(file), &attr, file); 3037 } 3038 3039 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 3040 { 3041 return round_up(off, fc->max_pages << PAGE_SHIFT); 3042 } 3043 3044 static ssize_t 3045 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3046 { 3047 DECLARE_COMPLETION_ONSTACK(wait); 3048 ssize_t ret = 0; 3049 struct file *file = iocb->ki_filp; 3050 struct fuse_file *ff = file->private_data; 3051 bool async_dio = ff->fc->async_dio; 3052 loff_t pos = 0; 3053 struct inode *inode; 3054 loff_t i_size; 3055 size_t count = iov_iter_count(iter); 3056 loff_t offset = iocb->ki_pos; 3057 struct fuse_io_priv *io; 3058 3059 pos = offset; 3060 inode = file->f_mapping->host; 3061 i_size = i_size_read(inode); 3062 3063 if ((iov_iter_rw(iter) == READ) && (offset > i_size)) 3064 return 0; 3065 3066 /* optimization for short read */ 3067 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) { 3068 if (offset >= i_size) 3069 return 0; 3070 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset)); 3071 count = iov_iter_count(iter); 3072 } 3073 3074 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3075 if (!io) 3076 return -ENOMEM; 3077 spin_lock_init(&io->lock); 3078 kref_init(&io->refcnt); 3079 io->reqs = 1; 3080 io->bytes = -1; 3081 io->size = 0; 3082 io->offset = offset; 3083 io->write = (iov_iter_rw(iter) == WRITE); 3084 io->err = 0; 3085 /* 3086 * By default, we want to optimize all I/Os with async request 3087 * submission to the client filesystem if supported. 3088 */ 3089 io->async = async_dio; 3090 io->iocb = iocb; 3091 io->blocking = is_sync_kiocb(iocb); 3092 3093 /* 3094 * We cannot asynchronously extend the size of a file. 3095 * In such case the aio will behave exactly like sync io. 3096 */ 3097 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE) 3098 io->blocking = true; 3099 3100 if (io->async && io->blocking) { 3101 /* 3102 * Additional reference to keep io around after 3103 * calling fuse_aio_complete() 3104 */ 3105 kref_get(&io->refcnt); 3106 io->done = &wait; 3107 } 3108 3109 if (iov_iter_rw(iter) == WRITE) { 3110 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3111 fuse_invalidate_attr(inode); 3112 } else { 3113 ret = __fuse_direct_read(io, iter, &pos); 3114 } 3115 3116 if (io->async) { 3117 bool blocking = io->blocking; 3118 3119 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3120 3121 /* we have a non-extending, async request, so return */ 3122 if (!blocking) 3123 return -EIOCBQUEUED; 3124 3125 wait_for_completion(&wait); 3126 ret = fuse_get_res_by_io(io); 3127 } 3128 3129 kref_put(&io->refcnt, fuse_io_release); 3130 3131 if (iov_iter_rw(iter) == WRITE) { 3132 if (ret > 0) 3133 fuse_write_update_size(inode, pos); 3134 else if (ret < 0 && offset + count > i_size) 3135 fuse_do_truncate(file); 3136 } 3137 3138 return ret; 3139 } 3140 3141 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3142 { 3143 int err = filemap_write_and_wait_range(inode->i_mapping, start, end); 3144 3145 if (!err) 3146 fuse_sync_writes(inode); 3147 3148 return err; 3149 } 3150 3151 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3152 loff_t length) 3153 { 3154 struct fuse_file *ff = file->private_data; 3155 struct inode *inode = file_inode(file); 3156 struct fuse_inode *fi = get_fuse_inode(inode); 3157 struct fuse_conn *fc = ff->fc; 3158 FUSE_ARGS(args); 3159 struct fuse_fallocate_in inarg = { 3160 .fh = ff->fh, 3161 .offset = offset, 3162 .length = length, 3163 .mode = mode 3164 }; 3165 int err; 3166 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 3167 (mode & FALLOC_FL_PUNCH_HOLE); 3168 3169 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3170 return -EOPNOTSUPP; 3171 3172 if (fc->no_fallocate) 3173 return -EOPNOTSUPP; 3174 3175 if (lock_inode) { 3176 inode_lock(inode); 3177 if (mode & FALLOC_FL_PUNCH_HOLE) { 3178 loff_t endbyte = offset + length - 1; 3179 3180 err = fuse_writeback_range(inode, offset, endbyte); 3181 if (err) 3182 goto out; 3183 } 3184 } 3185 3186 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3187 offset + length > i_size_read(inode)) { 3188 err = inode_newsize_ok(inode, offset + length); 3189 if (err) 3190 goto out; 3191 } 3192 3193 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3194 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3195 3196 args.opcode = FUSE_FALLOCATE; 3197 args.nodeid = ff->nodeid; 3198 args.in_numargs = 1; 3199 args.in_args[0].size = sizeof(inarg); 3200 args.in_args[0].value = &inarg; 3201 err = fuse_simple_request(fc, &args); 3202 if (err == -ENOSYS) { 3203 fc->no_fallocate = 1; 3204 err = -EOPNOTSUPP; 3205 } 3206 if (err) 3207 goto out; 3208 3209 /* we could have extended the file */ 3210 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3211 bool changed = fuse_write_update_size(inode, offset + length); 3212 3213 if (changed && fc->writeback_cache) 3214 file_update_time(file); 3215 } 3216 3217 if (mode & FALLOC_FL_PUNCH_HOLE) 3218 truncate_pagecache_range(inode, offset, offset + length - 1); 3219 3220 fuse_invalidate_attr(inode); 3221 3222 out: 3223 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3224 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3225 3226 if (lock_inode) 3227 inode_unlock(inode); 3228 3229 return err; 3230 } 3231 3232 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3233 struct file *file_out, loff_t pos_out, 3234 size_t len, unsigned int flags) 3235 { 3236 struct fuse_file *ff_in = file_in->private_data; 3237 struct fuse_file *ff_out = file_out->private_data; 3238 struct inode *inode_in = file_inode(file_in); 3239 struct inode *inode_out = file_inode(file_out); 3240 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3241 struct fuse_conn *fc = ff_in->fc; 3242 FUSE_ARGS(args); 3243 struct fuse_copy_file_range_in inarg = { 3244 .fh_in = ff_in->fh, 3245 .off_in = pos_in, 3246 .nodeid_out = ff_out->nodeid, 3247 .fh_out = ff_out->fh, 3248 .off_out = pos_out, 3249 .len = len, 3250 .flags = flags 3251 }; 3252 struct fuse_write_out outarg; 3253 ssize_t err; 3254 /* mark unstable when write-back is not used, and file_out gets 3255 * extended */ 3256 bool is_unstable = (!fc->writeback_cache) && 3257 ((pos_out + len) > inode_out->i_size); 3258 3259 if (fc->no_copy_file_range) 3260 return -EOPNOTSUPP; 3261 3262 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3263 return -EXDEV; 3264 3265 if (fc->writeback_cache) { 3266 inode_lock(inode_in); 3267 err = fuse_writeback_range(inode_in, pos_in, pos_in + len); 3268 inode_unlock(inode_in); 3269 if (err) 3270 return err; 3271 } 3272 3273 inode_lock(inode_out); 3274 3275 err = file_modified(file_out); 3276 if (err) 3277 goto out; 3278 3279 if (fc->writeback_cache) { 3280 err = fuse_writeback_range(inode_out, pos_out, pos_out + len); 3281 if (err) 3282 goto out; 3283 } 3284 3285 if (is_unstable) 3286 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3287 3288 args.opcode = FUSE_COPY_FILE_RANGE; 3289 args.nodeid = ff_in->nodeid; 3290 args.in_numargs = 1; 3291 args.in_args[0].size = sizeof(inarg); 3292 args.in_args[0].value = &inarg; 3293 args.out_numargs = 1; 3294 args.out_args[0].size = sizeof(outarg); 3295 args.out_args[0].value = &outarg; 3296 err = fuse_simple_request(fc, &args); 3297 if (err == -ENOSYS) { 3298 fc->no_copy_file_range = 1; 3299 err = -EOPNOTSUPP; 3300 } 3301 if (err) 3302 goto out; 3303 3304 if (fc->writeback_cache) { 3305 fuse_write_update_size(inode_out, pos_out + outarg.size); 3306 file_update_time(file_out); 3307 } 3308 3309 fuse_invalidate_attr(inode_out); 3310 3311 err = outarg.size; 3312 out: 3313 if (is_unstable) 3314 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3315 3316 inode_unlock(inode_out); 3317 file_accessed(file_in); 3318 3319 return err; 3320 } 3321 3322 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3323 struct file *dst_file, loff_t dst_off, 3324 size_t len, unsigned int flags) 3325 { 3326 ssize_t ret; 3327 3328 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3329 len, flags); 3330 3331 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3332 ret = generic_copy_file_range(src_file, src_off, dst_file, 3333 dst_off, len, flags); 3334 return ret; 3335 } 3336 3337 static const struct file_operations fuse_file_operations = { 3338 .llseek = fuse_file_llseek, 3339 .read_iter = fuse_file_read_iter, 3340 .write_iter = fuse_file_write_iter, 3341 .mmap = fuse_file_mmap, 3342 .open = fuse_open, 3343 .flush = fuse_flush, 3344 .release = fuse_release, 3345 .fsync = fuse_fsync, 3346 .lock = fuse_file_lock, 3347 .flock = fuse_file_flock, 3348 .splice_read = generic_file_splice_read, 3349 .splice_write = iter_file_splice_write, 3350 .unlocked_ioctl = fuse_file_ioctl, 3351 .compat_ioctl = fuse_file_compat_ioctl, 3352 .poll = fuse_file_poll, 3353 .fallocate = fuse_file_fallocate, 3354 .copy_file_range = fuse_copy_file_range, 3355 }; 3356 3357 static const struct address_space_operations fuse_file_aops = { 3358 .readpage = fuse_readpage, 3359 .writepage = fuse_writepage, 3360 .writepages = fuse_writepages, 3361 .launder_page = fuse_launder_page, 3362 .readpages = fuse_readpages, 3363 .set_page_dirty = __set_page_dirty_nobuffers, 3364 .bmap = fuse_bmap, 3365 .direct_IO = fuse_direct_IO, 3366 .write_begin = fuse_write_begin, 3367 .write_end = fuse_write_end, 3368 }; 3369 3370 void fuse_init_file_inode(struct inode *inode) 3371 { 3372 struct fuse_inode *fi = get_fuse_inode(inode); 3373 3374 inode->i_fop = &fuse_file_operations; 3375 inode->i_data.a_ops = &fuse_file_aops; 3376 3377 INIT_LIST_HEAD(&fi->write_files); 3378 INIT_LIST_HEAD(&fi->queued_writes); 3379 fi->writectr = 0; 3380 init_waitqueue_head(&fi->page_waitq); 3381 INIT_LIST_HEAD(&fi->writepages); 3382 } 3383