1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/compat.h> 18 #include <linux/swap.h> 19 #include <linux/falloc.h> 20 #include <linux/uio.h> 21 22 static const struct file_operations fuse_direct_io_file_operations; 23 24 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 25 int opcode, struct fuse_open_out *outargp) 26 { 27 struct fuse_open_in inarg; 28 FUSE_ARGS(args); 29 30 memset(&inarg, 0, sizeof(inarg)); 31 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 32 if (!fc->atomic_o_trunc) 33 inarg.flags &= ~O_TRUNC; 34 args.in.h.opcode = opcode; 35 args.in.h.nodeid = nodeid; 36 args.in.numargs = 1; 37 args.in.args[0].size = sizeof(inarg); 38 args.in.args[0].value = &inarg; 39 args.out.numargs = 1; 40 args.out.args[0].size = sizeof(*outargp); 41 args.out.args[0].value = outargp; 42 43 return fuse_simple_request(fc, &args); 44 } 45 46 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 47 { 48 struct fuse_file *ff; 49 50 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL); 51 if (unlikely(!ff)) 52 return NULL; 53 54 ff->fc = fc; 55 ff->reserved_req = fuse_request_alloc(0); 56 if (unlikely(!ff->reserved_req)) { 57 kfree(ff); 58 return NULL; 59 } 60 61 INIT_LIST_HEAD(&ff->write_entry); 62 mutex_init(&ff->readdir.lock); 63 refcount_set(&ff->count, 1); 64 RB_CLEAR_NODE(&ff->polled_node); 65 init_waitqueue_head(&ff->poll_wait); 66 67 spin_lock(&fc->lock); 68 ff->kh = ++fc->khctr; 69 spin_unlock(&fc->lock); 70 71 return ff; 72 } 73 74 void fuse_file_free(struct fuse_file *ff) 75 { 76 fuse_request_free(ff->reserved_req); 77 mutex_destroy(&ff->readdir.lock); 78 kfree(ff); 79 } 80 81 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 82 { 83 refcount_inc(&ff->count); 84 return ff; 85 } 86 87 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req) 88 { 89 iput(req->misc.release.inode); 90 } 91 92 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 93 { 94 if (refcount_dec_and_test(&ff->count)) { 95 struct fuse_req *req = ff->reserved_req; 96 97 if (ff->fc->no_open && !isdir) { 98 /* 99 * Drop the release request when client does not 100 * implement 'open' 101 */ 102 __clear_bit(FR_BACKGROUND, &req->flags); 103 iput(req->misc.release.inode); 104 fuse_put_request(ff->fc, req); 105 } else if (sync) { 106 __set_bit(FR_FORCE, &req->flags); 107 __clear_bit(FR_BACKGROUND, &req->flags); 108 fuse_request_send(ff->fc, req); 109 iput(req->misc.release.inode); 110 fuse_put_request(ff->fc, req); 111 } else { 112 req->end = fuse_release_end; 113 __set_bit(FR_BACKGROUND, &req->flags); 114 fuse_request_send_background(ff->fc, req); 115 } 116 kfree(ff); 117 } 118 } 119 120 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 121 bool isdir) 122 { 123 struct fuse_file *ff; 124 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 125 126 ff = fuse_file_alloc(fc); 127 if (!ff) 128 return -ENOMEM; 129 130 ff->fh = 0; 131 ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */ 132 if (!fc->no_open || isdir) { 133 struct fuse_open_out outarg; 134 int err; 135 136 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 137 if (!err) { 138 ff->fh = outarg.fh; 139 ff->open_flags = outarg.open_flags; 140 141 } else if (err != -ENOSYS || isdir) { 142 fuse_file_free(ff); 143 return err; 144 } else { 145 fc->no_open = 1; 146 } 147 } 148 149 if (isdir) 150 ff->open_flags &= ~FOPEN_DIRECT_IO; 151 152 ff->nodeid = nodeid; 153 file->private_data = ff; 154 155 return 0; 156 } 157 EXPORT_SYMBOL_GPL(fuse_do_open); 158 159 static void fuse_link_write_file(struct file *file) 160 { 161 struct inode *inode = file_inode(file); 162 struct fuse_conn *fc = get_fuse_conn(inode); 163 struct fuse_inode *fi = get_fuse_inode(inode); 164 struct fuse_file *ff = file->private_data; 165 /* 166 * file may be written through mmap, so chain it onto the 167 * inodes's write_file list 168 */ 169 spin_lock(&fc->lock); 170 if (list_empty(&ff->write_entry)) 171 list_add(&ff->write_entry, &fi->write_files); 172 spin_unlock(&fc->lock); 173 } 174 175 void fuse_finish_open(struct inode *inode, struct file *file) 176 { 177 struct fuse_file *ff = file->private_data; 178 struct fuse_conn *fc = get_fuse_conn(inode); 179 180 if (ff->open_flags & FOPEN_DIRECT_IO) 181 file->f_op = &fuse_direct_io_file_operations; 182 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 183 invalidate_inode_pages2(inode->i_mapping); 184 if (ff->open_flags & FOPEN_NONSEEKABLE) 185 nonseekable_open(inode, file); 186 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 187 struct fuse_inode *fi = get_fuse_inode(inode); 188 189 spin_lock(&fc->lock); 190 fi->attr_version = ++fc->attr_version; 191 i_size_write(inode, 0); 192 spin_unlock(&fc->lock); 193 fuse_invalidate_attr(inode); 194 if (fc->writeback_cache) 195 file_update_time(file); 196 } 197 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 198 fuse_link_write_file(file); 199 } 200 201 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 202 { 203 struct fuse_conn *fc = get_fuse_conn(inode); 204 int err; 205 bool lock_inode = (file->f_flags & O_TRUNC) && 206 fc->atomic_o_trunc && 207 fc->writeback_cache; 208 209 err = generic_file_open(inode, file); 210 if (err) 211 return err; 212 213 if (lock_inode) 214 inode_lock(inode); 215 216 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 217 218 if (!err) 219 fuse_finish_open(inode, file); 220 221 if (lock_inode) 222 inode_unlock(inode); 223 224 return err; 225 } 226 227 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode) 228 { 229 struct fuse_conn *fc = ff->fc; 230 struct fuse_req *req = ff->reserved_req; 231 struct fuse_release_in *inarg = &req->misc.release.in; 232 233 spin_lock(&fc->lock); 234 list_del(&ff->write_entry); 235 if (!RB_EMPTY_NODE(&ff->polled_node)) 236 rb_erase(&ff->polled_node, &fc->polled_files); 237 spin_unlock(&fc->lock); 238 239 wake_up_interruptible_all(&ff->poll_wait); 240 241 inarg->fh = ff->fh; 242 inarg->flags = flags; 243 req->in.h.opcode = opcode; 244 req->in.h.nodeid = ff->nodeid; 245 req->in.numargs = 1; 246 req->in.args[0].size = sizeof(struct fuse_release_in); 247 req->in.args[0].value = inarg; 248 } 249 250 void fuse_release_common(struct file *file, bool isdir) 251 { 252 struct fuse_file *ff = file->private_data; 253 struct fuse_req *req = ff->reserved_req; 254 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 255 256 fuse_prepare_release(ff, file->f_flags, opcode); 257 258 if (ff->flock) { 259 struct fuse_release_in *inarg = &req->misc.release.in; 260 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 261 inarg->lock_owner = fuse_lock_owner_id(ff->fc, 262 (fl_owner_t) file); 263 } 264 /* Hold inode until release is finished */ 265 req->misc.release.inode = igrab(file_inode(file)); 266 267 /* 268 * Normally this will send the RELEASE request, however if 269 * some asynchronous READ or WRITE requests are outstanding, 270 * the sending will be delayed. 271 * 272 * Make the release synchronous if this is a fuseblk mount, 273 * synchronous RELEASE is allowed (and desirable) in this case 274 * because the server can be trusted not to screw up. 275 */ 276 fuse_file_put(ff, ff->fc->destroy_req != NULL, isdir); 277 } 278 279 static int fuse_open(struct inode *inode, struct file *file) 280 { 281 return fuse_open_common(inode, file, false); 282 } 283 284 static int fuse_release(struct inode *inode, struct file *file) 285 { 286 struct fuse_conn *fc = get_fuse_conn(inode); 287 288 /* see fuse_vma_close() for !writeback_cache case */ 289 if (fc->writeback_cache) 290 write_inode_now(inode, 1); 291 292 fuse_release_common(file, false); 293 294 /* return value is ignored by VFS */ 295 return 0; 296 } 297 298 void fuse_sync_release(struct fuse_file *ff, int flags) 299 { 300 WARN_ON(refcount_read(&ff->count) > 1); 301 fuse_prepare_release(ff, flags, FUSE_RELEASE); 302 /* 303 * iput(NULL) is a no-op and since the refcount is 1 and everything's 304 * synchronous, we are fine with not doing igrab() here" 305 */ 306 fuse_file_put(ff, true, false); 307 } 308 EXPORT_SYMBOL_GPL(fuse_sync_release); 309 310 /* 311 * Scramble the ID space with XTEA, so that the value of the files_struct 312 * pointer is not exposed to userspace. 313 */ 314 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 315 { 316 u32 *k = fc->scramble_key; 317 u64 v = (unsigned long) id; 318 u32 v0 = v; 319 u32 v1 = v >> 32; 320 u32 sum = 0; 321 int i; 322 323 for (i = 0; i < 32; i++) { 324 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 325 sum += 0x9E3779B9; 326 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 327 } 328 329 return (u64) v0 + ((u64) v1 << 32); 330 } 331 332 /* 333 * Check if any page in a range is under writeback 334 * 335 * This is currently done by walking the list of writepage requests 336 * for the inode, which can be pretty inefficient. 337 */ 338 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 339 pgoff_t idx_to) 340 { 341 struct fuse_conn *fc = get_fuse_conn(inode); 342 struct fuse_inode *fi = get_fuse_inode(inode); 343 struct fuse_req *req; 344 bool found = false; 345 346 spin_lock(&fc->lock); 347 list_for_each_entry(req, &fi->writepages, writepages_entry) { 348 pgoff_t curr_index; 349 350 BUG_ON(req->inode != inode); 351 curr_index = req->misc.write.in.offset >> PAGE_SHIFT; 352 if (idx_from < curr_index + req->num_pages && 353 curr_index <= idx_to) { 354 found = true; 355 break; 356 } 357 } 358 spin_unlock(&fc->lock); 359 360 return found; 361 } 362 363 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 364 { 365 return fuse_range_is_writeback(inode, index, index); 366 } 367 368 /* 369 * Wait for page writeback to be completed. 370 * 371 * Since fuse doesn't rely on the VM writeback tracking, this has to 372 * use some other means. 373 */ 374 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 375 { 376 struct fuse_inode *fi = get_fuse_inode(inode); 377 378 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 379 return 0; 380 } 381 382 /* 383 * Wait for all pending writepages on the inode to finish. 384 * 385 * This is currently done by blocking further writes with FUSE_NOWRITE 386 * and waiting for all sent writes to complete. 387 * 388 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 389 * could conflict with truncation. 390 */ 391 static void fuse_sync_writes(struct inode *inode) 392 { 393 fuse_set_nowrite(inode); 394 fuse_release_nowrite(inode); 395 } 396 397 static int fuse_flush(struct file *file, fl_owner_t id) 398 { 399 struct inode *inode = file_inode(file); 400 struct fuse_conn *fc = get_fuse_conn(inode); 401 struct fuse_file *ff = file->private_data; 402 struct fuse_req *req; 403 struct fuse_flush_in inarg; 404 int err; 405 406 if (is_bad_inode(inode)) 407 return -EIO; 408 409 if (fc->no_flush) 410 return 0; 411 412 err = write_inode_now(inode, 1); 413 if (err) 414 return err; 415 416 inode_lock(inode); 417 fuse_sync_writes(inode); 418 inode_unlock(inode); 419 420 err = filemap_check_errors(file->f_mapping); 421 if (err) 422 return err; 423 424 req = fuse_get_req_nofail_nopages(fc, file); 425 memset(&inarg, 0, sizeof(inarg)); 426 inarg.fh = ff->fh; 427 inarg.lock_owner = fuse_lock_owner_id(fc, id); 428 req->in.h.opcode = FUSE_FLUSH; 429 req->in.h.nodeid = get_node_id(inode); 430 req->in.numargs = 1; 431 req->in.args[0].size = sizeof(inarg); 432 req->in.args[0].value = &inarg; 433 __set_bit(FR_FORCE, &req->flags); 434 fuse_request_send(fc, req); 435 err = req->out.h.error; 436 fuse_put_request(fc, req); 437 if (err == -ENOSYS) { 438 fc->no_flush = 1; 439 err = 0; 440 } 441 return err; 442 } 443 444 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 445 int datasync, int opcode) 446 { 447 struct inode *inode = file->f_mapping->host; 448 struct fuse_conn *fc = get_fuse_conn(inode); 449 struct fuse_file *ff = file->private_data; 450 FUSE_ARGS(args); 451 struct fuse_fsync_in inarg; 452 453 memset(&inarg, 0, sizeof(inarg)); 454 inarg.fh = ff->fh; 455 inarg.fsync_flags = datasync ? 1 : 0; 456 args.in.h.opcode = opcode; 457 args.in.h.nodeid = get_node_id(inode); 458 args.in.numargs = 1; 459 args.in.args[0].size = sizeof(inarg); 460 args.in.args[0].value = &inarg; 461 return fuse_simple_request(fc, &args); 462 } 463 464 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 465 int datasync) 466 { 467 struct inode *inode = file->f_mapping->host; 468 struct fuse_conn *fc = get_fuse_conn(inode); 469 int err; 470 471 if (is_bad_inode(inode)) 472 return -EIO; 473 474 inode_lock(inode); 475 476 /* 477 * Start writeback against all dirty pages of the inode, then 478 * wait for all outstanding writes, before sending the FSYNC 479 * request. 480 */ 481 err = file_write_and_wait_range(file, start, end); 482 if (err) 483 goto out; 484 485 fuse_sync_writes(inode); 486 487 /* 488 * Due to implementation of fuse writeback 489 * file_write_and_wait_range() does not catch errors. 490 * We have to do this directly after fuse_sync_writes() 491 */ 492 err = file_check_and_advance_wb_err(file); 493 if (err) 494 goto out; 495 496 err = sync_inode_metadata(inode, 1); 497 if (err) 498 goto out; 499 500 if (fc->no_fsync) 501 goto out; 502 503 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 504 if (err == -ENOSYS) { 505 fc->no_fsync = 1; 506 err = 0; 507 } 508 out: 509 inode_unlock(inode); 510 511 return err; 512 } 513 514 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos, 515 size_t count, int opcode) 516 { 517 struct fuse_read_in *inarg = &req->misc.read.in; 518 struct fuse_file *ff = file->private_data; 519 520 inarg->fh = ff->fh; 521 inarg->offset = pos; 522 inarg->size = count; 523 inarg->flags = file->f_flags; 524 req->in.h.opcode = opcode; 525 req->in.h.nodeid = ff->nodeid; 526 req->in.numargs = 1; 527 req->in.args[0].size = sizeof(struct fuse_read_in); 528 req->in.args[0].value = inarg; 529 req->out.argvar = 1; 530 req->out.numargs = 1; 531 req->out.args[0].size = count; 532 } 533 534 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty) 535 { 536 unsigned i; 537 538 for (i = 0; i < req->num_pages; i++) { 539 struct page *page = req->pages[i]; 540 if (should_dirty) 541 set_page_dirty_lock(page); 542 put_page(page); 543 } 544 } 545 546 static void fuse_io_release(struct kref *kref) 547 { 548 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 549 } 550 551 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 552 { 553 if (io->err) 554 return io->err; 555 556 if (io->bytes >= 0 && io->write) 557 return -EIO; 558 559 return io->bytes < 0 ? io->size : io->bytes; 560 } 561 562 /** 563 * In case of short read, the caller sets 'pos' to the position of 564 * actual end of fuse request in IO request. Otherwise, if bytes_requested 565 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 566 * 567 * An example: 568 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 569 * both submitted asynchronously. The first of them was ACKed by userspace as 570 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 571 * second request was ACKed as short, e.g. only 1K was read, resulting in 572 * pos == 33K. 573 * 574 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 575 * will be equal to the length of the longest contiguous fragment of 576 * transferred data starting from the beginning of IO request. 577 */ 578 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 579 { 580 int left; 581 582 spin_lock(&io->lock); 583 if (err) 584 io->err = io->err ? : err; 585 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 586 io->bytes = pos; 587 588 left = --io->reqs; 589 if (!left && io->blocking) 590 complete(io->done); 591 spin_unlock(&io->lock); 592 593 if (!left && !io->blocking) { 594 ssize_t res = fuse_get_res_by_io(io); 595 596 if (res >= 0) { 597 struct inode *inode = file_inode(io->iocb->ki_filp); 598 struct fuse_conn *fc = get_fuse_conn(inode); 599 struct fuse_inode *fi = get_fuse_inode(inode); 600 601 spin_lock(&fc->lock); 602 fi->attr_version = ++fc->attr_version; 603 spin_unlock(&fc->lock); 604 } 605 606 io->iocb->ki_complete(io->iocb, res, 0); 607 } 608 609 kref_put(&io->refcnt, fuse_io_release); 610 } 611 612 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req) 613 { 614 struct fuse_io_priv *io = req->io; 615 ssize_t pos = -1; 616 617 fuse_release_user_pages(req, io->should_dirty); 618 619 if (io->write) { 620 if (req->misc.write.in.size != req->misc.write.out.size) 621 pos = req->misc.write.in.offset - io->offset + 622 req->misc.write.out.size; 623 } else { 624 if (req->misc.read.in.size != req->out.args[0].size) 625 pos = req->misc.read.in.offset - io->offset + 626 req->out.args[0].size; 627 } 628 629 fuse_aio_complete(io, req->out.h.error, pos); 630 } 631 632 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req, 633 size_t num_bytes, struct fuse_io_priv *io) 634 { 635 spin_lock(&io->lock); 636 kref_get(&io->refcnt); 637 io->size += num_bytes; 638 io->reqs++; 639 spin_unlock(&io->lock); 640 641 req->io = io; 642 req->end = fuse_aio_complete_req; 643 644 __fuse_get_request(req); 645 fuse_request_send_background(fc, req); 646 647 return num_bytes; 648 } 649 650 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io, 651 loff_t pos, size_t count, fl_owner_t owner) 652 { 653 struct file *file = io->iocb->ki_filp; 654 struct fuse_file *ff = file->private_data; 655 struct fuse_conn *fc = ff->fc; 656 657 fuse_read_fill(req, file, pos, count, FUSE_READ); 658 if (owner != NULL) { 659 struct fuse_read_in *inarg = &req->misc.read.in; 660 661 inarg->read_flags |= FUSE_READ_LOCKOWNER; 662 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 663 } 664 665 if (io->async) 666 return fuse_async_req_send(fc, req, count, io); 667 668 fuse_request_send(fc, req); 669 return req->out.args[0].size; 670 } 671 672 static void fuse_read_update_size(struct inode *inode, loff_t size, 673 u64 attr_ver) 674 { 675 struct fuse_conn *fc = get_fuse_conn(inode); 676 struct fuse_inode *fi = get_fuse_inode(inode); 677 678 spin_lock(&fc->lock); 679 if (attr_ver == fi->attr_version && size < inode->i_size && 680 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 681 fi->attr_version = ++fc->attr_version; 682 i_size_write(inode, size); 683 } 684 spin_unlock(&fc->lock); 685 } 686 687 static void fuse_short_read(struct fuse_req *req, struct inode *inode, 688 u64 attr_ver) 689 { 690 size_t num_read = req->out.args[0].size; 691 struct fuse_conn *fc = get_fuse_conn(inode); 692 693 if (fc->writeback_cache) { 694 /* 695 * A hole in a file. Some data after the hole are in page cache, 696 * but have not reached the client fs yet. So, the hole is not 697 * present there. 698 */ 699 int i; 700 int start_idx = num_read >> PAGE_SHIFT; 701 size_t off = num_read & (PAGE_SIZE - 1); 702 703 for (i = start_idx; i < req->num_pages; i++) { 704 zero_user_segment(req->pages[i], off, PAGE_SIZE); 705 off = 0; 706 } 707 } else { 708 loff_t pos = page_offset(req->pages[0]) + num_read; 709 fuse_read_update_size(inode, pos, attr_ver); 710 } 711 } 712 713 static int fuse_do_readpage(struct file *file, struct page *page) 714 { 715 struct kiocb iocb; 716 struct fuse_io_priv io; 717 struct inode *inode = page->mapping->host; 718 struct fuse_conn *fc = get_fuse_conn(inode); 719 struct fuse_req *req; 720 size_t num_read; 721 loff_t pos = page_offset(page); 722 size_t count = PAGE_SIZE; 723 u64 attr_ver; 724 int err; 725 726 /* 727 * Page writeback can extend beyond the lifetime of the 728 * page-cache page, so make sure we read a properly synced 729 * page. 730 */ 731 fuse_wait_on_page_writeback(inode, page->index); 732 733 req = fuse_get_req(fc, 1); 734 if (IS_ERR(req)) 735 return PTR_ERR(req); 736 737 attr_ver = fuse_get_attr_version(fc); 738 739 req->out.page_zeroing = 1; 740 req->out.argpages = 1; 741 req->num_pages = 1; 742 req->pages[0] = page; 743 req->page_descs[0].length = count; 744 init_sync_kiocb(&iocb, file); 745 io = (struct fuse_io_priv) FUSE_IO_PRIV_SYNC(&iocb); 746 num_read = fuse_send_read(req, &io, pos, count, NULL); 747 err = req->out.h.error; 748 749 if (!err) { 750 /* 751 * Short read means EOF. If file size is larger, truncate it 752 */ 753 if (num_read < count) 754 fuse_short_read(req, inode, attr_ver); 755 756 SetPageUptodate(page); 757 } 758 759 fuse_put_request(fc, req); 760 761 return err; 762 } 763 764 static int fuse_readpage(struct file *file, struct page *page) 765 { 766 struct inode *inode = page->mapping->host; 767 int err; 768 769 err = -EIO; 770 if (is_bad_inode(inode)) 771 goto out; 772 773 err = fuse_do_readpage(file, page); 774 fuse_invalidate_atime(inode); 775 out: 776 unlock_page(page); 777 return err; 778 } 779 780 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req) 781 { 782 int i; 783 size_t count = req->misc.read.in.size; 784 size_t num_read = req->out.args[0].size; 785 struct address_space *mapping = NULL; 786 787 for (i = 0; mapping == NULL && i < req->num_pages; i++) 788 mapping = req->pages[i]->mapping; 789 790 if (mapping) { 791 struct inode *inode = mapping->host; 792 793 /* 794 * Short read means EOF. If file size is larger, truncate it 795 */ 796 if (!req->out.h.error && num_read < count) 797 fuse_short_read(req, inode, req->misc.read.attr_ver); 798 799 fuse_invalidate_atime(inode); 800 } 801 802 for (i = 0; i < req->num_pages; i++) { 803 struct page *page = req->pages[i]; 804 if (!req->out.h.error) 805 SetPageUptodate(page); 806 else 807 SetPageError(page); 808 unlock_page(page); 809 put_page(page); 810 } 811 if (req->ff) 812 fuse_file_put(req->ff, false, false); 813 } 814 815 static void fuse_send_readpages(struct fuse_req *req, struct file *file) 816 { 817 struct fuse_file *ff = file->private_data; 818 struct fuse_conn *fc = ff->fc; 819 loff_t pos = page_offset(req->pages[0]); 820 size_t count = req->num_pages << PAGE_SHIFT; 821 822 req->out.argpages = 1; 823 req->out.page_zeroing = 1; 824 req->out.page_replace = 1; 825 fuse_read_fill(req, file, pos, count, FUSE_READ); 826 req->misc.read.attr_ver = fuse_get_attr_version(fc); 827 if (fc->async_read) { 828 req->ff = fuse_file_get(ff); 829 req->end = fuse_readpages_end; 830 fuse_request_send_background(fc, req); 831 } else { 832 fuse_request_send(fc, req); 833 fuse_readpages_end(fc, req); 834 fuse_put_request(fc, req); 835 } 836 } 837 838 struct fuse_fill_data { 839 struct fuse_req *req; 840 struct file *file; 841 struct inode *inode; 842 unsigned nr_pages; 843 }; 844 845 static int fuse_readpages_fill(void *_data, struct page *page) 846 { 847 struct fuse_fill_data *data = _data; 848 struct fuse_req *req = data->req; 849 struct inode *inode = data->inode; 850 struct fuse_conn *fc = get_fuse_conn(inode); 851 852 fuse_wait_on_page_writeback(inode, page->index); 853 854 if (req->num_pages && 855 (req->num_pages == fc->max_pages || 856 (req->num_pages + 1) * PAGE_SIZE > fc->max_read || 857 req->pages[req->num_pages - 1]->index + 1 != page->index)) { 858 unsigned int nr_alloc = min_t(unsigned int, data->nr_pages, 859 fc->max_pages); 860 fuse_send_readpages(req, data->file); 861 if (fc->async_read) 862 req = fuse_get_req_for_background(fc, nr_alloc); 863 else 864 req = fuse_get_req(fc, nr_alloc); 865 866 data->req = req; 867 if (IS_ERR(req)) { 868 unlock_page(page); 869 return PTR_ERR(req); 870 } 871 } 872 873 if (WARN_ON(req->num_pages >= req->max_pages)) { 874 unlock_page(page); 875 fuse_put_request(fc, req); 876 return -EIO; 877 } 878 879 get_page(page); 880 req->pages[req->num_pages] = page; 881 req->page_descs[req->num_pages].length = PAGE_SIZE; 882 req->num_pages++; 883 data->nr_pages--; 884 return 0; 885 } 886 887 static int fuse_readpages(struct file *file, struct address_space *mapping, 888 struct list_head *pages, unsigned nr_pages) 889 { 890 struct inode *inode = mapping->host; 891 struct fuse_conn *fc = get_fuse_conn(inode); 892 struct fuse_fill_data data; 893 int err; 894 unsigned int nr_alloc = min_t(unsigned int, nr_pages, fc->max_pages); 895 896 err = -EIO; 897 if (is_bad_inode(inode)) 898 goto out; 899 900 data.file = file; 901 data.inode = inode; 902 if (fc->async_read) 903 data.req = fuse_get_req_for_background(fc, nr_alloc); 904 else 905 data.req = fuse_get_req(fc, nr_alloc); 906 data.nr_pages = nr_pages; 907 err = PTR_ERR(data.req); 908 if (IS_ERR(data.req)) 909 goto out; 910 911 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 912 if (!err) { 913 if (data.req->num_pages) 914 fuse_send_readpages(data.req, file); 915 else 916 fuse_put_request(fc, data.req); 917 } 918 out: 919 return err; 920 } 921 922 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 923 { 924 struct inode *inode = iocb->ki_filp->f_mapping->host; 925 struct fuse_conn *fc = get_fuse_conn(inode); 926 927 /* 928 * In auto invalidate mode, always update attributes on read. 929 * Otherwise, only update if we attempt to read past EOF (to ensure 930 * i_size is up to date). 931 */ 932 if (fc->auto_inval_data || 933 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 934 int err; 935 err = fuse_update_attributes(inode, iocb->ki_filp); 936 if (err) 937 return err; 938 } 939 940 return generic_file_read_iter(iocb, to); 941 } 942 943 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff, 944 loff_t pos, size_t count) 945 { 946 struct fuse_write_in *inarg = &req->misc.write.in; 947 struct fuse_write_out *outarg = &req->misc.write.out; 948 949 inarg->fh = ff->fh; 950 inarg->offset = pos; 951 inarg->size = count; 952 req->in.h.opcode = FUSE_WRITE; 953 req->in.h.nodeid = ff->nodeid; 954 req->in.numargs = 2; 955 if (ff->fc->minor < 9) 956 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 957 else 958 req->in.args[0].size = sizeof(struct fuse_write_in); 959 req->in.args[0].value = inarg; 960 req->in.args[1].size = count; 961 req->out.numargs = 1; 962 req->out.args[0].size = sizeof(struct fuse_write_out); 963 req->out.args[0].value = outarg; 964 } 965 966 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io, 967 loff_t pos, size_t count, fl_owner_t owner) 968 { 969 struct kiocb *iocb = io->iocb; 970 struct file *file = iocb->ki_filp; 971 struct fuse_file *ff = file->private_data; 972 struct fuse_conn *fc = ff->fc; 973 struct fuse_write_in *inarg = &req->misc.write.in; 974 975 fuse_write_fill(req, ff, pos, count); 976 inarg->flags = file->f_flags; 977 if (iocb->ki_flags & IOCB_DSYNC) 978 inarg->flags |= O_DSYNC; 979 if (iocb->ki_flags & IOCB_SYNC) 980 inarg->flags |= O_SYNC; 981 if (owner != NULL) { 982 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 983 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 984 } 985 986 if (io->async) 987 return fuse_async_req_send(fc, req, count, io); 988 989 fuse_request_send(fc, req); 990 return req->misc.write.out.size; 991 } 992 993 bool fuse_write_update_size(struct inode *inode, loff_t pos) 994 { 995 struct fuse_conn *fc = get_fuse_conn(inode); 996 struct fuse_inode *fi = get_fuse_inode(inode); 997 bool ret = false; 998 999 spin_lock(&fc->lock); 1000 fi->attr_version = ++fc->attr_version; 1001 if (pos > inode->i_size) { 1002 i_size_write(inode, pos); 1003 ret = true; 1004 } 1005 spin_unlock(&fc->lock); 1006 1007 return ret; 1008 } 1009 1010 static size_t fuse_send_write_pages(struct fuse_req *req, struct kiocb *iocb, 1011 struct inode *inode, loff_t pos, 1012 size_t count) 1013 { 1014 size_t res; 1015 unsigned offset; 1016 unsigned i; 1017 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1018 1019 for (i = 0; i < req->num_pages; i++) 1020 fuse_wait_on_page_writeback(inode, req->pages[i]->index); 1021 1022 res = fuse_send_write(req, &io, pos, count, NULL); 1023 1024 offset = req->page_descs[0].offset; 1025 count = res; 1026 for (i = 0; i < req->num_pages; i++) { 1027 struct page *page = req->pages[i]; 1028 1029 if (!req->out.h.error && !offset && count >= PAGE_SIZE) 1030 SetPageUptodate(page); 1031 1032 if (count > PAGE_SIZE - offset) 1033 count -= PAGE_SIZE - offset; 1034 else 1035 count = 0; 1036 offset = 0; 1037 1038 unlock_page(page); 1039 put_page(page); 1040 } 1041 1042 return res; 1043 } 1044 1045 static ssize_t fuse_fill_write_pages(struct fuse_req *req, 1046 struct address_space *mapping, 1047 struct iov_iter *ii, loff_t pos) 1048 { 1049 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1050 unsigned offset = pos & (PAGE_SIZE - 1); 1051 size_t count = 0; 1052 int err; 1053 1054 req->in.argpages = 1; 1055 req->page_descs[0].offset = offset; 1056 1057 do { 1058 size_t tmp; 1059 struct page *page; 1060 pgoff_t index = pos >> PAGE_SHIFT; 1061 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1062 iov_iter_count(ii)); 1063 1064 bytes = min_t(size_t, bytes, fc->max_write - count); 1065 1066 again: 1067 err = -EFAULT; 1068 if (iov_iter_fault_in_readable(ii, bytes)) 1069 break; 1070 1071 err = -ENOMEM; 1072 page = grab_cache_page_write_begin(mapping, index, 0); 1073 if (!page) 1074 break; 1075 1076 if (mapping_writably_mapped(mapping)) 1077 flush_dcache_page(page); 1078 1079 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1080 flush_dcache_page(page); 1081 1082 iov_iter_advance(ii, tmp); 1083 if (!tmp) { 1084 unlock_page(page); 1085 put_page(page); 1086 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1087 goto again; 1088 } 1089 1090 err = 0; 1091 req->pages[req->num_pages] = page; 1092 req->page_descs[req->num_pages].length = tmp; 1093 req->num_pages++; 1094 1095 count += tmp; 1096 pos += tmp; 1097 offset += tmp; 1098 if (offset == PAGE_SIZE) 1099 offset = 0; 1100 1101 if (!fc->big_writes) 1102 break; 1103 } while (iov_iter_count(ii) && count < fc->max_write && 1104 req->num_pages < req->max_pages && offset == 0); 1105 1106 return count > 0 ? count : err; 1107 } 1108 1109 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1110 unsigned int max_pages) 1111 { 1112 return min_t(unsigned int, 1113 ((pos + len - 1) >> PAGE_SHIFT) - 1114 (pos >> PAGE_SHIFT) + 1, 1115 max_pages); 1116 } 1117 1118 static ssize_t fuse_perform_write(struct kiocb *iocb, 1119 struct address_space *mapping, 1120 struct iov_iter *ii, loff_t pos) 1121 { 1122 struct inode *inode = mapping->host; 1123 struct fuse_conn *fc = get_fuse_conn(inode); 1124 struct fuse_inode *fi = get_fuse_inode(inode); 1125 int err = 0; 1126 ssize_t res = 0; 1127 1128 if (is_bad_inode(inode)) 1129 return -EIO; 1130 1131 if (inode->i_size < pos + iov_iter_count(ii)) 1132 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1133 1134 do { 1135 struct fuse_req *req; 1136 ssize_t count; 1137 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1138 fc->max_pages); 1139 1140 req = fuse_get_req(fc, nr_pages); 1141 if (IS_ERR(req)) { 1142 err = PTR_ERR(req); 1143 break; 1144 } 1145 1146 count = fuse_fill_write_pages(req, mapping, ii, pos); 1147 if (count <= 0) { 1148 err = count; 1149 } else { 1150 size_t num_written; 1151 1152 num_written = fuse_send_write_pages(req, iocb, inode, 1153 pos, count); 1154 err = req->out.h.error; 1155 if (!err) { 1156 res += num_written; 1157 pos += num_written; 1158 1159 /* break out of the loop on short write */ 1160 if (num_written != count) 1161 err = -EIO; 1162 } 1163 } 1164 fuse_put_request(fc, req); 1165 } while (!err && iov_iter_count(ii)); 1166 1167 if (res > 0) 1168 fuse_write_update_size(inode, pos); 1169 1170 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1171 fuse_invalidate_attr(inode); 1172 1173 return res > 0 ? res : err; 1174 } 1175 1176 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1177 { 1178 struct file *file = iocb->ki_filp; 1179 struct address_space *mapping = file->f_mapping; 1180 ssize_t written = 0; 1181 ssize_t written_buffered = 0; 1182 struct inode *inode = mapping->host; 1183 ssize_t err; 1184 loff_t endbyte = 0; 1185 1186 if (get_fuse_conn(inode)->writeback_cache) { 1187 /* Update size (EOF optimization) and mode (SUID clearing) */ 1188 err = fuse_update_attributes(mapping->host, file); 1189 if (err) 1190 return err; 1191 1192 return generic_file_write_iter(iocb, from); 1193 } 1194 1195 inode_lock(inode); 1196 1197 /* We can write back this queue in page reclaim */ 1198 current->backing_dev_info = inode_to_bdi(inode); 1199 1200 err = generic_write_checks(iocb, from); 1201 if (err <= 0) 1202 goto out; 1203 1204 err = file_remove_privs(file); 1205 if (err) 1206 goto out; 1207 1208 err = file_update_time(file); 1209 if (err) 1210 goto out; 1211 1212 if (iocb->ki_flags & IOCB_DIRECT) { 1213 loff_t pos = iocb->ki_pos; 1214 written = generic_file_direct_write(iocb, from); 1215 if (written < 0 || !iov_iter_count(from)) 1216 goto out; 1217 1218 pos += written; 1219 1220 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1221 if (written_buffered < 0) { 1222 err = written_buffered; 1223 goto out; 1224 } 1225 endbyte = pos + written_buffered - 1; 1226 1227 err = filemap_write_and_wait_range(file->f_mapping, pos, 1228 endbyte); 1229 if (err) 1230 goto out; 1231 1232 invalidate_mapping_pages(file->f_mapping, 1233 pos >> PAGE_SHIFT, 1234 endbyte >> PAGE_SHIFT); 1235 1236 written += written_buffered; 1237 iocb->ki_pos = pos + written_buffered; 1238 } else { 1239 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1240 if (written >= 0) 1241 iocb->ki_pos += written; 1242 } 1243 out: 1244 current->backing_dev_info = NULL; 1245 inode_unlock(inode); 1246 if (written > 0) 1247 written = generic_write_sync(iocb, written); 1248 1249 return written ? written : err; 1250 } 1251 1252 static inline void fuse_page_descs_length_init(struct fuse_req *req, 1253 unsigned index, unsigned nr_pages) 1254 { 1255 int i; 1256 1257 for (i = index; i < index + nr_pages; i++) 1258 req->page_descs[i].length = PAGE_SIZE - 1259 req->page_descs[i].offset; 1260 } 1261 1262 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1263 { 1264 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1265 } 1266 1267 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1268 size_t max_size) 1269 { 1270 return min(iov_iter_single_seg_count(ii), max_size); 1271 } 1272 1273 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii, 1274 size_t *nbytesp, int write) 1275 { 1276 size_t nbytes = 0; /* # bytes already packed in req */ 1277 ssize_t ret = 0; 1278 1279 /* Special case for kernel I/O: can copy directly into the buffer */ 1280 if (iov_iter_is_kvec(ii)) { 1281 unsigned long user_addr = fuse_get_user_addr(ii); 1282 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1283 1284 if (write) 1285 req->in.args[1].value = (void *) user_addr; 1286 else 1287 req->out.args[0].value = (void *) user_addr; 1288 1289 iov_iter_advance(ii, frag_size); 1290 *nbytesp = frag_size; 1291 return 0; 1292 } 1293 1294 while (nbytes < *nbytesp && req->num_pages < req->max_pages) { 1295 unsigned npages; 1296 size_t start; 1297 ret = iov_iter_get_pages(ii, &req->pages[req->num_pages], 1298 *nbytesp - nbytes, 1299 req->max_pages - req->num_pages, 1300 &start); 1301 if (ret < 0) 1302 break; 1303 1304 iov_iter_advance(ii, ret); 1305 nbytes += ret; 1306 1307 ret += start; 1308 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1309 1310 req->page_descs[req->num_pages].offset = start; 1311 fuse_page_descs_length_init(req, req->num_pages, npages); 1312 1313 req->num_pages += npages; 1314 req->page_descs[req->num_pages - 1].length -= 1315 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1316 } 1317 1318 if (write) 1319 req->in.argpages = 1; 1320 else 1321 req->out.argpages = 1; 1322 1323 *nbytesp = nbytes; 1324 1325 return ret < 0 ? ret : 0; 1326 } 1327 1328 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1329 loff_t *ppos, int flags) 1330 { 1331 int write = flags & FUSE_DIO_WRITE; 1332 int cuse = flags & FUSE_DIO_CUSE; 1333 struct file *file = io->iocb->ki_filp; 1334 struct inode *inode = file->f_mapping->host; 1335 struct fuse_file *ff = file->private_data; 1336 struct fuse_conn *fc = ff->fc; 1337 size_t nmax = write ? fc->max_write : fc->max_read; 1338 loff_t pos = *ppos; 1339 size_t count = iov_iter_count(iter); 1340 pgoff_t idx_from = pos >> PAGE_SHIFT; 1341 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1342 ssize_t res = 0; 1343 struct fuse_req *req; 1344 int err = 0; 1345 1346 if (io->async) 1347 req = fuse_get_req_for_background(fc, iov_iter_npages(iter, 1348 fc->max_pages)); 1349 else 1350 req = fuse_get_req(fc, iov_iter_npages(iter, fc->max_pages)); 1351 if (IS_ERR(req)) 1352 return PTR_ERR(req); 1353 1354 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1355 if (!write) 1356 inode_lock(inode); 1357 fuse_sync_writes(inode); 1358 if (!write) 1359 inode_unlock(inode); 1360 } 1361 1362 io->should_dirty = !write && iter_is_iovec(iter); 1363 while (count) { 1364 size_t nres; 1365 fl_owner_t owner = current->files; 1366 size_t nbytes = min(count, nmax); 1367 err = fuse_get_user_pages(req, iter, &nbytes, write); 1368 if (err && !nbytes) 1369 break; 1370 1371 if (write) 1372 nres = fuse_send_write(req, io, pos, nbytes, owner); 1373 else 1374 nres = fuse_send_read(req, io, pos, nbytes, owner); 1375 1376 if (!io->async) 1377 fuse_release_user_pages(req, io->should_dirty); 1378 if (req->out.h.error) { 1379 err = req->out.h.error; 1380 break; 1381 } else if (nres > nbytes) { 1382 res = 0; 1383 err = -EIO; 1384 break; 1385 } 1386 count -= nres; 1387 res += nres; 1388 pos += nres; 1389 if (nres != nbytes) 1390 break; 1391 if (count) { 1392 fuse_put_request(fc, req); 1393 if (io->async) 1394 req = fuse_get_req_for_background(fc, 1395 iov_iter_npages(iter, fc->max_pages)); 1396 else 1397 req = fuse_get_req(fc, iov_iter_npages(iter, 1398 fc->max_pages)); 1399 if (IS_ERR(req)) 1400 break; 1401 } 1402 } 1403 if (!IS_ERR(req)) 1404 fuse_put_request(fc, req); 1405 if (res > 0) 1406 *ppos = pos; 1407 1408 return res > 0 ? res : err; 1409 } 1410 EXPORT_SYMBOL_GPL(fuse_direct_io); 1411 1412 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1413 struct iov_iter *iter, 1414 loff_t *ppos) 1415 { 1416 ssize_t res; 1417 struct inode *inode = file_inode(io->iocb->ki_filp); 1418 1419 if (is_bad_inode(inode)) 1420 return -EIO; 1421 1422 res = fuse_direct_io(io, iter, ppos, 0); 1423 1424 fuse_invalidate_atime(inode); 1425 1426 return res; 1427 } 1428 1429 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1430 { 1431 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1432 return __fuse_direct_read(&io, to, &iocb->ki_pos); 1433 } 1434 1435 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1436 { 1437 struct inode *inode = file_inode(iocb->ki_filp); 1438 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1439 ssize_t res; 1440 1441 if (is_bad_inode(inode)) 1442 return -EIO; 1443 1444 /* Don't allow parallel writes to the same file */ 1445 inode_lock(inode); 1446 res = generic_write_checks(iocb, from); 1447 if (res > 0) 1448 res = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE); 1449 fuse_invalidate_attr(inode); 1450 if (res > 0) 1451 fuse_write_update_size(inode, iocb->ki_pos); 1452 inode_unlock(inode); 1453 1454 return res; 1455 } 1456 1457 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req) 1458 { 1459 int i; 1460 1461 for (i = 0; i < req->num_pages; i++) 1462 __free_page(req->pages[i]); 1463 1464 if (req->ff) 1465 fuse_file_put(req->ff, false, false); 1466 } 1467 1468 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req) 1469 { 1470 struct inode *inode = req->inode; 1471 struct fuse_inode *fi = get_fuse_inode(inode); 1472 struct backing_dev_info *bdi = inode_to_bdi(inode); 1473 int i; 1474 1475 list_del(&req->writepages_entry); 1476 for (i = 0; i < req->num_pages; i++) { 1477 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1478 dec_node_page_state(req->pages[i], NR_WRITEBACK_TEMP); 1479 wb_writeout_inc(&bdi->wb); 1480 } 1481 wake_up(&fi->page_waitq); 1482 } 1483 1484 /* Called under fc->lock, may release and reacquire it */ 1485 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req, 1486 loff_t size) 1487 __releases(fc->lock) 1488 __acquires(fc->lock) 1489 { 1490 struct fuse_inode *fi = get_fuse_inode(req->inode); 1491 struct fuse_write_in *inarg = &req->misc.write.in; 1492 __u64 data_size = req->num_pages * PAGE_SIZE; 1493 bool queued; 1494 1495 if (!fc->connected) 1496 goto out_free; 1497 1498 if (inarg->offset + data_size <= size) { 1499 inarg->size = data_size; 1500 } else if (inarg->offset < size) { 1501 inarg->size = size - inarg->offset; 1502 } else { 1503 /* Got truncated off completely */ 1504 goto out_free; 1505 } 1506 1507 req->in.args[1].size = inarg->size; 1508 fi->writectr++; 1509 queued = fuse_request_queue_background(fc, req); 1510 WARN_ON(!queued); 1511 return; 1512 1513 out_free: 1514 fuse_writepage_finish(fc, req); 1515 spin_unlock(&fc->lock); 1516 fuse_writepage_free(fc, req); 1517 fuse_put_request(fc, req); 1518 spin_lock(&fc->lock); 1519 } 1520 1521 /* 1522 * If fi->writectr is positive (no truncate or fsync going on) send 1523 * all queued writepage requests. 1524 * 1525 * Called with fc->lock 1526 */ 1527 void fuse_flush_writepages(struct inode *inode) 1528 __releases(fc->lock) 1529 __acquires(fc->lock) 1530 { 1531 struct fuse_conn *fc = get_fuse_conn(inode); 1532 struct fuse_inode *fi = get_fuse_inode(inode); 1533 size_t crop = i_size_read(inode); 1534 struct fuse_req *req; 1535 1536 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1537 req = list_entry(fi->queued_writes.next, struct fuse_req, list); 1538 list_del_init(&req->list); 1539 fuse_send_writepage(fc, req, crop); 1540 } 1541 } 1542 1543 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req) 1544 { 1545 struct inode *inode = req->inode; 1546 struct fuse_inode *fi = get_fuse_inode(inode); 1547 1548 mapping_set_error(inode->i_mapping, req->out.h.error); 1549 spin_lock(&fc->lock); 1550 while (req->misc.write.next) { 1551 struct fuse_conn *fc = get_fuse_conn(inode); 1552 struct fuse_write_in *inarg = &req->misc.write.in; 1553 struct fuse_req *next = req->misc.write.next; 1554 req->misc.write.next = next->misc.write.next; 1555 next->misc.write.next = NULL; 1556 next->ff = fuse_file_get(req->ff); 1557 list_add(&next->writepages_entry, &fi->writepages); 1558 1559 /* 1560 * Skip fuse_flush_writepages() to make it easy to crop requests 1561 * based on primary request size. 1562 * 1563 * 1st case (trivial): there are no concurrent activities using 1564 * fuse_set/release_nowrite. Then we're on safe side because 1565 * fuse_flush_writepages() would call fuse_send_writepage() 1566 * anyway. 1567 * 1568 * 2nd case: someone called fuse_set_nowrite and it is waiting 1569 * now for completion of all in-flight requests. This happens 1570 * rarely and no more than once per page, so this should be 1571 * okay. 1572 * 1573 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1574 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1575 * that fuse_set_nowrite returned implies that all in-flight 1576 * requests were completed along with all of their secondary 1577 * requests. Further primary requests are blocked by negative 1578 * writectr. Hence there cannot be any in-flight requests and 1579 * no invocations of fuse_writepage_end() while we're in 1580 * fuse_set_nowrite..fuse_release_nowrite section. 1581 */ 1582 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1583 } 1584 fi->writectr--; 1585 fuse_writepage_finish(fc, req); 1586 spin_unlock(&fc->lock); 1587 fuse_writepage_free(fc, req); 1588 } 1589 1590 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1591 struct fuse_inode *fi) 1592 { 1593 struct fuse_file *ff = NULL; 1594 1595 spin_lock(&fc->lock); 1596 if (!list_empty(&fi->write_files)) { 1597 ff = list_entry(fi->write_files.next, struct fuse_file, 1598 write_entry); 1599 fuse_file_get(ff); 1600 } 1601 spin_unlock(&fc->lock); 1602 1603 return ff; 1604 } 1605 1606 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1607 struct fuse_inode *fi) 1608 { 1609 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1610 WARN_ON(!ff); 1611 return ff; 1612 } 1613 1614 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1615 { 1616 struct fuse_conn *fc = get_fuse_conn(inode); 1617 struct fuse_inode *fi = get_fuse_inode(inode); 1618 struct fuse_file *ff; 1619 int err; 1620 1621 ff = __fuse_write_file_get(fc, fi); 1622 err = fuse_flush_times(inode, ff); 1623 if (ff) 1624 fuse_file_put(ff, false, false); 1625 1626 return err; 1627 } 1628 1629 static int fuse_writepage_locked(struct page *page) 1630 { 1631 struct address_space *mapping = page->mapping; 1632 struct inode *inode = mapping->host; 1633 struct fuse_conn *fc = get_fuse_conn(inode); 1634 struct fuse_inode *fi = get_fuse_inode(inode); 1635 struct fuse_req *req; 1636 struct page *tmp_page; 1637 int error = -ENOMEM; 1638 1639 set_page_writeback(page); 1640 1641 req = fuse_request_alloc_nofs(1); 1642 if (!req) 1643 goto err; 1644 1645 /* writeback always goes to bg_queue */ 1646 __set_bit(FR_BACKGROUND, &req->flags); 1647 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1648 if (!tmp_page) 1649 goto err_free; 1650 1651 error = -EIO; 1652 req->ff = fuse_write_file_get(fc, fi); 1653 if (!req->ff) 1654 goto err_nofile; 1655 1656 fuse_write_fill(req, req->ff, page_offset(page), 0); 1657 1658 copy_highpage(tmp_page, page); 1659 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1660 req->misc.write.next = NULL; 1661 req->in.argpages = 1; 1662 req->num_pages = 1; 1663 req->pages[0] = tmp_page; 1664 req->page_descs[0].offset = 0; 1665 req->page_descs[0].length = PAGE_SIZE; 1666 req->end = fuse_writepage_end; 1667 req->inode = inode; 1668 1669 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1670 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1671 1672 spin_lock(&fc->lock); 1673 list_add(&req->writepages_entry, &fi->writepages); 1674 list_add_tail(&req->list, &fi->queued_writes); 1675 fuse_flush_writepages(inode); 1676 spin_unlock(&fc->lock); 1677 1678 end_page_writeback(page); 1679 1680 return 0; 1681 1682 err_nofile: 1683 __free_page(tmp_page); 1684 err_free: 1685 fuse_request_free(req); 1686 err: 1687 mapping_set_error(page->mapping, error); 1688 end_page_writeback(page); 1689 return error; 1690 } 1691 1692 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1693 { 1694 int err; 1695 1696 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1697 /* 1698 * ->writepages() should be called for sync() and friends. We 1699 * should only get here on direct reclaim and then we are 1700 * allowed to skip a page which is already in flight 1701 */ 1702 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1703 1704 redirty_page_for_writepage(wbc, page); 1705 return 0; 1706 } 1707 1708 err = fuse_writepage_locked(page); 1709 unlock_page(page); 1710 1711 return err; 1712 } 1713 1714 struct fuse_fill_wb_data { 1715 struct fuse_req *req; 1716 struct fuse_file *ff; 1717 struct inode *inode; 1718 struct page **orig_pages; 1719 }; 1720 1721 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1722 { 1723 struct fuse_req *req = data->req; 1724 struct inode *inode = data->inode; 1725 struct fuse_conn *fc = get_fuse_conn(inode); 1726 struct fuse_inode *fi = get_fuse_inode(inode); 1727 int num_pages = req->num_pages; 1728 int i; 1729 1730 req->ff = fuse_file_get(data->ff); 1731 spin_lock(&fc->lock); 1732 list_add_tail(&req->list, &fi->queued_writes); 1733 fuse_flush_writepages(inode); 1734 spin_unlock(&fc->lock); 1735 1736 for (i = 0; i < num_pages; i++) 1737 end_page_writeback(data->orig_pages[i]); 1738 } 1739 1740 static bool fuse_writepage_in_flight(struct fuse_req *new_req, 1741 struct page *page) 1742 { 1743 struct fuse_conn *fc = get_fuse_conn(new_req->inode); 1744 struct fuse_inode *fi = get_fuse_inode(new_req->inode); 1745 struct fuse_req *tmp; 1746 struct fuse_req *old_req; 1747 bool found = false; 1748 pgoff_t curr_index; 1749 1750 BUG_ON(new_req->num_pages != 0); 1751 1752 spin_lock(&fc->lock); 1753 list_del(&new_req->writepages_entry); 1754 list_for_each_entry(old_req, &fi->writepages, writepages_entry) { 1755 BUG_ON(old_req->inode != new_req->inode); 1756 curr_index = old_req->misc.write.in.offset >> PAGE_SHIFT; 1757 if (curr_index <= page->index && 1758 page->index < curr_index + old_req->num_pages) { 1759 found = true; 1760 break; 1761 } 1762 } 1763 if (!found) { 1764 list_add(&new_req->writepages_entry, &fi->writepages); 1765 goto out_unlock; 1766 } 1767 1768 new_req->num_pages = 1; 1769 for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) { 1770 BUG_ON(tmp->inode != new_req->inode); 1771 curr_index = tmp->misc.write.in.offset >> PAGE_SHIFT; 1772 if (tmp->num_pages == 1 && 1773 curr_index == page->index) { 1774 old_req = tmp; 1775 } 1776 } 1777 1778 if (old_req->num_pages == 1 && test_bit(FR_PENDING, &old_req->flags)) { 1779 struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host); 1780 1781 copy_highpage(old_req->pages[0], page); 1782 spin_unlock(&fc->lock); 1783 1784 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1785 dec_node_page_state(page, NR_WRITEBACK_TEMP); 1786 wb_writeout_inc(&bdi->wb); 1787 fuse_writepage_free(fc, new_req); 1788 fuse_request_free(new_req); 1789 goto out; 1790 } else { 1791 new_req->misc.write.next = old_req->misc.write.next; 1792 old_req->misc.write.next = new_req; 1793 } 1794 out_unlock: 1795 spin_unlock(&fc->lock); 1796 out: 1797 return found; 1798 } 1799 1800 static int fuse_writepages_fill(struct page *page, 1801 struct writeback_control *wbc, void *_data) 1802 { 1803 struct fuse_fill_wb_data *data = _data; 1804 struct fuse_req *req = data->req; 1805 struct inode *inode = data->inode; 1806 struct fuse_conn *fc = get_fuse_conn(inode); 1807 struct page *tmp_page; 1808 bool is_writeback; 1809 int err; 1810 1811 if (!data->ff) { 1812 err = -EIO; 1813 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode)); 1814 if (!data->ff) 1815 goto out_unlock; 1816 } 1817 1818 /* 1819 * Being under writeback is unlikely but possible. For example direct 1820 * read to an mmaped fuse file will set the page dirty twice; once when 1821 * the pages are faulted with get_user_pages(), and then after the read 1822 * completed. 1823 */ 1824 is_writeback = fuse_page_is_writeback(inode, page->index); 1825 1826 if (req && req->num_pages && 1827 (is_writeback || req->num_pages == fc->max_pages || 1828 (req->num_pages + 1) * PAGE_SIZE > fc->max_write || 1829 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) { 1830 fuse_writepages_send(data); 1831 data->req = NULL; 1832 } else if (req && req->num_pages == req->max_pages) { 1833 if (!fuse_req_realloc_pages(fc, req, GFP_NOFS)) { 1834 fuse_writepages_send(data); 1835 req = data->req = NULL; 1836 } 1837 } 1838 1839 err = -ENOMEM; 1840 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1841 if (!tmp_page) 1842 goto out_unlock; 1843 1844 /* 1845 * The page must not be redirtied until the writeout is completed 1846 * (i.e. userspace has sent a reply to the write request). Otherwise 1847 * there could be more than one temporary page instance for each real 1848 * page. 1849 * 1850 * This is ensured by holding the page lock in page_mkwrite() while 1851 * checking fuse_page_is_writeback(). We already hold the page lock 1852 * since clear_page_dirty_for_io() and keep it held until we add the 1853 * request to the fi->writepages list and increment req->num_pages. 1854 * After this fuse_page_is_writeback() will indicate that the page is 1855 * under writeback, so we can release the page lock. 1856 */ 1857 if (data->req == NULL) { 1858 struct fuse_inode *fi = get_fuse_inode(inode); 1859 1860 err = -ENOMEM; 1861 req = fuse_request_alloc_nofs(FUSE_REQ_INLINE_PAGES); 1862 if (!req) { 1863 __free_page(tmp_page); 1864 goto out_unlock; 1865 } 1866 1867 fuse_write_fill(req, data->ff, page_offset(page), 0); 1868 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1869 req->misc.write.next = NULL; 1870 req->in.argpages = 1; 1871 __set_bit(FR_BACKGROUND, &req->flags); 1872 req->num_pages = 0; 1873 req->end = fuse_writepage_end; 1874 req->inode = inode; 1875 1876 spin_lock(&fc->lock); 1877 list_add(&req->writepages_entry, &fi->writepages); 1878 spin_unlock(&fc->lock); 1879 1880 data->req = req; 1881 } 1882 set_page_writeback(page); 1883 1884 copy_highpage(tmp_page, page); 1885 req->pages[req->num_pages] = tmp_page; 1886 req->page_descs[req->num_pages].offset = 0; 1887 req->page_descs[req->num_pages].length = PAGE_SIZE; 1888 1889 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1890 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1891 1892 err = 0; 1893 if (is_writeback && fuse_writepage_in_flight(req, page)) { 1894 end_page_writeback(page); 1895 data->req = NULL; 1896 goto out_unlock; 1897 } 1898 data->orig_pages[req->num_pages] = page; 1899 1900 /* 1901 * Protected by fc->lock against concurrent access by 1902 * fuse_page_is_writeback(). 1903 */ 1904 spin_lock(&fc->lock); 1905 req->num_pages++; 1906 spin_unlock(&fc->lock); 1907 1908 out_unlock: 1909 unlock_page(page); 1910 1911 return err; 1912 } 1913 1914 static int fuse_writepages(struct address_space *mapping, 1915 struct writeback_control *wbc) 1916 { 1917 struct inode *inode = mapping->host; 1918 struct fuse_conn *fc = get_fuse_conn(inode); 1919 struct fuse_fill_wb_data data; 1920 int err; 1921 1922 err = -EIO; 1923 if (is_bad_inode(inode)) 1924 goto out; 1925 1926 data.inode = inode; 1927 data.req = NULL; 1928 data.ff = NULL; 1929 1930 err = -ENOMEM; 1931 data.orig_pages = kcalloc(fc->max_pages, 1932 sizeof(struct page *), 1933 GFP_NOFS); 1934 if (!data.orig_pages) 1935 goto out; 1936 1937 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 1938 if (data.req) { 1939 /* Ignore errors if we can write at least one page */ 1940 BUG_ON(!data.req->num_pages); 1941 fuse_writepages_send(&data); 1942 err = 0; 1943 } 1944 if (data.ff) 1945 fuse_file_put(data.ff, false, false); 1946 1947 kfree(data.orig_pages); 1948 out: 1949 return err; 1950 } 1951 1952 /* 1953 * It's worthy to make sure that space is reserved on disk for the write, 1954 * but how to implement it without killing performance need more thinking. 1955 */ 1956 static int fuse_write_begin(struct file *file, struct address_space *mapping, 1957 loff_t pos, unsigned len, unsigned flags, 1958 struct page **pagep, void **fsdata) 1959 { 1960 pgoff_t index = pos >> PAGE_SHIFT; 1961 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 1962 struct page *page; 1963 loff_t fsize; 1964 int err = -ENOMEM; 1965 1966 WARN_ON(!fc->writeback_cache); 1967 1968 page = grab_cache_page_write_begin(mapping, index, flags); 1969 if (!page) 1970 goto error; 1971 1972 fuse_wait_on_page_writeback(mapping->host, page->index); 1973 1974 if (PageUptodate(page) || len == PAGE_SIZE) 1975 goto success; 1976 /* 1977 * Check if the start this page comes after the end of file, in which 1978 * case the readpage can be optimized away. 1979 */ 1980 fsize = i_size_read(mapping->host); 1981 if (fsize <= (pos & PAGE_MASK)) { 1982 size_t off = pos & ~PAGE_MASK; 1983 if (off) 1984 zero_user_segment(page, 0, off); 1985 goto success; 1986 } 1987 err = fuse_do_readpage(file, page); 1988 if (err) 1989 goto cleanup; 1990 success: 1991 *pagep = page; 1992 return 0; 1993 1994 cleanup: 1995 unlock_page(page); 1996 put_page(page); 1997 error: 1998 return err; 1999 } 2000 2001 static int fuse_write_end(struct file *file, struct address_space *mapping, 2002 loff_t pos, unsigned len, unsigned copied, 2003 struct page *page, void *fsdata) 2004 { 2005 struct inode *inode = page->mapping->host; 2006 2007 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2008 if (!copied) 2009 goto unlock; 2010 2011 if (!PageUptodate(page)) { 2012 /* Zero any unwritten bytes at the end of the page */ 2013 size_t endoff = (pos + copied) & ~PAGE_MASK; 2014 if (endoff) 2015 zero_user_segment(page, endoff, PAGE_SIZE); 2016 SetPageUptodate(page); 2017 } 2018 2019 fuse_write_update_size(inode, pos + copied); 2020 set_page_dirty(page); 2021 2022 unlock: 2023 unlock_page(page); 2024 put_page(page); 2025 2026 return copied; 2027 } 2028 2029 static int fuse_launder_page(struct page *page) 2030 { 2031 int err = 0; 2032 if (clear_page_dirty_for_io(page)) { 2033 struct inode *inode = page->mapping->host; 2034 err = fuse_writepage_locked(page); 2035 if (!err) 2036 fuse_wait_on_page_writeback(inode, page->index); 2037 } 2038 return err; 2039 } 2040 2041 /* 2042 * Write back dirty pages now, because there may not be any suitable 2043 * open files later 2044 */ 2045 static void fuse_vma_close(struct vm_area_struct *vma) 2046 { 2047 filemap_write_and_wait(vma->vm_file->f_mapping); 2048 } 2049 2050 /* 2051 * Wait for writeback against this page to complete before allowing it 2052 * to be marked dirty again, and hence written back again, possibly 2053 * before the previous writepage completed. 2054 * 2055 * Block here, instead of in ->writepage(), so that the userspace fs 2056 * can only block processes actually operating on the filesystem. 2057 * 2058 * Otherwise unprivileged userspace fs would be able to block 2059 * unrelated: 2060 * 2061 * - page migration 2062 * - sync(2) 2063 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2064 */ 2065 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2066 { 2067 struct page *page = vmf->page; 2068 struct inode *inode = file_inode(vmf->vma->vm_file); 2069 2070 file_update_time(vmf->vma->vm_file); 2071 lock_page(page); 2072 if (page->mapping != inode->i_mapping) { 2073 unlock_page(page); 2074 return VM_FAULT_NOPAGE; 2075 } 2076 2077 fuse_wait_on_page_writeback(inode, page->index); 2078 return VM_FAULT_LOCKED; 2079 } 2080 2081 static const struct vm_operations_struct fuse_file_vm_ops = { 2082 .close = fuse_vma_close, 2083 .fault = filemap_fault, 2084 .map_pages = filemap_map_pages, 2085 .page_mkwrite = fuse_page_mkwrite, 2086 }; 2087 2088 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2089 { 2090 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2091 fuse_link_write_file(file); 2092 2093 file_accessed(file); 2094 vma->vm_ops = &fuse_file_vm_ops; 2095 return 0; 2096 } 2097 2098 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma) 2099 { 2100 /* Can't provide the coherency needed for MAP_SHARED */ 2101 if (vma->vm_flags & VM_MAYSHARE) 2102 return -ENODEV; 2103 2104 invalidate_inode_pages2(file->f_mapping); 2105 2106 return generic_file_mmap(file, vma); 2107 } 2108 2109 static int convert_fuse_file_lock(struct fuse_conn *fc, 2110 const struct fuse_file_lock *ffl, 2111 struct file_lock *fl) 2112 { 2113 switch (ffl->type) { 2114 case F_UNLCK: 2115 break; 2116 2117 case F_RDLCK: 2118 case F_WRLCK: 2119 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2120 ffl->end < ffl->start) 2121 return -EIO; 2122 2123 fl->fl_start = ffl->start; 2124 fl->fl_end = ffl->end; 2125 2126 /* 2127 * Convert pid into init's pid namespace. The locks API will 2128 * translate it into the caller's pid namespace. 2129 */ 2130 rcu_read_lock(); 2131 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2132 rcu_read_unlock(); 2133 break; 2134 2135 default: 2136 return -EIO; 2137 } 2138 fl->fl_type = ffl->type; 2139 return 0; 2140 } 2141 2142 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2143 const struct file_lock *fl, int opcode, pid_t pid, 2144 int flock, struct fuse_lk_in *inarg) 2145 { 2146 struct inode *inode = file_inode(file); 2147 struct fuse_conn *fc = get_fuse_conn(inode); 2148 struct fuse_file *ff = file->private_data; 2149 2150 memset(inarg, 0, sizeof(*inarg)); 2151 inarg->fh = ff->fh; 2152 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2153 inarg->lk.start = fl->fl_start; 2154 inarg->lk.end = fl->fl_end; 2155 inarg->lk.type = fl->fl_type; 2156 inarg->lk.pid = pid; 2157 if (flock) 2158 inarg->lk_flags |= FUSE_LK_FLOCK; 2159 args->in.h.opcode = opcode; 2160 args->in.h.nodeid = get_node_id(inode); 2161 args->in.numargs = 1; 2162 args->in.args[0].size = sizeof(*inarg); 2163 args->in.args[0].value = inarg; 2164 } 2165 2166 static int fuse_getlk(struct file *file, struct file_lock *fl) 2167 { 2168 struct inode *inode = file_inode(file); 2169 struct fuse_conn *fc = get_fuse_conn(inode); 2170 FUSE_ARGS(args); 2171 struct fuse_lk_in inarg; 2172 struct fuse_lk_out outarg; 2173 int err; 2174 2175 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2176 args.out.numargs = 1; 2177 args.out.args[0].size = sizeof(outarg); 2178 args.out.args[0].value = &outarg; 2179 err = fuse_simple_request(fc, &args); 2180 if (!err) 2181 err = convert_fuse_file_lock(fc, &outarg.lk, fl); 2182 2183 return err; 2184 } 2185 2186 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2187 { 2188 struct inode *inode = file_inode(file); 2189 struct fuse_conn *fc = get_fuse_conn(inode); 2190 FUSE_ARGS(args); 2191 struct fuse_lk_in inarg; 2192 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2193 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2194 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns); 2195 int err; 2196 2197 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2198 /* NLM needs asynchronous locks, which we don't support yet */ 2199 return -ENOLCK; 2200 } 2201 2202 /* Unlock on close is handled by the flush method */ 2203 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2204 return 0; 2205 2206 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2207 err = fuse_simple_request(fc, &args); 2208 2209 /* locking is restartable */ 2210 if (err == -EINTR) 2211 err = -ERESTARTSYS; 2212 2213 return err; 2214 } 2215 2216 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2217 { 2218 struct inode *inode = file_inode(file); 2219 struct fuse_conn *fc = get_fuse_conn(inode); 2220 int err; 2221 2222 if (cmd == F_CANCELLK) { 2223 err = 0; 2224 } else if (cmd == F_GETLK) { 2225 if (fc->no_lock) { 2226 posix_test_lock(file, fl); 2227 err = 0; 2228 } else 2229 err = fuse_getlk(file, fl); 2230 } else { 2231 if (fc->no_lock) 2232 err = posix_lock_file(file, fl, NULL); 2233 else 2234 err = fuse_setlk(file, fl, 0); 2235 } 2236 return err; 2237 } 2238 2239 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2240 { 2241 struct inode *inode = file_inode(file); 2242 struct fuse_conn *fc = get_fuse_conn(inode); 2243 int err; 2244 2245 if (fc->no_flock) { 2246 err = locks_lock_file_wait(file, fl); 2247 } else { 2248 struct fuse_file *ff = file->private_data; 2249 2250 /* emulate flock with POSIX locks */ 2251 ff->flock = true; 2252 err = fuse_setlk(file, fl, 1); 2253 } 2254 2255 return err; 2256 } 2257 2258 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2259 { 2260 struct inode *inode = mapping->host; 2261 struct fuse_conn *fc = get_fuse_conn(inode); 2262 FUSE_ARGS(args); 2263 struct fuse_bmap_in inarg; 2264 struct fuse_bmap_out outarg; 2265 int err; 2266 2267 if (!inode->i_sb->s_bdev || fc->no_bmap) 2268 return 0; 2269 2270 memset(&inarg, 0, sizeof(inarg)); 2271 inarg.block = block; 2272 inarg.blocksize = inode->i_sb->s_blocksize; 2273 args.in.h.opcode = FUSE_BMAP; 2274 args.in.h.nodeid = get_node_id(inode); 2275 args.in.numargs = 1; 2276 args.in.args[0].size = sizeof(inarg); 2277 args.in.args[0].value = &inarg; 2278 args.out.numargs = 1; 2279 args.out.args[0].size = sizeof(outarg); 2280 args.out.args[0].value = &outarg; 2281 err = fuse_simple_request(fc, &args); 2282 if (err == -ENOSYS) 2283 fc->no_bmap = 1; 2284 2285 return err ? 0 : outarg.block; 2286 } 2287 2288 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2289 { 2290 struct inode *inode = file->f_mapping->host; 2291 struct fuse_conn *fc = get_fuse_conn(inode); 2292 struct fuse_file *ff = file->private_data; 2293 FUSE_ARGS(args); 2294 struct fuse_lseek_in inarg = { 2295 .fh = ff->fh, 2296 .offset = offset, 2297 .whence = whence 2298 }; 2299 struct fuse_lseek_out outarg; 2300 int err; 2301 2302 if (fc->no_lseek) 2303 goto fallback; 2304 2305 args.in.h.opcode = FUSE_LSEEK; 2306 args.in.h.nodeid = ff->nodeid; 2307 args.in.numargs = 1; 2308 args.in.args[0].size = sizeof(inarg); 2309 args.in.args[0].value = &inarg; 2310 args.out.numargs = 1; 2311 args.out.args[0].size = sizeof(outarg); 2312 args.out.args[0].value = &outarg; 2313 err = fuse_simple_request(fc, &args); 2314 if (err) { 2315 if (err == -ENOSYS) { 2316 fc->no_lseek = 1; 2317 goto fallback; 2318 } 2319 return err; 2320 } 2321 2322 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2323 2324 fallback: 2325 err = fuse_update_attributes(inode, file); 2326 if (!err) 2327 return generic_file_llseek(file, offset, whence); 2328 else 2329 return err; 2330 } 2331 2332 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2333 { 2334 loff_t retval; 2335 struct inode *inode = file_inode(file); 2336 2337 switch (whence) { 2338 case SEEK_SET: 2339 case SEEK_CUR: 2340 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2341 retval = generic_file_llseek(file, offset, whence); 2342 break; 2343 case SEEK_END: 2344 inode_lock(inode); 2345 retval = fuse_update_attributes(inode, file); 2346 if (!retval) 2347 retval = generic_file_llseek(file, offset, whence); 2348 inode_unlock(inode); 2349 break; 2350 case SEEK_HOLE: 2351 case SEEK_DATA: 2352 inode_lock(inode); 2353 retval = fuse_lseek(file, offset, whence); 2354 inode_unlock(inode); 2355 break; 2356 default: 2357 retval = -EINVAL; 2358 } 2359 2360 return retval; 2361 } 2362 2363 /* 2364 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2365 * ABI was defined to be 'struct iovec' which is different on 32bit 2366 * and 64bit. Fortunately we can determine which structure the server 2367 * used from the size of the reply. 2368 */ 2369 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2370 size_t transferred, unsigned count, 2371 bool is_compat) 2372 { 2373 #ifdef CONFIG_COMPAT 2374 if (count * sizeof(struct compat_iovec) == transferred) { 2375 struct compat_iovec *ciov = src; 2376 unsigned i; 2377 2378 /* 2379 * With this interface a 32bit server cannot support 2380 * non-compat (i.e. ones coming from 64bit apps) ioctl 2381 * requests 2382 */ 2383 if (!is_compat) 2384 return -EINVAL; 2385 2386 for (i = 0; i < count; i++) { 2387 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2388 dst[i].iov_len = ciov[i].iov_len; 2389 } 2390 return 0; 2391 } 2392 #endif 2393 2394 if (count * sizeof(struct iovec) != transferred) 2395 return -EIO; 2396 2397 memcpy(dst, src, transferred); 2398 return 0; 2399 } 2400 2401 /* Make sure iov_length() won't overflow */ 2402 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov, 2403 size_t count) 2404 { 2405 size_t n; 2406 u32 max = fc->max_pages << PAGE_SHIFT; 2407 2408 for (n = 0; n < count; n++, iov++) { 2409 if (iov->iov_len > (size_t) max) 2410 return -ENOMEM; 2411 max -= iov->iov_len; 2412 } 2413 return 0; 2414 } 2415 2416 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2417 void *src, size_t transferred, unsigned count, 2418 bool is_compat) 2419 { 2420 unsigned i; 2421 struct fuse_ioctl_iovec *fiov = src; 2422 2423 if (fc->minor < 16) { 2424 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2425 count, is_compat); 2426 } 2427 2428 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2429 return -EIO; 2430 2431 for (i = 0; i < count; i++) { 2432 /* Did the server supply an inappropriate value? */ 2433 if (fiov[i].base != (unsigned long) fiov[i].base || 2434 fiov[i].len != (unsigned long) fiov[i].len) 2435 return -EIO; 2436 2437 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2438 dst[i].iov_len = (size_t) fiov[i].len; 2439 2440 #ifdef CONFIG_COMPAT 2441 if (is_compat && 2442 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2443 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2444 return -EIO; 2445 #endif 2446 } 2447 2448 return 0; 2449 } 2450 2451 2452 /* 2453 * For ioctls, there is no generic way to determine how much memory 2454 * needs to be read and/or written. Furthermore, ioctls are allowed 2455 * to dereference the passed pointer, so the parameter requires deep 2456 * copying but FUSE has no idea whatsoever about what to copy in or 2457 * out. 2458 * 2459 * This is solved by allowing FUSE server to retry ioctl with 2460 * necessary in/out iovecs. Let's assume the ioctl implementation 2461 * needs to read in the following structure. 2462 * 2463 * struct a { 2464 * char *buf; 2465 * size_t buflen; 2466 * } 2467 * 2468 * On the first callout to FUSE server, inarg->in_size and 2469 * inarg->out_size will be NULL; then, the server completes the ioctl 2470 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2471 * the actual iov array to 2472 * 2473 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2474 * 2475 * which tells FUSE to copy in the requested area and retry the ioctl. 2476 * On the second round, the server has access to the structure and 2477 * from that it can tell what to look for next, so on the invocation, 2478 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2479 * 2480 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2481 * { .iov_base = a.buf, .iov_len = a.buflen } } 2482 * 2483 * FUSE will copy both struct a and the pointed buffer from the 2484 * process doing the ioctl and retry ioctl with both struct a and the 2485 * buffer. 2486 * 2487 * This time, FUSE server has everything it needs and completes ioctl 2488 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2489 * 2490 * Copying data out works the same way. 2491 * 2492 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2493 * automatically initializes in and out iovs by decoding @cmd with 2494 * _IOC_* macros and the server is not allowed to request RETRY. This 2495 * limits ioctl data transfers to well-formed ioctls and is the forced 2496 * behavior for all FUSE servers. 2497 */ 2498 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2499 unsigned int flags) 2500 { 2501 struct fuse_file *ff = file->private_data; 2502 struct fuse_conn *fc = ff->fc; 2503 struct fuse_ioctl_in inarg = { 2504 .fh = ff->fh, 2505 .cmd = cmd, 2506 .arg = arg, 2507 .flags = flags 2508 }; 2509 struct fuse_ioctl_out outarg; 2510 struct fuse_req *req = NULL; 2511 struct page **pages = NULL; 2512 struct iovec *iov_page = NULL; 2513 struct iovec *in_iov = NULL, *out_iov = NULL; 2514 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages; 2515 size_t in_size, out_size, transferred, c; 2516 int err, i; 2517 struct iov_iter ii; 2518 2519 #if BITS_PER_LONG == 32 2520 inarg.flags |= FUSE_IOCTL_32BIT; 2521 #else 2522 if (flags & FUSE_IOCTL_COMPAT) 2523 inarg.flags |= FUSE_IOCTL_32BIT; 2524 #endif 2525 2526 /* assume all the iovs returned by client always fits in a page */ 2527 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2528 2529 err = -ENOMEM; 2530 pages = kcalloc(fc->max_pages, sizeof(pages[0]), GFP_KERNEL); 2531 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2532 if (!pages || !iov_page) 2533 goto out; 2534 2535 /* 2536 * If restricted, initialize IO parameters as encoded in @cmd. 2537 * RETRY from server is not allowed. 2538 */ 2539 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2540 struct iovec *iov = iov_page; 2541 2542 iov->iov_base = (void __user *)arg; 2543 iov->iov_len = _IOC_SIZE(cmd); 2544 2545 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2546 in_iov = iov; 2547 in_iovs = 1; 2548 } 2549 2550 if (_IOC_DIR(cmd) & _IOC_READ) { 2551 out_iov = iov; 2552 out_iovs = 1; 2553 } 2554 } 2555 2556 retry: 2557 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2558 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2559 2560 /* 2561 * Out data can be used either for actual out data or iovs, 2562 * make sure there always is at least one page. 2563 */ 2564 out_size = max_t(size_t, out_size, PAGE_SIZE); 2565 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2566 2567 /* make sure there are enough buffer pages and init request with them */ 2568 err = -ENOMEM; 2569 if (max_pages > fc->max_pages) 2570 goto out; 2571 while (num_pages < max_pages) { 2572 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2573 if (!pages[num_pages]) 2574 goto out; 2575 num_pages++; 2576 } 2577 2578 req = fuse_get_req(fc, num_pages); 2579 if (IS_ERR(req)) { 2580 err = PTR_ERR(req); 2581 req = NULL; 2582 goto out; 2583 } 2584 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages); 2585 req->num_pages = num_pages; 2586 fuse_page_descs_length_init(req, 0, req->num_pages); 2587 2588 /* okay, let's send it to the client */ 2589 req->in.h.opcode = FUSE_IOCTL; 2590 req->in.h.nodeid = ff->nodeid; 2591 req->in.numargs = 1; 2592 req->in.args[0].size = sizeof(inarg); 2593 req->in.args[0].value = &inarg; 2594 if (in_size) { 2595 req->in.numargs++; 2596 req->in.args[1].size = in_size; 2597 req->in.argpages = 1; 2598 2599 err = -EFAULT; 2600 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size); 2601 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) { 2602 c = copy_page_from_iter(pages[i], 0, PAGE_SIZE, &ii); 2603 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2604 goto out; 2605 } 2606 } 2607 2608 req->out.numargs = 2; 2609 req->out.args[0].size = sizeof(outarg); 2610 req->out.args[0].value = &outarg; 2611 req->out.args[1].size = out_size; 2612 req->out.argpages = 1; 2613 req->out.argvar = 1; 2614 2615 fuse_request_send(fc, req); 2616 err = req->out.h.error; 2617 transferred = req->out.args[1].size; 2618 fuse_put_request(fc, req); 2619 req = NULL; 2620 if (err) 2621 goto out; 2622 2623 /* did it ask for retry? */ 2624 if (outarg.flags & FUSE_IOCTL_RETRY) { 2625 void *vaddr; 2626 2627 /* no retry if in restricted mode */ 2628 err = -EIO; 2629 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2630 goto out; 2631 2632 in_iovs = outarg.in_iovs; 2633 out_iovs = outarg.out_iovs; 2634 2635 /* 2636 * Make sure things are in boundary, separate checks 2637 * are to protect against overflow. 2638 */ 2639 err = -ENOMEM; 2640 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2641 out_iovs > FUSE_IOCTL_MAX_IOV || 2642 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2643 goto out; 2644 2645 vaddr = kmap_atomic(pages[0]); 2646 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2647 transferred, in_iovs + out_iovs, 2648 (flags & FUSE_IOCTL_COMPAT) != 0); 2649 kunmap_atomic(vaddr); 2650 if (err) 2651 goto out; 2652 2653 in_iov = iov_page; 2654 out_iov = in_iov + in_iovs; 2655 2656 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs); 2657 if (err) 2658 goto out; 2659 2660 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs); 2661 if (err) 2662 goto out; 2663 2664 goto retry; 2665 } 2666 2667 err = -EIO; 2668 if (transferred > inarg.out_size) 2669 goto out; 2670 2671 err = -EFAULT; 2672 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred); 2673 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) { 2674 c = copy_page_to_iter(pages[i], 0, PAGE_SIZE, &ii); 2675 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2676 goto out; 2677 } 2678 err = 0; 2679 out: 2680 if (req) 2681 fuse_put_request(fc, req); 2682 free_page((unsigned long) iov_page); 2683 while (num_pages) 2684 __free_page(pages[--num_pages]); 2685 kfree(pages); 2686 2687 return err ? err : outarg.result; 2688 } 2689 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2690 2691 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2692 unsigned long arg, unsigned int flags) 2693 { 2694 struct inode *inode = file_inode(file); 2695 struct fuse_conn *fc = get_fuse_conn(inode); 2696 2697 if (!fuse_allow_current_process(fc)) 2698 return -EACCES; 2699 2700 if (is_bad_inode(inode)) 2701 return -EIO; 2702 2703 return fuse_do_ioctl(file, cmd, arg, flags); 2704 } 2705 2706 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2707 unsigned long arg) 2708 { 2709 return fuse_ioctl_common(file, cmd, arg, 0); 2710 } 2711 2712 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2713 unsigned long arg) 2714 { 2715 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2716 } 2717 2718 /* 2719 * All files which have been polled are linked to RB tree 2720 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2721 * find the matching one. 2722 */ 2723 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2724 struct rb_node **parent_out) 2725 { 2726 struct rb_node **link = &fc->polled_files.rb_node; 2727 struct rb_node *last = NULL; 2728 2729 while (*link) { 2730 struct fuse_file *ff; 2731 2732 last = *link; 2733 ff = rb_entry(last, struct fuse_file, polled_node); 2734 2735 if (kh < ff->kh) 2736 link = &last->rb_left; 2737 else if (kh > ff->kh) 2738 link = &last->rb_right; 2739 else 2740 return link; 2741 } 2742 2743 if (parent_out) 2744 *parent_out = last; 2745 return link; 2746 } 2747 2748 /* 2749 * The file is about to be polled. Make sure it's on the polled_files 2750 * RB tree. Note that files once added to the polled_files tree are 2751 * not removed before the file is released. This is because a file 2752 * polled once is likely to be polled again. 2753 */ 2754 static void fuse_register_polled_file(struct fuse_conn *fc, 2755 struct fuse_file *ff) 2756 { 2757 spin_lock(&fc->lock); 2758 if (RB_EMPTY_NODE(&ff->polled_node)) { 2759 struct rb_node **link, *uninitialized_var(parent); 2760 2761 link = fuse_find_polled_node(fc, ff->kh, &parent); 2762 BUG_ON(*link); 2763 rb_link_node(&ff->polled_node, parent, link); 2764 rb_insert_color(&ff->polled_node, &fc->polled_files); 2765 } 2766 spin_unlock(&fc->lock); 2767 } 2768 2769 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2770 { 2771 struct fuse_file *ff = file->private_data; 2772 struct fuse_conn *fc = ff->fc; 2773 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2774 struct fuse_poll_out outarg; 2775 FUSE_ARGS(args); 2776 int err; 2777 2778 if (fc->no_poll) 2779 return DEFAULT_POLLMASK; 2780 2781 poll_wait(file, &ff->poll_wait, wait); 2782 inarg.events = mangle_poll(poll_requested_events(wait)); 2783 2784 /* 2785 * Ask for notification iff there's someone waiting for it. 2786 * The client may ignore the flag and always notify. 2787 */ 2788 if (waitqueue_active(&ff->poll_wait)) { 2789 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2790 fuse_register_polled_file(fc, ff); 2791 } 2792 2793 args.in.h.opcode = FUSE_POLL; 2794 args.in.h.nodeid = ff->nodeid; 2795 args.in.numargs = 1; 2796 args.in.args[0].size = sizeof(inarg); 2797 args.in.args[0].value = &inarg; 2798 args.out.numargs = 1; 2799 args.out.args[0].size = sizeof(outarg); 2800 args.out.args[0].value = &outarg; 2801 err = fuse_simple_request(fc, &args); 2802 2803 if (!err) 2804 return demangle_poll(outarg.revents); 2805 if (err == -ENOSYS) { 2806 fc->no_poll = 1; 2807 return DEFAULT_POLLMASK; 2808 } 2809 return EPOLLERR; 2810 } 2811 EXPORT_SYMBOL_GPL(fuse_file_poll); 2812 2813 /* 2814 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2815 * wakes up the poll waiters. 2816 */ 2817 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2818 struct fuse_notify_poll_wakeup_out *outarg) 2819 { 2820 u64 kh = outarg->kh; 2821 struct rb_node **link; 2822 2823 spin_lock(&fc->lock); 2824 2825 link = fuse_find_polled_node(fc, kh, NULL); 2826 if (*link) { 2827 struct fuse_file *ff; 2828 2829 ff = rb_entry(*link, struct fuse_file, polled_node); 2830 wake_up_interruptible_sync(&ff->poll_wait); 2831 } 2832 2833 spin_unlock(&fc->lock); 2834 return 0; 2835 } 2836 2837 static void fuse_do_truncate(struct file *file) 2838 { 2839 struct inode *inode = file->f_mapping->host; 2840 struct iattr attr; 2841 2842 attr.ia_valid = ATTR_SIZE; 2843 attr.ia_size = i_size_read(inode); 2844 2845 attr.ia_file = file; 2846 attr.ia_valid |= ATTR_FILE; 2847 2848 fuse_do_setattr(file_dentry(file), &attr, file); 2849 } 2850 2851 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 2852 { 2853 return round_up(off, fc->max_pages << PAGE_SHIFT); 2854 } 2855 2856 static ssize_t 2857 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2858 { 2859 DECLARE_COMPLETION_ONSTACK(wait); 2860 ssize_t ret = 0; 2861 struct file *file = iocb->ki_filp; 2862 struct fuse_file *ff = file->private_data; 2863 bool async_dio = ff->fc->async_dio; 2864 loff_t pos = 0; 2865 struct inode *inode; 2866 loff_t i_size; 2867 size_t count = iov_iter_count(iter); 2868 loff_t offset = iocb->ki_pos; 2869 struct fuse_io_priv *io; 2870 2871 pos = offset; 2872 inode = file->f_mapping->host; 2873 i_size = i_size_read(inode); 2874 2875 if ((iov_iter_rw(iter) == READ) && (offset > i_size)) 2876 return 0; 2877 2878 /* optimization for short read */ 2879 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) { 2880 if (offset >= i_size) 2881 return 0; 2882 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset)); 2883 count = iov_iter_count(iter); 2884 } 2885 2886 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2887 if (!io) 2888 return -ENOMEM; 2889 spin_lock_init(&io->lock); 2890 kref_init(&io->refcnt); 2891 io->reqs = 1; 2892 io->bytes = -1; 2893 io->size = 0; 2894 io->offset = offset; 2895 io->write = (iov_iter_rw(iter) == WRITE); 2896 io->err = 0; 2897 /* 2898 * By default, we want to optimize all I/Os with async request 2899 * submission to the client filesystem if supported. 2900 */ 2901 io->async = async_dio; 2902 io->iocb = iocb; 2903 io->blocking = is_sync_kiocb(iocb); 2904 2905 /* 2906 * We cannot asynchronously extend the size of a file. 2907 * In such case the aio will behave exactly like sync io. 2908 */ 2909 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE) 2910 io->blocking = true; 2911 2912 if (io->async && io->blocking) { 2913 /* 2914 * Additional reference to keep io around after 2915 * calling fuse_aio_complete() 2916 */ 2917 kref_get(&io->refcnt); 2918 io->done = &wait; 2919 } 2920 2921 if (iov_iter_rw(iter) == WRITE) { 2922 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2923 fuse_invalidate_attr(inode); 2924 } else { 2925 ret = __fuse_direct_read(io, iter, &pos); 2926 } 2927 2928 if (io->async) { 2929 bool blocking = io->blocking; 2930 2931 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2932 2933 /* we have a non-extending, async request, so return */ 2934 if (!blocking) 2935 return -EIOCBQUEUED; 2936 2937 wait_for_completion(&wait); 2938 ret = fuse_get_res_by_io(io); 2939 } 2940 2941 kref_put(&io->refcnt, fuse_io_release); 2942 2943 if (iov_iter_rw(iter) == WRITE) { 2944 if (ret > 0) 2945 fuse_write_update_size(inode, pos); 2946 else if (ret < 0 && offset + count > i_size) 2947 fuse_do_truncate(file); 2948 } 2949 2950 return ret; 2951 } 2952 2953 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2954 loff_t length) 2955 { 2956 struct fuse_file *ff = file->private_data; 2957 struct inode *inode = file_inode(file); 2958 struct fuse_inode *fi = get_fuse_inode(inode); 2959 struct fuse_conn *fc = ff->fc; 2960 FUSE_ARGS(args); 2961 struct fuse_fallocate_in inarg = { 2962 .fh = ff->fh, 2963 .offset = offset, 2964 .length = length, 2965 .mode = mode 2966 }; 2967 int err; 2968 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2969 (mode & FALLOC_FL_PUNCH_HOLE); 2970 2971 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2972 return -EOPNOTSUPP; 2973 2974 if (fc->no_fallocate) 2975 return -EOPNOTSUPP; 2976 2977 if (lock_inode) { 2978 inode_lock(inode); 2979 if (mode & FALLOC_FL_PUNCH_HOLE) { 2980 loff_t endbyte = offset + length - 1; 2981 err = filemap_write_and_wait_range(inode->i_mapping, 2982 offset, endbyte); 2983 if (err) 2984 goto out; 2985 2986 fuse_sync_writes(inode); 2987 } 2988 } 2989 2990 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2991 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2992 2993 args.in.h.opcode = FUSE_FALLOCATE; 2994 args.in.h.nodeid = ff->nodeid; 2995 args.in.numargs = 1; 2996 args.in.args[0].size = sizeof(inarg); 2997 args.in.args[0].value = &inarg; 2998 err = fuse_simple_request(fc, &args); 2999 if (err == -ENOSYS) { 3000 fc->no_fallocate = 1; 3001 err = -EOPNOTSUPP; 3002 } 3003 if (err) 3004 goto out; 3005 3006 /* we could have extended the file */ 3007 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3008 bool changed = fuse_write_update_size(inode, offset + length); 3009 3010 if (changed && fc->writeback_cache) 3011 file_update_time(file); 3012 } 3013 3014 if (mode & FALLOC_FL_PUNCH_HOLE) 3015 truncate_pagecache_range(inode, offset, offset + length - 1); 3016 3017 fuse_invalidate_attr(inode); 3018 3019 out: 3020 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3021 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3022 3023 if (lock_inode) 3024 inode_unlock(inode); 3025 3026 return err; 3027 } 3028 3029 static ssize_t fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3030 struct file *file_out, loff_t pos_out, 3031 size_t len, unsigned int flags) 3032 { 3033 struct fuse_file *ff_in = file_in->private_data; 3034 struct fuse_file *ff_out = file_out->private_data; 3035 struct inode *inode_out = file_inode(file_out); 3036 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3037 struct fuse_conn *fc = ff_in->fc; 3038 FUSE_ARGS(args); 3039 struct fuse_copy_file_range_in inarg = { 3040 .fh_in = ff_in->fh, 3041 .off_in = pos_in, 3042 .nodeid_out = ff_out->nodeid, 3043 .fh_out = ff_out->fh, 3044 .off_out = pos_out, 3045 .len = len, 3046 .flags = flags 3047 }; 3048 struct fuse_write_out outarg; 3049 ssize_t err; 3050 /* mark unstable when write-back is not used, and file_out gets 3051 * extended */ 3052 bool is_unstable = (!fc->writeback_cache) && 3053 ((pos_out + len) > inode_out->i_size); 3054 3055 if (fc->no_copy_file_range) 3056 return -EOPNOTSUPP; 3057 3058 inode_lock(inode_out); 3059 3060 if (fc->writeback_cache) { 3061 err = filemap_write_and_wait_range(inode_out->i_mapping, 3062 pos_out, pos_out + len); 3063 if (err) 3064 goto out; 3065 3066 fuse_sync_writes(inode_out); 3067 } 3068 3069 if (is_unstable) 3070 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3071 3072 args.in.h.opcode = FUSE_COPY_FILE_RANGE; 3073 args.in.h.nodeid = ff_in->nodeid; 3074 args.in.numargs = 1; 3075 args.in.args[0].size = sizeof(inarg); 3076 args.in.args[0].value = &inarg; 3077 args.out.numargs = 1; 3078 args.out.args[0].size = sizeof(outarg); 3079 args.out.args[0].value = &outarg; 3080 err = fuse_simple_request(fc, &args); 3081 if (err == -ENOSYS) { 3082 fc->no_copy_file_range = 1; 3083 err = -EOPNOTSUPP; 3084 } 3085 if (err) 3086 goto out; 3087 3088 if (fc->writeback_cache) { 3089 fuse_write_update_size(inode_out, pos_out + outarg.size); 3090 file_update_time(file_out); 3091 } 3092 3093 fuse_invalidate_attr(inode_out); 3094 3095 err = outarg.size; 3096 out: 3097 if (is_unstable) 3098 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3099 3100 inode_unlock(inode_out); 3101 3102 return err; 3103 } 3104 3105 static const struct file_operations fuse_file_operations = { 3106 .llseek = fuse_file_llseek, 3107 .read_iter = fuse_file_read_iter, 3108 .write_iter = fuse_file_write_iter, 3109 .mmap = fuse_file_mmap, 3110 .open = fuse_open, 3111 .flush = fuse_flush, 3112 .release = fuse_release, 3113 .fsync = fuse_fsync, 3114 .lock = fuse_file_lock, 3115 .flock = fuse_file_flock, 3116 .splice_read = generic_file_splice_read, 3117 .unlocked_ioctl = fuse_file_ioctl, 3118 .compat_ioctl = fuse_file_compat_ioctl, 3119 .poll = fuse_file_poll, 3120 .fallocate = fuse_file_fallocate, 3121 .copy_file_range = fuse_copy_file_range, 3122 }; 3123 3124 static const struct file_operations fuse_direct_io_file_operations = { 3125 .llseek = fuse_file_llseek, 3126 .read_iter = fuse_direct_read_iter, 3127 .write_iter = fuse_direct_write_iter, 3128 .mmap = fuse_direct_mmap, 3129 .open = fuse_open, 3130 .flush = fuse_flush, 3131 .release = fuse_release, 3132 .fsync = fuse_fsync, 3133 .lock = fuse_file_lock, 3134 .flock = fuse_file_flock, 3135 .unlocked_ioctl = fuse_file_ioctl, 3136 .compat_ioctl = fuse_file_compat_ioctl, 3137 .poll = fuse_file_poll, 3138 .fallocate = fuse_file_fallocate, 3139 /* no splice_read */ 3140 }; 3141 3142 static const struct address_space_operations fuse_file_aops = { 3143 .readpage = fuse_readpage, 3144 .writepage = fuse_writepage, 3145 .writepages = fuse_writepages, 3146 .launder_page = fuse_launder_page, 3147 .readpages = fuse_readpages, 3148 .set_page_dirty = __set_page_dirty_nobuffers, 3149 .bmap = fuse_bmap, 3150 .direct_IO = fuse_direct_IO, 3151 .write_begin = fuse_write_begin, 3152 .write_end = fuse_write_end, 3153 }; 3154 3155 void fuse_init_file_inode(struct inode *inode) 3156 { 3157 struct fuse_inode *fi = get_fuse_inode(inode); 3158 3159 inode->i_fop = &fuse_file_operations; 3160 inode->i_data.a_ops = &fuse_file_aops; 3161 3162 INIT_LIST_HEAD(&fi->write_files); 3163 INIT_LIST_HEAD(&fi->queued_writes); 3164 fi->writectr = 0; 3165 init_waitqueue_head(&fi->page_waitq); 3166 INIT_LIST_HEAD(&fi->writepages); 3167 } 3168