xref: /openbmc/linux/fs/fuse/file.c (revision c819e2cf)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16 #include <linux/compat.h>
17 #include <linux/swap.h>
18 #include <linux/aio.h>
19 #include <linux/falloc.h>
20 
21 static const struct file_operations fuse_direct_io_file_operations;
22 
23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
24 			  int opcode, struct fuse_open_out *outargp)
25 {
26 	struct fuse_open_in inarg;
27 	FUSE_ARGS(args);
28 
29 	memset(&inarg, 0, sizeof(inarg));
30 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
31 	if (!fc->atomic_o_trunc)
32 		inarg.flags &= ~O_TRUNC;
33 	args.in.h.opcode = opcode;
34 	args.in.h.nodeid = nodeid;
35 	args.in.numargs = 1;
36 	args.in.args[0].size = sizeof(inarg);
37 	args.in.args[0].value = &inarg;
38 	args.out.numargs = 1;
39 	args.out.args[0].size = sizeof(*outargp);
40 	args.out.args[0].value = outargp;
41 
42 	return fuse_simple_request(fc, &args);
43 }
44 
45 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
46 {
47 	struct fuse_file *ff;
48 
49 	ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL);
50 	if (unlikely(!ff))
51 		return NULL;
52 
53 	ff->fc = fc;
54 	ff->reserved_req = fuse_request_alloc(0);
55 	if (unlikely(!ff->reserved_req)) {
56 		kfree(ff);
57 		return NULL;
58 	}
59 
60 	INIT_LIST_HEAD(&ff->write_entry);
61 	atomic_set(&ff->count, 0);
62 	RB_CLEAR_NODE(&ff->polled_node);
63 	init_waitqueue_head(&ff->poll_wait);
64 
65 	spin_lock(&fc->lock);
66 	ff->kh = ++fc->khctr;
67 	spin_unlock(&fc->lock);
68 
69 	return ff;
70 }
71 
72 void fuse_file_free(struct fuse_file *ff)
73 {
74 	fuse_request_free(ff->reserved_req);
75 	kfree(ff);
76 }
77 
78 struct fuse_file *fuse_file_get(struct fuse_file *ff)
79 {
80 	atomic_inc(&ff->count);
81 	return ff;
82 }
83 
84 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
85 {
86 	iput(req->misc.release.inode);
87 }
88 
89 static void fuse_file_put(struct fuse_file *ff, bool sync)
90 {
91 	if (atomic_dec_and_test(&ff->count)) {
92 		struct fuse_req *req = ff->reserved_req;
93 
94 		if (ff->fc->no_open) {
95 			/*
96 			 * Drop the release request when client does not
97 			 * implement 'open'
98 			 */
99 			req->background = 0;
100 			iput(req->misc.release.inode);
101 			fuse_put_request(ff->fc, req);
102 		} else if (sync) {
103 			req->background = 0;
104 			fuse_request_send(ff->fc, req);
105 			iput(req->misc.release.inode);
106 			fuse_put_request(ff->fc, req);
107 		} else {
108 			req->end = fuse_release_end;
109 			req->background = 1;
110 			fuse_request_send_background(ff->fc, req);
111 		}
112 		kfree(ff);
113 	}
114 }
115 
116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
117 		 bool isdir)
118 {
119 	struct fuse_file *ff;
120 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
121 
122 	ff = fuse_file_alloc(fc);
123 	if (!ff)
124 		return -ENOMEM;
125 
126 	ff->fh = 0;
127 	ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */
128 	if (!fc->no_open || isdir) {
129 		struct fuse_open_out outarg;
130 		int err;
131 
132 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
133 		if (!err) {
134 			ff->fh = outarg.fh;
135 			ff->open_flags = outarg.open_flags;
136 
137 		} else if (err != -ENOSYS || isdir) {
138 			fuse_file_free(ff);
139 			return err;
140 		} else {
141 			fc->no_open = 1;
142 		}
143 	}
144 
145 	if (isdir)
146 		ff->open_flags &= ~FOPEN_DIRECT_IO;
147 
148 	ff->nodeid = nodeid;
149 	file->private_data = fuse_file_get(ff);
150 
151 	return 0;
152 }
153 EXPORT_SYMBOL_GPL(fuse_do_open);
154 
155 static void fuse_link_write_file(struct file *file)
156 {
157 	struct inode *inode = file_inode(file);
158 	struct fuse_conn *fc = get_fuse_conn(inode);
159 	struct fuse_inode *fi = get_fuse_inode(inode);
160 	struct fuse_file *ff = file->private_data;
161 	/*
162 	 * file may be written through mmap, so chain it onto the
163 	 * inodes's write_file list
164 	 */
165 	spin_lock(&fc->lock);
166 	if (list_empty(&ff->write_entry))
167 		list_add(&ff->write_entry, &fi->write_files);
168 	spin_unlock(&fc->lock);
169 }
170 
171 void fuse_finish_open(struct inode *inode, struct file *file)
172 {
173 	struct fuse_file *ff = file->private_data;
174 	struct fuse_conn *fc = get_fuse_conn(inode);
175 
176 	if (ff->open_flags & FOPEN_DIRECT_IO)
177 		file->f_op = &fuse_direct_io_file_operations;
178 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
179 		invalidate_inode_pages2(inode->i_mapping);
180 	if (ff->open_flags & FOPEN_NONSEEKABLE)
181 		nonseekable_open(inode, file);
182 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
183 		struct fuse_inode *fi = get_fuse_inode(inode);
184 
185 		spin_lock(&fc->lock);
186 		fi->attr_version = ++fc->attr_version;
187 		i_size_write(inode, 0);
188 		spin_unlock(&fc->lock);
189 		fuse_invalidate_attr(inode);
190 		if (fc->writeback_cache)
191 			file_update_time(file);
192 	}
193 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
194 		fuse_link_write_file(file);
195 }
196 
197 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
198 {
199 	struct fuse_conn *fc = get_fuse_conn(inode);
200 	int err;
201 	bool lock_inode = (file->f_flags & O_TRUNC) &&
202 			  fc->atomic_o_trunc &&
203 			  fc->writeback_cache;
204 
205 	err = generic_file_open(inode, file);
206 	if (err)
207 		return err;
208 
209 	if (lock_inode)
210 		mutex_lock(&inode->i_mutex);
211 
212 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
213 
214 	if (!err)
215 		fuse_finish_open(inode, file);
216 
217 	if (lock_inode)
218 		mutex_unlock(&inode->i_mutex);
219 
220 	return err;
221 }
222 
223 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
224 {
225 	struct fuse_conn *fc = ff->fc;
226 	struct fuse_req *req = ff->reserved_req;
227 	struct fuse_release_in *inarg = &req->misc.release.in;
228 
229 	spin_lock(&fc->lock);
230 	list_del(&ff->write_entry);
231 	if (!RB_EMPTY_NODE(&ff->polled_node))
232 		rb_erase(&ff->polled_node, &fc->polled_files);
233 	spin_unlock(&fc->lock);
234 
235 	wake_up_interruptible_all(&ff->poll_wait);
236 
237 	inarg->fh = ff->fh;
238 	inarg->flags = flags;
239 	req->in.h.opcode = opcode;
240 	req->in.h.nodeid = ff->nodeid;
241 	req->in.numargs = 1;
242 	req->in.args[0].size = sizeof(struct fuse_release_in);
243 	req->in.args[0].value = inarg;
244 }
245 
246 void fuse_release_common(struct file *file, int opcode)
247 {
248 	struct fuse_file *ff;
249 	struct fuse_req *req;
250 
251 	ff = file->private_data;
252 	if (unlikely(!ff))
253 		return;
254 
255 	req = ff->reserved_req;
256 	fuse_prepare_release(ff, file->f_flags, opcode);
257 
258 	if (ff->flock) {
259 		struct fuse_release_in *inarg = &req->misc.release.in;
260 		inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
261 		inarg->lock_owner = fuse_lock_owner_id(ff->fc,
262 						       (fl_owner_t) file);
263 	}
264 	/* Hold inode until release is finished */
265 	req->misc.release.inode = igrab(file_inode(file));
266 
267 	/*
268 	 * Normally this will send the RELEASE request, however if
269 	 * some asynchronous READ or WRITE requests are outstanding,
270 	 * the sending will be delayed.
271 	 *
272 	 * Make the release synchronous if this is a fuseblk mount,
273 	 * synchronous RELEASE is allowed (and desirable) in this case
274 	 * because the server can be trusted not to screw up.
275 	 */
276 	fuse_file_put(ff, ff->fc->destroy_req != NULL);
277 }
278 
279 static int fuse_open(struct inode *inode, struct file *file)
280 {
281 	return fuse_open_common(inode, file, false);
282 }
283 
284 static int fuse_release(struct inode *inode, struct file *file)
285 {
286 	struct fuse_conn *fc = get_fuse_conn(inode);
287 
288 	/* see fuse_vma_close() for !writeback_cache case */
289 	if (fc->writeback_cache)
290 		write_inode_now(inode, 1);
291 
292 	fuse_release_common(file, FUSE_RELEASE);
293 
294 	/* return value is ignored by VFS */
295 	return 0;
296 }
297 
298 void fuse_sync_release(struct fuse_file *ff, int flags)
299 {
300 	WARN_ON(atomic_read(&ff->count) > 1);
301 	fuse_prepare_release(ff, flags, FUSE_RELEASE);
302 	ff->reserved_req->force = 1;
303 	ff->reserved_req->background = 0;
304 	fuse_request_send(ff->fc, ff->reserved_req);
305 	fuse_put_request(ff->fc, ff->reserved_req);
306 	kfree(ff);
307 }
308 EXPORT_SYMBOL_GPL(fuse_sync_release);
309 
310 /*
311  * Scramble the ID space with XTEA, so that the value of the files_struct
312  * pointer is not exposed to userspace.
313  */
314 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
315 {
316 	u32 *k = fc->scramble_key;
317 	u64 v = (unsigned long) id;
318 	u32 v0 = v;
319 	u32 v1 = v >> 32;
320 	u32 sum = 0;
321 	int i;
322 
323 	for (i = 0; i < 32; i++) {
324 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
325 		sum += 0x9E3779B9;
326 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
327 	}
328 
329 	return (u64) v0 + ((u64) v1 << 32);
330 }
331 
332 /*
333  * Check if any page in a range is under writeback
334  *
335  * This is currently done by walking the list of writepage requests
336  * for the inode, which can be pretty inefficient.
337  */
338 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
339 				   pgoff_t idx_to)
340 {
341 	struct fuse_conn *fc = get_fuse_conn(inode);
342 	struct fuse_inode *fi = get_fuse_inode(inode);
343 	struct fuse_req *req;
344 	bool found = false;
345 
346 	spin_lock(&fc->lock);
347 	list_for_each_entry(req, &fi->writepages, writepages_entry) {
348 		pgoff_t curr_index;
349 
350 		BUG_ON(req->inode != inode);
351 		curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
352 		if (idx_from < curr_index + req->num_pages &&
353 		    curr_index <= idx_to) {
354 			found = true;
355 			break;
356 		}
357 	}
358 	spin_unlock(&fc->lock);
359 
360 	return found;
361 }
362 
363 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
364 {
365 	return fuse_range_is_writeback(inode, index, index);
366 }
367 
368 /*
369  * Wait for page writeback to be completed.
370  *
371  * Since fuse doesn't rely on the VM writeback tracking, this has to
372  * use some other means.
373  */
374 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
375 {
376 	struct fuse_inode *fi = get_fuse_inode(inode);
377 
378 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
379 	return 0;
380 }
381 
382 /*
383  * Wait for all pending writepages on the inode to finish.
384  *
385  * This is currently done by blocking further writes with FUSE_NOWRITE
386  * and waiting for all sent writes to complete.
387  *
388  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
389  * could conflict with truncation.
390  */
391 static void fuse_sync_writes(struct inode *inode)
392 {
393 	fuse_set_nowrite(inode);
394 	fuse_release_nowrite(inode);
395 }
396 
397 static int fuse_flush(struct file *file, fl_owner_t id)
398 {
399 	struct inode *inode = file_inode(file);
400 	struct fuse_conn *fc = get_fuse_conn(inode);
401 	struct fuse_file *ff = file->private_data;
402 	struct fuse_req *req;
403 	struct fuse_flush_in inarg;
404 	int err;
405 
406 	if (is_bad_inode(inode))
407 		return -EIO;
408 
409 	if (fc->no_flush)
410 		return 0;
411 
412 	err = write_inode_now(inode, 1);
413 	if (err)
414 		return err;
415 
416 	mutex_lock(&inode->i_mutex);
417 	fuse_sync_writes(inode);
418 	mutex_unlock(&inode->i_mutex);
419 
420 	req = fuse_get_req_nofail_nopages(fc, file);
421 	memset(&inarg, 0, sizeof(inarg));
422 	inarg.fh = ff->fh;
423 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
424 	req->in.h.opcode = FUSE_FLUSH;
425 	req->in.h.nodeid = get_node_id(inode);
426 	req->in.numargs = 1;
427 	req->in.args[0].size = sizeof(inarg);
428 	req->in.args[0].value = &inarg;
429 	req->force = 1;
430 	fuse_request_send(fc, req);
431 	err = req->out.h.error;
432 	fuse_put_request(fc, req);
433 	if (err == -ENOSYS) {
434 		fc->no_flush = 1;
435 		err = 0;
436 	}
437 	return err;
438 }
439 
440 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
441 		      int datasync, int isdir)
442 {
443 	struct inode *inode = file->f_mapping->host;
444 	struct fuse_conn *fc = get_fuse_conn(inode);
445 	struct fuse_file *ff = file->private_data;
446 	FUSE_ARGS(args);
447 	struct fuse_fsync_in inarg;
448 	int err;
449 
450 	if (is_bad_inode(inode))
451 		return -EIO;
452 
453 	mutex_lock(&inode->i_mutex);
454 
455 	/*
456 	 * Start writeback against all dirty pages of the inode, then
457 	 * wait for all outstanding writes, before sending the FSYNC
458 	 * request.
459 	 */
460 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
461 	if (err)
462 		goto out;
463 
464 	fuse_sync_writes(inode);
465 	err = sync_inode_metadata(inode, 1);
466 	if (err)
467 		goto out;
468 
469 	if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
470 		goto out;
471 
472 	memset(&inarg, 0, sizeof(inarg));
473 	inarg.fh = ff->fh;
474 	inarg.fsync_flags = datasync ? 1 : 0;
475 	args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
476 	args.in.h.nodeid = get_node_id(inode);
477 	args.in.numargs = 1;
478 	args.in.args[0].size = sizeof(inarg);
479 	args.in.args[0].value = &inarg;
480 	err = fuse_simple_request(fc, &args);
481 	if (err == -ENOSYS) {
482 		if (isdir)
483 			fc->no_fsyncdir = 1;
484 		else
485 			fc->no_fsync = 1;
486 		err = 0;
487 	}
488 out:
489 	mutex_unlock(&inode->i_mutex);
490 	return err;
491 }
492 
493 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
494 		      int datasync)
495 {
496 	return fuse_fsync_common(file, start, end, datasync, 0);
497 }
498 
499 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
500 		    size_t count, int opcode)
501 {
502 	struct fuse_read_in *inarg = &req->misc.read.in;
503 	struct fuse_file *ff = file->private_data;
504 
505 	inarg->fh = ff->fh;
506 	inarg->offset = pos;
507 	inarg->size = count;
508 	inarg->flags = file->f_flags;
509 	req->in.h.opcode = opcode;
510 	req->in.h.nodeid = ff->nodeid;
511 	req->in.numargs = 1;
512 	req->in.args[0].size = sizeof(struct fuse_read_in);
513 	req->in.args[0].value = inarg;
514 	req->out.argvar = 1;
515 	req->out.numargs = 1;
516 	req->out.args[0].size = count;
517 }
518 
519 static void fuse_release_user_pages(struct fuse_req *req, int write)
520 {
521 	unsigned i;
522 
523 	for (i = 0; i < req->num_pages; i++) {
524 		struct page *page = req->pages[i];
525 		if (write)
526 			set_page_dirty_lock(page);
527 		put_page(page);
528 	}
529 }
530 
531 /**
532  * In case of short read, the caller sets 'pos' to the position of
533  * actual end of fuse request in IO request. Otherwise, if bytes_requested
534  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
535  *
536  * An example:
537  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
538  * both submitted asynchronously. The first of them was ACKed by userspace as
539  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
540  * second request was ACKed as short, e.g. only 1K was read, resulting in
541  * pos == 33K.
542  *
543  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
544  * will be equal to the length of the longest contiguous fragment of
545  * transferred data starting from the beginning of IO request.
546  */
547 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
548 {
549 	int left;
550 
551 	spin_lock(&io->lock);
552 	if (err)
553 		io->err = io->err ? : err;
554 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
555 		io->bytes = pos;
556 
557 	left = --io->reqs;
558 	spin_unlock(&io->lock);
559 
560 	if (!left) {
561 		long res;
562 
563 		if (io->err)
564 			res = io->err;
565 		else if (io->bytes >= 0 && io->write)
566 			res = -EIO;
567 		else {
568 			res = io->bytes < 0 ? io->size : io->bytes;
569 
570 			if (!is_sync_kiocb(io->iocb)) {
571 				struct inode *inode = file_inode(io->iocb->ki_filp);
572 				struct fuse_conn *fc = get_fuse_conn(inode);
573 				struct fuse_inode *fi = get_fuse_inode(inode);
574 
575 				spin_lock(&fc->lock);
576 				fi->attr_version = ++fc->attr_version;
577 				spin_unlock(&fc->lock);
578 			}
579 		}
580 
581 		aio_complete(io->iocb, res, 0);
582 		kfree(io);
583 	}
584 }
585 
586 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
587 {
588 	struct fuse_io_priv *io = req->io;
589 	ssize_t pos = -1;
590 
591 	fuse_release_user_pages(req, !io->write);
592 
593 	if (io->write) {
594 		if (req->misc.write.in.size != req->misc.write.out.size)
595 			pos = req->misc.write.in.offset - io->offset +
596 				req->misc.write.out.size;
597 	} else {
598 		if (req->misc.read.in.size != req->out.args[0].size)
599 			pos = req->misc.read.in.offset - io->offset +
600 				req->out.args[0].size;
601 	}
602 
603 	fuse_aio_complete(io, req->out.h.error, pos);
604 }
605 
606 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
607 		size_t num_bytes, struct fuse_io_priv *io)
608 {
609 	spin_lock(&io->lock);
610 	io->size += num_bytes;
611 	io->reqs++;
612 	spin_unlock(&io->lock);
613 
614 	req->io = io;
615 	req->end = fuse_aio_complete_req;
616 
617 	__fuse_get_request(req);
618 	fuse_request_send_background(fc, req);
619 
620 	return num_bytes;
621 }
622 
623 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
624 			     loff_t pos, size_t count, fl_owner_t owner)
625 {
626 	struct file *file = io->file;
627 	struct fuse_file *ff = file->private_data;
628 	struct fuse_conn *fc = ff->fc;
629 
630 	fuse_read_fill(req, file, pos, count, FUSE_READ);
631 	if (owner != NULL) {
632 		struct fuse_read_in *inarg = &req->misc.read.in;
633 
634 		inarg->read_flags |= FUSE_READ_LOCKOWNER;
635 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
636 	}
637 
638 	if (io->async)
639 		return fuse_async_req_send(fc, req, count, io);
640 
641 	fuse_request_send(fc, req);
642 	return req->out.args[0].size;
643 }
644 
645 static void fuse_read_update_size(struct inode *inode, loff_t size,
646 				  u64 attr_ver)
647 {
648 	struct fuse_conn *fc = get_fuse_conn(inode);
649 	struct fuse_inode *fi = get_fuse_inode(inode);
650 
651 	spin_lock(&fc->lock);
652 	if (attr_ver == fi->attr_version && size < inode->i_size &&
653 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
654 		fi->attr_version = ++fc->attr_version;
655 		i_size_write(inode, size);
656 	}
657 	spin_unlock(&fc->lock);
658 }
659 
660 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
661 			    u64 attr_ver)
662 {
663 	size_t num_read = req->out.args[0].size;
664 	struct fuse_conn *fc = get_fuse_conn(inode);
665 
666 	if (fc->writeback_cache) {
667 		/*
668 		 * A hole in a file. Some data after the hole are in page cache,
669 		 * but have not reached the client fs yet. So, the hole is not
670 		 * present there.
671 		 */
672 		int i;
673 		int start_idx = num_read >> PAGE_CACHE_SHIFT;
674 		size_t off = num_read & (PAGE_CACHE_SIZE - 1);
675 
676 		for (i = start_idx; i < req->num_pages; i++) {
677 			zero_user_segment(req->pages[i], off, PAGE_CACHE_SIZE);
678 			off = 0;
679 		}
680 	} else {
681 		loff_t pos = page_offset(req->pages[0]) + num_read;
682 		fuse_read_update_size(inode, pos, attr_ver);
683 	}
684 }
685 
686 static int fuse_do_readpage(struct file *file, struct page *page)
687 {
688 	struct fuse_io_priv io = { .async = 0, .file = file };
689 	struct inode *inode = page->mapping->host;
690 	struct fuse_conn *fc = get_fuse_conn(inode);
691 	struct fuse_req *req;
692 	size_t num_read;
693 	loff_t pos = page_offset(page);
694 	size_t count = PAGE_CACHE_SIZE;
695 	u64 attr_ver;
696 	int err;
697 
698 	/*
699 	 * Page writeback can extend beyond the lifetime of the
700 	 * page-cache page, so make sure we read a properly synced
701 	 * page.
702 	 */
703 	fuse_wait_on_page_writeback(inode, page->index);
704 
705 	req = fuse_get_req(fc, 1);
706 	if (IS_ERR(req))
707 		return PTR_ERR(req);
708 
709 	attr_ver = fuse_get_attr_version(fc);
710 
711 	req->out.page_zeroing = 1;
712 	req->out.argpages = 1;
713 	req->num_pages = 1;
714 	req->pages[0] = page;
715 	req->page_descs[0].length = count;
716 	num_read = fuse_send_read(req, &io, pos, count, NULL);
717 	err = req->out.h.error;
718 
719 	if (!err) {
720 		/*
721 		 * Short read means EOF.  If file size is larger, truncate it
722 		 */
723 		if (num_read < count)
724 			fuse_short_read(req, inode, attr_ver);
725 
726 		SetPageUptodate(page);
727 	}
728 
729 	fuse_put_request(fc, req);
730 
731 	return err;
732 }
733 
734 static int fuse_readpage(struct file *file, struct page *page)
735 {
736 	struct inode *inode = page->mapping->host;
737 	int err;
738 
739 	err = -EIO;
740 	if (is_bad_inode(inode))
741 		goto out;
742 
743 	err = fuse_do_readpage(file, page);
744 	fuse_invalidate_atime(inode);
745  out:
746 	unlock_page(page);
747 	return err;
748 }
749 
750 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
751 {
752 	int i;
753 	size_t count = req->misc.read.in.size;
754 	size_t num_read = req->out.args[0].size;
755 	struct address_space *mapping = NULL;
756 
757 	for (i = 0; mapping == NULL && i < req->num_pages; i++)
758 		mapping = req->pages[i]->mapping;
759 
760 	if (mapping) {
761 		struct inode *inode = mapping->host;
762 
763 		/*
764 		 * Short read means EOF. If file size is larger, truncate it
765 		 */
766 		if (!req->out.h.error && num_read < count)
767 			fuse_short_read(req, inode, req->misc.read.attr_ver);
768 
769 		fuse_invalidate_atime(inode);
770 	}
771 
772 	for (i = 0; i < req->num_pages; i++) {
773 		struct page *page = req->pages[i];
774 		if (!req->out.h.error)
775 			SetPageUptodate(page);
776 		else
777 			SetPageError(page);
778 		unlock_page(page);
779 		page_cache_release(page);
780 	}
781 	if (req->ff)
782 		fuse_file_put(req->ff, false);
783 }
784 
785 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
786 {
787 	struct fuse_file *ff = file->private_data;
788 	struct fuse_conn *fc = ff->fc;
789 	loff_t pos = page_offset(req->pages[0]);
790 	size_t count = req->num_pages << PAGE_CACHE_SHIFT;
791 
792 	req->out.argpages = 1;
793 	req->out.page_zeroing = 1;
794 	req->out.page_replace = 1;
795 	fuse_read_fill(req, file, pos, count, FUSE_READ);
796 	req->misc.read.attr_ver = fuse_get_attr_version(fc);
797 	if (fc->async_read) {
798 		req->ff = fuse_file_get(ff);
799 		req->end = fuse_readpages_end;
800 		fuse_request_send_background(fc, req);
801 	} else {
802 		fuse_request_send(fc, req);
803 		fuse_readpages_end(fc, req);
804 		fuse_put_request(fc, req);
805 	}
806 }
807 
808 struct fuse_fill_data {
809 	struct fuse_req *req;
810 	struct file *file;
811 	struct inode *inode;
812 	unsigned nr_pages;
813 };
814 
815 static int fuse_readpages_fill(void *_data, struct page *page)
816 {
817 	struct fuse_fill_data *data = _data;
818 	struct fuse_req *req = data->req;
819 	struct inode *inode = data->inode;
820 	struct fuse_conn *fc = get_fuse_conn(inode);
821 
822 	fuse_wait_on_page_writeback(inode, page->index);
823 
824 	if (req->num_pages &&
825 	    (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
826 	     (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read ||
827 	     req->pages[req->num_pages - 1]->index + 1 != page->index)) {
828 		int nr_alloc = min_t(unsigned, data->nr_pages,
829 				     FUSE_MAX_PAGES_PER_REQ);
830 		fuse_send_readpages(req, data->file);
831 		if (fc->async_read)
832 			req = fuse_get_req_for_background(fc, nr_alloc);
833 		else
834 			req = fuse_get_req(fc, nr_alloc);
835 
836 		data->req = req;
837 		if (IS_ERR(req)) {
838 			unlock_page(page);
839 			return PTR_ERR(req);
840 		}
841 	}
842 
843 	if (WARN_ON(req->num_pages >= req->max_pages)) {
844 		fuse_put_request(fc, req);
845 		return -EIO;
846 	}
847 
848 	page_cache_get(page);
849 	req->pages[req->num_pages] = page;
850 	req->page_descs[req->num_pages].length = PAGE_SIZE;
851 	req->num_pages++;
852 	data->nr_pages--;
853 	return 0;
854 }
855 
856 static int fuse_readpages(struct file *file, struct address_space *mapping,
857 			  struct list_head *pages, unsigned nr_pages)
858 {
859 	struct inode *inode = mapping->host;
860 	struct fuse_conn *fc = get_fuse_conn(inode);
861 	struct fuse_fill_data data;
862 	int err;
863 	int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ);
864 
865 	err = -EIO;
866 	if (is_bad_inode(inode))
867 		goto out;
868 
869 	data.file = file;
870 	data.inode = inode;
871 	if (fc->async_read)
872 		data.req = fuse_get_req_for_background(fc, nr_alloc);
873 	else
874 		data.req = fuse_get_req(fc, nr_alloc);
875 	data.nr_pages = nr_pages;
876 	err = PTR_ERR(data.req);
877 	if (IS_ERR(data.req))
878 		goto out;
879 
880 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
881 	if (!err) {
882 		if (data.req->num_pages)
883 			fuse_send_readpages(data.req, file);
884 		else
885 			fuse_put_request(fc, data.req);
886 	}
887 out:
888 	return err;
889 }
890 
891 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
892 {
893 	struct inode *inode = iocb->ki_filp->f_mapping->host;
894 	struct fuse_conn *fc = get_fuse_conn(inode);
895 
896 	/*
897 	 * In auto invalidate mode, always update attributes on read.
898 	 * Otherwise, only update if we attempt to read past EOF (to ensure
899 	 * i_size is up to date).
900 	 */
901 	if (fc->auto_inval_data ||
902 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
903 		int err;
904 		err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL);
905 		if (err)
906 			return err;
907 	}
908 
909 	return generic_file_read_iter(iocb, to);
910 }
911 
912 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
913 			    loff_t pos, size_t count)
914 {
915 	struct fuse_write_in *inarg = &req->misc.write.in;
916 	struct fuse_write_out *outarg = &req->misc.write.out;
917 
918 	inarg->fh = ff->fh;
919 	inarg->offset = pos;
920 	inarg->size = count;
921 	req->in.h.opcode = FUSE_WRITE;
922 	req->in.h.nodeid = ff->nodeid;
923 	req->in.numargs = 2;
924 	if (ff->fc->minor < 9)
925 		req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
926 	else
927 		req->in.args[0].size = sizeof(struct fuse_write_in);
928 	req->in.args[0].value = inarg;
929 	req->in.args[1].size = count;
930 	req->out.numargs = 1;
931 	req->out.args[0].size = sizeof(struct fuse_write_out);
932 	req->out.args[0].value = outarg;
933 }
934 
935 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
936 			      loff_t pos, size_t count, fl_owner_t owner)
937 {
938 	struct file *file = io->file;
939 	struct fuse_file *ff = file->private_data;
940 	struct fuse_conn *fc = ff->fc;
941 	struct fuse_write_in *inarg = &req->misc.write.in;
942 
943 	fuse_write_fill(req, ff, pos, count);
944 	inarg->flags = file->f_flags;
945 	if (owner != NULL) {
946 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
947 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
948 	}
949 
950 	if (io->async)
951 		return fuse_async_req_send(fc, req, count, io);
952 
953 	fuse_request_send(fc, req);
954 	return req->misc.write.out.size;
955 }
956 
957 bool fuse_write_update_size(struct inode *inode, loff_t pos)
958 {
959 	struct fuse_conn *fc = get_fuse_conn(inode);
960 	struct fuse_inode *fi = get_fuse_inode(inode);
961 	bool ret = false;
962 
963 	spin_lock(&fc->lock);
964 	fi->attr_version = ++fc->attr_version;
965 	if (pos > inode->i_size) {
966 		i_size_write(inode, pos);
967 		ret = true;
968 	}
969 	spin_unlock(&fc->lock);
970 
971 	return ret;
972 }
973 
974 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file,
975 				    struct inode *inode, loff_t pos,
976 				    size_t count)
977 {
978 	size_t res;
979 	unsigned offset;
980 	unsigned i;
981 	struct fuse_io_priv io = { .async = 0, .file = file };
982 
983 	for (i = 0; i < req->num_pages; i++)
984 		fuse_wait_on_page_writeback(inode, req->pages[i]->index);
985 
986 	res = fuse_send_write(req, &io, pos, count, NULL);
987 
988 	offset = req->page_descs[0].offset;
989 	count = res;
990 	for (i = 0; i < req->num_pages; i++) {
991 		struct page *page = req->pages[i];
992 
993 		if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE)
994 			SetPageUptodate(page);
995 
996 		if (count > PAGE_CACHE_SIZE - offset)
997 			count -= PAGE_CACHE_SIZE - offset;
998 		else
999 			count = 0;
1000 		offset = 0;
1001 
1002 		unlock_page(page);
1003 		page_cache_release(page);
1004 	}
1005 
1006 	return res;
1007 }
1008 
1009 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1010 			       struct address_space *mapping,
1011 			       struct iov_iter *ii, loff_t pos)
1012 {
1013 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1014 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1015 	size_t count = 0;
1016 	int err;
1017 
1018 	req->in.argpages = 1;
1019 	req->page_descs[0].offset = offset;
1020 
1021 	do {
1022 		size_t tmp;
1023 		struct page *page;
1024 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1025 		size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset,
1026 				     iov_iter_count(ii));
1027 
1028 		bytes = min_t(size_t, bytes, fc->max_write - count);
1029 
1030  again:
1031 		err = -EFAULT;
1032 		if (iov_iter_fault_in_readable(ii, bytes))
1033 			break;
1034 
1035 		err = -ENOMEM;
1036 		page = grab_cache_page_write_begin(mapping, index, 0);
1037 		if (!page)
1038 			break;
1039 
1040 		if (mapping_writably_mapped(mapping))
1041 			flush_dcache_page(page);
1042 
1043 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1044 		flush_dcache_page(page);
1045 
1046 		if (!tmp) {
1047 			unlock_page(page);
1048 			page_cache_release(page);
1049 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1050 			goto again;
1051 		}
1052 
1053 		err = 0;
1054 		req->pages[req->num_pages] = page;
1055 		req->page_descs[req->num_pages].length = tmp;
1056 		req->num_pages++;
1057 
1058 		iov_iter_advance(ii, tmp);
1059 		count += tmp;
1060 		pos += tmp;
1061 		offset += tmp;
1062 		if (offset == PAGE_CACHE_SIZE)
1063 			offset = 0;
1064 
1065 		if (!fc->big_writes)
1066 			break;
1067 	} while (iov_iter_count(ii) && count < fc->max_write &&
1068 		 req->num_pages < req->max_pages && offset == 0);
1069 
1070 	return count > 0 ? count : err;
1071 }
1072 
1073 static inline unsigned fuse_wr_pages(loff_t pos, size_t len)
1074 {
1075 	return min_t(unsigned,
1076 		     ((pos + len - 1) >> PAGE_CACHE_SHIFT) -
1077 		     (pos >> PAGE_CACHE_SHIFT) + 1,
1078 		     FUSE_MAX_PAGES_PER_REQ);
1079 }
1080 
1081 static ssize_t fuse_perform_write(struct file *file,
1082 				  struct address_space *mapping,
1083 				  struct iov_iter *ii, loff_t pos)
1084 {
1085 	struct inode *inode = mapping->host;
1086 	struct fuse_conn *fc = get_fuse_conn(inode);
1087 	struct fuse_inode *fi = get_fuse_inode(inode);
1088 	int err = 0;
1089 	ssize_t res = 0;
1090 
1091 	if (is_bad_inode(inode))
1092 		return -EIO;
1093 
1094 	if (inode->i_size < pos + iov_iter_count(ii))
1095 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1096 
1097 	do {
1098 		struct fuse_req *req;
1099 		ssize_t count;
1100 		unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii));
1101 
1102 		req = fuse_get_req(fc, nr_pages);
1103 		if (IS_ERR(req)) {
1104 			err = PTR_ERR(req);
1105 			break;
1106 		}
1107 
1108 		count = fuse_fill_write_pages(req, mapping, ii, pos);
1109 		if (count <= 0) {
1110 			err = count;
1111 		} else {
1112 			size_t num_written;
1113 
1114 			num_written = fuse_send_write_pages(req, file, inode,
1115 							    pos, count);
1116 			err = req->out.h.error;
1117 			if (!err) {
1118 				res += num_written;
1119 				pos += num_written;
1120 
1121 				/* break out of the loop on short write */
1122 				if (num_written != count)
1123 					err = -EIO;
1124 			}
1125 		}
1126 		fuse_put_request(fc, req);
1127 	} while (!err && iov_iter_count(ii));
1128 
1129 	if (res > 0)
1130 		fuse_write_update_size(inode, pos);
1131 
1132 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1133 	fuse_invalidate_attr(inode);
1134 
1135 	return res > 0 ? res : err;
1136 }
1137 
1138 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1139 {
1140 	struct file *file = iocb->ki_filp;
1141 	struct address_space *mapping = file->f_mapping;
1142 	size_t count = iov_iter_count(from);
1143 	ssize_t written = 0;
1144 	ssize_t written_buffered = 0;
1145 	struct inode *inode = mapping->host;
1146 	ssize_t err;
1147 	loff_t endbyte = 0;
1148 	loff_t pos = iocb->ki_pos;
1149 
1150 	if (get_fuse_conn(inode)->writeback_cache) {
1151 		/* Update size (EOF optimization) and mode (SUID clearing) */
1152 		err = fuse_update_attributes(mapping->host, NULL, file, NULL);
1153 		if (err)
1154 			return err;
1155 
1156 		return generic_file_write_iter(iocb, from);
1157 	}
1158 
1159 	mutex_lock(&inode->i_mutex);
1160 
1161 	/* We can write back this queue in page reclaim */
1162 	current->backing_dev_info = mapping->backing_dev_info;
1163 
1164 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1165 	if (err)
1166 		goto out;
1167 
1168 	if (count == 0)
1169 		goto out;
1170 
1171 	iov_iter_truncate(from, count);
1172 	err = file_remove_suid(file);
1173 	if (err)
1174 		goto out;
1175 
1176 	err = file_update_time(file);
1177 	if (err)
1178 		goto out;
1179 
1180 	if (file->f_flags & O_DIRECT) {
1181 		written = generic_file_direct_write(iocb, from, pos);
1182 		if (written < 0 || !iov_iter_count(from))
1183 			goto out;
1184 
1185 		pos += written;
1186 
1187 		written_buffered = fuse_perform_write(file, mapping, from, pos);
1188 		if (written_buffered < 0) {
1189 			err = written_buffered;
1190 			goto out;
1191 		}
1192 		endbyte = pos + written_buffered - 1;
1193 
1194 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1195 						   endbyte);
1196 		if (err)
1197 			goto out;
1198 
1199 		invalidate_mapping_pages(file->f_mapping,
1200 					 pos >> PAGE_CACHE_SHIFT,
1201 					 endbyte >> PAGE_CACHE_SHIFT);
1202 
1203 		written += written_buffered;
1204 		iocb->ki_pos = pos + written_buffered;
1205 	} else {
1206 		written = fuse_perform_write(file, mapping, from, pos);
1207 		if (written >= 0)
1208 			iocb->ki_pos = pos + written;
1209 	}
1210 out:
1211 	current->backing_dev_info = NULL;
1212 	mutex_unlock(&inode->i_mutex);
1213 
1214 	return written ? written : err;
1215 }
1216 
1217 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1218 		unsigned index, unsigned nr_pages)
1219 {
1220 	int i;
1221 
1222 	for (i = index; i < index + nr_pages; i++)
1223 		req->page_descs[i].length = PAGE_SIZE -
1224 			req->page_descs[i].offset;
1225 }
1226 
1227 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1228 {
1229 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1230 }
1231 
1232 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1233 					size_t max_size)
1234 {
1235 	return min(iov_iter_single_seg_count(ii), max_size);
1236 }
1237 
1238 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1239 			       size_t *nbytesp, int write)
1240 {
1241 	size_t nbytes = 0;  /* # bytes already packed in req */
1242 
1243 	/* Special case for kernel I/O: can copy directly into the buffer */
1244 	if (ii->type & ITER_KVEC) {
1245 		unsigned long user_addr = fuse_get_user_addr(ii);
1246 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1247 
1248 		if (write)
1249 			req->in.args[1].value = (void *) user_addr;
1250 		else
1251 			req->out.args[0].value = (void *) user_addr;
1252 
1253 		iov_iter_advance(ii, frag_size);
1254 		*nbytesp = frag_size;
1255 		return 0;
1256 	}
1257 
1258 	while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1259 		unsigned npages;
1260 		size_t start;
1261 		ssize_t ret = iov_iter_get_pages(ii,
1262 					&req->pages[req->num_pages],
1263 					*nbytesp - nbytes,
1264 					req->max_pages - req->num_pages,
1265 					&start);
1266 		if (ret < 0)
1267 			return ret;
1268 
1269 		iov_iter_advance(ii, ret);
1270 		nbytes += ret;
1271 
1272 		ret += start;
1273 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1274 
1275 		req->page_descs[req->num_pages].offset = start;
1276 		fuse_page_descs_length_init(req, req->num_pages, npages);
1277 
1278 		req->num_pages += npages;
1279 		req->page_descs[req->num_pages - 1].length -=
1280 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1281 	}
1282 
1283 	if (write)
1284 		req->in.argpages = 1;
1285 	else
1286 		req->out.argpages = 1;
1287 
1288 	*nbytesp = nbytes;
1289 
1290 	return 0;
1291 }
1292 
1293 static inline int fuse_iter_npages(const struct iov_iter *ii_p)
1294 {
1295 	return iov_iter_npages(ii_p, FUSE_MAX_PAGES_PER_REQ);
1296 }
1297 
1298 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1299 		       loff_t *ppos, int flags)
1300 {
1301 	int write = flags & FUSE_DIO_WRITE;
1302 	int cuse = flags & FUSE_DIO_CUSE;
1303 	struct file *file = io->file;
1304 	struct inode *inode = file->f_mapping->host;
1305 	struct fuse_file *ff = file->private_data;
1306 	struct fuse_conn *fc = ff->fc;
1307 	size_t nmax = write ? fc->max_write : fc->max_read;
1308 	loff_t pos = *ppos;
1309 	size_t count = iov_iter_count(iter);
1310 	pgoff_t idx_from = pos >> PAGE_CACHE_SHIFT;
1311 	pgoff_t idx_to = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1312 	ssize_t res = 0;
1313 	struct fuse_req *req;
1314 
1315 	if (io->async)
1316 		req = fuse_get_req_for_background(fc, fuse_iter_npages(iter));
1317 	else
1318 		req = fuse_get_req(fc, fuse_iter_npages(iter));
1319 	if (IS_ERR(req))
1320 		return PTR_ERR(req);
1321 
1322 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1323 		if (!write)
1324 			mutex_lock(&inode->i_mutex);
1325 		fuse_sync_writes(inode);
1326 		if (!write)
1327 			mutex_unlock(&inode->i_mutex);
1328 	}
1329 
1330 	while (count) {
1331 		size_t nres;
1332 		fl_owner_t owner = current->files;
1333 		size_t nbytes = min(count, nmax);
1334 		int err = fuse_get_user_pages(req, iter, &nbytes, write);
1335 		if (err) {
1336 			res = err;
1337 			break;
1338 		}
1339 
1340 		if (write)
1341 			nres = fuse_send_write(req, io, pos, nbytes, owner);
1342 		else
1343 			nres = fuse_send_read(req, io, pos, nbytes, owner);
1344 
1345 		if (!io->async)
1346 			fuse_release_user_pages(req, !write);
1347 		if (req->out.h.error) {
1348 			if (!res)
1349 				res = req->out.h.error;
1350 			break;
1351 		} else if (nres > nbytes) {
1352 			res = -EIO;
1353 			break;
1354 		}
1355 		count -= nres;
1356 		res += nres;
1357 		pos += nres;
1358 		if (nres != nbytes)
1359 			break;
1360 		if (count) {
1361 			fuse_put_request(fc, req);
1362 			if (io->async)
1363 				req = fuse_get_req_for_background(fc,
1364 					fuse_iter_npages(iter));
1365 			else
1366 				req = fuse_get_req(fc, fuse_iter_npages(iter));
1367 			if (IS_ERR(req))
1368 				break;
1369 		}
1370 	}
1371 	if (!IS_ERR(req))
1372 		fuse_put_request(fc, req);
1373 	if (res > 0)
1374 		*ppos = pos;
1375 
1376 	return res;
1377 }
1378 EXPORT_SYMBOL_GPL(fuse_direct_io);
1379 
1380 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1381 				  struct iov_iter *iter,
1382 				  loff_t *ppos)
1383 {
1384 	ssize_t res;
1385 	struct file *file = io->file;
1386 	struct inode *inode = file_inode(file);
1387 
1388 	if (is_bad_inode(inode))
1389 		return -EIO;
1390 
1391 	res = fuse_direct_io(io, iter, ppos, 0);
1392 
1393 	fuse_invalidate_attr(inode);
1394 
1395 	return res;
1396 }
1397 
1398 static ssize_t fuse_direct_read(struct file *file, char __user *buf,
1399 				     size_t count, loff_t *ppos)
1400 {
1401 	struct fuse_io_priv io = { .async = 0, .file = file };
1402 	struct iovec iov = { .iov_base = buf, .iov_len = count };
1403 	struct iov_iter ii;
1404 	iov_iter_init(&ii, READ, &iov, 1, count);
1405 	return __fuse_direct_read(&io, &ii, ppos);
1406 }
1407 
1408 static ssize_t __fuse_direct_write(struct fuse_io_priv *io,
1409 				   struct iov_iter *iter,
1410 				   loff_t *ppos)
1411 {
1412 	struct file *file = io->file;
1413 	struct inode *inode = file_inode(file);
1414 	size_t count = iov_iter_count(iter);
1415 	ssize_t res;
1416 
1417 
1418 	res = generic_write_checks(file, ppos, &count, 0);
1419 	if (!res) {
1420 		iov_iter_truncate(iter, count);
1421 		res = fuse_direct_io(io, iter, ppos, FUSE_DIO_WRITE);
1422 	}
1423 
1424 	fuse_invalidate_attr(inode);
1425 
1426 	return res;
1427 }
1428 
1429 static ssize_t fuse_direct_write(struct file *file, const char __user *buf,
1430 				 size_t count, loff_t *ppos)
1431 {
1432 	struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = count };
1433 	struct inode *inode = file_inode(file);
1434 	ssize_t res;
1435 	struct fuse_io_priv io = { .async = 0, .file = file };
1436 	struct iov_iter ii;
1437 	iov_iter_init(&ii, WRITE, &iov, 1, count);
1438 
1439 	if (is_bad_inode(inode))
1440 		return -EIO;
1441 
1442 	/* Don't allow parallel writes to the same file */
1443 	mutex_lock(&inode->i_mutex);
1444 	res = __fuse_direct_write(&io, &ii, ppos);
1445 	if (res > 0)
1446 		fuse_write_update_size(inode, *ppos);
1447 	mutex_unlock(&inode->i_mutex);
1448 
1449 	return res;
1450 }
1451 
1452 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1453 {
1454 	int i;
1455 
1456 	for (i = 0; i < req->num_pages; i++)
1457 		__free_page(req->pages[i]);
1458 
1459 	if (req->ff)
1460 		fuse_file_put(req->ff, false);
1461 }
1462 
1463 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1464 {
1465 	struct inode *inode = req->inode;
1466 	struct fuse_inode *fi = get_fuse_inode(inode);
1467 	struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info;
1468 	int i;
1469 
1470 	list_del(&req->writepages_entry);
1471 	for (i = 0; i < req->num_pages; i++) {
1472 		dec_bdi_stat(bdi, BDI_WRITEBACK);
1473 		dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1474 		bdi_writeout_inc(bdi);
1475 	}
1476 	wake_up(&fi->page_waitq);
1477 }
1478 
1479 /* Called under fc->lock, may release and reacquire it */
1480 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1481 				loff_t size)
1482 __releases(fc->lock)
1483 __acquires(fc->lock)
1484 {
1485 	struct fuse_inode *fi = get_fuse_inode(req->inode);
1486 	struct fuse_write_in *inarg = &req->misc.write.in;
1487 	__u64 data_size = req->num_pages * PAGE_CACHE_SIZE;
1488 
1489 	if (!fc->connected)
1490 		goto out_free;
1491 
1492 	if (inarg->offset + data_size <= size) {
1493 		inarg->size = data_size;
1494 	} else if (inarg->offset < size) {
1495 		inarg->size = size - inarg->offset;
1496 	} else {
1497 		/* Got truncated off completely */
1498 		goto out_free;
1499 	}
1500 
1501 	req->in.args[1].size = inarg->size;
1502 	fi->writectr++;
1503 	fuse_request_send_background_locked(fc, req);
1504 	return;
1505 
1506  out_free:
1507 	fuse_writepage_finish(fc, req);
1508 	spin_unlock(&fc->lock);
1509 	fuse_writepage_free(fc, req);
1510 	fuse_put_request(fc, req);
1511 	spin_lock(&fc->lock);
1512 }
1513 
1514 /*
1515  * If fi->writectr is positive (no truncate or fsync going on) send
1516  * all queued writepage requests.
1517  *
1518  * Called with fc->lock
1519  */
1520 void fuse_flush_writepages(struct inode *inode)
1521 __releases(fc->lock)
1522 __acquires(fc->lock)
1523 {
1524 	struct fuse_conn *fc = get_fuse_conn(inode);
1525 	struct fuse_inode *fi = get_fuse_inode(inode);
1526 	size_t crop = i_size_read(inode);
1527 	struct fuse_req *req;
1528 
1529 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1530 		req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1531 		list_del_init(&req->list);
1532 		fuse_send_writepage(fc, req, crop);
1533 	}
1534 }
1535 
1536 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1537 {
1538 	struct inode *inode = req->inode;
1539 	struct fuse_inode *fi = get_fuse_inode(inode);
1540 
1541 	mapping_set_error(inode->i_mapping, req->out.h.error);
1542 	spin_lock(&fc->lock);
1543 	while (req->misc.write.next) {
1544 		struct fuse_conn *fc = get_fuse_conn(inode);
1545 		struct fuse_write_in *inarg = &req->misc.write.in;
1546 		struct fuse_req *next = req->misc.write.next;
1547 		req->misc.write.next = next->misc.write.next;
1548 		next->misc.write.next = NULL;
1549 		next->ff = fuse_file_get(req->ff);
1550 		list_add(&next->writepages_entry, &fi->writepages);
1551 
1552 		/*
1553 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1554 		 * based on primary request size.
1555 		 *
1556 		 * 1st case (trivial): there are no concurrent activities using
1557 		 * fuse_set/release_nowrite.  Then we're on safe side because
1558 		 * fuse_flush_writepages() would call fuse_send_writepage()
1559 		 * anyway.
1560 		 *
1561 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1562 		 * now for completion of all in-flight requests.  This happens
1563 		 * rarely and no more than once per page, so this should be
1564 		 * okay.
1565 		 *
1566 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1567 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1568 		 * that fuse_set_nowrite returned implies that all in-flight
1569 		 * requests were completed along with all of their secondary
1570 		 * requests.  Further primary requests are blocked by negative
1571 		 * writectr.  Hence there cannot be any in-flight requests and
1572 		 * no invocations of fuse_writepage_end() while we're in
1573 		 * fuse_set_nowrite..fuse_release_nowrite section.
1574 		 */
1575 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1576 	}
1577 	fi->writectr--;
1578 	fuse_writepage_finish(fc, req);
1579 	spin_unlock(&fc->lock);
1580 	fuse_writepage_free(fc, req);
1581 }
1582 
1583 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1584 					       struct fuse_inode *fi)
1585 {
1586 	struct fuse_file *ff = NULL;
1587 
1588 	spin_lock(&fc->lock);
1589 	if (!list_empty(&fi->write_files)) {
1590 		ff = list_entry(fi->write_files.next, struct fuse_file,
1591 				write_entry);
1592 		fuse_file_get(ff);
1593 	}
1594 	spin_unlock(&fc->lock);
1595 
1596 	return ff;
1597 }
1598 
1599 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1600 					     struct fuse_inode *fi)
1601 {
1602 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1603 	WARN_ON(!ff);
1604 	return ff;
1605 }
1606 
1607 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1608 {
1609 	struct fuse_conn *fc = get_fuse_conn(inode);
1610 	struct fuse_inode *fi = get_fuse_inode(inode);
1611 	struct fuse_file *ff;
1612 	int err;
1613 
1614 	ff = __fuse_write_file_get(fc, fi);
1615 	err = fuse_flush_times(inode, ff);
1616 	if (ff)
1617 		fuse_file_put(ff, 0);
1618 
1619 	return err;
1620 }
1621 
1622 static int fuse_writepage_locked(struct page *page)
1623 {
1624 	struct address_space *mapping = page->mapping;
1625 	struct inode *inode = mapping->host;
1626 	struct fuse_conn *fc = get_fuse_conn(inode);
1627 	struct fuse_inode *fi = get_fuse_inode(inode);
1628 	struct fuse_req *req;
1629 	struct page *tmp_page;
1630 	int error = -ENOMEM;
1631 
1632 	set_page_writeback(page);
1633 
1634 	req = fuse_request_alloc_nofs(1);
1635 	if (!req)
1636 		goto err;
1637 
1638 	req->background = 1; /* writeback always goes to bg_queue */
1639 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1640 	if (!tmp_page)
1641 		goto err_free;
1642 
1643 	error = -EIO;
1644 	req->ff = fuse_write_file_get(fc, fi);
1645 	if (!req->ff)
1646 		goto err_nofile;
1647 
1648 	fuse_write_fill(req, req->ff, page_offset(page), 0);
1649 
1650 	copy_highpage(tmp_page, page);
1651 	req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1652 	req->misc.write.next = NULL;
1653 	req->in.argpages = 1;
1654 	req->num_pages = 1;
1655 	req->pages[0] = tmp_page;
1656 	req->page_descs[0].offset = 0;
1657 	req->page_descs[0].length = PAGE_SIZE;
1658 	req->end = fuse_writepage_end;
1659 	req->inode = inode;
1660 
1661 	inc_bdi_stat(mapping->backing_dev_info, BDI_WRITEBACK);
1662 	inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1663 
1664 	spin_lock(&fc->lock);
1665 	list_add(&req->writepages_entry, &fi->writepages);
1666 	list_add_tail(&req->list, &fi->queued_writes);
1667 	fuse_flush_writepages(inode);
1668 	spin_unlock(&fc->lock);
1669 
1670 	end_page_writeback(page);
1671 
1672 	return 0;
1673 
1674 err_nofile:
1675 	__free_page(tmp_page);
1676 err_free:
1677 	fuse_request_free(req);
1678 err:
1679 	end_page_writeback(page);
1680 	return error;
1681 }
1682 
1683 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1684 {
1685 	int err;
1686 
1687 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1688 		/*
1689 		 * ->writepages() should be called for sync() and friends.  We
1690 		 * should only get here on direct reclaim and then we are
1691 		 * allowed to skip a page which is already in flight
1692 		 */
1693 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1694 
1695 		redirty_page_for_writepage(wbc, page);
1696 		return 0;
1697 	}
1698 
1699 	err = fuse_writepage_locked(page);
1700 	unlock_page(page);
1701 
1702 	return err;
1703 }
1704 
1705 struct fuse_fill_wb_data {
1706 	struct fuse_req *req;
1707 	struct fuse_file *ff;
1708 	struct inode *inode;
1709 	struct page **orig_pages;
1710 };
1711 
1712 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1713 {
1714 	struct fuse_req *req = data->req;
1715 	struct inode *inode = data->inode;
1716 	struct fuse_conn *fc = get_fuse_conn(inode);
1717 	struct fuse_inode *fi = get_fuse_inode(inode);
1718 	int num_pages = req->num_pages;
1719 	int i;
1720 
1721 	req->ff = fuse_file_get(data->ff);
1722 	spin_lock(&fc->lock);
1723 	list_add_tail(&req->list, &fi->queued_writes);
1724 	fuse_flush_writepages(inode);
1725 	spin_unlock(&fc->lock);
1726 
1727 	for (i = 0; i < num_pages; i++)
1728 		end_page_writeback(data->orig_pages[i]);
1729 }
1730 
1731 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1732 				     struct page *page)
1733 {
1734 	struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1735 	struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1736 	struct fuse_req *tmp;
1737 	struct fuse_req *old_req;
1738 	bool found = false;
1739 	pgoff_t curr_index;
1740 
1741 	BUG_ON(new_req->num_pages != 0);
1742 
1743 	spin_lock(&fc->lock);
1744 	list_del(&new_req->writepages_entry);
1745 	list_for_each_entry(old_req, &fi->writepages, writepages_entry) {
1746 		BUG_ON(old_req->inode != new_req->inode);
1747 		curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1748 		if (curr_index <= page->index &&
1749 		    page->index < curr_index + old_req->num_pages) {
1750 			found = true;
1751 			break;
1752 		}
1753 	}
1754 	if (!found) {
1755 		list_add(&new_req->writepages_entry, &fi->writepages);
1756 		goto out_unlock;
1757 	}
1758 
1759 	new_req->num_pages = 1;
1760 	for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) {
1761 		BUG_ON(tmp->inode != new_req->inode);
1762 		curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1763 		if (tmp->num_pages == 1 &&
1764 		    curr_index == page->index) {
1765 			old_req = tmp;
1766 		}
1767 	}
1768 
1769 	if (old_req->num_pages == 1 && (old_req->state == FUSE_REQ_INIT ||
1770 					old_req->state == FUSE_REQ_PENDING)) {
1771 		struct backing_dev_info *bdi = page->mapping->backing_dev_info;
1772 
1773 		copy_highpage(old_req->pages[0], page);
1774 		spin_unlock(&fc->lock);
1775 
1776 		dec_bdi_stat(bdi, BDI_WRITEBACK);
1777 		dec_zone_page_state(page, NR_WRITEBACK_TEMP);
1778 		bdi_writeout_inc(bdi);
1779 		fuse_writepage_free(fc, new_req);
1780 		fuse_request_free(new_req);
1781 		goto out;
1782 	} else {
1783 		new_req->misc.write.next = old_req->misc.write.next;
1784 		old_req->misc.write.next = new_req;
1785 	}
1786 out_unlock:
1787 	spin_unlock(&fc->lock);
1788 out:
1789 	return found;
1790 }
1791 
1792 static int fuse_writepages_fill(struct page *page,
1793 		struct writeback_control *wbc, void *_data)
1794 {
1795 	struct fuse_fill_wb_data *data = _data;
1796 	struct fuse_req *req = data->req;
1797 	struct inode *inode = data->inode;
1798 	struct fuse_conn *fc = get_fuse_conn(inode);
1799 	struct page *tmp_page;
1800 	bool is_writeback;
1801 	int err;
1802 
1803 	if (!data->ff) {
1804 		err = -EIO;
1805 		data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1806 		if (!data->ff)
1807 			goto out_unlock;
1808 	}
1809 
1810 	/*
1811 	 * Being under writeback is unlikely but possible.  For example direct
1812 	 * read to an mmaped fuse file will set the page dirty twice; once when
1813 	 * the pages are faulted with get_user_pages(), and then after the read
1814 	 * completed.
1815 	 */
1816 	is_writeback = fuse_page_is_writeback(inode, page->index);
1817 
1818 	if (req && req->num_pages &&
1819 	    (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
1820 	     (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write ||
1821 	     data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1822 		fuse_writepages_send(data);
1823 		data->req = NULL;
1824 	}
1825 	err = -ENOMEM;
1826 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1827 	if (!tmp_page)
1828 		goto out_unlock;
1829 
1830 	/*
1831 	 * The page must not be redirtied until the writeout is completed
1832 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
1833 	 * there could be more than one temporary page instance for each real
1834 	 * page.
1835 	 *
1836 	 * This is ensured by holding the page lock in page_mkwrite() while
1837 	 * checking fuse_page_is_writeback().  We already hold the page lock
1838 	 * since clear_page_dirty_for_io() and keep it held until we add the
1839 	 * request to the fi->writepages list and increment req->num_pages.
1840 	 * After this fuse_page_is_writeback() will indicate that the page is
1841 	 * under writeback, so we can release the page lock.
1842 	 */
1843 	if (data->req == NULL) {
1844 		struct fuse_inode *fi = get_fuse_inode(inode);
1845 
1846 		err = -ENOMEM;
1847 		req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ);
1848 		if (!req) {
1849 			__free_page(tmp_page);
1850 			goto out_unlock;
1851 		}
1852 
1853 		fuse_write_fill(req, data->ff, page_offset(page), 0);
1854 		req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1855 		req->misc.write.next = NULL;
1856 		req->in.argpages = 1;
1857 		req->background = 1;
1858 		req->num_pages = 0;
1859 		req->end = fuse_writepage_end;
1860 		req->inode = inode;
1861 
1862 		spin_lock(&fc->lock);
1863 		list_add(&req->writepages_entry, &fi->writepages);
1864 		spin_unlock(&fc->lock);
1865 
1866 		data->req = req;
1867 	}
1868 	set_page_writeback(page);
1869 
1870 	copy_highpage(tmp_page, page);
1871 	req->pages[req->num_pages] = tmp_page;
1872 	req->page_descs[req->num_pages].offset = 0;
1873 	req->page_descs[req->num_pages].length = PAGE_SIZE;
1874 
1875 	inc_bdi_stat(page->mapping->backing_dev_info, BDI_WRITEBACK);
1876 	inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1877 
1878 	err = 0;
1879 	if (is_writeback && fuse_writepage_in_flight(req, page)) {
1880 		end_page_writeback(page);
1881 		data->req = NULL;
1882 		goto out_unlock;
1883 	}
1884 	data->orig_pages[req->num_pages] = page;
1885 
1886 	/*
1887 	 * Protected by fc->lock against concurrent access by
1888 	 * fuse_page_is_writeback().
1889 	 */
1890 	spin_lock(&fc->lock);
1891 	req->num_pages++;
1892 	spin_unlock(&fc->lock);
1893 
1894 out_unlock:
1895 	unlock_page(page);
1896 
1897 	return err;
1898 }
1899 
1900 static int fuse_writepages(struct address_space *mapping,
1901 			   struct writeback_control *wbc)
1902 {
1903 	struct inode *inode = mapping->host;
1904 	struct fuse_fill_wb_data data;
1905 	int err;
1906 
1907 	err = -EIO;
1908 	if (is_bad_inode(inode))
1909 		goto out;
1910 
1911 	data.inode = inode;
1912 	data.req = NULL;
1913 	data.ff = NULL;
1914 
1915 	err = -ENOMEM;
1916 	data.orig_pages = kcalloc(FUSE_MAX_PAGES_PER_REQ,
1917 				  sizeof(struct page *),
1918 				  GFP_NOFS);
1919 	if (!data.orig_pages)
1920 		goto out;
1921 
1922 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1923 	if (data.req) {
1924 		/* Ignore errors if we can write at least one page */
1925 		BUG_ON(!data.req->num_pages);
1926 		fuse_writepages_send(&data);
1927 		err = 0;
1928 	}
1929 	if (data.ff)
1930 		fuse_file_put(data.ff, false);
1931 
1932 	kfree(data.orig_pages);
1933 out:
1934 	return err;
1935 }
1936 
1937 /*
1938  * It's worthy to make sure that space is reserved on disk for the write,
1939  * but how to implement it without killing performance need more thinking.
1940  */
1941 static int fuse_write_begin(struct file *file, struct address_space *mapping,
1942 		loff_t pos, unsigned len, unsigned flags,
1943 		struct page **pagep, void **fsdata)
1944 {
1945 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1946 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
1947 	struct page *page;
1948 	loff_t fsize;
1949 	int err = -ENOMEM;
1950 
1951 	WARN_ON(!fc->writeback_cache);
1952 
1953 	page = grab_cache_page_write_begin(mapping, index, flags);
1954 	if (!page)
1955 		goto error;
1956 
1957 	fuse_wait_on_page_writeback(mapping->host, page->index);
1958 
1959 	if (PageUptodate(page) || len == PAGE_CACHE_SIZE)
1960 		goto success;
1961 	/*
1962 	 * Check if the start this page comes after the end of file, in which
1963 	 * case the readpage can be optimized away.
1964 	 */
1965 	fsize = i_size_read(mapping->host);
1966 	if (fsize <= (pos & PAGE_CACHE_MASK)) {
1967 		size_t off = pos & ~PAGE_CACHE_MASK;
1968 		if (off)
1969 			zero_user_segment(page, 0, off);
1970 		goto success;
1971 	}
1972 	err = fuse_do_readpage(file, page);
1973 	if (err)
1974 		goto cleanup;
1975 success:
1976 	*pagep = page;
1977 	return 0;
1978 
1979 cleanup:
1980 	unlock_page(page);
1981 	page_cache_release(page);
1982 error:
1983 	return err;
1984 }
1985 
1986 static int fuse_write_end(struct file *file, struct address_space *mapping,
1987 		loff_t pos, unsigned len, unsigned copied,
1988 		struct page *page, void *fsdata)
1989 {
1990 	struct inode *inode = page->mapping->host;
1991 
1992 	if (!PageUptodate(page)) {
1993 		/* Zero any unwritten bytes at the end of the page */
1994 		size_t endoff = (pos + copied) & ~PAGE_CACHE_MASK;
1995 		if (endoff)
1996 			zero_user_segment(page, endoff, PAGE_CACHE_SIZE);
1997 		SetPageUptodate(page);
1998 	}
1999 
2000 	fuse_write_update_size(inode, pos + copied);
2001 	set_page_dirty(page);
2002 	unlock_page(page);
2003 	page_cache_release(page);
2004 
2005 	return copied;
2006 }
2007 
2008 static int fuse_launder_page(struct page *page)
2009 {
2010 	int err = 0;
2011 	if (clear_page_dirty_for_io(page)) {
2012 		struct inode *inode = page->mapping->host;
2013 		err = fuse_writepage_locked(page);
2014 		if (!err)
2015 			fuse_wait_on_page_writeback(inode, page->index);
2016 	}
2017 	return err;
2018 }
2019 
2020 /*
2021  * Write back dirty pages now, because there may not be any suitable
2022  * open files later
2023  */
2024 static void fuse_vma_close(struct vm_area_struct *vma)
2025 {
2026 	filemap_write_and_wait(vma->vm_file->f_mapping);
2027 }
2028 
2029 /*
2030  * Wait for writeback against this page to complete before allowing it
2031  * to be marked dirty again, and hence written back again, possibly
2032  * before the previous writepage completed.
2033  *
2034  * Block here, instead of in ->writepage(), so that the userspace fs
2035  * can only block processes actually operating on the filesystem.
2036  *
2037  * Otherwise unprivileged userspace fs would be able to block
2038  * unrelated:
2039  *
2040  * - page migration
2041  * - sync(2)
2042  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2043  */
2044 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2045 {
2046 	struct page *page = vmf->page;
2047 	struct inode *inode = file_inode(vma->vm_file);
2048 
2049 	file_update_time(vma->vm_file);
2050 	lock_page(page);
2051 	if (page->mapping != inode->i_mapping) {
2052 		unlock_page(page);
2053 		return VM_FAULT_NOPAGE;
2054 	}
2055 
2056 	fuse_wait_on_page_writeback(inode, page->index);
2057 	return VM_FAULT_LOCKED;
2058 }
2059 
2060 static const struct vm_operations_struct fuse_file_vm_ops = {
2061 	.close		= fuse_vma_close,
2062 	.fault		= filemap_fault,
2063 	.map_pages	= filemap_map_pages,
2064 	.page_mkwrite	= fuse_page_mkwrite,
2065 	.remap_pages	= generic_file_remap_pages,
2066 };
2067 
2068 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2069 {
2070 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2071 		fuse_link_write_file(file);
2072 
2073 	file_accessed(file);
2074 	vma->vm_ops = &fuse_file_vm_ops;
2075 	return 0;
2076 }
2077 
2078 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
2079 {
2080 	/* Can't provide the coherency needed for MAP_SHARED */
2081 	if (vma->vm_flags & VM_MAYSHARE)
2082 		return -ENODEV;
2083 
2084 	invalidate_inode_pages2(file->f_mapping);
2085 
2086 	return generic_file_mmap(file, vma);
2087 }
2088 
2089 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl,
2090 				  struct file_lock *fl)
2091 {
2092 	switch (ffl->type) {
2093 	case F_UNLCK:
2094 		break;
2095 
2096 	case F_RDLCK:
2097 	case F_WRLCK:
2098 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2099 		    ffl->end < ffl->start)
2100 			return -EIO;
2101 
2102 		fl->fl_start = ffl->start;
2103 		fl->fl_end = ffl->end;
2104 		fl->fl_pid = ffl->pid;
2105 		break;
2106 
2107 	default:
2108 		return -EIO;
2109 	}
2110 	fl->fl_type = ffl->type;
2111 	return 0;
2112 }
2113 
2114 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2115 			 const struct file_lock *fl, int opcode, pid_t pid,
2116 			 int flock, struct fuse_lk_in *inarg)
2117 {
2118 	struct inode *inode = file_inode(file);
2119 	struct fuse_conn *fc = get_fuse_conn(inode);
2120 	struct fuse_file *ff = file->private_data;
2121 
2122 	memset(inarg, 0, sizeof(*inarg));
2123 	inarg->fh = ff->fh;
2124 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2125 	inarg->lk.start = fl->fl_start;
2126 	inarg->lk.end = fl->fl_end;
2127 	inarg->lk.type = fl->fl_type;
2128 	inarg->lk.pid = pid;
2129 	if (flock)
2130 		inarg->lk_flags |= FUSE_LK_FLOCK;
2131 	args->in.h.opcode = opcode;
2132 	args->in.h.nodeid = get_node_id(inode);
2133 	args->in.numargs = 1;
2134 	args->in.args[0].size = sizeof(*inarg);
2135 	args->in.args[0].value = inarg;
2136 }
2137 
2138 static int fuse_getlk(struct file *file, struct file_lock *fl)
2139 {
2140 	struct inode *inode = file_inode(file);
2141 	struct fuse_conn *fc = get_fuse_conn(inode);
2142 	FUSE_ARGS(args);
2143 	struct fuse_lk_in inarg;
2144 	struct fuse_lk_out outarg;
2145 	int err;
2146 
2147 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2148 	args.out.numargs = 1;
2149 	args.out.args[0].size = sizeof(outarg);
2150 	args.out.args[0].value = &outarg;
2151 	err = fuse_simple_request(fc, &args);
2152 	if (!err)
2153 		err = convert_fuse_file_lock(&outarg.lk, fl);
2154 
2155 	return err;
2156 }
2157 
2158 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2159 {
2160 	struct inode *inode = file_inode(file);
2161 	struct fuse_conn *fc = get_fuse_conn(inode);
2162 	FUSE_ARGS(args);
2163 	struct fuse_lk_in inarg;
2164 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2165 	pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0;
2166 	int err;
2167 
2168 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2169 		/* NLM needs asynchronous locks, which we don't support yet */
2170 		return -ENOLCK;
2171 	}
2172 
2173 	/* Unlock on close is handled by the flush method */
2174 	if (fl->fl_flags & FL_CLOSE)
2175 		return 0;
2176 
2177 	fuse_lk_fill(&args, file, fl, opcode, pid, flock, &inarg);
2178 	err = fuse_simple_request(fc, &args);
2179 
2180 	/* locking is restartable */
2181 	if (err == -EINTR)
2182 		err = -ERESTARTSYS;
2183 
2184 	return err;
2185 }
2186 
2187 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2188 {
2189 	struct inode *inode = file_inode(file);
2190 	struct fuse_conn *fc = get_fuse_conn(inode);
2191 	int err;
2192 
2193 	if (cmd == F_CANCELLK) {
2194 		err = 0;
2195 	} else if (cmd == F_GETLK) {
2196 		if (fc->no_lock) {
2197 			posix_test_lock(file, fl);
2198 			err = 0;
2199 		} else
2200 			err = fuse_getlk(file, fl);
2201 	} else {
2202 		if (fc->no_lock)
2203 			err = posix_lock_file(file, fl, NULL);
2204 		else
2205 			err = fuse_setlk(file, fl, 0);
2206 	}
2207 	return err;
2208 }
2209 
2210 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2211 {
2212 	struct inode *inode = file_inode(file);
2213 	struct fuse_conn *fc = get_fuse_conn(inode);
2214 	int err;
2215 
2216 	if (fc->no_flock) {
2217 		err = flock_lock_file_wait(file, fl);
2218 	} else {
2219 		struct fuse_file *ff = file->private_data;
2220 
2221 		/* emulate flock with POSIX locks */
2222 		ff->flock = true;
2223 		err = fuse_setlk(file, fl, 1);
2224 	}
2225 
2226 	return err;
2227 }
2228 
2229 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2230 {
2231 	struct inode *inode = mapping->host;
2232 	struct fuse_conn *fc = get_fuse_conn(inode);
2233 	FUSE_ARGS(args);
2234 	struct fuse_bmap_in inarg;
2235 	struct fuse_bmap_out outarg;
2236 	int err;
2237 
2238 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2239 		return 0;
2240 
2241 	memset(&inarg, 0, sizeof(inarg));
2242 	inarg.block = block;
2243 	inarg.blocksize = inode->i_sb->s_blocksize;
2244 	args.in.h.opcode = FUSE_BMAP;
2245 	args.in.h.nodeid = get_node_id(inode);
2246 	args.in.numargs = 1;
2247 	args.in.args[0].size = sizeof(inarg);
2248 	args.in.args[0].value = &inarg;
2249 	args.out.numargs = 1;
2250 	args.out.args[0].size = sizeof(outarg);
2251 	args.out.args[0].value = &outarg;
2252 	err = fuse_simple_request(fc, &args);
2253 	if (err == -ENOSYS)
2254 		fc->no_bmap = 1;
2255 
2256 	return err ? 0 : outarg.block;
2257 }
2258 
2259 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2260 {
2261 	loff_t retval;
2262 	struct inode *inode = file_inode(file);
2263 
2264 	/* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2265 	if (whence == SEEK_CUR || whence == SEEK_SET)
2266 		return generic_file_llseek(file, offset, whence);
2267 
2268 	mutex_lock(&inode->i_mutex);
2269 	retval = fuse_update_attributes(inode, NULL, file, NULL);
2270 	if (!retval)
2271 		retval = generic_file_llseek(file, offset, whence);
2272 	mutex_unlock(&inode->i_mutex);
2273 
2274 	return retval;
2275 }
2276 
2277 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov,
2278 			unsigned int nr_segs, size_t bytes, bool to_user)
2279 {
2280 	struct iov_iter ii;
2281 	int page_idx = 0;
2282 
2283 	if (!bytes)
2284 		return 0;
2285 
2286 	iov_iter_init(&ii, to_user ? READ : WRITE, iov, nr_segs, bytes);
2287 
2288 	while (iov_iter_count(&ii)) {
2289 		struct page *page = pages[page_idx++];
2290 		size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii));
2291 		void *kaddr;
2292 
2293 		kaddr = kmap(page);
2294 
2295 		while (todo) {
2296 			char __user *uaddr = ii.iov->iov_base + ii.iov_offset;
2297 			size_t iov_len = ii.iov->iov_len - ii.iov_offset;
2298 			size_t copy = min(todo, iov_len);
2299 			size_t left;
2300 
2301 			if (!to_user)
2302 				left = copy_from_user(kaddr, uaddr, copy);
2303 			else
2304 				left = copy_to_user(uaddr, kaddr, copy);
2305 
2306 			if (unlikely(left))
2307 				return -EFAULT;
2308 
2309 			iov_iter_advance(&ii, copy);
2310 			todo -= copy;
2311 			kaddr += copy;
2312 		}
2313 
2314 		kunmap(page);
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 /*
2321  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2322  * ABI was defined to be 'struct iovec' which is different on 32bit
2323  * and 64bit.  Fortunately we can determine which structure the server
2324  * used from the size of the reply.
2325  */
2326 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2327 				     size_t transferred, unsigned count,
2328 				     bool is_compat)
2329 {
2330 #ifdef CONFIG_COMPAT
2331 	if (count * sizeof(struct compat_iovec) == transferred) {
2332 		struct compat_iovec *ciov = src;
2333 		unsigned i;
2334 
2335 		/*
2336 		 * With this interface a 32bit server cannot support
2337 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2338 		 * requests
2339 		 */
2340 		if (!is_compat)
2341 			return -EINVAL;
2342 
2343 		for (i = 0; i < count; i++) {
2344 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2345 			dst[i].iov_len = ciov[i].iov_len;
2346 		}
2347 		return 0;
2348 	}
2349 #endif
2350 
2351 	if (count * sizeof(struct iovec) != transferred)
2352 		return -EIO;
2353 
2354 	memcpy(dst, src, transferred);
2355 	return 0;
2356 }
2357 
2358 /* Make sure iov_length() won't overflow */
2359 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count)
2360 {
2361 	size_t n;
2362 	u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT;
2363 
2364 	for (n = 0; n < count; n++, iov++) {
2365 		if (iov->iov_len > (size_t) max)
2366 			return -ENOMEM;
2367 		max -= iov->iov_len;
2368 	}
2369 	return 0;
2370 }
2371 
2372 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2373 				 void *src, size_t transferred, unsigned count,
2374 				 bool is_compat)
2375 {
2376 	unsigned i;
2377 	struct fuse_ioctl_iovec *fiov = src;
2378 
2379 	if (fc->minor < 16) {
2380 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2381 						 count, is_compat);
2382 	}
2383 
2384 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2385 		return -EIO;
2386 
2387 	for (i = 0; i < count; i++) {
2388 		/* Did the server supply an inappropriate value? */
2389 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2390 		    fiov[i].len != (unsigned long) fiov[i].len)
2391 			return -EIO;
2392 
2393 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2394 		dst[i].iov_len = (size_t) fiov[i].len;
2395 
2396 #ifdef CONFIG_COMPAT
2397 		if (is_compat &&
2398 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2399 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2400 			return -EIO;
2401 #endif
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 
2408 /*
2409  * For ioctls, there is no generic way to determine how much memory
2410  * needs to be read and/or written.  Furthermore, ioctls are allowed
2411  * to dereference the passed pointer, so the parameter requires deep
2412  * copying but FUSE has no idea whatsoever about what to copy in or
2413  * out.
2414  *
2415  * This is solved by allowing FUSE server to retry ioctl with
2416  * necessary in/out iovecs.  Let's assume the ioctl implementation
2417  * needs to read in the following structure.
2418  *
2419  * struct a {
2420  *	char	*buf;
2421  *	size_t	buflen;
2422  * }
2423  *
2424  * On the first callout to FUSE server, inarg->in_size and
2425  * inarg->out_size will be NULL; then, the server completes the ioctl
2426  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2427  * the actual iov array to
2428  *
2429  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2430  *
2431  * which tells FUSE to copy in the requested area and retry the ioctl.
2432  * On the second round, the server has access to the structure and
2433  * from that it can tell what to look for next, so on the invocation,
2434  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2435  *
2436  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2437  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2438  *
2439  * FUSE will copy both struct a and the pointed buffer from the
2440  * process doing the ioctl and retry ioctl with both struct a and the
2441  * buffer.
2442  *
2443  * This time, FUSE server has everything it needs and completes ioctl
2444  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2445  *
2446  * Copying data out works the same way.
2447  *
2448  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2449  * automatically initializes in and out iovs by decoding @cmd with
2450  * _IOC_* macros and the server is not allowed to request RETRY.  This
2451  * limits ioctl data transfers to well-formed ioctls and is the forced
2452  * behavior for all FUSE servers.
2453  */
2454 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2455 		   unsigned int flags)
2456 {
2457 	struct fuse_file *ff = file->private_data;
2458 	struct fuse_conn *fc = ff->fc;
2459 	struct fuse_ioctl_in inarg = {
2460 		.fh = ff->fh,
2461 		.cmd = cmd,
2462 		.arg = arg,
2463 		.flags = flags
2464 	};
2465 	struct fuse_ioctl_out outarg;
2466 	struct fuse_req *req = NULL;
2467 	struct page **pages = NULL;
2468 	struct iovec *iov_page = NULL;
2469 	struct iovec *in_iov = NULL, *out_iov = NULL;
2470 	unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2471 	size_t in_size, out_size, transferred;
2472 	int err;
2473 
2474 #if BITS_PER_LONG == 32
2475 	inarg.flags |= FUSE_IOCTL_32BIT;
2476 #else
2477 	if (flags & FUSE_IOCTL_COMPAT)
2478 		inarg.flags |= FUSE_IOCTL_32BIT;
2479 #endif
2480 
2481 	/* assume all the iovs returned by client always fits in a page */
2482 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2483 
2484 	err = -ENOMEM;
2485 	pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL);
2486 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2487 	if (!pages || !iov_page)
2488 		goto out;
2489 
2490 	/*
2491 	 * If restricted, initialize IO parameters as encoded in @cmd.
2492 	 * RETRY from server is not allowed.
2493 	 */
2494 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2495 		struct iovec *iov = iov_page;
2496 
2497 		iov->iov_base = (void __user *)arg;
2498 		iov->iov_len = _IOC_SIZE(cmd);
2499 
2500 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2501 			in_iov = iov;
2502 			in_iovs = 1;
2503 		}
2504 
2505 		if (_IOC_DIR(cmd) & _IOC_READ) {
2506 			out_iov = iov;
2507 			out_iovs = 1;
2508 		}
2509 	}
2510 
2511  retry:
2512 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2513 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2514 
2515 	/*
2516 	 * Out data can be used either for actual out data or iovs,
2517 	 * make sure there always is at least one page.
2518 	 */
2519 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2520 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2521 
2522 	/* make sure there are enough buffer pages and init request with them */
2523 	err = -ENOMEM;
2524 	if (max_pages > FUSE_MAX_PAGES_PER_REQ)
2525 		goto out;
2526 	while (num_pages < max_pages) {
2527 		pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2528 		if (!pages[num_pages])
2529 			goto out;
2530 		num_pages++;
2531 	}
2532 
2533 	req = fuse_get_req(fc, num_pages);
2534 	if (IS_ERR(req)) {
2535 		err = PTR_ERR(req);
2536 		req = NULL;
2537 		goto out;
2538 	}
2539 	memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2540 	req->num_pages = num_pages;
2541 	fuse_page_descs_length_init(req, 0, req->num_pages);
2542 
2543 	/* okay, let's send it to the client */
2544 	req->in.h.opcode = FUSE_IOCTL;
2545 	req->in.h.nodeid = ff->nodeid;
2546 	req->in.numargs = 1;
2547 	req->in.args[0].size = sizeof(inarg);
2548 	req->in.args[0].value = &inarg;
2549 	if (in_size) {
2550 		req->in.numargs++;
2551 		req->in.args[1].size = in_size;
2552 		req->in.argpages = 1;
2553 
2554 		err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size,
2555 					   false);
2556 		if (err)
2557 			goto out;
2558 	}
2559 
2560 	req->out.numargs = 2;
2561 	req->out.args[0].size = sizeof(outarg);
2562 	req->out.args[0].value = &outarg;
2563 	req->out.args[1].size = out_size;
2564 	req->out.argpages = 1;
2565 	req->out.argvar = 1;
2566 
2567 	fuse_request_send(fc, req);
2568 	err = req->out.h.error;
2569 	transferred = req->out.args[1].size;
2570 	fuse_put_request(fc, req);
2571 	req = NULL;
2572 	if (err)
2573 		goto out;
2574 
2575 	/* did it ask for retry? */
2576 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2577 		void *vaddr;
2578 
2579 		/* no retry if in restricted mode */
2580 		err = -EIO;
2581 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2582 			goto out;
2583 
2584 		in_iovs = outarg.in_iovs;
2585 		out_iovs = outarg.out_iovs;
2586 
2587 		/*
2588 		 * Make sure things are in boundary, separate checks
2589 		 * are to protect against overflow.
2590 		 */
2591 		err = -ENOMEM;
2592 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2593 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2594 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2595 			goto out;
2596 
2597 		vaddr = kmap_atomic(pages[0]);
2598 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2599 					    transferred, in_iovs + out_iovs,
2600 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2601 		kunmap_atomic(vaddr);
2602 		if (err)
2603 			goto out;
2604 
2605 		in_iov = iov_page;
2606 		out_iov = in_iov + in_iovs;
2607 
2608 		err = fuse_verify_ioctl_iov(in_iov, in_iovs);
2609 		if (err)
2610 			goto out;
2611 
2612 		err = fuse_verify_ioctl_iov(out_iov, out_iovs);
2613 		if (err)
2614 			goto out;
2615 
2616 		goto retry;
2617 	}
2618 
2619 	err = -EIO;
2620 	if (transferred > inarg.out_size)
2621 		goto out;
2622 
2623 	err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true);
2624  out:
2625 	if (req)
2626 		fuse_put_request(fc, req);
2627 	free_page((unsigned long) iov_page);
2628 	while (num_pages)
2629 		__free_page(pages[--num_pages]);
2630 	kfree(pages);
2631 
2632 	return err ? err : outarg.result;
2633 }
2634 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2635 
2636 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2637 		       unsigned long arg, unsigned int flags)
2638 {
2639 	struct inode *inode = file_inode(file);
2640 	struct fuse_conn *fc = get_fuse_conn(inode);
2641 
2642 	if (!fuse_allow_current_process(fc))
2643 		return -EACCES;
2644 
2645 	if (is_bad_inode(inode))
2646 		return -EIO;
2647 
2648 	return fuse_do_ioctl(file, cmd, arg, flags);
2649 }
2650 
2651 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2652 			    unsigned long arg)
2653 {
2654 	return fuse_ioctl_common(file, cmd, arg, 0);
2655 }
2656 
2657 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2658 				   unsigned long arg)
2659 {
2660 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2661 }
2662 
2663 /*
2664  * All files which have been polled are linked to RB tree
2665  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2666  * find the matching one.
2667  */
2668 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2669 					      struct rb_node **parent_out)
2670 {
2671 	struct rb_node **link = &fc->polled_files.rb_node;
2672 	struct rb_node *last = NULL;
2673 
2674 	while (*link) {
2675 		struct fuse_file *ff;
2676 
2677 		last = *link;
2678 		ff = rb_entry(last, struct fuse_file, polled_node);
2679 
2680 		if (kh < ff->kh)
2681 			link = &last->rb_left;
2682 		else if (kh > ff->kh)
2683 			link = &last->rb_right;
2684 		else
2685 			return link;
2686 	}
2687 
2688 	if (parent_out)
2689 		*parent_out = last;
2690 	return link;
2691 }
2692 
2693 /*
2694  * The file is about to be polled.  Make sure it's on the polled_files
2695  * RB tree.  Note that files once added to the polled_files tree are
2696  * not removed before the file is released.  This is because a file
2697  * polled once is likely to be polled again.
2698  */
2699 static void fuse_register_polled_file(struct fuse_conn *fc,
2700 				      struct fuse_file *ff)
2701 {
2702 	spin_lock(&fc->lock);
2703 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2704 		struct rb_node **link, *uninitialized_var(parent);
2705 
2706 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2707 		BUG_ON(*link);
2708 		rb_link_node(&ff->polled_node, parent, link);
2709 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2710 	}
2711 	spin_unlock(&fc->lock);
2712 }
2713 
2714 unsigned fuse_file_poll(struct file *file, poll_table *wait)
2715 {
2716 	struct fuse_file *ff = file->private_data;
2717 	struct fuse_conn *fc = ff->fc;
2718 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2719 	struct fuse_poll_out outarg;
2720 	FUSE_ARGS(args);
2721 	int err;
2722 
2723 	if (fc->no_poll)
2724 		return DEFAULT_POLLMASK;
2725 
2726 	poll_wait(file, &ff->poll_wait, wait);
2727 	inarg.events = (__u32)poll_requested_events(wait);
2728 
2729 	/*
2730 	 * Ask for notification iff there's someone waiting for it.
2731 	 * The client may ignore the flag and always notify.
2732 	 */
2733 	if (waitqueue_active(&ff->poll_wait)) {
2734 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2735 		fuse_register_polled_file(fc, ff);
2736 	}
2737 
2738 	args.in.h.opcode = FUSE_POLL;
2739 	args.in.h.nodeid = ff->nodeid;
2740 	args.in.numargs = 1;
2741 	args.in.args[0].size = sizeof(inarg);
2742 	args.in.args[0].value = &inarg;
2743 	args.out.numargs = 1;
2744 	args.out.args[0].size = sizeof(outarg);
2745 	args.out.args[0].value = &outarg;
2746 	err = fuse_simple_request(fc, &args);
2747 
2748 	if (!err)
2749 		return outarg.revents;
2750 	if (err == -ENOSYS) {
2751 		fc->no_poll = 1;
2752 		return DEFAULT_POLLMASK;
2753 	}
2754 	return POLLERR;
2755 }
2756 EXPORT_SYMBOL_GPL(fuse_file_poll);
2757 
2758 /*
2759  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2760  * wakes up the poll waiters.
2761  */
2762 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2763 			    struct fuse_notify_poll_wakeup_out *outarg)
2764 {
2765 	u64 kh = outarg->kh;
2766 	struct rb_node **link;
2767 
2768 	spin_lock(&fc->lock);
2769 
2770 	link = fuse_find_polled_node(fc, kh, NULL);
2771 	if (*link) {
2772 		struct fuse_file *ff;
2773 
2774 		ff = rb_entry(*link, struct fuse_file, polled_node);
2775 		wake_up_interruptible_sync(&ff->poll_wait);
2776 	}
2777 
2778 	spin_unlock(&fc->lock);
2779 	return 0;
2780 }
2781 
2782 static void fuse_do_truncate(struct file *file)
2783 {
2784 	struct inode *inode = file->f_mapping->host;
2785 	struct iattr attr;
2786 
2787 	attr.ia_valid = ATTR_SIZE;
2788 	attr.ia_size = i_size_read(inode);
2789 
2790 	attr.ia_file = file;
2791 	attr.ia_valid |= ATTR_FILE;
2792 
2793 	fuse_do_setattr(inode, &attr, file);
2794 }
2795 
2796 static inline loff_t fuse_round_up(loff_t off)
2797 {
2798 	return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
2799 }
2800 
2801 static ssize_t
2802 fuse_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter,
2803 			loff_t offset)
2804 {
2805 	ssize_t ret = 0;
2806 	struct file *file = iocb->ki_filp;
2807 	struct fuse_file *ff = file->private_data;
2808 	bool async_dio = ff->fc->async_dio;
2809 	loff_t pos = 0;
2810 	struct inode *inode;
2811 	loff_t i_size;
2812 	size_t count = iov_iter_count(iter);
2813 	struct fuse_io_priv *io;
2814 
2815 	pos = offset;
2816 	inode = file->f_mapping->host;
2817 	i_size = i_size_read(inode);
2818 
2819 	if ((rw == READ) && (offset > i_size))
2820 		return 0;
2821 
2822 	/* optimization for short read */
2823 	if (async_dio && rw != WRITE && offset + count > i_size) {
2824 		if (offset >= i_size)
2825 			return 0;
2826 		count = min_t(loff_t, count, fuse_round_up(i_size - offset));
2827 		iov_iter_truncate(iter, count);
2828 	}
2829 
2830 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2831 	if (!io)
2832 		return -ENOMEM;
2833 	spin_lock_init(&io->lock);
2834 	io->reqs = 1;
2835 	io->bytes = -1;
2836 	io->size = 0;
2837 	io->offset = offset;
2838 	io->write = (rw == WRITE);
2839 	io->err = 0;
2840 	io->file = file;
2841 	/*
2842 	 * By default, we want to optimize all I/Os with async request
2843 	 * submission to the client filesystem if supported.
2844 	 */
2845 	io->async = async_dio;
2846 	io->iocb = iocb;
2847 
2848 	/*
2849 	 * We cannot asynchronously extend the size of a file. We have no method
2850 	 * to wait on real async I/O requests, so we must submit this request
2851 	 * synchronously.
2852 	 */
2853 	if (!is_sync_kiocb(iocb) && (offset + count > i_size) && rw == WRITE)
2854 		io->async = false;
2855 
2856 	if (rw == WRITE)
2857 		ret = __fuse_direct_write(io, iter, &pos);
2858 	else
2859 		ret = __fuse_direct_read(io, iter, &pos);
2860 
2861 	if (io->async) {
2862 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2863 
2864 		/* we have a non-extending, async request, so return */
2865 		if (!is_sync_kiocb(iocb))
2866 			return -EIOCBQUEUED;
2867 
2868 		ret = wait_on_sync_kiocb(iocb);
2869 	} else {
2870 		kfree(io);
2871 	}
2872 
2873 	if (rw == WRITE) {
2874 		if (ret > 0)
2875 			fuse_write_update_size(inode, pos);
2876 		else if (ret < 0 && offset + count > i_size)
2877 			fuse_do_truncate(file);
2878 	}
2879 
2880 	return ret;
2881 }
2882 
2883 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2884 				loff_t length)
2885 {
2886 	struct fuse_file *ff = file->private_data;
2887 	struct inode *inode = file_inode(file);
2888 	struct fuse_inode *fi = get_fuse_inode(inode);
2889 	struct fuse_conn *fc = ff->fc;
2890 	FUSE_ARGS(args);
2891 	struct fuse_fallocate_in inarg = {
2892 		.fh = ff->fh,
2893 		.offset = offset,
2894 		.length = length,
2895 		.mode = mode
2896 	};
2897 	int err;
2898 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2899 			   (mode & FALLOC_FL_PUNCH_HOLE);
2900 
2901 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2902 		return -EOPNOTSUPP;
2903 
2904 	if (fc->no_fallocate)
2905 		return -EOPNOTSUPP;
2906 
2907 	if (lock_inode) {
2908 		mutex_lock(&inode->i_mutex);
2909 		if (mode & FALLOC_FL_PUNCH_HOLE) {
2910 			loff_t endbyte = offset + length - 1;
2911 			err = filemap_write_and_wait_range(inode->i_mapping,
2912 							   offset, endbyte);
2913 			if (err)
2914 				goto out;
2915 
2916 			fuse_sync_writes(inode);
2917 		}
2918 	}
2919 
2920 	if (!(mode & FALLOC_FL_KEEP_SIZE))
2921 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2922 
2923 	args.in.h.opcode = FUSE_FALLOCATE;
2924 	args.in.h.nodeid = ff->nodeid;
2925 	args.in.numargs = 1;
2926 	args.in.args[0].size = sizeof(inarg);
2927 	args.in.args[0].value = &inarg;
2928 	err = fuse_simple_request(fc, &args);
2929 	if (err == -ENOSYS) {
2930 		fc->no_fallocate = 1;
2931 		err = -EOPNOTSUPP;
2932 	}
2933 	if (err)
2934 		goto out;
2935 
2936 	/* we could have extended the file */
2937 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2938 		bool changed = fuse_write_update_size(inode, offset + length);
2939 
2940 		if (changed && fc->writeback_cache)
2941 			file_update_time(file);
2942 	}
2943 
2944 	if (mode & FALLOC_FL_PUNCH_HOLE)
2945 		truncate_pagecache_range(inode, offset, offset + length - 1);
2946 
2947 	fuse_invalidate_attr(inode);
2948 
2949 out:
2950 	if (!(mode & FALLOC_FL_KEEP_SIZE))
2951 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2952 
2953 	if (lock_inode)
2954 		mutex_unlock(&inode->i_mutex);
2955 
2956 	return err;
2957 }
2958 
2959 static const struct file_operations fuse_file_operations = {
2960 	.llseek		= fuse_file_llseek,
2961 	.read		= new_sync_read,
2962 	.read_iter	= fuse_file_read_iter,
2963 	.write		= new_sync_write,
2964 	.write_iter	= fuse_file_write_iter,
2965 	.mmap		= fuse_file_mmap,
2966 	.open		= fuse_open,
2967 	.flush		= fuse_flush,
2968 	.release	= fuse_release,
2969 	.fsync		= fuse_fsync,
2970 	.lock		= fuse_file_lock,
2971 	.flock		= fuse_file_flock,
2972 	.splice_read	= generic_file_splice_read,
2973 	.unlocked_ioctl	= fuse_file_ioctl,
2974 	.compat_ioctl	= fuse_file_compat_ioctl,
2975 	.poll		= fuse_file_poll,
2976 	.fallocate	= fuse_file_fallocate,
2977 };
2978 
2979 static const struct file_operations fuse_direct_io_file_operations = {
2980 	.llseek		= fuse_file_llseek,
2981 	.read		= fuse_direct_read,
2982 	.write		= fuse_direct_write,
2983 	.mmap		= fuse_direct_mmap,
2984 	.open		= fuse_open,
2985 	.flush		= fuse_flush,
2986 	.release	= fuse_release,
2987 	.fsync		= fuse_fsync,
2988 	.lock		= fuse_file_lock,
2989 	.flock		= fuse_file_flock,
2990 	.unlocked_ioctl	= fuse_file_ioctl,
2991 	.compat_ioctl	= fuse_file_compat_ioctl,
2992 	.poll		= fuse_file_poll,
2993 	.fallocate	= fuse_file_fallocate,
2994 	/* no splice_read */
2995 };
2996 
2997 static const struct address_space_operations fuse_file_aops  = {
2998 	.readpage	= fuse_readpage,
2999 	.writepage	= fuse_writepage,
3000 	.writepages	= fuse_writepages,
3001 	.launder_page	= fuse_launder_page,
3002 	.readpages	= fuse_readpages,
3003 	.set_page_dirty	= __set_page_dirty_nobuffers,
3004 	.bmap		= fuse_bmap,
3005 	.direct_IO	= fuse_direct_IO,
3006 	.write_begin	= fuse_write_begin,
3007 	.write_end	= fuse_write_end,
3008 };
3009 
3010 void fuse_init_file_inode(struct inode *inode)
3011 {
3012 	inode->i_fop = &fuse_file_operations;
3013 	inode->i_data.a_ops = &fuse_file_aops;
3014 }
3015