1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/compat.h> 18 #include <linux/swap.h> 19 #include <linux/falloc.h> 20 #include <linux/uio.h> 21 22 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 23 int opcode, struct fuse_open_out *outargp) 24 { 25 struct fuse_open_in inarg; 26 FUSE_ARGS(args); 27 28 memset(&inarg, 0, sizeof(inarg)); 29 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 30 if (!fc->atomic_o_trunc) 31 inarg.flags &= ~O_TRUNC; 32 args.in.h.opcode = opcode; 33 args.in.h.nodeid = nodeid; 34 args.in.numargs = 1; 35 args.in.args[0].size = sizeof(inarg); 36 args.in.args[0].value = &inarg; 37 args.out.numargs = 1; 38 args.out.args[0].size = sizeof(*outargp); 39 args.out.args[0].value = outargp; 40 41 return fuse_simple_request(fc, &args); 42 } 43 44 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 45 { 46 struct fuse_file *ff; 47 48 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL); 49 if (unlikely(!ff)) 50 return NULL; 51 52 ff->fc = fc; 53 ff->reserved_req = fuse_request_alloc(0); 54 if (unlikely(!ff->reserved_req)) { 55 kfree(ff); 56 return NULL; 57 } 58 59 INIT_LIST_HEAD(&ff->write_entry); 60 mutex_init(&ff->readdir.lock); 61 refcount_set(&ff->count, 1); 62 RB_CLEAR_NODE(&ff->polled_node); 63 init_waitqueue_head(&ff->poll_wait); 64 65 ff->kh = atomic64_inc_return(&fc->khctr); 66 67 return ff; 68 } 69 70 void fuse_file_free(struct fuse_file *ff) 71 { 72 fuse_request_free(ff->reserved_req); 73 mutex_destroy(&ff->readdir.lock); 74 kfree(ff); 75 } 76 77 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 78 { 79 refcount_inc(&ff->count); 80 return ff; 81 } 82 83 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req) 84 { 85 iput(req->misc.release.inode); 86 } 87 88 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 89 { 90 if (refcount_dec_and_test(&ff->count)) { 91 struct fuse_req *req = ff->reserved_req; 92 93 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) { 94 /* 95 * Drop the release request when client does not 96 * implement 'open' 97 */ 98 __clear_bit(FR_BACKGROUND, &req->flags); 99 iput(req->misc.release.inode); 100 fuse_put_request(ff->fc, req); 101 } else if (sync) { 102 __set_bit(FR_FORCE, &req->flags); 103 __clear_bit(FR_BACKGROUND, &req->flags); 104 fuse_request_send(ff->fc, req); 105 iput(req->misc.release.inode); 106 fuse_put_request(ff->fc, req); 107 } else { 108 req->end = fuse_release_end; 109 __set_bit(FR_BACKGROUND, &req->flags); 110 fuse_request_send_background(ff->fc, req); 111 } 112 kfree(ff); 113 } 114 } 115 116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 117 bool isdir) 118 { 119 struct fuse_file *ff; 120 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 121 122 ff = fuse_file_alloc(fc); 123 if (!ff) 124 return -ENOMEM; 125 126 ff->fh = 0; 127 /* Default for no-open */ 128 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 129 if (isdir ? !fc->no_opendir : !fc->no_open) { 130 struct fuse_open_out outarg; 131 int err; 132 133 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 134 if (!err) { 135 ff->fh = outarg.fh; 136 ff->open_flags = outarg.open_flags; 137 138 } else if (err != -ENOSYS) { 139 fuse_file_free(ff); 140 return err; 141 } else { 142 if (isdir) 143 fc->no_opendir = 1; 144 else 145 fc->no_open = 1; 146 } 147 } 148 149 if (isdir) 150 ff->open_flags &= ~FOPEN_DIRECT_IO; 151 152 ff->nodeid = nodeid; 153 file->private_data = ff; 154 155 return 0; 156 } 157 EXPORT_SYMBOL_GPL(fuse_do_open); 158 159 static void fuse_link_write_file(struct file *file) 160 { 161 struct inode *inode = file_inode(file); 162 struct fuse_inode *fi = get_fuse_inode(inode); 163 struct fuse_file *ff = file->private_data; 164 /* 165 * file may be written through mmap, so chain it onto the 166 * inodes's write_file list 167 */ 168 spin_lock(&fi->lock); 169 if (list_empty(&ff->write_entry)) 170 list_add(&ff->write_entry, &fi->write_files); 171 spin_unlock(&fi->lock); 172 } 173 174 void fuse_finish_open(struct inode *inode, struct file *file) 175 { 176 struct fuse_file *ff = file->private_data; 177 struct fuse_conn *fc = get_fuse_conn(inode); 178 179 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 180 invalidate_inode_pages2(inode->i_mapping); 181 if (ff->open_flags & FOPEN_NONSEEKABLE) 182 nonseekable_open(inode, file); 183 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 184 struct fuse_inode *fi = get_fuse_inode(inode); 185 186 spin_lock(&fi->lock); 187 fi->attr_version = atomic64_inc_return(&fc->attr_version); 188 i_size_write(inode, 0); 189 spin_unlock(&fi->lock); 190 fuse_invalidate_attr(inode); 191 if (fc->writeback_cache) 192 file_update_time(file); 193 } 194 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 195 fuse_link_write_file(file); 196 } 197 198 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 199 { 200 struct fuse_conn *fc = get_fuse_conn(inode); 201 int err; 202 bool lock_inode = (file->f_flags & O_TRUNC) && 203 fc->atomic_o_trunc && 204 fc->writeback_cache; 205 206 err = generic_file_open(inode, file); 207 if (err) 208 return err; 209 210 if (lock_inode) 211 inode_lock(inode); 212 213 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 214 215 if (!err) 216 fuse_finish_open(inode, file); 217 218 if (lock_inode) 219 inode_unlock(inode); 220 221 return err; 222 } 223 224 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 225 int flags, int opcode) 226 { 227 struct fuse_conn *fc = ff->fc; 228 struct fuse_req *req = ff->reserved_req; 229 struct fuse_release_in *inarg = &req->misc.release.in; 230 231 /* Inode is NULL on error path of fuse_create_open() */ 232 if (likely(fi)) { 233 spin_lock(&fi->lock); 234 list_del(&ff->write_entry); 235 spin_unlock(&fi->lock); 236 } 237 spin_lock(&fc->lock); 238 if (!RB_EMPTY_NODE(&ff->polled_node)) 239 rb_erase(&ff->polled_node, &fc->polled_files); 240 spin_unlock(&fc->lock); 241 242 wake_up_interruptible_all(&ff->poll_wait); 243 244 inarg->fh = ff->fh; 245 inarg->flags = flags; 246 req->in.h.opcode = opcode; 247 req->in.h.nodeid = ff->nodeid; 248 req->in.numargs = 1; 249 req->in.args[0].size = sizeof(struct fuse_release_in); 250 req->in.args[0].value = inarg; 251 } 252 253 void fuse_release_common(struct file *file, bool isdir) 254 { 255 struct fuse_inode *fi = get_fuse_inode(file_inode(file)); 256 struct fuse_file *ff = file->private_data; 257 struct fuse_req *req = ff->reserved_req; 258 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 259 260 fuse_prepare_release(fi, ff, file->f_flags, opcode); 261 262 if (ff->flock) { 263 struct fuse_release_in *inarg = &req->misc.release.in; 264 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 265 inarg->lock_owner = fuse_lock_owner_id(ff->fc, 266 (fl_owner_t) file); 267 } 268 /* Hold inode until release is finished */ 269 req->misc.release.inode = igrab(file_inode(file)); 270 271 /* 272 * Normally this will send the RELEASE request, however if 273 * some asynchronous READ or WRITE requests are outstanding, 274 * the sending will be delayed. 275 * 276 * Make the release synchronous if this is a fuseblk mount, 277 * synchronous RELEASE is allowed (and desirable) in this case 278 * because the server can be trusted not to screw up. 279 */ 280 fuse_file_put(ff, ff->fc->destroy_req != NULL, isdir); 281 } 282 283 static int fuse_open(struct inode *inode, struct file *file) 284 { 285 return fuse_open_common(inode, file, false); 286 } 287 288 static int fuse_release(struct inode *inode, struct file *file) 289 { 290 struct fuse_conn *fc = get_fuse_conn(inode); 291 292 /* see fuse_vma_close() for !writeback_cache case */ 293 if (fc->writeback_cache) 294 write_inode_now(inode, 1); 295 296 fuse_release_common(file, false); 297 298 /* return value is ignored by VFS */ 299 return 0; 300 } 301 302 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags) 303 { 304 WARN_ON(refcount_read(&ff->count) > 1); 305 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 306 /* 307 * iput(NULL) is a no-op and since the refcount is 1 and everything's 308 * synchronous, we are fine with not doing igrab() here" 309 */ 310 fuse_file_put(ff, true, false); 311 } 312 EXPORT_SYMBOL_GPL(fuse_sync_release); 313 314 /* 315 * Scramble the ID space with XTEA, so that the value of the files_struct 316 * pointer is not exposed to userspace. 317 */ 318 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 319 { 320 u32 *k = fc->scramble_key; 321 u64 v = (unsigned long) id; 322 u32 v0 = v; 323 u32 v1 = v >> 32; 324 u32 sum = 0; 325 int i; 326 327 for (i = 0; i < 32; i++) { 328 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 329 sum += 0x9E3779B9; 330 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 331 } 332 333 return (u64) v0 + ((u64) v1 << 32); 334 } 335 336 static struct fuse_req *fuse_find_writeback(struct fuse_inode *fi, 337 pgoff_t idx_from, pgoff_t idx_to) 338 { 339 struct fuse_req *req; 340 341 list_for_each_entry(req, &fi->writepages, writepages_entry) { 342 pgoff_t curr_index; 343 344 WARN_ON(get_fuse_inode(req->inode) != fi); 345 curr_index = req->misc.write.in.offset >> PAGE_SHIFT; 346 if (idx_from < curr_index + req->num_pages && 347 curr_index <= idx_to) { 348 return req; 349 } 350 } 351 return NULL; 352 } 353 354 /* 355 * Check if any page in a range is under writeback 356 * 357 * This is currently done by walking the list of writepage requests 358 * for the inode, which can be pretty inefficient. 359 */ 360 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 361 pgoff_t idx_to) 362 { 363 struct fuse_inode *fi = get_fuse_inode(inode); 364 bool found; 365 366 spin_lock(&fi->lock); 367 found = fuse_find_writeback(fi, idx_from, idx_to); 368 spin_unlock(&fi->lock); 369 370 return found; 371 } 372 373 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 374 { 375 return fuse_range_is_writeback(inode, index, index); 376 } 377 378 /* 379 * Wait for page writeback to be completed. 380 * 381 * Since fuse doesn't rely on the VM writeback tracking, this has to 382 * use some other means. 383 */ 384 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 385 { 386 struct fuse_inode *fi = get_fuse_inode(inode); 387 388 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 389 return 0; 390 } 391 392 /* 393 * Wait for all pending writepages on the inode to finish. 394 * 395 * This is currently done by blocking further writes with FUSE_NOWRITE 396 * and waiting for all sent writes to complete. 397 * 398 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 399 * could conflict with truncation. 400 */ 401 static void fuse_sync_writes(struct inode *inode) 402 { 403 fuse_set_nowrite(inode); 404 fuse_release_nowrite(inode); 405 } 406 407 static int fuse_flush(struct file *file, fl_owner_t id) 408 { 409 struct inode *inode = file_inode(file); 410 struct fuse_conn *fc = get_fuse_conn(inode); 411 struct fuse_file *ff = file->private_data; 412 struct fuse_req *req; 413 struct fuse_flush_in inarg; 414 int err; 415 416 if (is_bad_inode(inode)) 417 return -EIO; 418 419 if (fc->no_flush) 420 return 0; 421 422 err = write_inode_now(inode, 1); 423 if (err) 424 return err; 425 426 inode_lock(inode); 427 fuse_sync_writes(inode); 428 inode_unlock(inode); 429 430 err = filemap_check_errors(file->f_mapping); 431 if (err) 432 return err; 433 434 req = fuse_get_req_nofail_nopages(fc, file); 435 memset(&inarg, 0, sizeof(inarg)); 436 inarg.fh = ff->fh; 437 inarg.lock_owner = fuse_lock_owner_id(fc, id); 438 req->in.h.opcode = FUSE_FLUSH; 439 req->in.h.nodeid = get_node_id(inode); 440 req->in.numargs = 1; 441 req->in.args[0].size = sizeof(inarg); 442 req->in.args[0].value = &inarg; 443 __set_bit(FR_FORCE, &req->flags); 444 fuse_request_send(fc, req); 445 err = req->out.h.error; 446 fuse_put_request(fc, req); 447 if (err == -ENOSYS) { 448 fc->no_flush = 1; 449 err = 0; 450 } 451 return err; 452 } 453 454 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 455 int datasync, int opcode) 456 { 457 struct inode *inode = file->f_mapping->host; 458 struct fuse_conn *fc = get_fuse_conn(inode); 459 struct fuse_file *ff = file->private_data; 460 FUSE_ARGS(args); 461 struct fuse_fsync_in inarg; 462 463 memset(&inarg, 0, sizeof(inarg)); 464 inarg.fh = ff->fh; 465 inarg.fsync_flags = datasync ? 1 : 0; 466 args.in.h.opcode = opcode; 467 args.in.h.nodeid = get_node_id(inode); 468 args.in.numargs = 1; 469 args.in.args[0].size = sizeof(inarg); 470 args.in.args[0].value = &inarg; 471 return fuse_simple_request(fc, &args); 472 } 473 474 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 475 int datasync) 476 { 477 struct inode *inode = file->f_mapping->host; 478 struct fuse_conn *fc = get_fuse_conn(inode); 479 int err; 480 481 if (is_bad_inode(inode)) 482 return -EIO; 483 484 inode_lock(inode); 485 486 /* 487 * Start writeback against all dirty pages of the inode, then 488 * wait for all outstanding writes, before sending the FSYNC 489 * request. 490 */ 491 err = file_write_and_wait_range(file, start, end); 492 if (err) 493 goto out; 494 495 fuse_sync_writes(inode); 496 497 /* 498 * Due to implementation of fuse writeback 499 * file_write_and_wait_range() does not catch errors. 500 * We have to do this directly after fuse_sync_writes() 501 */ 502 err = file_check_and_advance_wb_err(file); 503 if (err) 504 goto out; 505 506 err = sync_inode_metadata(inode, 1); 507 if (err) 508 goto out; 509 510 if (fc->no_fsync) 511 goto out; 512 513 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 514 if (err == -ENOSYS) { 515 fc->no_fsync = 1; 516 err = 0; 517 } 518 out: 519 inode_unlock(inode); 520 521 return err; 522 } 523 524 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos, 525 size_t count, int opcode) 526 { 527 struct fuse_read_in *inarg = &req->misc.read.in; 528 struct fuse_file *ff = file->private_data; 529 530 inarg->fh = ff->fh; 531 inarg->offset = pos; 532 inarg->size = count; 533 inarg->flags = file->f_flags; 534 req->in.h.opcode = opcode; 535 req->in.h.nodeid = ff->nodeid; 536 req->in.numargs = 1; 537 req->in.args[0].size = sizeof(struct fuse_read_in); 538 req->in.args[0].value = inarg; 539 req->out.argvar = 1; 540 req->out.numargs = 1; 541 req->out.args[0].size = count; 542 } 543 544 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty) 545 { 546 unsigned i; 547 548 for (i = 0; i < req->num_pages; i++) { 549 struct page *page = req->pages[i]; 550 if (should_dirty) 551 set_page_dirty_lock(page); 552 put_page(page); 553 } 554 } 555 556 static void fuse_io_release(struct kref *kref) 557 { 558 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 559 } 560 561 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 562 { 563 if (io->err) 564 return io->err; 565 566 if (io->bytes >= 0 && io->write) 567 return -EIO; 568 569 return io->bytes < 0 ? io->size : io->bytes; 570 } 571 572 /** 573 * In case of short read, the caller sets 'pos' to the position of 574 * actual end of fuse request in IO request. Otherwise, if bytes_requested 575 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 576 * 577 * An example: 578 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 579 * both submitted asynchronously. The first of them was ACKed by userspace as 580 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 581 * second request was ACKed as short, e.g. only 1K was read, resulting in 582 * pos == 33K. 583 * 584 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 585 * will be equal to the length of the longest contiguous fragment of 586 * transferred data starting from the beginning of IO request. 587 */ 588 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 589 { 590 int left; 591 592 spin_lock(&io->lock); 593 if (err) 594 io->err = io->err ? : err; 595 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 596 io->bytes = pos; 597 598 left = --io->reqs; 599 if (!left && io->blocking) 600 complete(io->done); 601 spin_unlock(&io->lock); 602 603 if (!left && !io->blocking) { 604 ssize_t res = fuse_get_res_by_io(io); 605 606 if (res >= 0) { 607 struct inode *inode = file_inode(io->iocb->ki_filp); 608 struct fuse_conn *fc = get_fuse_conn(inode); 609 struct fuse_inode *fi = get_fuse_inode(inode); 610 611 spin_lock(&fi->lock); 612 fi->attr_version = atomic64_inc_return(&fc->attr_version); 613 spin_unlock(&fi->lock); 614 } 615 616 io->iocb->ki_complete(io->iocb, res, 0); 617 } 618 619 kref_put(&io->refcnt, fuse_io_release); 620 } 621 622 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req) 623 { 624 struct fuse_io_priv *io = req->io; 625 ssize_t pos = -1; 626 627 fuse_release_user_pages(req, io->should_dirty); 628 629 if (io->write) { 630 if (req->misc.write.in.size != req->misc.write.out.size) 631 pos = req->misc.write.in.offset - io->offset + 632 req->misc.write.out.size; 633 } else { 634 if (req->misc.read.in.size != req->out.args[0].size) 635 pos = req->misc.read.in.offset - io->offset + 636 req->out.args[0].size; 637 } 638 639 fuse_aio_complete(io, req->out.h.error, pos); 640 } 641 642 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req, 643 size_t num_bytes, struct fuse_io_priv *io) 644 { 645 spin_lock(&io->lock); 646 kref_get(&io->refcnt); 647 io->size += num_bytes; 648 io->reqs++; 649 spin_unlock(&io->lock); 650 651 req->io = io; 652 req->end = fuse_aio_complete_req; 653 654 __fuse_get_request(req); 655 fuse_request_send_background(fc, req); 656 657 return num_bytes; 658 } 659 660 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io, 661 loff_t pos, size_t count, fl_owner_t owner) 662 { 663 struct file *file = io->iocb->ki_filp; 664 struct fuse_file *ff = file->private_data; 665 struct fuse_conn *fc = ff->fc; 666 667 fuse_read_fill(req, file, pos, count, FUSE_READ); 668 if (owner != NULL) { 669 struct fuse_read_in *inarg = &req->misc.read.in; 670 671 inarg->read_flags |= FUSE_READ_LOCKOWNER; 672 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 673 } 674 675 if (io->async) 676 return fuse_async_req_send(fc, req, count, io); 677 678 fuse_request_send(fc, req); 679 return req->out.args[0].size; 680 } 681 682 static void fuse_read_update_size(struct inode *inode, loff_t size, 683 u64 attr_ver) 684 { 685 struct fuse_conn *fc = get_fuse_conn(inode); 686 struct fuse_inode *fi = get_fuse_inode(inode); 687 688 spin_lock(&fi->lock); 689 if (attr_ver == fi->attr_version && size < inode->i_size && 690 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 691 fi->attr_version = atomic64_inc_return(&fc->attr_version); 692 i_size_write(inode, size); 693 } 694 spin_unlock(&fi->lock); 695 } 696 697 static void fuse_short_read(struct fuse_req *req, struct inode *inode, 698 u64 attr_ver) 699 { 700 size_t num_read = req->out.args[0].size; 701 struct fuse_conn *fc = get_fuse_conn(inode); 702 703 if (fc->writeback_cache) { 704 /* 705 * A hole in a file. Some data after the hole are in page cache, 706 * but have not reached the client fs yet. So, the hole is not 707 * present there. 708 */ 709 int i; 710 int start_idx = num_read >> PAGE_SHIFT; 711 size_t off = num_read & (PAGE_SIZE - 1); 712 713 for (i = start_idx; i < req->num_pages; i++) { 714 zero_user_segment(req->pages[i], off, PAGE_SIZE); 715 off = 0; 716 } 717 } else { 718 loff_t pos = page_offset(req->pages[0]) + num_read; 719 fuse_read_update_size(inode, pos, attr_ver); 720 } 721 } 722 723 static int fuse_do_readpage(struct file *file, struct page *page) 724 { 725 struct kiocb iocb; 726 struct fuse_io_priv io; 727 struct inode *inode = page->mapping->host; 728 struct fuse_conn *fc = get_fuse_conn(inode); 729 struct fuse_req *req; 730 size_t num_read; 731 loff_t pos = page_offset(page); 732 size_t count = PAGE_SIZE; 733 u64 attr_ver; 734 int err; 735 736 /* 737 * Page writeback can extend beyond the lifetime of the 738 * page-cache page, so make sure we read a properly synced 739 * page. 740 */ 741 fuse_wait_on_page_writeback(inode, page->index); 742 743 req = fuse_get_req(fc, 1); 744 if (IS_ERR(req)) 745 return PTR_ERR(req); 746 747 attr_ver = fuse_get_attr_version(fc); 748 749 req->out.page_zeroing = 1; 750 req->out.argpages = 1; 751 req->num_pages = 1; 752 req->pages[0] = page; 753 req->page_descs[0].length = count; 754 init_sync_kiocb(&iocb, file); 755 io = (struct fuse_io_priv) FUSE_IO_PRIV_SYNC(&iocb); 756 num_read = fuse_send_read(req, &io, pos, count, NULL); 757 err = req->out.h.error; 758 759 if (!err) { 760 /* 761 * Short read means EOF. If file size is larger, truncate it 762 */ 763 if (num_read < count) 764 fuse_short_read(req, inode, attr_ver); 765 766 SetPageUptodate(page); 767 } 768 769 fuse_put_request(fc, req); 770 771 return err; 772 } 773 774 static int fuse_readpage(struct file *file, struct page *page) 775 { 776 struct inode *inode = page->mapping->host; 777 int err; 778 779 err = -EIO; 780 if (is_bad_inode(inode)) 781 goto out; 782 783 err = fuse_do_readpage(file, page); 784 fuse_invalidate_atime(inode); 785 out: 786 unlock_page(page); 787 return err; 788 } 789 790 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req) 791 { 792 int i; 793 size_t count = req->misc.read.in.size; 794 size_t num_read = req->out.args[0].size; 795 struct address_space *mapping = NULL; 796 797 for (i = 0; mapping == NULL && i < req->num_pages; i++) 798 mapping = req->pages[i]->mapping; 799 800 if (mapping) { 801 struct inode *inode = mapping->host; 802 803 /* 804 * Short read means EOF. If file size is larger, truncate it 805 */ 806 if (!req->out.h.error && num_read < count) 807 fuse_short_read(req, inode, req->misc.read.attr_ver); 808 809 fuse_invalidate_atime(inode); 810 } 811 812 for (i = 0; i < req->num_pages; i++) { 813 struct page *page = req->pages[i]; 814 if (!req->out.h.error) 815 SetPageUptodate(page); 816 else 817 SetPageError(page); 818 unlock_page(page); 819 put_page(page); 820 } 821 if (req->ff) 822 fuse_file_put(req->ff, false, false); 823 } 824 825 static void fuse_send_readpages(struct fuse_req *req, struct file *file) 826 { 827 struct fuse_file *ff = file->private_data; 828 struct fuse_conn *fc = ff->fc; 829 loff_t pos = page_offset(req->pages[0]); 830 size_t count = req->num_pages << PAGE_SHIFT; 831 832 req->out.argpages = 1; 833 req->out.page_zeroing = 1; 834 req->out.page_replace = 1; 835 fuse_read_fill(req, file, pos, count, FUSE_READ); 836 req->misc.read.attr_ver = fuse_get_attr_version(fc); 837 if (fc->async_read) { 838 req->ff = fuse_file_get(ff); 839 req->end = fuse_readpages_end; 840 fuse_request_send_background(fc, req); 841 } else { 842 fuse_request_send(fc, req); 843 fuse_readpages_end(fc, req); 844 fuse_put_request(fc, req); 845 } 846 } 847 848 struct fuse_fill_data { 849 struct fuse_req *req; 850 struct file *file; 851 struct inode *inode; 852 unsigned nr_pages; 853 }; 854 855 static int fuse_readpages_fill(void *_data, struct page *page) 856 { 857 struct fuse_fill_data *data = _data; 858 struct fuse_req *req = data->req; 859 struct inode *inode = data->inode; 860 struct fuse_conn *fc = get_fuse_conn(inode); 861 862 fuse_wait_on_page_writeback(inode, page->index); 863 864 if (req->num_pages && 865 (req->num_pages == fc->max_pages || 866 (req->num_pages + 1) * PAGE_SIZE > fc->max_read || 867 req->pages[req->num_pages - 1]->index + 1 != page->index)) { 868 unsigned int nr_alloc = min_t(unsigned int, data->nr_pages, 869 fc->max_pages); 870 fuse_send_readpages(req, data->file); 871 if (fc->async_read) 872 req = fuse_get_req_for_background(fc, nr_alloc); 873 else 874 req = fuse_get_req(fc, nr_alloc); 875 876 data->req = req; 877 if (IS_ERR(req)) { 878 unlock_page(page); 879 return PTR_ERR(req); 880 } 881 } 882 883 if (WARN_ON(req->num_pages >= req->max_pages)) { 884 unlock_page(page); 885 fuse_put_request(fc, req); 886 return -EIO; 887 } 888 889 get_page(page); 890 req->pages[req->num_pages] = page; 891 req->page_descs[req->num_pages].length = PAGE_SIZE; 892 req->num_pages++; 893 data->nr_pages--; 894 return 0; 895 } 896 897 static int fuse_readpages(struct file *file, struct address_space *mapping, 898 struct list_head *pages, unsigned nr_pages) 899 { 900 struct inode *inode = mapping->host; 901 struct fuse_conn *fc = get_fuse_conn(inode); 902 struct fuse_fill_data data; 903 int err; 904 unsigned int nr_alloc = min_t(unsigned int, nr_pages, fc->max_pages); 905 906 err = -EIO; 907 if (is_bad_inode(inode)) 908 goto out; 909 910 data.file = file; 911 data.inode = inode; 912 if (fc->async_read) 913 data.req = fuse_get_req_for_background(fc, nr_alloc); 914 else 915 data.req = fuse_get_req(fc, nr_alloc); 916 data.nr_pages = nr_pages; 917 err = PTR_ERR(data.req); 918 if (IS_ERR(data.req)) 919 goto out; 920 921 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 922 if (!err) { 923 if (data.req->num_pages) 924 fuse_send_readpages(data.req, file); 925 else 926 fuse_put_request(fc, data.req); 927 } 928 out: 929 return err; 930 } 931 932 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 933 { 934 struct inode *inode = iocb->ki_filp->f_mapping->host; 935 struct fuse_conn *fc = get_fuse_conn(inode); 936 937 /* 938 * In auto invalidate mode, always update attributes on read. 939 * Otherwise, only update if we attempt to read past EOF (to ensure 940 * i_size is up to date). 941 */ 942 if (fc->auto_inval_data || 943 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 944 int err; 945 err = fuse_update_attributes(inode, iocb->ki_filp); 946 if (err) 947 return err; 948 } 949 950 return generic_file_read_iter(iocb, to); 951 } 952 953 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff, 954 loff_t pos, size_t count) 955 { 956 struct fuse_write_in *inarg = &req->misc.write.in; 957 struct fuse_write_out *outarg = &req->misc.write.out; 958 959 inarg->fh = ff->fh; 960 inarg->offset = pos; 961 inarg->size = count; 962 req->in.h.opcode = FUSE_WRITE; 963 req->in.h.nodeid = ff->nodeid; 964 req->in.numargs = 2; 965 if (ff->fc->minor < 9) 966 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 967 else 968 req->in.args[0].size = sizeof(struct fuse_write_in); 969 req->in.args[0].value = inarg; 970 req->in.args[1].size = count; 971 req->out.numargs = 1; 972 req->out.args[0].size = sizeof(struct fuse_write_out); 973 req->out.args[0].value = outarg; 974 } 975 976 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io, 977 loff_t pos, size_t count, fl_owner_t owner) 978 { 979 struct kiocb *iocb = io->iocb; 980 struct file *file = iocb->ki_filp; 981 struct fuse_file *ff = file->private_data; 982 struct fuse_conn *fc = ff->fc; 983 struct fuse_write_in *inarg = &req->misc.write.in; 984 985 fuse_write_fill(req, ff, pos, count); 986 inarg->flags = file->f_flags; 987 if (iocb->ki_flags & IOCB_DSYNC) 988 inarg->flags |= O_DSYNC; 989 if (iocb->ki_flags & IOCB_SYNC) 990 inarg->flags |= O_SYNC; 991 if (owner != NULL) { 992 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 993 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 994 } 995 996 if (io->async) 997 return fuse_async_req_send(fc, req, count, io); 998 999 fuse_request_send(fc, req); 1000 return req->misc.write.out.size; 1001 } 1002 1003 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1004 { 1005 struct fuse_conn *fc = get_fuse_conn(inode); 1006 struct fuse_inode *fi = get_fuse_inode(inode); 1007 bool ret = false; 1008 1009 spin_lock(&fi->lock); 1010 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1011 if (pos > inode->i_size) { 1012 i_size_write(inode, pos); 1013 ret = true; 1014 } 1015 spin_unlock(&fi->lock); 1016 1017 return ret; 1018 } 1019 1020 static size_t fuse_send_write_pages(struct fuse_req *req, struct kiocb *iocb, 1021 struct inode *inode, loff_t pos, 1022 size_t count) 1023 { 1024 size_t res; 1025 unsigned offset; 1026 unsigned i; 1027 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1028 1029 for (i = 0; i < req->num_pages; i++) 1030 fuse_wait_on_page_writeback(inode, req->pages[i]->index); 1031 1032 res = fuse_send_write(req, &io, pos, count, NULL); 1033 1034 offset = req->page_descs[0].offset; 1035 count = res; 1036 for (i = 0; i < req->num_pages; i++) { 1037 struct page *page = req->pages[i]; 1038 1039 if (!req->out.h.error && !offset && count >= PAGE_SIZE) 1040 SetPageUptodate(page); 1041 1042 if (count > PAGE_SIZE - offset) 1043 count -= PAGE_SIZE - offset; 1044 else 1045 count = 0; 1046 offset = 0; 1047 1048 unlock_page(page); 1049 put_page(page); 1050 } 1051 1052 return res; 1053 } 1054 1055 static ssize_t fuse_fill_write_pages(struct fuse_req *req, 1056 struct address_space *mapping, 1057 struct iov_iter *ii, loff_t pos) 1058 { 1059 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1060 unsigned offset = pos & (PAGE_SIZE - 1); 1061 size_t count = 0; 1062 int err; 1063 1064 req->in.argpages = 1; 1065 req->page_descs[0].offset = offset; 1066 1067 do { 1068 size_t tmp; 1069 struct page *page; 1070 pgoff_t index = pos >> PAGE_SHIFT; 1071 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1072 iov_iter_count(ii)); 1073 1074 bytes = min_t(size_t, bytes, fc->max_write - count); 1075 1076 again: 1077 err = -EFAULT; 1078 if (iov_iter_fault_in_readable(ii, bytes)) 1079 break; 1080 1081 err = -ENOMEM; 1082 page = grab_cache_page_write_begin(mapping, index, 0); 1083 if (!page) 1084 break; 1085 1086 if (mapping_writably_mapped(mapping)) 1087 flush_dcache_page(page); 1088 1089 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1090 flush_dcache_page(page); 1091 1092 iov_iter_advance(ii, tmp); 1093 if (!tmp) { 1094 unlock_page(page); 1095 put_page(page); 1096 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1097 goto again; 1098 } 1099 1100 err = 0; 1101 req->pages[req->num_pages] = page; 1102 req->page_descs[req->num_pages].length = tmp; 1103 req->num_pages++; 1104 1105 count += tmp; 1106 pos += tmp; 1107 offset += tmp; 1108 if (offset == PAGE_SIZE) 1109 offset = 0; 1110 1111 if (!fc->big_writes) 1112 break; 1113 } while (iov_iter_count(ii) && count < fc->max_write && 1114 req->num_pages < req->max_pages && offset == 0); 1115 1116 return count > 0 ? count : err; 1117 } 1118 1119 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1120 unsigned int max_pages) 1121 { 1122 return min_t(unsigned int, 1123 ((pos + len - 1) >> PAGE_SHIFT) - 1124 (pos >> PAGE_SHIFT) + 1, 1125 max_pages); 1126 } 1127 1128 static ssize_t fuse_perform_write(struct kiocb *iocb, 1129 struct address_space *mapping, 1130 struct iov_iter *ii, loff_t pos) 1131 { 1132 struct inode *inode = mapping->host; 1133 struct fuse_conn *fc = get_fuse_conn(inode); 1134 struct fuse_inode *fi = get_fuse_inode(inode); 1135 int err = 0; 1136 ssize_t res = 0; 1137 1138 if (inode->i_size < pos + iov_iter_count(ii)) 1139 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1140 1141 do { 1142 struct fuse_req *req; 1143 ssize_t count; 1144 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1145 fc->max_pages); 1146 1147 req = fuse_get_req(fc, nr_pages); 1148 if (IS_ERR(req)) { 1149 err = PTR_ERR(req); 1150 break; 1151 } 1152 1153 count = fuse_fill_write_pages(req, mapping, ii, pos); 1154 if (count <= 0) { 1155 err = count; 1156 } else { 1157 size_t num_written; 1158 1159 num_written = fuse_send_write_pages(req, iocb, inode, 1160 pos, count); 1161 err = req->out.h.error; 1162 if (!err) { 1163 res += num_written; 1164 pos += num_written; 1165 1166 /* break out of the loop on short write */ 1167 if (num_written != count) 1168 err = -EIO; 1169 } 1170 } 1171 fuse_put_request(fc, req); 1172 } while (!err && iov_iter_count(ii)); 1173 1174 if (res > 0) 1175 fuse_write_update_size(inode, pos); 1176 1177 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1178 fuse_invalidate_attr(inode); 1179 1180 return res > 0 ? res : err; 1181 } 1182 1183 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1184 { 1185 struct file *file = iocb->ki_filp; 1186 struct address_space *mapping = file->f_mapping; 1187 ssize_t written = 0; 1188 ssize_t written_buffered = 0; 1189 struct inode *inode = mapping->host; 1190 ssize_t err; 1191 loff_t endbyte = 0; 1192 1193 if (get_fuse_conn(inode)->writeback_cache) { 1194 /* Update size (EOF optimization) and mode (SUID clearing) */ 1195 err = fuse_update_attributes(mapping->host, file); 1196 if (err) 1197 return err; 1198 1199 return generic_file_write_iter(iocb, from); 1200 } 1201 1202 inode_lock(inode); 1203 1204 /* We can write back this queue in page reclaim */ 1205 current->backing_dev_info = inode_to_bdi(inode); 1206 1207 err = generic_write_checks(iocb, from); 1208 if (err <= 0) 1209 goto out; 1210 1211 err = file_remove_privs(file); 1212 if (err) 1213 goto out; 1214 1215 err = file_update_time(file); 1216 if (err) 1217 goto out; 1218 1219 if (iocb->ki_flags & IOCB_DIRECT) { 1220 loff_t pos = iocb->ki_pos; 1221 written = generic_file_direct_write(iocb, from); 1222 if (written < 0 || !iov_iter_count(from)) 1223 goto out; 1224 1225 pos += written; 1226 1227 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1228 if (written_buffered < 0) { 1229 err = written_buffered; 1230 goto out; 1231 } 1232 endbyte = pos + written_buffered - 1; 1233 1234 err = filemap_write_and_wait_range(file->f_mapping, pos, 1235 endbyte); 1236 if (err) 1237 goto out; 1238 1239 invalidate_mapping_pages(file->f_mapping, 1240 pos >> PAGE_SHIFT, 1241 endbyte >> PAGE_SHIFT); 1242 1243 written += written_buffered; 1244 iocb->ki_pos = pos + written_buffered; 1245 } else { 1246 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1247 if (written >= 0) 1248 iocb->ki_pos += written; 1249 } 1250 out: 1251 current->backing_dev_info = NULL; 1252 inode_unlock(inode); 1253 if (written > 0) 1254 written = generic_write_sync(iocb, written); 1255 1256 return written ? written : err; 1257 } 1258 1259 static inline void fuse_page_descs_length_init(struct fuse_req *req, 1260 unsigned index, unsigned nr_pages) 1261 { 1262 int i; 1263 1264 for (i = index; i < index + nr_pages; i++) 1265 req->page_descs[i].length = PAGE_SIZE - 1266 req->page_descs[i].offset; 1267 } 1268 1269 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1270 { 1271 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1272 } 1273 1274 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1275 size_t max_size) 1276 { 1277 return min(iov_iter_single_seg_count(ii), max_size); 1278 } 1279 1280 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii, 1281 size_t *nbytesp, int write) 1282 { 1283 size_t nbytes = 0; /* # bytes already packed in req */ 1284 ssize_t ret = 0; 1285 1286 /* Special case for kernel I/O: can copy directly into the buffer */ 1287 if (iov_iter_is_kvec(ii)) { 1288 unsigned long user_addr = fuse_get_user_addr(ii); 1289 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1290 1291 if (write) 1292 req->in.args[1].value = (void *) user_addr; 1293 else 1294 req->out.args[0].value = (void *) user_addr; 1295 1296 iov_iter_advance(ii, frag_size); 1297 *nbytesp = frag_size; 1298 return 0; 1299 } 1300 1301 while (nbytes < *nbytesp && req->num_pages < req->max_pages) { 1302 unsigned npages; 1303 size_t start; 1304 ret = iov_iter_get_pages(ii, &req->pages[req->num_pages], 1305 *nbytesp - nbytes, 1306 req->max_pages - req->num_pages, 1307 &start); 1308 if (ret < 0) 1309 break; 1310 1311 iov_iter_advance(ii, ret); 1312 nbytes += ret; 1313 1314 ret += start; 1315 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1316 1317 req->page_descs[req->num_pages].offset = start; 1318 fuse_page_descs_length_init(req, req->num_pages, npages); 1319 1320 req->num_pages += npages; 1321 req->page_descs[req->num_pages - 1].length -= 1322 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1323 } 1324 1325 if (write) 1326 req->in.argpages = 1; 1327 else 1328 req->out.argpages = 1; 1329 1330 *nbytesp = nbytes; 1331 1332 return ret < 0 ? ret : 0; 1333 } 1334 1335 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1336 loff_t *ppos, int flags) 1337 { 1338 int write = flags & FUSE_DIO_WRITE; 1339 int cuse = flags & FUSE_DIO_CUSE; 1340 struct file *file = io->iocb->ki_filp; 1341 struct inode *inode = file->f_mapping->host; 1342 struct fuse_file *ff = file->private_data; 1343 struct fuse_conn *fc = ff->fc; 1344 size_t nmax = write ? fc->max_write : fc->max_read; 1345 loff_t pos = *ppos; 1346 size_t count = iov_iter_count(iter); 1347 pgoff_t idx_from = pos >> PAGE_SHIFT; 1348 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1349 ssize_t res = 0; 1350 struct fuse_req *req; 1351 int err = 0; 1352 1353 if (io->async) 1354 req = fuse_get_req_for_background(fc, iov_iter_npages(iter, 1355 fc->max_pages)); 1356 else 1357 req = fuse_get_req(fc, iov_iter_npages(iter, fc->max_pages)); 1358 if (IS_ERR(req)) 1359 return PTR_ERR(req); 1360 1361 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1362 if (!write) 1363 inode_lock(inode); 1364 fuse_sync_writes(inode); 1365 if (!write) 1366 inode_unlock(inode); 1367 } 1368 1369 io->should_dirty = !write && iter_is_iovec(iter); 1370 while (count) { 1371 size_t nres; 1372 fl_owner_t owner = current->files; 1373 size_t nbytes = min(count, nmax); 1374 err = fuse_get_user_pages(req, iter, &nbytes, write); 1375 if (err && !nbytes) 1376 break; 1377 1378 if (write) 1379 nres = fuse_send_write(req, io, pos, nbytes, owner); 1380 else 1381 nres = fuse_send_read(req, io, pos, nbytes, owner); 1382 1383 if (!io->async) 1384 fuse_release_user_pages(req, io->should_dirty); 1385 if (req->out.h.error) { 1386 err = req->out.h.error; 1387 break; 1388 } else if (nres > nbytes) { 1389 res = 0; 1390 err = -EIO; 1391 break; 1392 } 1393 count -= nres; 1394 res += nres; 1395 pos += nres; 1396 if (nres != nbytes) 1397 break; 1398 if (count) { 1399 fuse_put_request(fc, req); 1400 if (io->async) 1401 req = fuse_get_req_for_background(fc, 1402 iov_iter_npages(iter, fc->max_pages)); 1403 else 1404 req = fuse_get_req(fc, iov_iter_npages(iter, 1405 fc->max_pages)); 1406 if (IS_ERR(req)) 1407 break; 1408 } 1409 } 1410 if (!IS_ERR(req)) 1411 fuse_put_request(fc, req); 1412 if (res > 0) 1413 *ppos = pos; 1414 1415 return res > 0 ? res : err; 1416 } 1417 EXPORT_SYMBOL_GPL(fuse_direct_io); 1418 1419 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1420 struct iov_iter *iter, 1421 loff_t *ppos) 1422 { 1423 ssize_t res; 1424 struct inode *inode = file_inode(io->iocb->ki_filp); 1425 1426 res = fuse_direct_io(io, iter, ppos, 0); 1427 1428 fuse_invalidate_atime(inode); 1429 1430 return res; 1431 } 1432 1433 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1434 1435 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1436 { 1437 ssize_t res; 1438 1439 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1440 res = fuse_direct_IO(iocb, to); 1441 } else { 1442 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1443 1444 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1445 } 1446 1447 return res; 1448 } 1449 1450 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1451 { 1452 struct inode *inode = file_inode(iocb->ki_filp); 1453 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1454 ssize_t res; 1455 1456 /* Don't allow parallel writes to the same file */ 1457 inode_lock(inode); 1458 res = generic_write_checks(iocb, from); 1459 if (res > 0) { 1460 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1461 res = fuse_direct_IO(iocb, from); 1462 } else { 1463 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1464 FUSE_DIO_WRITE); 1465 } 1466 } 1467 fuse_invalidate_attr(inode); 1468 if (res > 0) 1469 fuse_write_update_size(inode, iocb->ki_pos); 1470 inode_unlock(inode); 1471 1472 return res; 1473 } 1474 1475 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1476 { 1477 struct file *file = iocb->ki_filp; 1478 struct fuse_file *ff = file->private_data; 1479 1480 if (is_bad_inode(file_inode(file))) 1481 return -EIO; 1482 1483 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1484 return fuse_cache_read_iter(iocb, to); 1485 else 1486 return fuse_direct_read_iter(iocb, to); 1487 } 1488 1489 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1490 { 1491 struct file *file = iocb->ki_filp; 1492 struct fuse_file *ff = file->private_data; 1493 1494 if (is_bad_inode(file_inode(file))) 1495 return -EIO; 1496 1497 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1498 return fuse_cache_write_iter(iocb, from); 1499 else 1500 return fuse_direct_write_iter(iocb, from); 1501 } 1502 1503 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req) 1504 { 1505 int i; 1506 1507 for (i = 0; i < req->num_pages; i++) 1508 __free_page(req->pages[i]); 1509 1510 if (req->ff) 1511 fuse_file_put(req->ff, false, false); 1512 } 1513 1514 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req) 1515 { 1516 struct inode *inode = req->inode; 1517 struct fuse_inode *fi = get_fuse_inode(inode); 1518 struct backing_dev_info *bdi = inode_to_bdi(inode); 1519 int i; 1520 1521 list_del(&req->writepages_entry); 1522 for (i = 0; i < req->num_pages; i++) { 1523 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1524 dec_node_page_state(req->pages[i], NR_WRITEBACK_TEMP); 1525 wb_writeout_inc(&bdi->wb); 1526 } 1527 wake_up(&fi->page_waitq); 1528 } 1529 1530 /* Called under fi->lock, may release and reacquire it */ 1531 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req, 1532 loff_t size) 1533 __releases(fi->lock) 1534 __acquires(fi->lock) 1535 { 1536 struct fuse_req *aux, *next; 1537 struct fuse_inode *fi = get_fuse_inode(req->inode); 1538 struct fuse_write_in *inarg = &req->misc.write.in; 1539 __u64 data_size = req->num_pages * PAGE_SIZE; 1540 bool queued; 1541 1542 if (inarg->offset + data_size <= size) { 1543 inarg->size = data_size; 1544 } else if (inarg->offset < size) { 1545 inarg->size = size - inarg->offset; 1546 } else { 1547 /* Got truncated off completely */ 1548 goto out_free; 1549 } 1550 1551 req->in.args[1].size = inarg->size; 1552 queued = fuse_request_queue_background(fc, req); 1553 /* Fails on broken connection only */ 1554 if (unlikely(!queued)) 1555 goto out_free; 1556 1557 fi->writectr++; 1558 return; 1559 1560 out_free: 1561 fuse_writepage_finish(fc, req); 1562 spin_unlock(&fi->lock); 1563 1564 /* After fuse_writepage_finish() aux request list is private */ 1565 for (aux = req->misc.write.next; aux; aux = next) { 1566 next = aux->misc.write.next; 1567 aux->misc.write.next = NULL; 1568 fuse_writepage_free(fc, aux); 1569 fuse_put_request(fc, aux); 1570 } 1571 1572 fuse_writepage_free(fc, req); 1573 fuse_put_request(fc, req); 1574 spin_lock(&fi->lock); 1575 } 1576 1577 /* 1578 * If fi->writectr is positive (no truncate or fsync going on) send 1579 * all queued writepage requests. 1580 * 1581 * Called with fi->lock 1582 */ 1583 void fuse_flush_writepages(struct inode *inode) 1584 __releases(fi->lock) 1585 __acquires(fi->lock) 1586 { 1587 struct fuse_conn *fc = get_fuse_conn(inode); 1588 struct fuse_inode *fi = get_fuse_inode(inode); 1589 size_t crop = i_size_read(inode); 1590 struct fuse_req *req; 1591 1592 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1593 req = list_entry(fi->queued_writes.next, struct fuse_req, list); 1594 list_del_init(&req->list); 1595 fuse_send_writepage(fc, req, crop); 1596 } 1597 } 1598 1599 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req) 1600 { 1601 struct inode *inode = req->inode; 1602 struct fuse_inode *fi = get_fuse_inode(inode); 1603 1604 mapping_set_error(inode->i_mapping, req->out.h.error); 1605 spin_lock(&fi->lock); 1606 while (req->misc.write.next) { 1607 struct fuse_conn *fc = get_fuse_conn(inode); 1608 struct fuse_write_in *inarg = &req->misc.write.in; 1609 struct fuse_req *next = req->misc.write.next; 1610 req->misc.write.next = next->misc.write.next; 1611 next->misc.write.next = NULL; 1612 next->ff = fuse_file_get(req->ff); 1613 list_add(&next->writepages_entry, &fi->writepages); 1614 1615 /* 1616 * Skip fuse_flush_writepages() to make it easy to crop requests 1617 * based on primary request size. 1618 * 1619 * 1st case (trivial): there are no concurrent activities using 1620 * fuse_set/release_nowrite. Then we're on safe side because 1621 * fuse_flush_writepages() would call fuse_send_writepage() 1622 * anyway. 1623 * 1624 * 2nd case: someone called fuse_set_nowrite and it is waiting 1625 * now for completion of all in-flight requests. This happens 1626 * rarely and no more than once per page, so this should be 1627 * okay. 1628 * 1629 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1630 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1631 * that fuse_set_nowrite returned implies that all in-flight 1632 * requests were completed along with all of their secondary 1633 * requests. Further primary requests are blocked by negative 1634 * writectr. Hence there cannot be any in-flight requests and 1635 * no invocations of fuse_writepage_end() while we're in 1636 * fuse_set_nowrite..fuse_release_nowrite section. 1637 */ 1638 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1639 } 1640 fi->writectr--; 1641 fuse_writepage_finish(fc, req); 1642 spin_unlock(&fi->lock); 1643 fuse_writepage_free(fc, req); 1644 } 1645 1646 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1647 struct fuse_inode *fi) 1648 { 1649 struct fuse_file *ff = NULL; 1650 1651 spin_lock(&fi->lock); 1652 if (!list_empty(&fi->write_files)) { 1653 ff = list_entry(fi->write_files.next, struct fuse_file, 1654 write_entry); 1655 fuse_file_get(ff); 1656 } 1657 spin_unlock(&fi->lock); 1658 1659 return ff; 1660 } 1661 1662 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1663 struct fuse_inode *fi) 1664 { 1665 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1666 WARN_ON(!ff); 1667 return ff; 1668 } 1669 1670 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1671 { 1672 struct fuse_conn *fc = get_fuse_conn(inode); 1673 struct fuse_inode *fi = get_fuse_inode(inode); 1674 struct fuse_file *ff; 1675 int err; 1676 1677 ff = __fuse_write_file_get(fc, fi); 1678 err = fuse_flush_times(inode, ff); 1679 if (ff) 1680 fuse_file_put(ff, false, false); 1681 1682 return err; 1683 } 1684 1685 static int fuse_writepage_locked(struct page *page) 1686 { 1687 struct address_space *mapping = page->mapping; 1688 struct inode *inode = mapping->host; 1689 struct fuse_conn *fc = get_fuse_conn(inode); 1690 struct fuse_inode *fi = get_fuse_inode(inode); 1691 struct fuse_req *req; 1692 struct page *tmp_page; 1693 int error = -ENOMEM; 1694 1695 set_page_writeback(page); 1696 1697 req = fuse_request_alloc_nofs(1); 1698 if (!req) 1699 goto err; 1700 1701 /* writeback always goes to bg_queue */ 1702 __set_bit(FR_BACKGROUND, &req->flags); 1703 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1704 if (!tmp_page) 1705 goto err_free; 1706 1707 error = -EIO; 1708 req->ff = fuse_write_file_get(fc, fi); 1709 if (!req->ff) 1710 goto err_nofile; 1711 1712 fuse_write_fill(req, req->ff, page_offset(page), 0); 1713 1714 copy_highpage(tmp_page, page); 1715 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1716 req->misc.write.next = NULL; 1717 req->in.argpages = 1; 1718 req->num_pages = 1; 1719 req->pages[0] = tmp_page; 1720 req->page_descs[0].offset = 0; 1721 req->page_descs[0].length = PAGE_SIZE; 1722 req->end = fuse_writepage_end; 1723 req->inode = inode; 1724 1725 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1726 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1727 1728 spin_lock(&fi->lock); 1729 list_add(&req->writepages_entry, &fi->writepages); 1730 list_add_tail(&req->list, &fi->queued_writes); 1731 fuse_flush_writepages(inode); 1732 spin_unlock(&fi->lock); 1733 1734 end_page_writeback(page); 1735 1736 return 0; 1737 1738 err_nofile: 1739 __free_page(tmp_page); 1740 err_free: 1741 fuse_request_free(req); 1742 err: 1743 mapping_set_error(page->mapping, error); 1744 end_page_writeback(page); 1745 return error; 1746 } 1747 1748 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1749 { 1750 int err; 1751 1752 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1753 /* 1754 * ->writepages() should be called for sync() and friends. We 1755 * should only get here on direct reclaim and then we are 1756 * allowed to skip a page which is already in flight 1757 */ 1758 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1759 1760 redirty_page_for_writepage(wbc, page); 1761 return 0; 1762 } 1763 1764 err = fuse_writepage_locked(page); 1765 unlock_page(page); 1766 1767 return err; 1768 } 1769 1770 struct fuse_fill_wb_data { 1771 struct fuse_req *req; 1772 struct fuse_file *ff; 1773 struct inode *inode; 1774 struct page **orig_pages; 1775 }; 1776 1777 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1778 { 1779 struct fuse_req *req = data->req; 1780 struct inode *inode = data->inode; 1781 struct fuse_inode *fi = get_fuse_inode(inode); 1782 int num_pages = req->num_pages; 1783 int i; 1784 1785 req->ff = fuse_file_get(data->ff); 1786 spin_lock(&fi->lock); 1787 list_add_tail(&req->list, &fi->queued_writes); 1788 fuse_flush_writepages(inode); 1789 spin_unlock(&fi->lock); 1790 1791 for (i = 0; i < num_pages; i++) 1792 end_page_writeback(data->orig_pages[i]); 1793 } 1794 1795 /* 1796 * First recheck under fi->lock if the offending offset is still under 1797 * writeback. If yes, then iterate auxiliary write requests, to see if there's 1798 * one already added for a page at this offset. If there's none, then insert 1799 * this new request onto the auxiliary list, otherwise reuse the existing one by 1800 * copying the new page contents over to the old temporary page. 1801 */ 1802 static bool fuse_writepage_in_flight(struct fuse_req *new_req, 1803 struct page *page) 1804 { 1805 struct fuse_conn *fc = get_fuse_conn(new_req->inode); 1806 struct fuse_inode *fi = get_fuse_inode(new_req->inode); 1807 struct fuse_req *tmp; 1808 struct fuse_req *old_req; 1809 1810 WARN_ON(new_req->num_pages != 0); 1811 1812 spin_lock(&fi->lock); 1813 list_del(&new_req->writepages_entry); 1814 old_req = fuse_find_writeback(fi, page->index, page->index); 1815 if (!old_req) { 1816 list_add(&new_req->writepages_entry, &fi->writepages); 1817 spin_unlock(&fi->lock); 1818 return false; 1819 } 1820 1821 new_req->num_pages = 1; 1822 for (tmp = old_req->misc.write.next; tmp; tmp = tmp->misc.write.next) { 1823 pgoff_t curr_index; 1824 1825 WARN_ON(tmp->inode != new_req->inode); 1826 curr_index = tmp->misc.write.in.offset >> PAGE_SHIFT; 1827 if (curr_index == page->index) { 1828 WARN_ON(tmp->num_pages != 1); 1829 WARN_ON(!test_bit(FR_PENDING, &tmp->flags)); 1830 swap(tmp->pages[0], new_req->pages[0]); 1831 break; 1832 } 1833 } 1834 1835 if (!tmp) { 1836 new_req->misc.write.next = old_req->misc.write.next; 1837 old_req->misc.write.next = new_req; 1838 } 1839 1840 spin_unlock(&fi->lock); 1841 1842 if (tmp) { 1843 struct backing_dev_info *bdi = inode_to_bdi(new_req->inode); 1844 1845 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1846 dec_node_page_state(new_req->pages[0], NR_WRITEBACK_TEMP); 1847 wb_writeout_inc(&bdi->wb); 1848 fuse_writepage_free(fc, new_req); 1849 fuse_request_free(new_req); 1850 } 1851 1852 return true; 1853 } 1854 1855 static int fuse_writepages_fill(struct page *page, 1856 struct writeback_control *wbc, void *_data) 1857 { 1858 struct fuse_fill_wb_data *data = _data; 1859 struct fuse_req *req = data->req; 1860 struct inode *inode = data->inode; 1861 struct fuse_inode *fi = get_fuse_inode(inode); 1862 struct fuse_conn *fc = get_fuse_conn(inode); 1863 struct page *tmp_page; 1864 bool is_writeback; 1865 int err; 1866 1867 if (!data->ff) { 1868 err = -EIO; 1869 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode)); 1870 if (!data->ff) 1871 goto out_unlock; 1872 } 1873 1874 /* 1875 * Being under writeback is unlikely but possible. For example direct 1876 * read to an mmaped fuse file will set the page dirty twice; once when 1877 * the pages are faulted with get_user_pages(), and then after the read 1878 * completed. 1879 */ 1880 is_writeback = fuse_page_is_writeback(inode, page->index); 1881 1882 if (req && req->num_pages && 1883 (is_writeback || req->num_pages == fc->max_pages || 1884 (req->num_pages + 1) * PAGE_SIZE > fc->max_write || 1885 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) { 1886 fuse_writepages_send(data); 1887 data->req = NULL; 1888 } else if (req && req->num_pages == req->max_pages) { 1889 if (!fuse_req_realloc_pages(fc, req, GFP_NOFS)) { 1890 fuse_writepages_send(data); 1891 req = data->req = NULL; 1892 } 1893 } 1894 1895 err = -ENOMEM; 1896 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1897 if (!tmp_page) 1898 goto out_unlock; 1899 1900 /* 1901 * The page must not be redirtied until the writeout is completed 1902 * (i.e. userspace has sent a reply to the write request). Otherwise 1903 * there could be more than one temporary page instance for each real 1904 * page. 1905 * 1906 * This is ensured by holding the page lock in page_mkwrite() while 1907 * checking fuse_page_is_writeback(). We already hold the page lock 1908 * since clear_page_dirty_for_io() and keep it held until we add the 1909 * request to the fi->writepages list and increment req->num_pages. 1910 * After this fuse_page_is_writeback() will indicate that the page is 1911 * under writeback, so we can release the page lock. 1912 */ 1913 if (data->req == NULL) { 1914 struct fuse_inode *fi = get_fuse_inode(inode); 1915 1916 err = -ENOMEM; 1917 req = fuse_request_alloc_nofs(FUSE_REQ_INLINE_PAGES); 1918 if (!req) { 1919 __free_page(tmp_page); 1920 goto out_unlock; 1921 } 1922 1923 fuse_write_fill(req, data->ff, page_offset(page), 0); 1924 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1925 req->misc.write.next = NULL; 1926 req->in.argpages = 1; 1927 __set_bit(FR_BACKGROUND, &req->flags); 1928 req->num_pages = 0; 1929 req->end = fuse_writepage_end; 1930 req->inode = inode; 1931 1932 spin_lock(&fi->lock); 1933 list_add(&req->writepages_entry, &fi->writepages); 1934 spin_unlock(&fi->lock); 1935 1936 data->req = req; 1937 } 1938 set_page_writeback(page); 1939 1940 copy_highpage(tmp_page, page); 1941 req->pages[req->num_pages] = tmp_page; 1942 req->page_descs[req->num_pages].offset = 0; 1943 req->page_descs[req->num_pages].length = PAGE_SIZE; 1944 1945 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1946 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1947 1948 err = 0; 1949 if (is_writeback && fuse_writepage_in_flight(req, page)) { 1950 end_page_writeback(page); 1951 data->req = NULL; 1952 goto out_unlock; 1953 } 1954 data->orig_pages[req->num_pages] = page; 1955 1956 /* 1957 * Protected by fi->lock against concurrent access by 1958 * fuse_page_is_writeback(). 1959 */ 1960 spin_lock(&fi->lock); 1961 req->num_pages++; 1962 spin_unlock(&fi->lock); 1963 1964 out_unlock: 1965 unlock_page(page); 1966 1967 return err; 1968 } 1969 1970 static int fuse_writepages(struct address_space *mapping, 1971 struct writeback_control *wbc) 1972 { 1973 struct inode *inode = mapping->host; 1974 struct fuse_conn *fc = get_fuse_conn(inode); 1975 struct fuse_fill_wb_data data; 1976 int err; 1977 1978 err = -EIO; 1979 if (is_bad_inode(inode)) 1980 goto out; 1981 1982 data.inode = inode; 1983 data.req = NULL; 1984 data.ff = NULL; 1985 1986 err = -ENOMEM; 1987 data.orig_pages = kcalloc(fc->max_pages, 1988 sizeof(struct page *), 1989 GFP_NOFS); 1990 if (!data.orig_pages) 1991 goto out; 1992 1993 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 1994 if (data.req) { 1995 /* Ignore errors if we can write at least one page */ 1996 BUG_ON(!data.req->num_pages); 1997 fuse_writepages_send(&data); 1998 err = 0; 1999 } 2000 if (data.ff) 2001 fuse_file_put(data.ff, false, false); 2002 2003 kfree(data.orig_pages); 2004 out: 2005 return err; 2006 } 2007 2008 /* 2009 * It's worthy to make sure that space is reserved on disk for the write, 2010 * but how to implement it without killing performance need more thinking. 2011 */ 2012 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2013 loff_t pos, unsigned len, unsigned flags, 2014 struct page **pagep, void **fsdata) 2015 { 2016 pgoff_t index = pos >> PAGE_SHIFT; 2017 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2018 struct page *page; 2019 loff_t fsize; 2020 int err = -ENOMEM; 2021 2022 WARN_ON(!fc->writeback_cache); 2023 2024 page = grab_cache_page_write_begin(mapping, index, flags); 2025 if (!page) 2026 goto error; 2027 2028 fuse_wait_on_page_writeback(mapping->host, page->index); 2029 2030 if (PageUptodate(page) || len == PAGE_SIZE) 2031 goto success; 2032 /* 2033 * Check if the start this page comes after the end of file, in which 2034 * case the readpage can be optimized away. 2035 */ 2036 fsize = i_size_read(mapping->host); 2037 if (fsize <= (pos & PAGE_MASK)) { 2038 size_t off = pos & ~PAGE_MASK; 2039 if (off) 2040 zero_user_segment(page, 0, off); 2041 goto success; 2042 } 2043 err = fuse_do_readpage(file, page); 2044 if (err) 2045 goto cleanup; 2046 success: 2047 *pagep = page; 2048 return 0; 2049 2050 cleanup: 2051 unlock_page(page); 2052 put_page(page); 2053 error: 2054 return err; 2055 } 2056 2057 static int fuse_write_end(struct file *file, struct address_space *mapping, 2058 loff_t pos, unsigned len, unsigned copied, 2059 struct page *page, void *fsdata) 2060 { 2061 struct inode *inode = page->mapping->host; 2062 2063 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2064 if (!copied) 2065 goto unlock; 2066 2067 if (!PageUptodate(page)) { 2068 /* Zero any unwritten bytes at the end of the page */ 2069 size_t endoff = (pos + copied) & ~PAGE_MASK; 2070 if (endoff) 2071 zero_user_segment(page, endoff, PAGE_SIZE); 2072 SetPageUptodate(page); 2073 } 2074 2075 fuse_write_update_size(inode, pos + copied); 2076 set_page_dirty(page); 2077 2078 unlock: 2079 unlock_page(page); 2080 put_page(page); 2081 2082 return copied; 2083 } 2084 2085 static int fuse_launder_page(struct page *page) 2086 { 2087 int err = 0; 2088 if (clear_page_dirty_for_io(page)) { 2089 struct inode *inode = page->mapping->host; 2090 err = fuse_writepage_locked(page); 2091 if (!err) 2092 fuse_wait_on_page_writeback(inode, page->index); 2093 } 2094 return err; 2095 } 2096 2097 /* 2098 * Write back dirty pages now, because there may not be any suitable 2099 * open files later 2100 */ 2101 static void fuse_vma_close(struct vm_area_struct *vma) 2102 { 2103 filemap_write_and_wait(vma->vm_file->f_mapping); 2104 } 2105 2106 /* 2107 * Wait for writeback against this page to complete before allowing it 2108 * to be marked dirty again, and hence written back again, possibly 2109 * before the previous writepage completed. 2110 * 2111 * Block here, instead of in ->writepage(), so that the userspace fs 2112 * can only block processes actually operating on the filesystem. 2113 * 2114 * Otherwise unprivileged userspace fs would be able to block 2115 * unrelated: 2116 * 2117 * - page migration 2118 * - sync(2) 2119 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2120 */ 2121 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2122 { 2123 struct page *page = vmf->page; 2124 struct inode *inode = file_inode(vmf->vma->vm_file); 2125 2126 file_update_time(vmf->vma->vm_file); 2127 lock_page(page); 2128 if (page->mapping != inode->i_mapping) { 2129 unlock_page(page); 2130 return VM_FAULT_NOPAGE; 2131 } 2132 2133 fuse_wait_on_page_writeback(inode, page->index); 2134 return VM_FAULT_LOCKED; 2135 } 2136 2137 static const struct vm_operations_struct fuse_file_vm_ops = { 2138 .close = fuse_vma_close, 2139 .fault = filemap_fault, 2140 .map_pages = filemap_map_pages, 2141 .page_mkwrite = fuse_page_mkwrite, 2142 }; 2143 2144 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2145 { 2146 struct fuse_file *ff = file->private_data; 2147 2148 if (ff->open_flags & FOPEN_DIRECT_IO) { 2149 /* Can't provide the coherency needed for MAP_SHARED */ 2150 if (vma->vm_flags & VM_MAYSHARE) 2151 return -ENODEV; 2152 2153 invalidate_inode_pages2(file->f_mapping); 2154 2155 return generic_file_mmap(file, vma); 2156 } 2157 2158 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2159 fuse_link_write_file(file); 2160 2161 file_accessed(file); 2162 vma->vm_ops = &fuse_file_vm_ops; 2163 return 0; 2164 } 2165 2166 static int convert_fuse_file_lock(struct fuse_conn *fc, 2167 const struct fuse_file_lock *ffl, 2168 struct file_lock *fl) 2169 { 2170 switch (ffl->type) { 2171 case F_UNLCK: 2172 break; 2173 2174 case F_RDLCK: 2175 case F_WRLCK: 2176 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2177 ffl->end < ffl->start) 2178 return -EIO; 2179 2180 fl->fl_start = ffl->start; 2181 fl->fl_end = ffl->end; 2182 2183 /* 2184 * Convert pid into init's pid namespace. The locks API will 2185 * translate it into the caller's pid namespace. 2186 */ 2187 rcu_read_lock(); 2188 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2189 rcu_read_unlock(); 2190 break; 2191 2192 default: 2193 return -EIO; 2194 } 2195 fl->fl_type = ffl->type; 2196 return 0; 2197 } 2198 2199 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2200 const struct file_lock *fl, int opcode, pid_t pid, 2201 int flock, struct fuse_lk_in *inarg) 2202 { 2203 struct inode *inode = file_inode(file); 2204 struct fuse_conn *fc = get_fuse_conn(inode); 2205 struct fuse_file *ff = file->private_data; 2206 2207 memset(inarg, 0, sizeof(*inarg)); 2208 inarg->fh = ff->fh; 2209 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2210 inarg->lk.start = fl->fl_start; 2211 inarg->lk.end = fl->fl_end; 2212 inarg->lk.type = fl->fl_type; 2213 inarg->lk.pid = pid; 2214 if (flock) 2215 inarg->lk_flags |= FUSE_LK_FLOCK; 2216 args->in.h.opcode = opcode; 2217 args->in.h.nodeid = get_node_id(inode); 2218 args->in.numargs = 1; 2219 args->in.args[0].size = sizeof(*inarg); 2220 args->in.args[0].value = inarg; 2221 } 2222 2223 static int fuse_getlk(struct file *file, struct file_lock *fl) 2224 { 2225 struct inode *inode = file_inode(file); 2226 struct fuse_conn *fc = get_fuse_conn(inode); 2227 FUSE_ARGS(args); 2228 struct fuse_lk_in inarg; 2229 struct fuse_lk_out outarg; 2230 int err; 2231 2232 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2233 args.out.numargs = 1; 2234 args.out.args[0].size = sizeof(outarg); 2235 args.out.args[0].value = &outarg; 2236 err = fuse_simple_request(fc, &args); 2237 if (!err) 2238 err = convert_fuse_file_lock(fc, &outarg.lk, fl); 2239 2240 return err; 2241 } 2242 2243 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2244 { 2245 struct inode *inode = file_inode(file); 2246 struct fuse_conn *fc = get_fuse_conn(inode); 2247 FUSE_ARGS(args); 2248 struct fuse_lk_in inarg; 2249 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2250 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2251 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns); 2252 int err; 2253 2254 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2255 /* NLM needs asynchronous locks, which we don't support yet */ 2256 return -ENOLCK; 2257 } 2258 2259 /* Unlock on close is handled by the flush method */ 2260 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2261 return 0; 2262 2263 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2264 err = fuse_simple_request(fc, &args); 2265 2266 /* locking is restartable */ 2267 if (err == -EINTR) 2268 err = -ERESTARTSYS; 2269 2270 return err; 2271 } 2272 2273 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2274 { 2275 struct inode *inode = file_inode(file); 2276 struct fuse_conn *fc = get_fuse_conn(inode); 2277 int err; 2278 2279 if (cmd == F_CANCELLK) { 2280 err = 0; 2281 } else if (cmd == F_GETLK) { 2282 if (fc->no_lock) { 2283 posix_test_lock(file, fl); 2284 err = 0; 2285 } else 2286 err = fuse_getlk(file, fl); 2287 } else { 2288 if (fc->no_lock) 2289 err = posix_lock_file(file, fl, NULL); 2290 else 2291 err = fuse_setlk(file, fl, 0); 2292 } 2293 return err; 2294 } 2295 2296 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2297 { 2298 struct inode *inode = file_inode(file); 2299 struct fuse_conn *fc = get_fuse_conn(inode); 2300 int err; 2301 2302 if (fc->no_flock) { 2303 err = locks_lock_file_wait(file, fl); 2304 } else { 2305 struct fuse_file *ff = file->private_data; 2306 2307 /* emulate flock with POSIX locks */ 2308 ff->flock = true; 2309 err = fuse_setlk(file, fl, 1); 2310 } 2311 2312 return err; 2313 } 2314 2315 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2316 { 2317 struct inode *inode = mapping->host; 2318 struct fuse_conn *fc = get_fuse_conn(inode); 2319 FUSE_ARGS(args); 2320 struct fuse_bmap_in inarg; 2321 struct fuse_bmap_out outarg; 2322 int err; 2323 2324 if (!inode->i_sb->s_bdev || fc->no_bmap) 2325 return 0; 2326 2327 memset(&inarg, 0, sizeof(inarg)); 2328 inarg.block = block; 2329 inarg.blocksize = inode->i_sb->s_blocksize; 2330 args.in.h.opcode = FUSE_BMAP; 2331 args.in.h.nodeid = get_node_id(inode); 2332 args.in.numargs = 1; 2333 args.in.args[0].size = sizeof(inarg); 2334 args.in.args[0].value = &inarg; 2335 args.out.numargs = 1; 2336 args.out.args[0].size = sizeof(outarg); 2337 args.out.args[0].value = &outarg; 2338 err = fuse_simple_request(fc, &args); 2339 if (err == -ENOSYS) 2340 fc->no_bmap = 1; 2341 2342 return err ? 0 : outarg.block; 2343 } 2344 2345 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2346 { 2347 struct inode *inode = file->f_mapping->host; 2348 struct fuse_conn *fc = get_fuse_conn(inode); 2349 struct fuse_file *ff = file->private_data; 2350 FUSE_ARGS(args); 2351 struct fuse_lseek_in inarg = { 2352 .fh = ff->fh, 2353 .offset = offset, 2354 .whence = whence 2355 }; 2356 struct fuse_lseek_out outarg; 2357 int err; 2358 2359 if (fc->no_lseek) 2360 goto fallback; 2361 2362 args.in.h.opcode = FUSE_LSEEK; 2363 args.in.h.nodeid = ff->nodeid; 2364 args.in.numargs = 1; 2365 args.in.args[0].size = sizeof(inarg); 2366 args.in.args[0].value = &inarg; 2367 args.out.numargs = 1; 2368 args.out.args[0].size = sizeof(outarg); 2369 args.out.args[0].value = &outarg; 2370 err = fuse_simple_request(fc, &args); 2371 if (err) { 2372 if (err == -ENOSYS) { 2373 fc->no_lseek = 1; 2374 goto fallback; 2375 } 2376 return err; 2377 } 2378 2379 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2380 2381 fallback: 2382 err = fuse_update_attributes(inode, file); 2383 if (!err) 2384 return generic_file_llseek(file, offset, whence); 2385 else 2386 return err; 2387 } 2388 2389 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2390 { 2391 loff_t retval; 2392 struct inode *inode = file_inode(file); 2393 2394 switch (whence) { 2395 case SEEK_SET: 2396 case SEEK_CUR: 2397 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2398 retval = generic_file_llseek(file, offset, whence); 2399 break; 2400 case SEEK_END: 2401 inode_lock(inode); 2402 retval = fuse_update_attributes(inode, file); 2403 if (!retval) 2404 retval = generic_file_llseek(file, offset, whence); 2405 inode_unlock(inode); 2406 break; 2407 case SEEK_HOLE: 2408 case SEEK_DATA: 2409 inode_lock(inode); 2410 retval = fuse_lseek(file, offset, whence); 2411 inode_unlock(inode); 2412 break; 2413 default: 2414 retval = -EINVAL; 2415 } 2416 2417 return retval; 2418 } 2419 2420 /* 2421 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2422 * ABI was defined to be 'struct iovec' which is different on 32bit 2423 * and 64bit. Fortunately we can determine which structure the server 2424 * used from the size of the reply. 2425 */ 2426 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2427 size_t transferred, unsigned count, 2428 bool is_compat) 2429 { 2430 #ifdef CONFIG_COMPAT 2431 if (count * sizeof(struct compat_iovec) == transferred) { 2432 struct compat_iovec *ciov = src; 2433 unsigned i; 2434 2435 /* 2436 * With this interface a 32bit server cannot support 2437 * non-compat (i.e. ones coming from 64bit apps) ioctl 2438 * requests 2439 */ 2440 if (!is_compat) 2441 return -EINVAL; 2442 2443 for (i = 0; i < count; i++) { 2444 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2445 dst[i].iov_len = ciov[i].iov_len; 2446 } 2447 return 0; 2448 } 2449 #endif 2450 2451 if (count * sizeof(struct iovec) != transferred) 2452 return -EIO; 2453 2454 memcpy(dst, src, transferred); 2455 return 0; 2456 } 2457 2458 /* Make sure iov_length() won't overflow */ 2459 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov, 2460 size_t count) 2461 { 2462 size_t n; 2463 u32 max = fc->max_pages << PAGE_SHIFT; 2464 2465 for (n = 0; n < count; n++, iov++) { 2466 if (iov->iov_len > (size_t) max) 2467 return -ENOMEM; 2468 max -= iov->iov_len; 2469 } 2470 return 0; 2471 } 2472 2473 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2474 void *src, size_t transferred, unsigned count, 2475 bool is_compat) 2476 { 2477 unsigned i; 2478 struct fuse_ioctl_iovec *fiov = src; 2479 2480 if (fc->minor < 16) { 2481 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2482 count, is_compat); 2483 } 2484 2485 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2486 return -EIO; 2487 2488 for (i = 0; i < count; i++) { 2489 /* Did the server supply an inappropriate value? */ 2490 if (fiov[i].base != (unsigned long) fiov[i].base || 2491 fiov[i].len != (unsigned long) fiov[i].len) 2492 return -EIO; 2493 2494 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2495 dst[i].iov_len = (size_t) fiov[i].len; 2496 2497 #ifdef CONFIG_COMPAT 2498 if (is_compat && 2499 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2500 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2501 return -EIO; 2502 #endif 2503 } 2504 2505 return 0; 2506 } 2507 2508 2509 /* 2510 * For ioctls, there is no generic way to determine how much memory 2511 * needs to be read and/or written. Furthermore, ioctls are allowed 2512 * to dereference the passed pointer, so the parameter requires deep 2513 * copying but FUSE has no idea whatsoever about what to copy in or 2514 * out. 2515 * 2516 * This is solved by allowing FUSE server to retry ioctl with 2517 * necessary in/out iovecs. Let's assume the ioctl implementation 2518 * needs to read in the following structure. 2519 * 2520 * struct a { 2521 * char *buf; 2522 * size_t buflen; 2523 * } 2524 * 2525 * On the first callout to FUSE server, inarg->in_size and 2526 * inarg->out_size will be NULL; then, the server completes the ioctl 2527 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2528 * the actual iov array to 2529 * 2530 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2531 * 2532 * which tells FUSE to copy in the requested area and retry the ioctl. 2533 * On the second round, the server has access to the structure and 2534 * from that it can tell what to look for next, so on the invocation, 2535 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2536 * 2537 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2538 * { .iov_base = a.buf, .iov_len = a.buflen } } 2539 * 2540 * FUSE will copy both struct a and the pointed buffer from the 2541 * process doing the ioctl and retry ioctl with both struct a and the 2542 * buffer. 2543 * 2544 * This time, FUSE server has everything it needs and completes ioctl 2545 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2546 * 2547 * Copying data out works the same way. 2548 * 2549 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2550 * automatically initializes in and out iovs by decoding @cmd with 2551 * _IOC_* macros and the server is not allowed to request RETRY. This 2552 * limits ioctl data transfers to well-formed ioctls and is the forced 2553 * behavior for all FUSE servers. 2554 */ 2555 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2556 unsigned int flags) 2557 { 2558 struct fuse_file *ff = file->private_data; 2559 struct fuse_conn *fc = ff->fc; 2560 struct fuse_ioctl_in inarg = { 2561 .fh = ff->fh, 2562 .cmd = cmd, 2563 .arg = arg, 2564 .flags = flags 2565 }; 2566 struct fuse_ioctl_out outarg; 2567 struct fuse_req *req = NULL; 2568 struct page **pages = NULL; 2569 struct iovec *iov_page = NULL; 2570 struct iovec *in_iov = NULL, *out_iov = NULL; 2571 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages; 2572 size_t in_size, out_size, transferred, c; 2573 int err, i; 2574 struct iov_iter ii; 2575 2576 #if BITS_PER_LONG == 32 2577 inarg.flags |= FUSE_IOCTL_32BIT; 2578 #else 2579 if (flags & FUSE_IOCTL_COMPAT) 2580 inarg.flags |= FUSE_IOCTL_32BIT; 2581 #endif 2582 2583 /* assume all the iovs returned by client always fits in a page */ 2584 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2585 2586 err = -ENOMEM; 2587 pages = kcalloc(fc->max_pages, sizeof(pages[0]), GFP_KERNEL); 2588 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2589 if (!pages || !iov_page) 2590 goto out; 2591 2592 /* 2593 * If restricted, initialize IO parameters as encoded in @cmd. 2594 * RETRY from server is not allowed. 2595 */ 2596 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2597 struct iovec *iov = iov_page; 2598 2599 iov->iov_base = (void __user *)arg; 2600 iov->iov_len = _IOC_SIZE(cmd); 2601 2602 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2603 in_iov = iov; 2604 in_iovs = 1; 2605 } 2606 2607 if (_IOC_DIR(cmd) & _IOC_READ) { 2608 out_iov = iov; 2609 out_iovs = 1; 2610 } 2611 } 2612 2613 retry: 2614 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2615 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2616 2617 /* 2618 * Out data can be used either for actual out data or iovs, 2619 * make sure there always is at least one page. 2620 */ 2621 out_size = max_t(size_t, out_size, PAGE_SIZE); 2622 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2623 2624 /* make sure there are enough buffer pages and init request with them */ 2625 err = -ENOMEM; 2626 if (max_pages > fc->max_pages) 2627 goto out; 2628 while (num_pages < max_pages) { 2629 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2630 if (!pages[num_pages]) 2631 goto out; 2632 num_pages++; 2633 } 2634 2635 req = fuse_get_req(fc, num_pages); 2636 if (IS_ERR(req)) { 2637 err = PTR_ERR(req); 2638 req = NULL; 2639 goto out; 2640 } 2641 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages); 2642 req->num_pages = num_pages; 2643 fuse_page_descs_length_init(req, 0, req->num_pages); 2644 2645 /* okay, let's send it to the client */ 2646 req->in.h.opcode = FUSE_IOCTL; 2647 req->in.h.nodeid = ff->nodeid; 2648 req->in.numargs = 1; 2649 req->in.args[0].size = sizeof(inarg); 2650 req->in.args[0].value = &inarg; 2651 if (in_size) { 2652 req->in.numargs++; 2653 req->in.args[1].size = in_size; 2654 req->in.argpages = 1; 2655 2656 err = -EFAULT; 2657 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size); 2658 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) { 2659 c = copy_page_from_iter(pages[i], 0, PAGE_SIZE, &ii); 2660 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2661 goto out; 2662 } 2663 } 2664 2665 req->out.numargs = 2; 2666 req->out.args[0].size = sizeof(outarg); 2667 req->out.args[0].value = &outarg; 2668 req->out.args[1].size = out_size; 2669 req->out.argpages = 1; 2670 req->out.argvar = 1; 2671 2672 fuse_request_send(fc, req); 2673 err = req->out.h.error; 2674 transferred = req->out.args[1].size; 2675 fuse_put_request(fc, req); 2676 req = NULL; 2677 if (err) 2678 goto out; 2679 2680 /* did it ask for retry? */ 2681 if (outarg.flags & FUSE_IOCTL_RETRY) { 2682 void *vaddr; 2683 2684 /* no retry if in restricted mode */ 2685 err = -EIO; 2686 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2687 goto out; 2688 2689 in_iovs = outarg.in_iovs; 2690 out_iovs = outarg.out_iovs; 2691 2692 /* 2693 * Make sure things are in boundary, separate checks 2694 * are to protect against overflow. 2695 */ 2696 err = -ENOMEM; 2697 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2698 out_iovs > FUSE_IOCTL_MAX_IOV || 2699 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2700 goto out; 2701 2702 vaddr = kmap_atomic(pages[0]); 2703 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2704 transferred, in_iovs + out_iovs, 2705 (flags & FUSE_IOCTL_COMPAT) != 0); 2706 kunmap_atomic(vaddr); 2707 if (err) 2708 goto out; 2709 2710 in_iov = iov_page; 2711 out_iov = in_iov + in_iovs; 2712 2713 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs); 2714 if (err) 2715 goto out; 2716 2717 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs); 2718 if (err) 2719 goto out; 2720 2721 goto retry; 2722 } 2723 2724 err = -EIO; 2725 if (transferred > inarg.out_size) 2726 goto out; 2727 2728 err = -EFAULT; 2729 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred); 2730 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) { 2731 c = copy_page_to_iter(pages[i], 0, PAGE_SIZE, &ii); 2732 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2733 goto out; 2734 } 2735 err = 0; 2736 out: 2737 if (req) 2738 fuse_put_request(fc, req); 2739 free_page((unsigned long) iov_page); 2740 while (num_pages) 2741 __free_page(pages[--num_pages]); 2742 kfree(pages); 2743 2744 return err ? err : outarg.result; 2745 } 2746 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2747 2748 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2749 unsigned long arg, unsigned int flags) 2750 { 2751 struct inode *inode = file_inode(file); 2752 struct fuse_conn *fc = get_fuse_conn(inode); 2753 2754 if (!fuse_allow_current_process(fc)) 2755 return -EACCES; 2756 2757 if (is_bad_inode(inode)) 2758 return -EIO; 2759 2760 return fuse_do_ioctl(file, cmd, arg, flags); 2761 } 2762 2763 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2764 unsigned long arg) 2765 { 2766 return fuse_ioctl_common(file, cmd, arg, 0); 2767 } 2768 2769 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2770 unsigned long arg) 2771 { 2772 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2773 } 2774 2775 /* 2776 * All files which have been polled are linked to RB tree 2777 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2778 * find the matching one. 2779 */ 2780 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2781 struct rb_node **parent_out) 2782 { 2783 struct rb_node **link = &fc->polled_files.rb_node; 2784 struct rb_node *last = NULL; 2785 2786 while (*link) { 2787 struct fuse_file *ff; 2788 2789 last = *link; 2790 ff = rb_entry(last, struct fuse_file, polled_node); 2791 2792 if (kh < ff->kh) 2793 link = &last->rb_left; 2794 else if (kh > ff->kh) 2795 link = &last->rb_right; 2796 else 2797 return link; 2798 } 2799 2800 if (parent_out) 2801 *parent_out = last; 2802 return link; 2803 } 2804 2805 /* 2806 * The file is about to be polled. Make sure it's on the polled_files 2807 * RB tree. Note that files once added to the polled_files tree are 2808 * not removed before the file is released. This is because a file 2809 * polled once is likely to be polled again. 2810 */ 2811 static void fuse_register_polled_file(struct fuse_conn *fc, 2812 struct fuse_file *ff) 2813 { 2814 spin_lock(&fc->lock); 2815 if (RB_EMPTY_NODE(&ff->polled_node)) { 2816 struct rb_node **link, *uninitialized_var(parent); 2817 2818 link = fuse_find_polled_node(fc, ff->kh, &parent); 2819 BUG_ON(*link); 2820 rb_link_node(&ff->polled_node, parent, link); 2821 rb_insert_color(&ff->polled_node, &fc->polled_files); 2822 } 2823 spin_unlock(&fc->lock); 2824 } 2825 2826 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2827 { 2828 struct fuse_file *ff = file->private_data; 2829 struct fuse_conn *fc = ff->fc; 2830 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2831 struct fuse_poll_out outarg; 2832 FUSE_ARGS(args); 2833 int err; 2834 2835 if (fc->no_poll) 2836 return DEFAULT_POLLMASK; 2837 2838 poll_wait(file, &ff->poll_wait, wait); 2839 inarg.events = mangle_poll(poll_requested_events(wait)); 2840 2841 /* 2842 * Ask for notification iff there's someone waiting for it. 2843 * The client may ignore the flag and always notify. 2844 */ 2845 if (waitqueue_active(&ff->poll_wait)) { 2846 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2847 fuse_register_polled_file(fc, ff); 2848 } 2849 2850 args.in.h.opcode = FUSE_POLL; 2851 args.in.h.nodeid = ff->nodeid; 2852 args.in.numargs = 1; 2853 args.in.args[0].size = sizeof(inarg); 2854 args.in.args[0].value = &inarg; 2855 args.out.numargs = 1; 2856 args.out.args[0].size = sizeof(outarg); 2857 args.out.args[0].value = &outarg; 2858 err = fuse_simple_request(fc, &args); 2859 2860 if (!err) 2861 return demangle_poll(outarg.revents); 2862 if (err == -ENOSYS) { 2863 fc->no_poll = 1; 2864 return DEFAULT_POLLMASK; 2865 } 2866 return EPOLLERR; 2867 } 2868 EXPORT_SYMBOL_GPL(fuse_file_poll); 2869 2870 /* 2871 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2872 * wakes up the poll waiters. 2873 */ 2874 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2875 struct fuse_notify_poll_wakeup_out *outarg) 2876 { 2877 u64 kh = outarg->kh; 2878 struct rb_node **link; 2879 2880 spin_lock(&fc->lock); 2881 2882 link = fuse_find_polled_node(fc, kh, NULL); 2883 if (*link) { 2884 struct fuse_file *ff; 2885 2886 ff = rb_entry(*link, struct fuse_file, polled_node); 2887 wake_up_interruptible_sync(&ff->poll_wait); 2888 } 2889 2890 spin_unlock(&fc->lock); 2891 return 0; 2892 } 2893 2894 static void fuse_do_truncate(struct file *file) 2895 { 2896 struct inode *inode = file->f_mapping->host; 2897 struct iattr attr; 2898 2899 attr.ia_valid = ATTR_SIZE; 2900 attr.ia_size = i_size_read(inode); 2901 2902 attr.ia_file = file; 2903 attr.ia_valid |= ATTR_FILE; 2904 2905 fuse_do_setattr(file_dentry(file), &attr, file); 2906 } 2907 2908 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 2909 { 2910 return round_up(off, fc->max_pages << PAGE_SHIFT); 2911 } 2912 2913 static ssize_t 2914 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2915 { 2916 DECLARE_COMPLETION_ONSTACK(wait); 2917 ssize_t ret = 0; 2918 struct file *file = iocb->ki_filp; 2919 struct fuse_file *ff = file->private_data; 2920 bool async_dio = ff->fc->async_dio; 2921 loff_t pos = 0; 2922 struct inode *inode; 2923 loff_t i_size; 2924 size_t count = iov_iter_count(iter); 2925 loff_t offset = iocb->ki_pos; 2926 struct fuse_io_priv *io; 2927 2928 pos = offset; 2929 inode = file->f_mapping->host; 2930 i_size = i_size_read(inode); 2931 2932 if ((iov_iter_rw(iter) == READ) && (offset > i_size)) 2933 return 0; 2934 2935 /* optimization for short read */ 2936 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) { 2937 if (offset >= i_size) 2938 return 0; 2939 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset)); 2940 count = iov_iter_count(iter); 2941 } 2942 2943 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2944 if (!io) 2945 return -ENOMEM; 2946 spin_lock_init(&io->lock); 2947 kref_init(&io->refcnt); 2948 io->reqs = 1; 2949 io->bytes = -1; 2950 io->size = 0; 2951 io->offset = offset; 2952 io->write = (iov_iter_rw(iter) == WRITE); 2953 io->err = 0; 2954 /* 2955 * By default, we want to optimize all I/Os with async request 2956 * submission to the client filesystem if supported. 2957 */ 2958 io->async = async_dio; 2959 io->iocb = iocb; 2960 io->blocking = is_sync_kiocb(iocb); 2961 2962 /* 2963 * We cannot asynchronously extend the size of a file. 2964 * In such case the aio will behave exactly like sync io. 2965 */ 2966 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE) 2967 io->blocking = true; 2968 2969 if (io->async && io->blocking) { 2970 /* 2971 * Additional reference to keep io around after 2972 * calling fuse_aio_complete() 2973 */ 2974 kref_get(&io->refcnt); 2975 io->done = &wait; 2976 } 2977 2978 if (iov_iter_rw(iter) == WRITE) { 2979 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2980 fuse_invalidate_attr(inode); 2981 } else { 2982 ret = __fuse_direct_read(io, iter, &pos); 2983 } 2984 2985 if (io->async) { 2986 bool blocking = io->blocking; 2987 2988 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2989 2990 /* we have a non-extending, async request, so return */ 2991 if (!blocking) 2992 return -EIOCBQUEUED; 2993 2994 wait_for_completion(&wait); 2995 ret = fuse_get_res_by_io(io); 2996 } 2997 2998 kref_put(&io->refcnt, fuse_io_release); 2999 3000 if (iov_iter_rw(iter) == WRITE) { 3001 if (ret > 0) 3002 fuse_write_update_size(inode, pos); 3003 else if (ret < 0 && offset + count > i_size) 3004 fuse_do_truncate(file); 3005 } 3006 3007 return ret; 3008 } 3009 3010 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3011 loff_t length) 3012 { 3013 struct fuse_file *ff = file->private_data; 3014 struct inode *inode = file_inode(file); 3015 struct fuse_inode *fi = get_fuse_inode(inode); 3016 struct fuse_conn *fc = ff->fc; 3017 FUSE_ARGS(args); 3018 struct fuse_fallocate_in inarg = { 3019 .fh = ff->fh, 3020 .offset = offset, 3021 .length = length, 3022 .mode = mode 3023 }; 3024 int err; 3025 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 3026 (mode & FALLOC_FL_PUNCH_HOLE); 3027 3028 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3029 return -EOPNOTSUPP; 3030 3031 if (fc->no_fallocate) 3032 return -EOPNOTSUPP; 3033 3034 if (lock_inode) { 3035 inode_lock(inode); 3036 if (mode & FALLOC_FL_PUNCH_HOLE) { 3037 loff_t endbyte = offset + length - 1; 3038 err = filemap_write_and_wait_range(inode->i_mapping, 3039 offset, endbyte); 3040 if (err) 3041 goto out; 3042 3043 fuse_sync_writes(inode); 3044 } 3045 } 3046 3047 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3048 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3049 3050 args.in.h.opcode = FUSE_FALLOCATE; 3051 args.in.h.nodeid = ff->nodeid; 3052 args.in.numargs = 1; 3053 args.in.args[0].size = sizeof(inarg); 3054 args.in.args[0].value = &inarg; 3055 err = fuse_simple_request(fc, &args); 3056 if (err == -ENOSYS) { 3057 fc->no_fallocate = 1; 3058 err = -EOPNOTSUPP; 3059 } 3060 if (err) 3061 goto out; 3062 3063 /* we could have extended the file */ 3064 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3065 bool changed = fuse_write_update_size(inode, offset + length); 3066 3067 if (changed && fc->writeback_cache) 3068 file_update_time(file); 3069 } 3070 3071 if (mode & FALLOC_FL_PUNCH_HOLE) 3072 truncate_pagecache_range(inode, offset, offset + length - 1); 3073 3074 fuse_invalidate_attr(inode); 3075 3076 out: 3077 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3078 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3079 3080 if (lock_inode) 3081 inode_unlock(inode); 3082 3083 return err; 3084 } 3085 3086 static ssize_t fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3087 struct file *file_out, loff_t pos_out, 3088 size_t len, unsigned int flags) 3089 { 3090 struct fuse_file *ff_in = file_in->private_data; 3091 struct fuse_file *ff_out = file_out->private_data; 3092 struct inode *inode_out = file_inode(file_out); 3093 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3094 struct fuse_conn *fc = ff_in->fc; 3095 FUSE_ARGS(args); 3096 struct fuse_copy_file_range_in inarg = { 3097 .fh_in = ff_in->fh, 3098 .off_in = pos_in, 3099 .nodeid_out = ff_out->nodeid, 3100 .fh_out = ff_out->fh, 3101 .off_out = pos_out, 3102 .len = len, 3103 .flags = flags 3104 }; 3105 struct fuse_write_out outarg; 3106 ssize_t err; 3107 /* mark unstable when write-back is not used, and file_out gets 3108 * extended */ 3109 bool is_unstable = (!fc->writeback_cache) && 3110 ((pos_out + len) > inode_out->i_size); 3111 3112 if (fc->no_copy_file_range) 3113 return -EOPNOTSUPP; 3114 3115 inode_lock(inode_out); 3116 3117 if (fc->writeback_cache) { 3118 err = filemap_write_and_wait_range(inode_out->i_mapping, 3119 pos_out, pos_out + len); 3120 if (err) 3121 goto out; 3122 3123 fuse_sync_writes(inode_out); 3124 } 3125 3126 if (is_unstable) 3127 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3128 3129 args.in.h.opcode = FUSE_COPY_FILE_RANGE; 3130 args.in.h.nodeid = ff_in->nodeid; 3131 args.in.numargs = 1; 3132 args.in.args[0].size = sizeof(inarg); 3133 args.in.args[0].value = &inarg; 3134 args.out.numargs = 1; 3135 args.out.args[0].size = sizeof(outarg); 3136 args.out.args[0].value = &outarg; 3137 err = fuse_simple_request(fc, &args); 3138 if (err == -ENOSYS) { 3139 fc->no_copy_file_range = 1; 3140 err = -EOPNOTSUPP; 3141 } 3142 if (err) 3143 goto out; 3144 3145 if (fc->writeback_cache) { 3146 fuse_write_update_size(inode_out, pos_out + outarg.size); 3147 file_update_time(file_out); 3148 } 3149 3150 fuse_invalidate_attr(inode_out); 3151 3152 err = outarg.size; 3153 out: 3154 if (is_unstable) 3155 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3156 3157 inode_unlock(inode_out); 3158 3159 return err; 3160 } 3161 3162 static const struct file_operations fuse_file_operations = { 3163 .llseek = fuse_file_llseek, 3164 .read_iter = fuse_file_read_iter, 3165 .write_iter = fuse_file_write_iter, 3166 .mmap = fuse_file_mmap, 3167 .open = fuse_open, 3168 .flush = fuse_flush, 3169 .release = fuse_release, 3170 .fsync = fuse_fsync, 3171 .lock = fuse_file_lock, 3172 .flock = fuse_file_flock, 3173 .splice_read = generic_file_splice_read, 3174 .splice_write = iter_file_splice_write, 3175 .unlocked_ioctl = fuse_file_ioctl, 3176 .compat_ioctl = fuse_file_compat_ioctl, 3177 .poll = fuse_file_poll, 3178 .fallocate = fuse_file_fallocate, 3179 .copy_file_range = fuse_copy_file_range, 3180 }; 3181 3182 static const struct address_space_operations fuse_file_aops = { 3183 .readpage = fuse_readpage, 3184 .writepage = fuse_writepage, 3185 .writepages = fuse_writepages, 3186 .launder_page = fuse_launder_page, 3187 .readpages = fuse_readpages, 3188 .set_page_dirty = __set_page_dirty_nobuffers, 3189 .bmap = fuse_bmap, 3190 .direct_IO = fuse_direct_IO, 3191 .write_begin = fuse_write_begin, 3192 .write_end = fuse_write_end, 3193 }; 3194 3195 void fuse_init_file_inode(struct inode *inode) 3196 { 3197 struct fuse_inode *fi = get_fuse_inode(inode); 3198 3199 inode->i_fop = &fuse_file_operations; 3200 inode->i_data.a_ops = &fuse_file_aops; 3201 3202 INIT_LIST_HEAD(&fi->write_files); 3203 INIT_LIST_HEAD(&fi->queued_writes); 3204 fi->writectr = 0; 3205 init_waitqueue_head(&fi->page_waitq); 3206 INIT_LIST_HEAD(&fi->writepages); 3207 } 3208