xref: /openbmc/linux/fs/fuse/file.c (revision c4c3c32d)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21 #include <linux/filelock.h>
22 #include <linux/file.h>
23 
24 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
25 			  unsigned int open_flags, int opcode,
26 			  struct fuse_open_out *outargp)
27 {
28 	struct fuse_open_in inarg;
29 	FUSE_ARGS(args);
30 
31 	memset(&inarg, 0, sizeof(inarg));
32 	inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
33 	if (!fm->fc->atomic_o_trunc)
34 		inarg.flags &= ~O_TRUNC;
35 
36 	if (fm->fc->handle_killpriv_v2 &&
37 	    (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
38 		inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
39 	}
40 
41 	args.opcode = opcode;
42 	args.nodeid = nodeid;
43 	args.in_numargs = 1;
44 	args.in_args[0].size = sizeof(inarg);
45 	args.in_args[0].value = &inarg;
46 	args.out_numargs = 1;
47 	args.out_args[0].size = sizeof(*outargp);
48 	args.out_args[0].value = outargp;
49 
50 	return fuse_simple_request(fm, &args);
51 }
52 
53 struct fuse_release_args {
54 	struct fuse_args args;
55 	struct fuse_release_in inarg;
56 	struct inode *inode;
57 };
58 
59 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
60 {
61 	struct fuse_file *ff;
62 
63 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
64 	if (unlikely(!ff))
65 		return NULL;
66 
67 	ff->fm = fm;
68 	ff->release_args = kzalloc(sizeof(*ff->release_args),
69 				   GFP_KERNEL_ACCOUNT);
70 	if (!ff->release_args) {
71 		kfree(ff);
72 		return NULL;
73 	}
74 
75 	INIT_LIST_HEAD(&ff->write_entry);
76 	mutex_init(&ff->readdir.lock);
77 	refcount_set(&ff->count, 1);
78 	RB_CLEAR_NODE(&ff->polled_node);
79 	init_waitqueue_head(&ff->poll_wait);
80 
81 	ff->kh = atomic64_inc_return(&fm->fc->khctr);
82 
83 	return ff;
84 }
85 
86 void fuse_file_free(struct fuse_file *ff)
87 {
88 	kfree(ff->release_args);
89 	mutex_destroy(&ff->readdir.lock);
90 	kfree(ff);
91 }
92 
93 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
94 {
95 	refcount_inc(&ff->count);
96 	return ff;
97 }
98 
99 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
100 			     int error)
101 {
102 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
103 
104 	iput(ra->inode);
105 	kfree(ra);
106 }
107 
108 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
109 {
110 	if (refcount_dec_and_test(&ff->count)) {
111 		struct fuse_args *args = &ff->release_args->args;
112 
113 		if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
114 			/* Do nothing when client does not implement 'open' */
115 			fuse_release_end(ff->fm, args, 0);
116 		} else if (sync) {
117 			fuse_simple_request(ff->fm, args);
118 			fuse_release_end(ff->fm, args, 0);
119 		} else {
120 			args->end = fuse_release_end;
121 			if (fuse_simple_background(ff->fm, args,
122 						   GFP_KERNEL | __GFP_NOFAIL))
123 				fuse_release_end(ff->fm, args, -ENOTCONN);
124 		}
125 		kfree(ff);
126 	}
127 }
128 
129 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
130 				 unsigned int open_flags, bool isdir)
131 {
132 	struct fuse_conn *fc = fm->fc;
133 	struct fuse_file *ff;
134 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
135 
136 	ff = fuse_file_alloc(fm);
137 	if (!ff)
138 		return ERR_PTR(-ENOMEM);
139 
140 	ff->fh = 0;
141 	/* Default for no-open */
142 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
143 	if (isdir ? !fc->no_opendir : !fc->no_open) {
144 		struct fuse_open_out outarg;
145 		int err;
146 
147 		err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg);
148 		if (!err) {
149 			ff->fh = outarg.fh;
150 			ff->open_flags = outarg.open_flags;
151 
152 		} else if (err != -ENOSYS) {
153 			fuse_file_free(ff);
154 			return ERR_PTR(err);
155 		} else {
156 			if (isdir)
157 				fc->no_opendir = 1;
158 			else
159 				fc->no_open = 1;
160 		}
161 	}
162 
163 	if (isdir)
164 		ff->open_flags &= ~FOPEN_DIRECT_IO;
165 
166 	ff->nodeid = nodeid;
167 
168 	return ff;
169 }
170 
171 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
172 		 bool isdir)
173 {
174 	struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
175 
176 	if (!IS_ERR(ff))
177 		file->private_data = ff;
178 
179 	return PTR_ERR_OR_ZERO(ff);
180 }
181 EXPORT_SYMBOL_GPL(fuse_do_open);
182 
183 static void fuse_link_write_file(struct file *file)
184 {
185 	struct inode *inode = file_inode(file);
186 	struct fuse_inode *fi = get_fuse_inode(inode);
187 	struct fuse_file *ff = file->private_data;
188 	/*
189 	 * file may be written through mmap, so chain it onto the
190 	 * inodes's write_file list
191 	 */
192 	spin_lock(&fi->lock);
193 	if (list_empty(&ff->write_entry))
194 		list_add(&ff->write_entry, &fi->write_files);
195 	spin_unlock(&fi->lock);
196 }
197 
198 void fuse_finish_open(struct inode *inode, struct file *file)
199 {
200 	struct fuse_file *ff = file->private_data;
201 	struct fuse_conn *fc = get_fuse_conn(inode);
202 
203 	if (ff->open_flags & FOPEN_STREAM)
204 		stream_open(inode, file);
205 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
206 		nonseekable_open(inode, file);
207 
208 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
209 		struct fuse_inode *fi = get_fuse_inode(inode);
210 
211 		spin_lock(&fi->lock);
212 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
213 		i_size_write(inode, 0);
214 		spin_unlock(&fi->lock);
215 		file_update_time(file);
216 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
217 	}
218 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
219 		fuse_link_write_file(file);
220 }
221 
222 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
223 {
224 	struct fuse_mount *fm = get_fuse_mount(inode);
225 	struct fuse_conn *fc = fm->fc;
226 	int err;
227 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
228 			  fc->atomic_o_trunc &&
229 			  fc->writeback_cache;
230 	bool dax_truncate = (file->f_flags & O_TRUNC) &&
231 			  fc->atomic_o_trunc && FUSE_IS_DAX(inode);
232 
233 	if (fuse_is_bad(inode))
234 		return -EIO;
235 
236 	err = generic_file_open(inode, file);
237 	if (err)
238 		return err;
239 
240 	if (is_wb_truncate || dax_truncate)
241 		inode_lock(inode);
242 
243 	if (dax_truncate) {
244 		filemap_invalidate_lock(inode->i_mapping);
245 		err = fuse_dax_break_layouts(inode, 0, 0);
246 		if (err)
247 			goto out_inode_unlock;
248 	}
249 
250 	if (is_wb_truncate || dax_truncate)
251 		fuse_set_nowrite(inode);
252 
253 	err = fuse_do_open(fm, get_node_id(inode), file, isdir);
254 	if (!err)
255 		fuse_finish_open(inode, file);
256 
257 	if (is_wb_truncate || dax_truncate)
258 		fuse_release_nowrite(inode);
259 	if (!err) {
260 		struct fuse_file *ff = file->private_data;
261 
262 		if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC))
263 			truncate_pagecache(inode, 0);
264 		else if (!(ff->open_flags & FOPEN_KEEP_CACHE))
265 			invalidate_inode_pages2(inode->i_mapping);
266 	}
267 	if (dax_truncate)
268 		filemap_invalidate_unlock(inode->i_mapping);
269 out_inode_unlock:
270 	if (is_wb_truncate || dax_truncate)
271 		inode_unlock(inode);
272 
273 	return err;
274 }
275 
276 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
277 				 unsigned int flags, int opcode)
278 {
279 	struct fuse_conn *fc = ff->fm->fc;
280 	struct fuse_release_args *ra = ff->release_args;
281 
282 	/* Inode is NULL on error path of fuse_create_open() */
283 	if (likely(fi)) {
284 		spin_lock(&fi->lock);
285 		list_del(&ff->write_entry);
286 		spin_unlock(&fi->lock);
287 	}
288 	spin_lock(&fc->lock);
289 	if (!RB_EMPTY_NODE(&ff->polled_node))
290 		rb_erase(&ff->polled_node, &fc->polled_files);
291 	spin_unlock(&fc->lock);
292 
293 	wake_up_interruptible_all(&ff->poll_wait);
294 
295 	ra->inarg.fh = ff->fh;
296 	ra->inarg.flags = flags;
297 	ra->args.in_numargs = 1;
298 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
299 	ra->args.in_args[0].value = &ra->inarg;
300 	ra->args.opcode = opcode;
301 	ra->args.nodeid = ff->nodeid;
302 	ra->args.force = true;
303 	ra->args.nocreds = true;
304 }
305 
306 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
307 		       unsigned int open_flags, fl_owner_t id, bool isdir)
308 {
309 	struct fuse_inode *fi = get_fuse_inode(inode);
310 	struct fuse_release_args *ra = ff->release_args;
311 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
312 
313 	fuse_prepare_release(fi, ff, open_flags, opcode);
314 
315 	if (ff->flock) {
316 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
317 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
318 	}
319 	/* Hold inode until release is finished */
320 	ra->inode = igrab(inode);
321 
322 	/*
323 	 * Normally this will send the RELEASE request, however if
324 	 * some asynchronous READ or WRITE requests are outstanding,
325 	 * the sending will be delayed.
326 	 *
327 	 * Make the release synchronous if this is a fuseblk mount,
328 	 * synchronous RELEASE is allowed (and desirable) in this case
329 	 * because the server can be trusted not to screw up.
330 	 */
331 	fuse_file_put(ff, ff->fm->fc->destroy, isdir);
332 }
333 
334 void fuse_release_common(struct file *file, bool isdir)
335 {
336 	fuse_file_release(file_inode(file), file->private_data, file->f_flags,
337 			  (fl_owner_t) file, isdir);
338 }
339 
340 static int fuse_open(struct inode *inode, struct file *file)
341 {
342 	return fuse_open_common(inode, file, false);
343 }
344 
345 static int fuse_release(struct inode *inode, struct file *file)
346 {
347 	struct fuse_conn *fc = get_fuse_conn(inode);
348 
349 	/*
350 	 * Dirty pages might remain despite write_inode_now() call from
351 	 * fuse_flush() due to writes racing with the close.
352 	 */
353 	if (fc->writeback_cache)
354 		write_inode_now(inode, 1);
355 
356 	fuse_release_common(file, false);
357 
358 	/* return value is ignored by VFS */
359 	return 0;
360 }
361 
362 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
363 		       unsigned int flags)
364 {
365 	WARN_ON(refcount_read(&ff->count) > 1);
366 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
367 	/*
368 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
369 	 * synchronous, we are fine with not doing igrab() here"
370 	 */
371 	fuse_file_put(ff, true, false);
372 }
373 EXPORT_SYMBOL_GPL(fuse_sync_release);
374 
375 /*
376  * Scramble the ID space with XTEA, so that the value of the files_struct
377  * pointer is not exposed to userspace.
378  */
379 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
380 {
381 	u32 *k = fc->scramble_key;
382 	u64 v = (unsigned long) id;
383 	u32 v0 = v;
384 	u32 v1 = v >> 32;
385 	u32 sum = 0;
386 	int i;
387 
388 	for (i = 0; i < 32; i++) {
389 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
390 		sum += 0x9E3779B9;
391 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
392 	}
393 
394 	return (u64) v0 + ((u64) v1 << 32);
395 }
396 
397 struct fuse_writepage_args {
398 	struct fuse_io_args ia;
399 	struct rb_node writepages_entry;
400 	struct list_head queue_entry;
401 	struct fuse_writepage_args *next;
402 	struct inode *inode;
403 	struct fuse_sync_bucket *bucket;
404 };
405 
406 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
407 					    pgoff_t idx_from, pgoff_t idx_to)
408 {
409 	struct rb_node *n;
410 
411 	n = fi->writepages.rb_node;
412 
413 	while (n) {
414 		struct fuse_writepage_args *wpa;
415 		pgoff_t curr_index;
416 
417 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
418 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
419 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
420 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
421 			n = n->rb_right;
422 		else if (idx_to < curr_index)
423 			n = n->rb_left;
424 		else
425 			return wpa;
426 	}
427 	return NULL;
428 }
429 
430 /*
431  * Check if any page in a range is under writeback
432  *
433  * This is currently done by walking the list of writepage requests
434  * for the inode, which can be pretty inefficient.
435  */
436 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
437 				   pgoff_t idx_to)
438 {
439 	struct fuse_inode *fi = get_fuse_inode(inode);
440 	bool found;
441 
442 	spin_lock(&fi->lock);
443 	found = fuse_find_writeback(fi, idx_from, idx_to);
444 	spin_unlock(&fi->lock);
445 
446 	return found;
447 }
448 
449 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
450 {
451 	return fuse_range_is_writeback(inode, index, index);
452 }
453 
454 /*
455  * Wait for page writeback to be completed.
456  *
457  * Since fuse doesn't rely on the VM writeback tracking, this has to
458  * use some other means.
459  */
460 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
461 {
462 	struct fuse_inode *fi = get_fuse_inode(inode);
463 
464 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
465 }
466 
467 /*
468  * Wait for all pending writepages on the inode to finish.
469  *
470  * This is currently done by blocking further writes with FUSE_NOWRITE
471  * and waiting for all sent writes to complete.
472  *
473  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
474  * could conflict with truncation.
475  */
476 static void fuse_sync_writes(struct inode *inode)
477 {
478 	fuse_set_nowrite(inode);
479 	fuse_release_nowrite(inode);
480 }
481 
482 struct fuse_flush_args {
483 	struct fuse_args args;
484 	struct fuse_flush_in inarg;
485 	struct work_struct work;
486 	struct file *file;
487 };
488 
489 static int fuse_do_flush(struct fuse_flush_args *fa)
490 {
491 	int err;
492 	struct inode *inode = file_inode(fa->file);
493 	struct fuse_mount *fm = get_fuse_mount(inode);
494 
495 	err = write_inode_now(inode, 1);
496 	if (err)
497 		goto out;
498 
499 	inode_lock(inode);
500 	fuse_sync_writes(inode);
501 	inode_unlock(inode);
502 
503 	err = filemap_check_errors(fa->file->f_mapping);
504 	if (err)
505 		goto out;
506 
507 	err = 0;
508 	if (fm->fc->no_flush)
509 		goto inval_attr_out;
510 
511 	err = fuse_simple_request(fm, &fa->args);
512 	if (err == -ENOSYS) {
513 		fm->fc->no_flush = 1;
514 		err = 0;
515 	}
516 
517 inval_attr_out:
518 	/*
519 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
520 	 * enabled, i_blocks from cached attr may not be accurate.
521 	 */
522 	if (!err && fm->fc->writeback_cache)
523 		fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
524 
525 out:
526 	fput(fa->file);
527 	kfree(fa);
528 	return err;
529 }
530 
531 static void fuse_flush_async(struct work_struct *work)
532 {
533 	struct fuse_flush_args *fa = container_of(work, typeof(*fa), work);
534 
535 	fuse_do_flush(fa);
536 }
537 
538 static int fuse_flush(struct file *file, fl_owner_t id)
539 {
540 	struct fuse_flush_args *fa;
541 	struct inode *inode = file_inode(file);
542 	struct fuse_mount *fm = get_fuse_mount(inode);
543 	struct fuse_file *ff = file->private_data;
544 
545 	if (fuse_is_bad(inode))
546 		return -EIO;
547 
548 	if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache)
549 		return 0;
550 
551 	fa = kzalloc(sizeof(*fa), GFP_KERNEL);
552 	if (!fa)
553 		return -ENOMEM;
554 
555 	fa->inarg.fh = ff->fh;
556 	fa->inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
557 	fa->args.opcode = FUSE_FLUSH;
558 	fa->args.nodeid = get_node_id(inode);
559 	fa->args.in_numargs = 1;
560 	fa->args.in_args[0].size = sizeof(fa->inarg);
561 	fa->args.in_args[0].value = &fa->inarg;
562 	fa->args.force = true;
563 	fa->file = get_file(file);
564 
565 	/* Don't wait if the task is exiting */
566 	if (current->flags & PF_EXITING) {
567 		INIT_WORK(&fa->work, fuse_flush_async);
568 		schedule_work(&fa->work);
569 		return 0;
570 	}
571 
572 	return fuse_do_flush(fa);
573 }
574 
575 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
576 		      int datasync, int opcode)
577 {
578 	struct inode *inode = file->f_mapping->host;
579 	struct fuse_mount *fm = get_fuse_mount(inode);
580 	struct fuse_file *ff = file->private_data;
581 	FUSE_ARGS(args);
582 	struct fuse_fsync_in inarg;
583 
584 	memset(&inarg, 0, sizeof(inarg));
585 	inarg.fh = ff->fh;
586 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
587 	args.opcode = opcode;
588 	args.nodeid = get_node_id(inode);
589 	args.in_numargs = 1;
590 	args.in_args[0].size = sizeof(inarg);
591 	args.in_args[0].value = &inarg;
592 	return fuse_simple_request(fm, &args);
593 }
594 
595 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
596 		      int datasync)
597 {
598 	struct inode *inode = file->f_mapping->host;
599 	struct fuse_conn *fc = get_fuse_conn(inode);
600 	int err;
601 
602 	if (fuse_is_bad(inode))
603 		return -EIO;
604 
605 	inode_lock(inode);
606 
607 	/*
608 	 * Start writeback against all dirty pages of the inode, then
609 	 * wait for all outstanding writes, before sending the FSYNC
610 	 * request.
611 	 */
612 	err = file_write_and_wait_range(file, start, end);
613 	if (err)
614 		goto out;
615 
616 	fuse_sync_writes(inode);
617 
618 	/*
619 	 * Due to implementation of fuse writeback
620 	 * file_write_and_wait_range() does not catch errors.
621 	 * We have to do this directly after fuse_sync_writes()
622 	 */
623 	err = file_check_and_advance_wb_err(file);
624 	if (err)
625 		goto out;
626 
627 	err = sync_inode_metadata(inode, 1);
628 	if (err)
629 		goto out;
630 
631 	if (fc->no_fsync)
632 		goto out;
633 
634 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
635 	if (err == -ENOSYS) {
636 		fc->no_fsync = 1;
637 		err = 0;
638 	}
639 out:
640 	inode_unlock(inode);
641 
642 	return err;
643 }
644 
645 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
646 			 size_t count, int opcode)
647 {
648 	struct fuse_file *ff = file->private_data;
649 	struct fuse_args *args = &ia->ap.args;
650 
651 	ia->read.in.fh = ff->fh;
652 	ia->read.in.offset = pos;
653 	ia->read.in.size = count;
654 	ia->read.in.flags = file->f_flags;
655 	args->opcode = opcode;
656 	args->nodeid = ff->nodeid;
657 	args->in_numargs = 1;
658 	args->in_args[0].size = sizeof(ia->read.in);
659 	args->in_args[0].value = &ia->read.in;
660 	args->out_argvar = true;
661 	args->out_numargs = 1;
662 	args->out_args[0].size = count;
663 }
664 
665 static void fuse_release_user_pages(struct fuse_args_pages *ap,
666 				    bool should_dirty)
667 {
668 	unsigned int i;
669 
670 	for (i = 0; i < ap->num_pages; i++) {
671 		if (should_dirty)
672 			set_page_dirty_lock(ap->pages[i]);
673 		put_page(ap->pages[i]);
674 	}
675 }
676 
677 static void fuse_io_release(struct kref *kref)
678 {
679 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
680 }
681 
682 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
683 {
684 	if (io->err)
685 		return io->err;
686 
687 	if (io->bytes >= 0 && io->write)
688 		return -EIO;
689 
690 	return io->bytes < 0 ? io->size : io->bytes;
691 }
692 
693 /*
694  * In case of short read, the caller sets 'pos' to the position of
695  * actual end of fuse request in IO request. Otherwise, if bytes_requested
696  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
697  *
698  * An example:
699  * User requested DIO read of 64K. It was split into two 32K fuse requests,
700  * both submitted asynchronously. The first of them was ACKed by userspace as
701  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
702  * second request was ACKed as short, e.g. only 1K was read, resulting in
703  * pos == 33K.
704  *
705  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
706  * will be equal to the length of the longest contiguous fragment of
707  * transferred data starting from the beginning of IO request.
708  */
709 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
710 {
711 	int left;
712 
713 	spin_lock(&io->lock);
714 	if (err)
715 		io->err = io->err ? : err;
716 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
717 		io->bytes = pos;
718 
719 	left = --io->reqs;
720 	if (!left && io->blocking)
721 		complete(io->done);
722 	spin_unlock(&io->lock);
723 
724 	if (!left && !io->blocking) {
725 		ssize_t res = fuse_get_res_by_io(io);
726 
727 		if (res >= 0) {
728 			struct inode *inode = file_inode(io->iocb->ki_filp);
729 			struct fuse_conn *fc = get_fuse_conn(inode);
730 			struct fuse_inode *fi = get_fuse_inode(inode);
731 
732 			spin_lock(&fi->lock);
733 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
734 			spin_unlock(&fi->lock);
735 		}
736 
737 		io->iocb->ki_complete(io->iocb, res);
738 	}
739 
740 	kref_put(&io->refcnt, fuse_io_release);
741 }
742 
743 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
744 					  unsigned int npages)
745 {
746 	struct fuse_io_args *ia;
747 
748 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
749 	if (ia) {
750 		ia->io = io;
751 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
752 						&ia->ap.descs);
753 		if (!ia->ap.pages) {
754 			kfree(ia);
755 			ia = NULL;
756 		}
757 	}
758 	return ia;
759 }
760 
761 static void fuse_io_free(struct fuse_io_args *ia)
762 {
763 	kfree(ia->ap.pages);
764 	kfree(ia);
765 }
766 
767 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
768 				  int err)
769 {
770 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
771 	struct fuse_io_priv *io = ia->io;
772 	ssize_t pos = -1;
773 
774 	fuse_release_user_pages(&ia->ap, io->should_dirty);
775 
776 	if (err) {
777 		/* Nothing */
778 	} else if (io->write) {
779 		if (ia->write.out.size > ia->write.in.size) {
780 			err = -EIO;
781 		} else if (ia->write.in.size != ia->write.out.size) {
782 			pos = ia->write.in.offset - io->offset +
783 				ia->write.out.size;
784 		}
785 	} else {
786 		u32 outsize = args->out_args[0].size;
787 
788 		if (ia->read.in.size != outsize)
789 			pos = ia->read.in.offset - io->offset + outsize;
790 	}
791 
792 	fuse_aio_complete(io, err, pos);
793 	fuse_io_free(ia);
794 }
795 
796 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
797 				   struct fuse_io_args *ia, size_t num_bytes)
798 {
799 	ssize_t err;
800 	struct fuse_io_priv *io = ia->io;
801 
802 	spin_lock(&io->lock);
803 	kref_get(&io->refcnt);
804 	io->size += num_bytes;
805 	io->reqs++;
806 	spin_unlock(&io->lock);
807 
808 	ia->ap.args.end = fuse_aio_complete_req;
809 	ia->ap.args.may_block = io->should_dirty;
810 	err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
811 	if (err)
812 		fuse_aio_complete_req(fm, &ia->ap.args, err);
813 
814 	return num_bytes;
815 }
816 
817 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
818 			      fl_owner_t owner)
819 {
820 	struct file *file = ia->io->iocb->ki_filp;
821 	struct fuse_file *ff = file->private_data;
822 	struct fuse_mount *fm = ff->fm;
823 
824 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
825 	if (owner != NULL) {
826 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
827 		ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
828 	}
829 
830 	if (ia->io->async)
831 		return fuse_async_req_send(fm, ia, count);
832 
833 	return fuse_simple_request(fm, &ia->ap.args);
834 }
835 
836 static void fuse_read_update_size(struct inode *inode, loff_t size,
837 				  u64 attr_ver)
838 {
839 	struct fuse_conn *fc = get_fuse_conn(inode);
840 	struct fuse_inode *fi = get_fuse_inode(inode);
841 
842 	spin_lock(&fi->lock);
843 	if (attr_ver >= fi->attr_version && size < inode->i_size &&
844 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
845 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
846 		i_size_write(inode, size);
847 	}
848 	spin_unlock(&fi->lock);
849 }
850 
851 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
852 			    struct fuse_args_pages *ap)
853 {
854 	struct fuse_conn *fc = get_fuse_conn(inode);
855 
856 	/*
857 	 * If writeback_cache is enabled, a short read means there's a hole in
858 	 * the file.  Some data after the hole is in page cache, but has not
859 	 * reached the client fs yet.  So the hole is not present there.
860 	 */
861 	if (!fc->writeback_cache) {
862 		loff_t pos = page_offset(ap->pages[0]) + num_read;
863 		fuse_read_update_size(inode, pos, attr_ver);
864 	}
865 }
866 
867 static int fuse_do_readpage(struct file *file, struct page *page)
868 {
869 	struct inode *inode = page->mapping->host;
870 	struct fuse_mount *fm = get_fuse_mount(inode);
871 	loff_t pos = page_offset(page);
872 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
873 	struct fuse_io_args ia = {
874 		.ap.args.page_zeroing = true,
875 		.ap.args.out_pages = true,
876 		.ap.num_pages = 1,
877 		.ap.pages = &page,
878 		.ap.descs = &desc,
879 	};
880 	ssize_t res;
881 	u64 attr_ver;
882 
883 	/*
884 	 * Page writeback can extend beyond the lifetime of the
885 	 * page-cache page, so make sure we read a properly synced
886 	 * page.
887 	 */
888 	fuse_wait_on_page_writeback(inode, page->index);
889 
890 	attr_ver = fuse_get_attr_version(fm->fc);
891 
892 	/* Don't overflow end offset */
893 	if (pos + (desc.length - 1) == LLONG_MAX)
894 		desc.length--;
895 
896 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
897 	res = fuse_simple_request(fm, &ia.ap.args);
898 	if (res < 0)
899 		return res;
900 	/*
901 	 * Short read means EOF.  If file size is larger, truncate it
902 	 */
903 	if (res < desc.length)
904 		fuse_short_read(inode, attr_ver, res, &ia.ap);
905 
906 	SetPageUptodate(page);
907 
908 	return 0;
909 }
910 
911 static int fuse_read_folio(struct file *file, struct folio *folio)
912 {
913 	struct page *page = &folio->page;
914 	struct inode *inode = page->mapping->host;
915 	int err;
916 
917 	err = -EIO;
918 	if (fuse_is_bad(inode))
919 		goto out;
920 
921 	err = fuse_do_readpage(file, page);
922 	fuse_invalidate_atime(inode);
923  out:
924 	unlock_page(page);
925 	return err;
926 }
927 
928 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
929 			       int err)
930 {
931 	int i;
932 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
933 	struct fuse_args_pages *ap = &ia->ap;
934 	size_t count = ia->read.in.size;
935 	size_t num_read = args->out_args[0].size;
936 	struct address_space *mapping = NULL;
937 
938 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
939 		mapping = ap->pages[i]->mapping;
940 
941 	if (mapping) {
942 		struct inode *inode = mapping->host;
943 
944 		/*
945 		 * Short read means EOF. If file size is larger, truncate it
946 		 */
947 		if (!err && num_read < count)
948 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
949 
950 		fuse_invalidate_atime(inode);
951 	}
952 
953 	for (i = 0; i < ap->num_pages; i++) {
954 		struct page *page = ap->pages[i];
955 
956 		if (!err)
957 			SetPageUptodate(page);
958 		else
959 			SetPageError(page);
960 		unlock_page(page);
961 		put_page(page);
962 	}
963 	if (ia->ff)
964 		fuse_file_put(ia->ff, false, false);
965 
966 	fuse_io_free(ia);
967 }
968 
969 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
970 {
971 	struct fuse_file *ff = file->private_data;
972 	struct fuse_mount *fm = ff->fm;
973 	struct fuse_args_pages *ap = &ia->ap;
974 	loff_t pos = page_offset(ap->pages[0]);
975 	size_t count = ap->num_pages << PAGE_SHIFT;
976 	ssize_t res;
977 	int err;
978 
979 	ap->args.out_pages = true;
980 	ap->args.page_zeroing = true;
981 	ap->args.page_replace = true;
982 
983 	/* Don't overflow end offset */
984 	if (pos + (count - 1) == LLONG_MAX) {
985 		count--;
986 		ap->descs[ap->num_pages - 1].length--;
987 	}
988 	WARN_ON((loff_t) (pos + count) < 0);
989 
990 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
991 	ia->read.attr_ver = fuse_get_attr_version(fm->fc);
992 	if (fm->fc->async_read) {
993 		ia->ff = fuse_file_get(ff);
994 		ap->args.end = fuse_readpages_end;
995 		err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
996 		if (!err)
997 			return;
998 	} else {
999 		res = fuse_simple_request(fm, &ap->args);
1000 		err = res < 0 ? res : 0;
1001 	}
1002 	fuse_readpages_end(fm, &ap->args, err);
1003 }
1004 
1005 static void fuse_readahead(struct readahead_control *rac)
1006 {
1007 	struct inode *inode = rac->mapping->host;
1008 	struct fuse_conn *fc = get_fuse_conn(inode);
1009 	unsigned int i, max_pages, nr_pages = 0;
1010 
1011 	if (fuse_is_bad(inode))
1012 		return;
1013 
1014 	max_pages = min_t(unsigned int, fc->max_pages,
1015 			fc->max_read / PAGE_SIZE);
1016 
1017 	for (;;) {
1018 		struct fuse_io_args *ia;
1019 		struct fuse_args_pages *ap;
1020 
1021 		if (fc->num_background >= fc->congestion_threshold &&
1022 		    rac->ra->async_size >= readahead_count(rac))
1023 			/*
1024 			 * Congested and only async pages left, so skip the
1025 			 * rest.
1026 			 */
1027 			break;
1028 
1029 		nr_pages = readahead_count(rac) - nr_pages;
1030 		if (nr_pages > max_pages)
1031 			nr_pages = max_pages;
1032 		if (nr_pages == 0)
1033 			break;
1034 		ia = fuse_io_alloc(NULL, nr_pages);
1035 		if (!ia)
1036 			return;
1037 		ap = &ia->ap;
1038 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
1039 		for (i = 0; i < nr_pages; i++) {
1040 			fuse_wait_on_page_writeback(inode,
1041 						    readahead_index(rac) + i);
1042 			ap->descs[i].length = PAGE_SIZE;
1043 		}
1044 		ap->num_pages = nr_pages;
1045 		fuse_send_readpages(ia, rac->file);
1046 	}
1047 }
1048 
1049 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1050 {
1051 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1052 	struct fuse_conn *fc = get_fuse_conn(inode);
1053 
1054 	/*
1055 	 * In auto invalidate mode, always update attributes on read.
1056 	 * Otherwise, only update if we attempt to read past EOF (to ensure
1057 	 * i_size is up to date).
1058 	 */
1059 	if (fc->auto_inval_data ||
1060 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1061 		int err;
1062 		err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE);
1063 		if (err)
1064 			return err;
1065 	}
1066 
1067 	return generic_file_read_iter(iocb, to);
1068 }
1069 
1070 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1071 				 loff_t pos, size_t count)
1072 {
1073 	struct fuse_args *args = &ia->ap.args;
1074 
1075 	ia->write.in.fh = ff->fh;
1076 	ia->write.in.offset = pos;
1077 	ia->write.in.size = count;
1078 	args->opcode = FUSE_WRITE;
1079 	args->nodeid = ff->nodeid;
1080 	args->in_numargs = 2;
1081 	if (ff->fm->fc->minor < 9)
1082 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1083 	else
1084 		args->in_args[0].size = sizeof(ia->write.in);
1085 	args->in_args[0].value = &ia->write.in;
1086 	args->in_args[1].size = count;
1087 	args->out_numargs = 1;
1088 	args->out_args[0].size = sizeof(ia->write.out);
1089 	args->out_args[0].value = &ia->write.out;
1090 }
1091 
1092 static unsigned int fuse_write_flags(struct kiocb *iocb)
1093 {
1094 	unsigned int flags = iocb->ki_filp->f_flags;
1095 
1096 	if (iocb_is_dsync(iocb))
1097 		flags |= O_DSYNC;
1098 	if (iocb->ki_flags & IOCB_SYNC)
1099 		flags |= O_SYNC;
1100 
1101 	return flags;
1102 }
1103 
1104 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1105 			       size_t count, fl_owner_t owner)
1106 {
1107 	struct kiocb *iocb = ia->io->iocb;
1108 	struct file *file = iocb->ki_filp;
1109 	struct fuse_file *ff = file->private_data;
1110 	struct fuse_mount *fm = ff->fm;
1111 	struct fuse_write_in *inarg = &ia->write.in;
1112 	ssize_t err;
1113 
1114 	fuse_write_args_fill(ia, ff, pos, count);
1115 	inarg->flags = fuse_write_flags(iocb);
1116 	if (owner != NULL) {
1117 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1118 		inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1119 	}
1120 
1121 	if (ia->io->async)
1122 		return fuse_async_req_send(fm, ia, count);
1123 
1124 	err = fuse_simple_request(fm, &ia->ap.args);
1125 	if (!err && ia->write.out.size > count)
1126 		err = -EIO;
1127 
1128 	return err ?: ia->write.out.size;
1129 }
1130 
1131 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1132 {
1133 	struct fuse_conn *fc = get_fuse_conn(inode);
1134 	struct fuse_inode *fi = get_fuse_inode(inode);
1135 	bool ret = false;
1136 
1137 	spin_lock(&fi->lock);
1138 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1139 	if (written > 0 && pos > inode->i_size) {
1140 		i_size_write(inode, pos);
1141 		ret = true;
1142 	}
1143 	spin_unlock(&fi->lock);
1144 
1145 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1146 
1147 	return ret;
1148 }
1149 
1150 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1151 				     struct kiocb *iocb, struct inode *inode,
1152 				     loff_t pos, size_t count)
1153 {
1154 	struct fuse_args_pages *ap = &ia->ap;
1155 	struct file *file = iocb->ki_filp;
1156 	struct fuse_file *ff = file->private_data;
1157 	struct fuse_mount *fm = ff->fm;
1158 	unsigned int offset, i;
1159 	bool short_write;
1160 	int err;
1161 
1162 	for (i = 0; i < ap->num_pages; i++)
1163 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1164 
1165 	fuse_write_args_fill(ia, ff, pos, count);
1166 	ia->write.in.flags = fuse_write_flags(iocb);
1167 	if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1168 		ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1169 
1170 	err = fuse_simple_request(fm, &ap->args);
1171 	if (!err && ia->write.out.size > count)
1172 		err = -EIO;
1173 
1174 	short_write = ia->write.out.size < count;
1175 	offset = ap->descs[0].offset;
1176 	count = ia->write.out.size;
1177 	for (i = 0; i < ap->num_pages; i++) {
1178 		struct page *page = ap->pages[i];
1179 
1180 		if (err) {
1181 			ClearPageUptodate(page);
1182 		} else {
1183 			if (count >= PAGE_SIZE - offset)
1184 				count -= PAGE_SIZE - offset;
1185 			else {
1186 				if (short_write)
1187 					ClearPageUptodate(page);
1188 				count = 0;
1189 			}
1190 			offset = 0;
1191 		}
1192 		if (ia->write.page_locked && (i == ap->num_pages - 1))
1193 			unlock_page(page);
1194 		put_page(page);
1195 	}
1196 
1197 	return err;
1198 }
1199 
1200 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1201 				     struct address_space *mapping,
1202 				     struct iov_iter *ii, loff_t pos,
1203 				     unsigned int max_pages)
1204 {
1205 	struct fuse_args_pages *ap = &ia->ap;
1206 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1207 	unsigned offset = pos & (PAGE_SIZE - 1);
1208 	size_t count = 0;
1209 	int err;
1210 
1211 	ap->args.in_pages = true;
1212 	ap->descs[0].offset = offset;
1213 
1214 	do {
1215 		size_t tmp;
1216 		struct page *page;
1217 		pgoff_t index = pos >> PAGE_SHIFT;
1218 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1219 				     iov_iter_count(ii));
1220 
1221 		bytes = min_t(size_t, bytes, fc->max_write - count);
1222 
1223  again:
1224 		err = -EFAULT;
1225 		if (fault_in_iov_iter_readable(ii, bytes))
1226 			break;
1227 
1228 		err = -ENOMEM;
1229 		page = grab_cache_page_write_begin(mapping, index);
1230 		if (!page)
1231 			break;
1232 
1233 		if (mapping_writably_mapped(mapping))
1234 			flush_dcache_page(page);
1235 
1236 		tmp = copy_page_from_iter_atomic(page, offset, bytes, ii);
1237 		flush_dcache_page(page);
1238 
1239 		if (!tmp) {
1240 			unlock_page(page);
1241 			put_page(page);
1242 			goto again;
1243 		}
1244 
1245 		err = 0;
1246 		ap->pages[ap->num_pages] = page;
1247 		ap->descs[ap->num_pages].length = tmp;
1248 		ap->num_pages++;
1249 
1250 		count += tmp;
1251 		pos += tmp;
1252 		offset += tmp;
1253 		if (offset == PAGE_SIZE)
1254 			offset = 0;
1255 
1256 		/* If we copied full page, mark it uptodate */
1257 		if (tmp == PAGE_SIZE)
1258 			SetPageUptodate(page);
1259 
1260 		if (PageUptodate(page)) {
1261 			unlock_page(page);
1262 		} else {
1263 			ia->write.page_locked = true;
1264 			break;
1265 		}
1266 		if (!fc->big_writes)
1267 			break;
1268 	} while (iov_iter_count(ii) && count < fc->max_write &&
1269 		 ap->num_pages < max_pages && offset == 0);
1270 
1271 	return count > 0 ? count : err;
1272 }
1273 
1274 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1275 				     unsigned int max_pages)
1276 {
1277 	return min_t(unsigned int,
1278 		     ((pos + len - 1) >> PAGE_SHIFT) -
1279 		     (pos >> PAGE_SHIFT) + 1,
1280 		     max_pages);
1281 }
1282 
1283 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii)
1284 {
1285 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1286 	struct inode *inode = mapping->host;
1287 	struct fuse_conn *fc = get_fuse_conn(inode);
1288 	struct fuse_inode *fi = get_fuse_inode(inode);
1289 	loff_t pos = iocb->ki_pos;
1290 	int err = 0;
1291 	ssize_t res = 0;
1292 
1293 	if (inode->i_size < pos + iov_iter_count(ii))
1294 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1295 
1296 	do {
1297 		ssize_t count;
1298 		struct fuse_io_args ia = {};
1299 		struct fuse_args_pages *ap = &ia.ap;
1300 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1301 						      fc->max_pages);
1302 
1303 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1304 		if (!ap->pages) {
1305 			err = -ENOMEM;
1306 			break;
1307 		}
1308 
1309 		count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1310 		if (count <= 0) {
1311 			err = count;
1312 		} else {
1313 			err = fuse_send_write_pages(&ia, iocb, inode,
1314 						    pos, count);
1315 			if (!err) {
1316 				size_t num_written = ia.write.out.size;
1317 
1318 				res += num_written;
1319 				pos += num_written;
1320 
1321 				/* break out of the loop on short write */
1322 				if (num_written != count)
1323 					err = -EIO;
1324 			}
1325 		}
1326 		kfree(ap->pages);
1327 	} while (!err && iov_iter_count(ii));
1328 
1329 	fuse_write_update_attr(inode, pos, res);
1330 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1331 
1332 	if (!res)
1333 		return err;
1334 	iocb->ki_pos += res;
1335 	return res;
1336 }
1337 
1338 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1339 {
1340 	struct file *file = iocb->ki_filp;
1341 	struct address_space *mapping = file->f_mapping;
1342 	ssize_t written = 0;
1343 	struct inode *inode = mapping->host;
1344 	ssize_t err;
1345 	struct fuse_conn *fc = get_fuse_conn(inode);
1346 
1347 	if (fc->writeback_cache) {
1348 		/* Update size (EOF optimization) and mode (SUID clearing) */
1349 		err = fuse_update_attributes(mapping->host, file,
1350 					     STATX_SIZE | STATX_MODE);
1351 		if (err)
1352 			return err;
1353 
1354 		if (fc->handle_killpriv_v2 &&
1355 		    setattr_should_drop_suidgid(&nop_mnt_idmap,
1356 						file_inode(file))) {
1357 			goto writethrough;
1358 		}
1359 
1360 		return generic_file_write_iter(iocb, from);
1361 	}
1362 
1363 writethrough:
1364 	inode_lock(inode);
1365 
1366 	err = generic_write_checks(iocb, from);
1367 	if (err <= 0)
1368 		goto out;
1369 
1370 	err = file_remove_privs(file);
1371 	if (err)
1372 		goto out;
1373 
1374 	err = file_update_time(file);
1375 	if (err)
1376 		goto out;
1377 
1378 	if (iocb->ki_flags & IOCB_DIRECT) {
1379 		written = generic_file_direct_write(iocb, from);
1380 		if (written < 0 || !iov_iter_count(from))
1381 			goto out;
1382 		written = direct_write_fallback(iocb, from, written,
1383 				fuse_perform_write(iocb, from));
1384 	} else {
1385 		written = fuse_perform_write(iocb, from);
1386 	}
1387 out:
1388 	inode_unlock(inode);
1389 	if (written > 0)
1390 		written = generic_write_sync(iocb, written);
1391 
1392 	return written ? written : err;
1393 }
1394 
1395 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1396 {
1397 	return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset;
1398 }
1399 
1400 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1401 					size_t max_size)
1402 {
1403 	return min(iov_iter_single_seg_count(ii), max_size);
1404 }
1405 
1406 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1407 			       size_t *nbytesp, int write,
1408 			       unsigned int max_pages)
1409 {
1410 	size_t nbytes = 0;  /* # bytes already packed in req */
1411 	ssize_t ret = 0;
1412 
1413 	/* Special case for kernel I/O: can copy directly into the buffer */
1414 	if (iov_iter_is_kvec(ii)) {
1415 		unsigned long user_addr = fuse_get_user_addr(ii);
1416 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1417 
1418 		if (write)
1419 			ap->args.in_args[1].value = (void *) user_addr;
1420 		else
1421 			ap->args.out_args[0].value = (void *) user_addr;
1422 
1423 		iov_iter_advance(ii, frag_size);
1424 		*nbytesp = frag_size;
1425 		return 0;
1426 	}
1427 
1428 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1429 		unsigned npages;
1430 		size_t start;
1431 		ret = iov_iter_get_pages2(ii, &ap->pages[ap->num_pages],
1432 					*nbytesp - nbytes,
1433 					max_pages - ap->num_pages,
1434 					&start);
1435 		if (ret < 0)
1436 			break;
1437 
1438 		nbytes += ret;
1439 
1440 		ret += start;
1441 		npages = DIV_ROUND_UP(ret, PAGE_SIZE);
1442 
1443 		ap->descs[ap->num_pages].offset = start;
1444 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1445 
1446 		ap->num_pages += npages;
1447 		ap->descs[ap->num_pages - 1].length -=
1448 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1449 	}
1450 
1451 	ap->args.user_pages = true;
1452 	if (write)
1453 		ap->args.in_pages = true;
1454 	else
1455 		ap->args.out_pages = true;
1456 
1457 	*nbytesp = nbytes;
1458 
1459 	return ret < 0 ? ret : 0;
1460 }
1461 
1462 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1463 		       loff_t *ppos, int flags)
1464 {
1465 	int write = flags & FUSE_DIO_WRITE;
1466 	int cuse = flags & FUSE_DIO_CUSE;
1467 	struct file *file = io->iocb->ki_filp;
1468 	struct inode *inode = file->f_mapping->host;
1469 	struct fuse_file *ff = file->private_data;
1470 	struct fuse_conn *fc = ff->fm->fc;
1471 	size_t nmax = write ? fc->max_write : fc->max_read;
1472 	loff_t pos = *ppos;
1473 	size_t count = iov_iter_count(iter);
1474 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1475 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1476 	ssize_t res = 0;
1477 	int err = 0;
1478 	struct fuse_io_args *ia;
1479 	unsigned int max_pages;
1480 
1481 	max_pages = iov_iter_npages(iter, fc->max_pages);
1482 	ia = fuse_io_alloc(io, max_pages);
1483 	if (!ia)
1484 		return -ENOMEM;
1485 
1486 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1487 		if (!write)
1488 			inode_lock(inode);
1489 		fuse_sync_writes(inode);
1490 		if (!write)
1491 			inode_unlock(inode);
1492 	}
1493 
1494 	io->should_dirty = !write && user_backed_iter(iter);
1495 	while (count) {
1496 		ssize_t nres;
1497 		fl_owner_t owner = current->files;
1498 		size_t nbytes = min(count, nmax);
1499 
1500 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1501 					  max_pages);
1502 		if (err && !nbytes)
1503 			break;
1504 
1505 		if (write) {
1506 			if (!capable(CAP_FSETID))
1507 				ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1508 
1509 			nres = fuse_send_write(ia, pos, nbytes, owner);
1510 		} else {
1511 			nres = fuse_send_read(ia, pos, nbytes, owner);
1512 		}
1513 
1514 		if (!io->async || nres < 0) {
1515 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1516 			fuse_io_free(ia);
1517 		}
1518 		ia = NULL;
1519 		if (nres < 0) {
1520 			iov_iter_revert(iter, nbytes);
1521 			err = nres;
1522 			break;
1523 		}
1524 		WARN_ON(nres > nbytes);
1525 
1526 		count -= nres;
1527 		res += nres;
1528 		pos += nres;
1529 		if (nres != nbytes) {
1530 			iov_iter_revert(iter, nbytes - nres);
1531 			break;
1532 		}
1533 		if (count) {
1534 			max_pages = iov_iter_npages(iter, fc->max_pages);
1535 			ia = fuse_io_alloc(io, max_pages);
1536 			if (!ia)
1537 				break;
1538 		}
1539 	}
1540 	if (ia)
1541 		fuse_io_free(ia);
1542 	if (res > 0)
1543 		*ppos = pos;
1544 
1545 	return res > 0 ? res : err;
1546 }
1547 EXPORT_SYMBOL_GPL(fuse_direct_io);
1548 
1549 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1550 				  struct iov_iter *iter,
1551 				  loff_t *ppos)
1552 {
1553 	ssize_t res;
1554 	struct inode *inode = file_inode(io->iocb->ki_filp);
1555 
1556 	res = fuse_direct_io(io, iter, ppos, 0);
1557 
1558 	fuse_invalidate_atime(inode);
1559 
1560 	return res;
1561 }
1562 
1563 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1564 
1565 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1566 {
1567 	ssize_t res;
1568 
1569 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1570 		res = fuse_direct_IO(iocb, to);
1571 	} else {
1572 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1573 
1574 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1575 	}
1576 
1577 	return res;
1578 }
1579 
1580 static bool fuse_direct_write_extending_i_size(struct kiocb *iocb,
1581 					       struct iov_iter *iter)
1582 {
1583 	struct inode *inode = file_inode(iocb->ki_filp);
1584 
1585 	return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode);
1586 }
1587 
1588 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1589 {
1590 	struct inode *inode = file_inode(iocb->ki_filp);
1591 	struct file *file = iocb->ki_filp;
1592 	struct fuse_file *ff = file->private_data;
1593 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1594 	ssize_t res;
1595 	bool exclusive_lock =
1596 		!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES) ||
1597 		iocb->ki_flags & IOCB_APPEND ||
1598 		fuse_direct_write_extending_i_size(iocb, from);
1599 
1600 	/*
1601 	 * Take exclusive lock if
1602 	 * - Parallel direct writes are disabled - a user space decision
1603 	 * - Parallel direct writes are enabled and i_size is being extended.
1604 	 *   This might not be needed at all, but needs further investigation.
1605 	 */
1606 	if (exclusive_lock)
1607 		inode_lock(inode);
1608 	else {
1609 		inode_lock_shared(inode);
1610 
1611 		/* A race with truncate might have come up as the decision for
1612 		 * the lock type was done without holding the lock, check again.
1613 		 */
1614 		if (fuse_direct_write_extending_i_size(iocb, from)) {
1615 			inode_unlock_shared(inode);
1616 			inode_lock(inode);
1617 			exclusive_lock = true;
1618 		}
1619 	}
1620 
1621 	res = generic_write_checks(iocb, from);
1622 	if (res > 0) {
1623 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1624 			res = fuse_direct_IO(iocb, from);
1625 		} else {
1626 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1627 					     FUSE_DIO_WRITE);
1628 			fuse_write_update_attr(inode, iocb->ki_pos, res);
1629 		}
1630 	}
1631 	if (exclusive_lock)
1632 		inode_unlock(inode);
1633 	else
1634 		inode_unlock_shared(inode);
1635 
1636 	return res;
1637 }
1638 
1639 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1640 {
1641 	struct file *file = iocb->ki_filp;
1642 	struct fuse_file *ff = file->private_data;
1643 	struct inode *inode = file_inode(file);
1644 
1645 	if (fuse_is_bad(inode))
1646 		return -EIO;
1647 
1648 	if (FUSE_IS_DAX(inode))
1649 		return fuse_dax_read_iter(iocb, to);
1650 
1651 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1652 		return fuse_cache_read_iter(iocb, to);
1653 	else
1654 		return fuse_direct_read_iter(iocb, to);
1655 }
1656 
1657 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1658 {
1659 	struct file *file = iocb->ki_filp;
1660 	struct fuse_file *ff = file->private_data;
1661 	struct inode *inode = file_inode(file);
1662 
1663 	if (fuse_is_bad(inode))
1664 		return -EIO;
1665 
1666 	if (FUSE_IS_DAX(inode))
1667 		return fuse_dax_write_iter(iocb, from);
1668 
1669 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1670 		return fuse_cache_write_iter(iocb, from);
1671 	else
1672 		return fuse_direct_write_iter(iocb, from);
1673 }
1674 
1675 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1676 {
1677 	struct fuse_args_pages *ap = &wpa->ia.ap;
1678 	int i;
1679 
1680 	if (wpa->bucket)
1681 		fuse_sync_bucket_dec(wpa->bucket);
1682 
1683 	for (i = 0; i < ap->num_pages; i++)
1684 		__free_page(ap->pages[i]);
1685 
1686 	if (wpa->ia.ff)
1687 		fuse_file_put(wpa->ia.ff, false, false);
1688 
1689 	kfree(ap->pages);
1690 	kfree(wpa);
1691 }
1692 
1693 static void fuse_writepage_finish(struct fuse_mount *fm,
1694 				  struct fuse_writepage_args *wpa)
1695 {
1696 	struct fuse_args_pages *ap = &wpa->ia.ap;
1697 	struct inode *inode = wpa->inode;
1698 	struct fuse_inode *fi = get_fuse_inode(inode);
1699 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1700 	int i;
1701 
1702 	for (i = 0; i < ap->num_pages; i++) {
1703 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1704 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1705 		wb_writeout_inc(&bdi->wb);
1706 	}
1707 	wake_up(&fi->page_waitq);
1708 }
1709 
1710 /* Called under fi->lock, may release and reacquire it */
1711 static void fuse_send_writepage(struct fuse_mount *fm,
1712 				struct fuse_writepage_args *wpa, loff_t size)
1713 __releases(fi->lock)
1714 __acquires(fi->lock)
1715 {
1716 	struct fuse_writepage_args *aux, *next;
1717 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1718 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1719 	struct fuse_args *args = &wpa->ia.ap.args;
1720 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1721 	int err;
1722 
1723 	fi->writectr++;
1724 	if (inarg->offset + data_size <= size) {
1725 		inarg->size = data_size;
1726 	} else if (inarg->offset < size) {
1727 		inarg->size = size - inarg->offset;
1728 	} else {
1729 		/* Got truncated off completely */
1730 		goto out_free;
1731 	}
1732 
1733 	args->in_args[1].size = inarg->size;
1734 	args->force = true;
1735 	args->nocreds = true;
1736 
1737 	err = fuse_simple_background(fm, args, GFP_ATOMIC);
1738 	if (err == -ENOMEM) {
1739 		spin_unlock(&fi->lock);
1740 		err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1741 		spin_lock(&fi->lock);
1742 	}
1743 
1744 	/* Fails on broken connection only */
1745 	if (unlikely(err))
1746 		goto out_free;
1747 
1748 	return;
1749 
1750  out_free:
1751 	fi->writectr--;
1752 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1753 	fuse_writepage_finish(fm, wpa);
1754 	spin_unlock(&fi->lock);
1755 
1756 	/* After fuse_writepage_finish() aux request list is private */
1757 	for (aux = wpa->next; aux; aux = next) {
1758 		next = aux->next;
1759 		aux->next = NULL;
1760 		fuse_writepage_free(aux);
1761 	}
1762 
1763 	fuse_writepage_free(wpa);
1764 	spin_lock(&fi->lock);
1765 }
1766 
1767 /*
1768  * If fi->writectr is positive (no truncate or fsync going on) send
1769  * all queued writepage requests.
1770  *
1771  * Called with fi->lock
1772  */
1773 void fuse_flush_writepages(struct inode *inode)
1774 __releases(fi->lock)
1775 __acquires(fi->lock)
1776 {
1777 	struct fuse_mount *fm = get_fuse_mount(inode);
1778 	struct fuse_inode *fi = get_fuse_inode(inode);
1779 	loff_t crop = i_size_read(inode);
1780 	struct fuse_writepage_args *wpa;
1781 
1782 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1783 		wpa = list_entry(fi->queued_writes.next,
1784 				 struct fuse_writepage_args, queue_entry);
1785 		list_del_init(&wpa->queue_entry);
1786 		fuse_send_writepage(fm, wpa, crop);
1787 	}
1788 }
1789 
1790 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1791 						struct fuse_writepage_args *wpa)
1792 {
1793 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1794 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1795 	struct rb_node **p = &root->rb_node;
1796 	struct rb_node  *parent = NULL;
1797 
1798 	WARN_ON(!wpa->ia.ap.num_pages);
1799 	while (*p) {
1800 		struct fuse_writepage_args *curr;
1801 		pgoff_t curr_index;
1802 
1803 		parent = *p;
1804 		curr = rb_entry(parent, struct fuse_writepage_args,
1805 				writepages_entry);
1806 		WARN_ON(curr->inode != wpa->inode);
1807 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1808 
1809 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1810 			p = &(*p)->rb_right;
1811 		else if (idx_to < curr_index)
1812 			p = &(*p)->rb_left;
1813 		else
1814 			return curr;
1815 	}
1816 
1817 	rb_link_node(&wpa->writepages_entry, parent, p);
1818 	rb_insert_color(&wpa->writepages_entry, root);
1819 	return NULL;
1820 }
1821 
1822 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1823 {
1824 	WARN_ON(fuse_insert_writeback(root, wpa));
1825 }
1826 
1827 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1828 			       int error)
1829 {
1830 	struct fuse_writepage_args *wpa =
1831 		container_of(args, typeof(*wpa), ia.ap.args);
1832 	struct inode *inode = wpa->inode;
1833 	struct fuse_inode *fi = get_fuse_inode(inode);
1834 	struct fuse_conn *fc = get_fuse_conn(inode);
1835 
1836 	mapping_set_error(inode->i_mapping, error);
1837 	/*
1838 	 * A writeback finished and this might have updated mtime/ctime on
1839 	 * server making local mtime/ctime stale.  Hence invalidate attrs.
1840 	 * Do this only if writeback_cache is not enabled.  If writeback_cache
1841 	 * is enabled, we trust local ctime/mtime.
1842 	 */
1843 	if (!fc->writeback_cache)
1844 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
1845 	spin_lock(&fi->lock);
1846 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1847 	while (wpa->next) {
1848 		struct fuse_mount *fm = get_fuse_mount(inode);
1849 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1850 		struct fuse_writepage_args *next = wpa->next;
1851 
1852 		wpa->next = next->next;
1853 		next->next = NULL;
1854 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1855 		tree_insert(&fi->writepages, next);
1856 
1857 		/*
1858 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1859 		 * based on primary request size.
1860 		 *
1861 		 * 1st case (trivial): there are no concurrent activities using
1862 		 * fuse_set/release_nowrite.  Then we're on safe side because
1863 		 * fuse_flush_writepages() would call fuse_send_writepage()
1864 		 * anyway.
1865 		 *
1866 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1867 		 * now for completion of all in-flight requests.  This happens
1868 		 * rarely and no more than once per page, so this should be
1869 		 * okay.
1870 		 *
1871 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1872 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1873 		 * that fuse_set_nowrite returned implies that all in-flight
1874 		 * requests were completed along with all of their secondary
1875 		 * requests.  Further primary requests are blocked by negative
1876 		 * writectr.  Hence there cannot be any in-flight requests and
1877 		 * no invocations of fuse_writepage_end() while we're in
1878 		 * fuse_set_nowrite..fuse_release_nowrite section.
1879 		 */
1880 		fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1881 	}
1882 	fi->writectr--;
1883 	fuse_writepage_finish(fm, wpa);
1884 	spin_unlock(&fi->lock);
1885 	fuse_writepage_free(wpa);
1886 }
1887 
1888 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
1889 {
1890 	struct fuse_file *ff;
1891 
1892 	spin_lock(&fi->lock);
1893 	ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
1894 				      write_entry);
1895 	if (ff)
1896 		fuse_file_get(ff);
1897 	spin_unlock(&fi->lock);
1898 
1899 	return ff;
1900 }
1901 
1902 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
1903 {
1904 	struct fuse_file *ff = __fuse_write_file_get(fi);
1905 	WARN_ON(!ff);
1906 	return ff;
1907 }
1908 
1909 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1910 {
1911 	struct fuse_inode *fi = get_fuse_inode(inode);
1912 	struct fuse_file *ff;
1913 	int err;
1914 
1915 	/*
1916 	 * Inode is always written before the last reference is dropped and
1917 	 * hence this should not be reached from reclaim.
1918 	 *
1919 	 * Writing back the inode from reclaim can deadlock if the request
1920 	 * processing itself needs an allocation.  Allocations triggering
1921 	 * reclaim while serving a request can't be prevented, because it can
1922 	 * involve any number of unrelated userspace processes.
1923 	 */
1924 	WARN_ON(wbc->for_reclaim);
1925 
1926 	ff = __fuse_write_file_get(fi);
1927 	err = fuse_flush_times(inode, ff);
1928 	if (ff)
1929 		fuse_file_put(ff, false, false);
1930 
1931 	return err;
1932 }
1933 
1934 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1935 {
1936 	struct fuse_writepage_args *wpa;
1937 	struct fuse_args_pages *ap;
1938 
1939 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1940 	if (wpa) {
1941 		ap = &wpa->ia.ap;
1942 		ap->num_pages = 0;
1943 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1944 		if (!ap->pages) {
1945 			kfree(wpa);
1946 			wpa = NULL;
1947 		}
1948 	}
1949 	return wpa;
1950 
1951 }
1952 
1953 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
1954 					 struct fuse_writepage_args *wpa)
1955 {
1956 	if (!fc->sync_fs)
1957 		return;
1958 
1959 	rcu_read_lock();
1960 	/* Prevent resurrection of dead bucket in unlikely race with syncfs */
1961 	do {
1962 		wpa->bucket = rcu_dereference(fc->curr_bucket);
1963 	} while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
1964 	rcu_read_unlock();
1965 }
1966 
1967 static int fuse_writepage_locked(struct page *page)
1968 {
1969 	struct address_space *mapping = page->mapping;
1970 	struct inode *inode = mapping->host;
1971 	struct fuse_conn *fc = get_fuse_conn(inode);
1972 	struct fuse_inode *fi = get_fuse_inode(inode);
1973 	struct fuse_writepage_args *wpa;
1974 	struct fuse_args_pages *ap;
1975 	struct page *tmp_page;
1976 	int error = -ENOMEM;
1977 
1978 	set_page_writeback(page);
1979 
1980 	wpa = fuse_writepage_args_alloc();
1981 	if (!wpa)
1982 		goto err;
1983 	ap = &wpa->ia.ap;
1984 
1985 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1986 	if (!tmp_page)
1987 		goto err_free;
1988 
1989 	error = -EIO;
1990 	wpa->ia.ff = fuse_write_file_get(fi);
1991 	if (!wpa->ia.ff)
1992 		goto err_nofile;
1993 
1994 	fuse_writepage_add_to_bucket(fc, wpa);
1995 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1996 
1997 	copy_highpage(tmp_page, page);
1998 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1999 	wpa->next = NULL;
2000 	ap->args.in_pages = true;
2001 	ap->num_pages = 1;
2002 	ap->pages[0] = tmp_page;
2003 	ap->descs[0].offset = 0;
2004 	ap->descs[0].length = PAGE_SIZE;
2005 	ap->args.end = fuse_writepage_end;
2006 	wpa->inode = inode;
2007 
2008 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2009 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2010 
2011 	spin_lock(&fi->lock);
2012 	tree_insert(&fi->writepages, wpa);
2013 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2014 	fuse_flush_writepages(inode);
2015 	spin_unlock(&fi->lock);
2016 
2017 	end_page_writeback(page);
2018 
2019 	return 0;
2020 
2021 err_nofile:
2022 	__free_page(tmp_page);
2023 err_free:
2024 	kfree(wpa);
2025 err:
2026 	mapping_set_error(page->mapping, error);
2027 	end_page_writeback(page);
2028 	return error;
2029 }
2030 
2031 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
2032 {
2033 	struct fuse_conn *fc = get_fuse_conn(page->mapping->host);
2034 	int err;
2035 
2036 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
2037 		/*
2038 		 * ->writepages() should be called for sync() and friends.  We
2039 		 * should only get here on direct reclaim and then we are
2040 		 * allowed to skip a page which is already in flight
2041 		 */
2042 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
2043 
2044 		redirty_page_for_writepage(wbc, page);
2045 		unlock_page(page);
2046 		return 0;
2047 	}
2048 
2049 	if (wbc->sync_mode == WB_SYNC_NONE &&
2050 	    fc->num_background >= fc->congestion_threshold)
2051 		return AOP_WRITEPAGE_ACTIVATE;
2052 
2053 	err = fuse_writepage_locked(page);
2054 	unlock_page(page);
2055 
2056 	return err;
2057 }
2058 
2059 struct fuse_fill_wb_data {
2060 	struct fuse_writepage_args *wpa;
2061 	struct fuse_file *ff;
2062 	struct inode *inode;
2063 	struct page **orig_pages;
2064 	unsigned int max_pages;
2065 };
2066 
2067 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
2068 {
2069 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
2070 	struct fuse_conn *fc = get_fuse_conn(data->inode);
2071 	struct page **pages;
2072 	struct fuse_page_desc *descs;
2073 	unsigned int npages = min_t(unsigned int,
2074 				    max_t(unsigned int, data->max_pages * 2,
2075 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2076 				    fc->max_pages);
2077 	WARN_ON(npages <= data->max_pages);
2078 
2079 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2080 	if (!pages)
2081 		return false;
2082 
2083 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2084 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2085 	kfree(ap->pages);
2086 	ap->pages = pages;
2087 	ap->descs = descs;
2088 	data->max_pages = npages;
2089 
2090 	return true;
2091 }
2092 
2093 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2094 {
2095 	struct fuse_writepage_args *wpa = data->wpa;
2096 	struct inode *inode = data->inode;
2097 	struct fuse_inode *fi = get_fuse_inode(inode);
2098 	int num_pages = wpa->ia.ap.num_pages;
2099 	int i;
2100 
2101 	wpa->ia.ff = fuse_file_get(data->ff);
2102 	spin_lock(&fi->lock);
2103 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2104 	fuse_flush_writepages(inode);
2105 	spin_unlock(&fi->lock);
2106 
2107 	for (i = 0; i < num_pages; i++)
2108 		end_page_writeback(data->orig_pages[i]);
2109 }
2110 
2111 /*
2112  * Check under fi->lock if the page is under writeback, and insert it onto the
2113  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2114  * one already added for a page at this offset.  If there's none, then insert
2115  * this new request onto the auxiliary list, otherwise reuse the existing one by
2116  * swapping the new temp page with the old one.
2117  */
2118 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2119 			       struct page *page)
2120 {
2121 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2122 	struct fuse_writepage_args *tmp;
2123 	struct fuse_writepage_args *old_wpa;
2124 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2125 
2126 	WARN_ON(new_ap->num_pages != 0);
2127 	new_ap->num_pages = 1;
2128 
2129 	spin_lock(&fi->lock);
2130 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2131 	if (!old_wpa) {
2132 		spin_unlock(&fi->lock);
2133 		return true;
2134 	}
2135 
2136 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2137 		pgoff_t curr_index;
2138 
2139 		WARN_ON(tmp->inode != new_wpa->inode);
2140 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2141 		if (curr_index == page->index) {
2142 			WARN_ON(tmp->ia.ap.num_pages != 1);
2143 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2144 			break;
2145 		}
2146 	}
2147 
2148 	if (!tmp) {
2149 		new_wpa->next = old_wpa->next;
2150 		old_wpa->next = new_wpa;
2151 	}
2152 
2153 	spin_unlock(&fi->lock);
2154 
2155 	if (tmp) {
2156 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2157 
2158 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2159 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2160 		wb_writeout_inc(&bdi->wb);
2161 		fuse_writepage_free(new_wpa);
2162 	}
2163 
2164 	return false;
2165 }
2166 
2167 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2168 				     struct fuse_args_pages *ap,
2169 				     struct fuse_fill_wb_data *data)
2170 {
2171 	WARN_ON(!ap->num_pages);
2172 
2173 	/*
2174 	 * Being under writeback is unlikely but possible.  For example direct
2175 	 * read to an mmaped fuse file will set the page dirty twice; once when
2176 	 * the pages are faulted with get_user_pages(), and then after the read
2177 	 * completed.
2178 	 */
2179 	if (fuse_page_is_writeback(data->inode, page->index))
2180 		return true;
2181 
2182 	/* Reached max pages */
2183 	if (ap->num_pages == fc->max_pages)
2184 		return true;
2185 
2186 	/* Reached max write bytes */
2187 	if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2188 		return true;
2189 
2190 	/* Discontinuity */
2191 	if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2192 		return true;
2193 
2194 	/* Need to grow the pages array?  If so, did the expansion fail? */
2195 	if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2196 		return true;
2197 
2198 	return false;
2199 }
2200 
2201 static int fuse_writepages_fill(struct folio *folio,
2202 		struct writeback_control *wbc, void *_data)
2203 {
2204 	struct fuse_fill_wb_data *data = _data;
2205 	struct fuse_writepage_args *wpa = data->wpa;
2206 	struct fuse_args_pages *ap = &wpa->ia.ap;
2207 	struct inode *inode = data->inode;
2208 	struct fuse_inode *fi = get_fuse_inode(inode);
2209 	struct fuse_conn *fc = get_fuse_conn(inode);
2210 	struct page *tmp_page;
2211 	int err;
2212 
2213 	if (!data->ff) {
2214 		err = -EIO;
2215 		data->ff = fuse_write_file_get(fi);
2216 		if (!data->ff)
2217 			goto out_unlock;
2218 	}
2219 
2220 	if (wpa && fuse_writepage_need_send(fc, &folio->page, ap, data)) {
2221 		fuse_writepages_send(data);
2222 		data->wpa = NULL;
2223 	}
2224 
2225 	err = -ENOMEM;
2226 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2227 	if (!tmp_page)
2228 		goto out_unlock;
2229 
2230 	/*
2231 	 * The page must not be redirtied until the writeout is completed
2232 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2233 	 * there could be more than one temporary page instance for each real
2234 	 * page.
2235 	 *
2236 	 * This is ensured by holding the page lock in page_mkwrite() while
2237 	 * checking fuse_page_is_writeback().  We already hold the page lock
2238 	 * since clear_page_dirty_for_io() and keep it held until we add the
2239 	 * request to the fi->writepages list and increment ap->num_pages.
2240 	 * After this fuse_page_is_writeback() will indicate that the page is
2241 	 * under writeback, so we can release the page lock.
2242 	 */
2243 	if (data->wpa == NULL) {
2244 		err = -ENOMEM;
2245 		wpa = fuse_writepage_args_alloc();
2246 		if (!wpa) {
2247 			__free_page(tmp_page);
2248 			goto out_unlock;
2249 		}
2250 		fuse_writepage_add_to_bucket(fc, wpa);
2251 
2252 		data->max_pages = 1;
2253 
2254 		ap = &wpa->ia.ap;
2255 		fuse_write_args_fill(&wpa->ia, data->ff, folio_pos(folio), 0);
2256 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2257 		wpa->next = NULL;
2258 		ap->args.in_pages = true;
2259 		ap->args.end = fuse_writepage_end;
2260 		ap->num_pages = 0;
2261 		wpa->inode = inode;
2262 	}
2263 	folio_start_writeback(folio);
2264 
2265 	copy_highpage(tmp_page, &folio->page);
2266 	ap->pages[ap->num_pages] = tmp_page;
2267 	ap->descs[ap->num_pages].offset = 0;
2268 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2269 	data->orig_pages[ap->num_pages] = &folio->page;
2270 
2271 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2272 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2273 
2274 	err = 0;
2275 	if (data->wpa) {
2276 		/*
2277 		 * Protected by fi->lock against concurrent access by
2278 		 * fuse_page_is_writeback().
2279 		 */
2280 		spin_lock(&fi->lock);
2281 		ap->num_pages++;
2282 		spin_unlock(&fi->lock);
2283 	} else if (fuse_writepage_add(wpa, &folio->page)) {
2284 		data->wpa = wpa;
2285 	} else {
2286 		folio_end_writeback(folio);
2287 	}
2288 out_unlock:
2289 	folio_unlock(folio);
2290 
2291 	return err;
2292 }
2293 
2294 static int fuse_writepages(struct address_space *mapping,
2295 			   struct writeback_control *wbc)
2296 {
2297 	struct inode *inode = mapping->host;
2298 	struct fuse_conn *fc = get_fuse_conn(inode);
2299 	struct fuse_fill_wb_data data;
2300 	int err;
2301 
2302 	err = -EIO;
2303 	if (fuse_is_bad(inode))
2304 		goto out;
2305 
2306 	if (wbc->sync_mode == WB_SYNC_NONE &&
2307 	    fc->num_background >= fc->congestion_threshold)
2308 		return 0;
2309 
2310 	data.inode = inode;
2311 	data.wpa = NULL;
2312 	data.ff = NULL;
2313 
2314 	err = -ENOMEM;
2315 	data.orig_pages = kcalloc(fc->max_pages,
2316 				  sizeof(struct page *),
2317 				  GFP_NOFS);
2318 	if (!data.orig_pages)
2319 		goto out;
2320 
2321 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2322 	if (data.wpa) {
2323 		WARN_ON(!data.wpa->ia.ap.num_pages);
2324 		fuse_writepages_send(&data);
2325 	}
2326 	if (data.ff)
2327 		fuse_file_put(data.ff, false, false);
2328 
2329 	kfree(data.orig_pages);
2330 out:
2331 	return err;
2332 }
2333 
2334 /*
2335  * It's worthy to make sure that space is reserved on disk for the write,
2336  * but how to implement it without killing performance need more thinking.
2337  */
2338 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2339 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
2340 {
2341 	pgoff_t index = pos >> PAGE_SHIFT;
2342 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2343 	struct page *page;
2344 	loff_t fsize;
2345 	int err = -ENOMEM;
2346 
2347 	WARN_ON(!fc->writeback_cache);
2348 
2349 	page = grab_cache_page_write_begin(mapping, index);
2350 	if (!page)
2351 		goto error;
2352 
2353 	fuse_wait_on_page_writeback(mapping->host, page->index);
2354 
2355 	if (PageUptodate(page) || len == PAGE_SIZE)
2356 		goto success;
2357 	/*
2358 	 * Check if the start this page comes after the end of file, in which
2359 	 * case the readpage can be optimized away.
2360 	 */
2361 	fsize = i_size_read(mapping->host);
2362 	if (fsize <= (pos & PAGE_MASK)) {
2363 		size_t off = pos & ~PAGE_MASK;
2364 		if (off)
2365 			zero_user_segment(page, 0, off);
2366 		goto success;
2367 	}
2368 	err = fuse_do_readpage(file, page);
2369 	if (err)
2370 		goto cleanup;
2371 success:
2372 	*pagep = page;
2373 	return 0;
2374 
2375 cleanup:
2376 	unlock_page(page);
2377 	put_page(page);
2378 error:
2379 	return err;
2380 }
2381 
2382 static int fuse_write_end(struct file *file, struct address_space *mapping,
2383 		loff_t pos, unsigned len, unsigned copied,
2384 		struct page *page, void *fsdata)
2385 {
2386 	struct inode *inode = page->mapping->host;
2387 
2388 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2389 	if (!copied)
2390 		goto unlock;
2391 
2392 	pos += copied;
2393 	if (!PageUptodate(page)) {
2394 		/* Zero any unwritten bytes at the end of the page */
2395 		size_t endoff = pos & ~PAGE_MASK;
2396 		if (endoff)
2397 			zero_user_segment(page, endoff, PAGE_SIZE);
2398 		SetPageUptodate(page);
2399 	}
2400 
2401 	if (pos > inode->i_size)
2402 		i_size_write(inode, pos);
2403 
2404 	set_page_dirty(page);
2405 
2406 unlock:
2407 	unlock_page(page);
2408 	put_page(page);
2409 
2410 	return copied;
2411 }
2412 
2413 static int fuse_launder_folio(struct folio *folio)
2414 {
2415 	int err = 0;
2416 	if (folio_clear_dirty_for_io(folio)) {
2417 		struct inode *inode = folio->mapping->host;
2418 
2419 		/* Serialize with pending writeback for the same page */
2420 		fuse_wait_on_page_writeback(inode, folio->index);
2421 		err = fuse_writepage_locked(&folio->page);
2422 		if (!err)
2423 			fuse_wait_on_page_writeback(inode, folio->index);
2424 	}
2425 	return err;
2426 }
2427 
2428 /*
2429  * Write back dirty data/metadata now (there may not be any suitable
2430  * open files later for data)
2431  */
2432 static void fuse_vma_close(struct vm_area_struct *vma)
2433 {
2434 	int err;
2435 
2436 	err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2437 	mapping_set_error(vma->vm_file->f_mapping, err);
2438 }
2439 
2440 /*
2441  * Wait for writeback against this page to complete before allowing it
2442  * to be marked dirty again, and hence written back again, possibly
2443  * before the previous writepage completed.
2444  *
2445  * Block here, instead of in ->writepage(), so that the userspace fs
2446  * can only block processes actually operating on the filesystem.
2447  *
2448  * Otherwise unprivileged userspace fs would be able to block
2449  * unrelated:
2450  *
2451  * - page migration
2452  * - sync(2)
2453  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2454  */
2455 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2456 {
2457 	struct page *page = vmf->page;
2458 	struct inode *inode = file_inode(vmf->vma->vm_file);
2459 
2460 	file_update_time(vmf->vma->vm_file);
2461 	lock_page(page);
2462 	if (page->mapping != inode->i_mapping) {
2463 		unlock_page(page);
2464 		return VM_FAULT_NOPAGE;
2465 	}
2466 
2467 	fuse_wait_on_page_writeback(inode, page->index);
2468 	return VM_FAULT_LOCKED;
2469 }
2470 
2471 static const struct vm_operations_struct fuse_file_vm_ops = {
2472 	.close		= fuse_vma_close,
2473 	.fault		= filemap_fault,
2474 	.map_pages	= filemap_map_pages,
2475 	.page_mkwrite	= fuse_page_mkwrite,
2476 };
2477 
2478 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2479 {
2480 	struct fuse_file *ff = file->private_data;
2481 
2482 	/* DAX mmap is superior to direct_io mmap */
2483 	if (FUSE_IS_DAX(file_inode(file)))
2484 		return fuse_dax_mmap(file, vma);
2485 
2486 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2487 		/* Can't provide the coherency needed for MAP_SHARED */
2488 		if (vma->vm_flags & VM_MAYSHARE)
2489 			return -ENODEV;
2490 
2491 		invalidate_inode_pages2(file->f_mapping);
2492 
2493 		return generic_file_mmap(file, vma);
2494 	}
2495 
2496 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2497 		fuse_link_write_file(file);
2498 
2499 	file_accessed(file);
2500 	vma->vm_ops = &fuse_file_vm_ops;
2501 	return 0;
2502 }
2503 
2504 static int convert_fuse_file_lock(struct fuse_conn *fc,
2505 				  const struct fuse_file_lock *ffl,
2506 				  struct file_lock *fl)
2507 {
2508 	switch (ffl->type) {
2509 	case F_UNLCK:
2510 		break;
2511 
2512 	case F_RDLCK:
2513 	case F_WRLCK:
2514 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2515 		    ffl->end < ffl->start)
2516 			return -EIO;
2517 
2518 		fl->fl_start = ffl->start;
2519 		fl->fl_end = ffl->end;
2520 
2521 		/*
2522 		 * Convert pid into init's pid namespace.  The locks API will
2523 		 * translate it into the caller's pid namespace.
2524 		 */
2525 		rcu_read_lock();
2526 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2527 		rcu_read_unlock();
2528 		break;
2529 
2530 	default:
2531 		return -EIO;
2532 	}
2533 	fl->fl_type = ffl->type;
2534 	return 0;
2535 }
2536 
2537 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2538 			 const struct file_lock *fl, int opcode, pid_t pid,
2539 			 int flock, struct fuse_lk_in *inarg)
2540 {
2541 	struct inode *inode = file_inode(file);
2542 	struct fuse_conn *fc = get_fuse_conn(inode);
2543 	struct fuse_file *ff = file->private_data;
2544 
2545 	memset(inarg, 0, sizeof(*inarg));
2546 	inarg->fh = ff->fh;
2547 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2548 	inarg->lk.start = fl->fl_start;
2549 	inarg->lk.end = fl->fl_end;
2550 	inarg->lk.type = fl->fl_type;
2551 	inarg->lk.pid = pid;
2552 	if (flock)
2553 		inarg->lk_flags |= FUSE_LK_FLOCK;
2554 	args->opcode = opcode;
2555 	args->nodeid = get_node_id(inode);
2556 	args->in_numargs = 1;
2557 	args->in_args[0].size = sizeof(*inarg);
2558 	args->in_args[0].value = inarg;
2559 }
2560 
2561 static int fuse_getlk(struct file *file, struct file_lock *fl)
2562 {
2563 	struct inode *inode = file_inode(file);
2564 	struct fuse_mount *fm = get_fuse_mount(inode);
2565 	FUSE_ARGS(args);
2566 	struct fuse_lk_in inarg;
2567 	struct fuse_lk_out outarg;
2568 	int err;
2569 
2570 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2571 	args.out_numargs = 1;
2572 	args.out_args[0].size = sizeof(outarg);
2573 	args.out_args[0].value = &outarg;
2574 	err = fuse_simple_request(fm, &args);
2575 	if (!err)
2576 		err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2577 
2578 	return err;
2579 }
2580 
2581 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2582 {
2583 	struct inode *inode = file_inode(file);
2584 	struct fuse_mount *fm = get_fuse_mount(inode);
2585 	FUSE_ARGS(args);
2586 	struct fuse_lk_in inarg;
2587 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2588 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2589 	pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2590 	int err;
2591 
2592 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2593 		/* NLM needs asynchronous locks, which we don't support yet */
2594 		return -ENOLCK;
2595 	}
2596 
2597 	/* Unlock on close is handled by the flush method */
2598 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2599 		return 0;
2600 
2601 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2602 	err = fuse_simple_request(fm, &args);
2603 
2604 	/* locking is restartable */
2605 	if (err == -EINTR)
2606 		err = -ERESTARTSYS;
2607 
2608 	return err;
2609 }
2610 
2611 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2612 {
2613 	struct inode *inode = file_inode(file);
2614 	struct fuse_conn *fc = get_fuse_conn(inode);
2615 	int err;
2616 
2617 	if (cmd == F_CANCELLK) {
2618 		err = 0;
2619 	} else if (cmd == F_GETLK) {
2620 		if (fc->no_lock) {
2621 			posix_test_lock(file, fl);
2622 			err = 0;
2623 		} else
2624 			err = fuse_getlk(file, fl);
2625 	} else {
2626 		if (fc->no_lock)
2627 			err = posix_lock_file(file, fl, NULL);
2628 		else
2629 			err = fuse_setlk(file, fl, 0);
2630 	}
2631 	return err;
2632 }
2633 
2634 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2635 {
2636 	struct inode *inode = file_inode(file);
2637 	struct fuse_conn *fc = get_fuse_conn(inode);
2638 	int err;
2639 
2640 	if (fc->no_flock) {
2641 		err = locks_lock_file_wait(file, fl);
2642 	} else {
2643 		struct fuse_file *ff = file->private_data;
2644 
2645 		/* emulate flock with POSIX locks */
2646 		ff->flock = true;
2647 		err = fuse_setlk(file, fl, 1);
2648 	}
2649 
2650 	return err;
2651 }
2652 
2653 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2654 {
2655 	struct inode *inode = mapping->host;
2656 	struct fuse_mount *fm = get_fuse_mount(inode);
2657 	FUSE_ARGS(args);
2658 	struct fuse_bmap_in inarg;
2659 	struct fuse_bmap_out outarg;
2660 	int err;
2661 
2662 	if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2663 		return 0;
2664 
2665 	memset(&inarg, 0, sizeof(inarg));
2666 	inarg.block = block;
2667 	inarg.blocksize = inode->i_sb->s_blocksize;
2668 	args.opcode = FUSE_BMAP;
2669 	args.nodeid = get_node_id(inode);
2670 	args.in_numargs = 1;
2671 	args.in_args[0].size = sizeof(inarg);
2672 	args.in_args[0].value = &inarg;
2673 	args.out_numargs = 1;
2674 	args.out_args[0].size = sizeof(outarg);
2675 	args.out_args[0].value = &outarg;
2676 	err = fuse_simple_request(fm, &args);
2677 	if (err == -ENOSYS)
2678 		fm->fc->no_bmap = 1;
2679 
2680 	return err ? 0 : outarg.block;
2681 }
2682 
2683 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2684 {
2685 	struct inode *inode = file->f_mapping->host;
2686 	struct fuse_mount *fm = get_fuse_mount(inode);
2687 	struct fuse_file *ff = file->private_data;
2688 	FUSE_ARGS(args);
2689 	struct fuse_lseek_in inarg = {
2690 		.fh = ff->fh,
2691 		.offset = offset,
2692 		.whence = whence
2693 	};
2694 	struct fuse_lseek_out outarg;
2695 	int err;
2696 
2697 	if (fm->fc->no_lseek)
2698 		goto fallback;
2699 
2700 	args.opcode = FUSE_LSEEK;
2701 	args.nodeid = ff->nodeid;
2702 	args.in_numargs = 1;
2703 	args.in_args[0].size = sizeof(inarg);
2704 	args.in_args[0].value = &inarg;
2705 	args.out_numargs = 1;
2706 	args.out_args[0].size = sizeof(outarg);
2707 	args.out_args[0].value = &outarg;
2708 	err = fuse_simple_request(fm, &args);
2709 	if (err) {
2710 		if (err == -ENOSYS) {
2711 			fm->fc->no_lseek = 1;
2712 			goto fallback;
2713 		}
2714 		return err;
2715 	}
2716 
2717 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2718 
2719 fallback:
2720 	err = fuse_update_attributes(inode, file, STATX_SIZE);
2721 	if (!err)
2722 		return generic_file_llseek(file, offset, whence);
2723 	else
2724 		return err;
2725 }
2726 
2727 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2728 {
2729 	loff_t retval;
2730 	struct inode *inode = file_inode(file);
2731 
2732 	switch (whence) {
2733 	case SEEK_SET:
2734 	case SEEK_CUR:
2735 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2736 		retval = generic_file_llseek(file, offset, whence);
2737 		break;
2738 	case SEEK_END:
2739 		inode_lock(inode);
2740 		retval = fuse_update_attributes(inode, file, STATX_SIZE);
2741 		if (!retval)
2742 			retval = generic_file_llseek(file, offset, whence);
2743 		inode_unlock(inode);
2744 		break;
2745 	case SEEK_HOLE:
2746 	case SEEK_DATA:
2747 		inode_lock(inode);
2748 		retval = fuse_lseek(file, offset, whence);
2749 		inode_unlock(inode);
2750 		break;
2751 	default:
2752 		retval = -EINVAL;
2753 	}
2754 
2755 	return retval;
2756 }
2757 
2758 /*
2759  * All files which have been polled are linked to RB tree
2760  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2761  * find the matching one.
2762  */
2763 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2764 					      struct rb_node **parent_out)
2765 {
2766 	struct rb_node **link = &fc->polled_files.rb_node;
2767 	struct rb_node *last = NULL;
2768 
2769 	while (*link) {
2770 		struct fuse_file *ff;
2771 
2772 		last = *link;
2773 		ff = rb_entry(last, struct fuse_file, polled_node);
2774 
2775 		if (kh < ff->kh)
2776 			link = &last->rb_left;
2777 		else if (kh > ff->kh)
2778 			link = &last->rb_right;
2779 		else
2780 			return link;
2781 	}
2782 
2783 	if (parent_out)
2784 		*parent_out = last;
2785 	return link;
2786 }
2787 
2788 /*
2789  * The file is about to be polled.  Make sure it's on the polled_files
2790  * RB tree.  Note that files once added to the polled_files tree are
2791  * not removed before the file is released.  This is because a file
2792  * polled once is likely to be polled again.
2793  */
2794 static void fuse_register_polled_file(struct fuse_conn *fc,
2795 				      struct fuse_file *ff)
2796 {
2797 	spin_lock(&fc->lock);
2798 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2799 		struct rb_node **link, *parent;
2800 
2801 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2802 		BUG_ON(*link);
2803 		rb_link_node(&ff->polled_node, parent, link);
2804 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2805 	}
2806 	spin_unlock(&fc->lock);
2807 }
2808 
2809 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2810 {
2811 	struct fuse_file *ff = file->private_data;
2812 	struct fuse_mount *fm = ff->fm;
2813 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2814 	struct fuse_poll_out outarg;
2815 	FUSE_ARGS(args);
2816 	int err;
2817 
2818 	if (fm->fc->no_poll)
2819 		return DEFAULT_POLLMASK;
2820 
2821 	poll_wait(file, &ff->poll_wait, wait);
2822 	inarg.events = mangle_poll(poll_requested_events(wait));
2823 
2824 	/*
2825 	 * Ask for notification iff there's someone waiting for it.
2826 	 * The client may ignore the flag and always notify.
2827 	 */
2828 	if (waitqueue_active(&ff->poll_wait)) {
2829 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2830 		fuse_register_polled_file(fm->fc, ff);
2831 	}
2832 
2833 	args.opcode = FUSE_POLL;
2834 	args.nodeid = ff->nodeid;
2835 	args.in_numargs = 1;
2836 	args.in_args[0].size = sizeof(inarg);
2837 	args.in_args[0].value = &inarg;
2838 	args.out_numargs = 1;
2839 	args.out_args[0].size = sizeof(outarg);
2840 	args.out_args[0].value = &outarg;
2841 	err = fuse_simple_request(fm, &args);
2842 
2843 	if (!err)
2844 		return demangle_poll(outarg.revents);
2845 	if (err == -ENOSYS) {
2846 		fm->fc->no_poll = 1;
2847 		return DEFAULT_POLLMASK;
2848 	}
2849 	return EPOLLERR;
2850 }
2851 EXPORT_SYMBOL_GPL(fuse_file_poll);
2852 
2853 /*
2854  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2855  * wakes up the poll waiters.
2856  */
2857 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2858 			    struct fuse_notify_poll_wakeup_out *outarg)
2859 {
2860 	u64 kh = outarg->kh;
2861 	struct rb_node **link;
2862 
2863 	spin_lock(&fc->lock);
2864 
2865 	link = fuse_find_polled_node(fc, kh, NULL);
2866 	if (*link) {
2867 		struct fuse_file *ff;
2868 
2869 		ff = rb_entry(*link, struct fuse_file, polled_node);
2870 		wake_up_interruptible_sync(&ff->poll_wait);
2871 	}
2872 
2873 	spin_unlock(&fc->lock);
2874 	return 0;
2875 }
2876 
2877 static void fuse_do_truncate(struct file *file)
2878 {
2879 	struct inode *inode = file->f_mapping->host;
2880 	struct iattr attr;
2881 
2882 	attr.ia_valid = ATTR_SIZE;
2883 	attr.ia_size = i_size_read(inode);
2884 
2885 	attr.ia_file = file;
2886 	attr.ia_valid |= ATTR_FILE;
2887 
2888 	fuse_do_setattr(file_dentry(file), &attr, file);
2889 }
2890 
2891 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2892 {
2893 	return round_up(off, fc->max_pages << PAGE_SHIFT);
2894 }
2895 
2896 static ssize_t
2897 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2898 {
2899 	DECLARE_COMPLETION_ONSTACK(wait);
2900 	ssize_t ret = 0;
2901 	struct file *file = iocb->ki_filp;
2902 	struct fuse_file *ff = file->private_data;
2903 	loff_t pos = 0;
2904 	struct inode *inode;
2905 	loff_t i_size;
2906 	size_t count = iov_iter_count(iter), shortened = 0;
2907 	loff_t offset = iocb->ki_pos;
2908 	struct fuse_io_priv *io;
2909 
2910 	pos = offset;
2911 	inode = file->f_mapping->host;
2912 	i_size = i_size_read(inode);
2913 
2914 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
2915 		return 0;
2916 
2917 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2918 	if (!io)
2919 		return -ENOMEM;
2920 	spin_lock_init(&io->lock);
2921 	kref_init(&io->refcnt);
2922 	io->reqs = 1;
2923 	io->bytes = -1;
2924 	io->size = 0;
2925 	io->offset = offset;
2926 	io->write = (iov_iter_rw(iter) == WRITE);
2927 	io->err = 0;
2928 	/*
2929 	 * By default, we want to optimize all I/Os with async request
2930 	 * submission to the client filesystem if supported.
2931 	 */
2932 	io->async = ff->fm->fc->async_dio;
2933 	io->iocb = iocb;
2934 	io->blocking = is_sync_kiocb(iocb);
2935 
2936 	/* optimization for short read */
2937 	if (io->async && !io->write && offset + count > i_size) {
2938 		iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
2939 		shortened = count - iov_iter_count(iter);
2940 		count -= shortened;
2941 	}
2942 
2943 	/*
2944 	 * We cannot asynchronously extend the size of a file.
2945 	 * In such case the aio will behave exactly like sync io.
2946 	 */
2947 	if ((offset + count > i_size) && io->write)
2948 		io->blocking = true;
2949 
2950 	if (io->async && io->blocking) {
2951 		/*
2952 		 * Additional reference to keep io around after
2953 		 * calling fuse_aio_complete()
2954 		 */
2955 		kref_get(&io->refcnt);
2956 		io->done = &wait;
2957 	}
2958 
2959 	if (iov_iter_rw(iter) == WRITE) {
2960 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2961 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
2962 	} else {
2963 		ret = __fuse_direct_read(io, iter, &pos);
2964 	}
2965 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
2966 
2967 	if (io->async) {
2968 		bool blocking = io->blocking;
2969 
2970 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2971 
2972 		/* we have a non-extending, async request, so return */
2973 		if (!blocking)
2974 			return -EIOCBQUEUED;
2975 
2976 		wait_for_completion(&wait);
2977 		ret = fuse_get_res_by_io(io);
2978 	}
2979 
2980 	kref_put(&io->refcnt, fuse_io_release);
2981 
2982 	if (iov_iter_rw(iter) == WRITE) {
2983 		fuse_write_update_attr(inode, pos, ret);
2984 		/* For extending writes we already hold exclusive lock */
2985 		if (ret < 0 && offset + count > i_size)
2986 			fuse_do_truncate(file);
2987 	}
2988 
2989 	return ret;
2990 }
2991 
2992 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
2993 {
2994 	int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
2995 
2996 	if (!err)
2997 		fuse_sync_writes(inode);
2998 
2999 	return err;
3000 }
3001 
3002 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3003 				loff_t length)
3004 {
3005 	struct fuse_file *ff = file->private_data;
3006 	struct inode *inode = file_inode(file);
3007 	struct fuse_inode *fi = get_fuse_inode(inode);
3008 	struct fuse_mount *fm = ff->fm;
3009 	FUSE_ARGS(args);
3010 	struct fuse_fallocate_in inarg = {
3011 		.fh = ff->fh,
3012 		.offset = offset,
3013 		.length = length,
3014 		.mode = mode
3015 	};
3016 	int err;
3017 	bool block_faults = FUSE_IS_DAX(inode) &&
3018 		(!(mode & FALLOC_FL_KEEP_SIZE) ||
3019 		 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)));
3020 
3021 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3022 		     FALLOC_FL_ZERO_RANGE))
3023 		return -EOPNOTSUPP;
3024 
3025 	if (fm->fc->no_fallocate)
3026 		return -EOPNOTSUPP;
3027 
3028 	inode_lock(inode);
3029 	if (block_faults) {
3030 		filemap_invalidate_lock(inode->i_mapping);
3031 		err = fuse_dax_break_layouts(inode, 0, 0);
3032 		if (err)
3033 			goto out;
3034 	}
3035 
3036 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
3037 		loff_t endbyte = offset + length - 1;
3038 
3039 		err = fuse_writeback_range(inode, offset, endbyte);
3040 		if (err)
3041 			goto out;
3042 	}
3043 
3044 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3045 	    offset + length > i_size_read(inode)) {
3046 		err = inode_newsize_ok(inode, offset + length);
3047 		if (err)
3048 			goto out;
3049 	}
3050 
3051 	err = file_modified(file);
3052 	if (err)
3053 		goto out;
3054 
3055 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3056 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3057 
3058 	args.opcode = FUSE_FALLOCATE;
3059 	args.nodeid = ff->nodeid;
3060 	args.in_numargs = 1;
3061 	args.in_args[0].size = sizeof(inarg);
3062 	args.in_args[0].value = &inarg;
3063 	err = fuse_simple_request(fm, &args);
3064 	if (err == -ENOSYS) {
3065 		fm->fc->no_fallocate = 1;
3066 		err = -EOPNOTSUPP;
3067 	}
3068 	if (err)
3069 		goto out;
3070 
3071 	/* we could have extended the file */
3072 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3073 		if (fuse_write_update_attr(inode, offset + length, length))
3074 			file_update_time(file);
3075 	}
3076 
3077 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
3078 		truncate_pagecache_range(inode, offset, offset + length - 1);
3079 
3080 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3081 
3082 out:
3083 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3084 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3085 
3086 	if (block_faults)
3087 		filemap_invalidate_unlock(inode->i_mapping);
3088 
3089 	inode_unlock(inode);
3090 
3091 	fuse_flush_time_update(inode);
3092 
3093 	return err;
3094 }
3095 
3096 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3097 				      struct file *file_out, loff_t pos_out,
3098 				      size_t len, unsigned int flags)
3099 {
3100 	struct fuse_file *ff_in = file_in->private_data;
3101 	struct fuse_file *ff_out = file_out->private_data;
3102 	struct inode *inode_in = file_inode(file_in);
3103 	struct inode *inode_out = file_inode(file_out);
3104 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3105 	struct fuse_mount *fm = ff_in->fm;
3106 	struct fuse_conn *fc = fm->fc;
3107 	FUSE_ARGS(args);
3108 	struct fuse_copy_file_range_in inarg = {
3109 		.fh_in = ff_in->fh,
3110 		.off_in = pos_in,
3111 		.nodeid_out = ff_out->nodeid,
3112 		.fh_out = ff_out->fh,
3113 		.off_out = pos_out,
3114 		.len = len,
3115 		.flags = flags
3116 	};
3117 	struct fuse_write_out outarg;
3118 	ssize_t err;
3119 	/* mark unstable when write-back is not used, and file_out gets
3120 	 * extended */
3121 	bool is_unstable = (!fc->writeback_cache) &&
3122 			   ((pos_out + len) > inode_out->i_size);
3123 
3124 	if (fc->no_copy_file_range)
3125 		return -EOPNOTSUPP;
3126 
3127 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3128 		return -EXDEV;
3129 
3130 	inode_lock(inode_in);
3131 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3132 	inode_unlock(inode_in);
3133 	if (err)
3134 		return err;
3135 
3136 	inode_lock(inode_out);
3137 
3138 	err = file_modified(file_out);
3139 	if (err)
3140 		goto out;
3141 
3142 	/*
3143 	 * Write out dirty pages in the destination file before sending the COPY
3144 	 * request to userspace.  After the request is completed, truncate off
3145 	 * pages (including partial ones) from the cache that have been copied,
3146 	 * since these contain stale data at that point.
3147 	 *
3148 	 * This should be mostly correct, but if the COPY writes to partial
3149 	 * pages (at the start or end) and the parts not covered by the COPY are
3150 	 * written through a memory map after calling fuse_writeback_range(),
3151 	 * then these partial page modifications will be lost on truncation.
3152 	 *
3153 	 * It is unlikely that someone would rely on such mixed style
3154 	 * modifications.  Yet this does give less guarantees than if the
3155 	 * copying was performed with write(2).
3156 	 *
3157 	 * To fix this a mapping->invalidate_lock could be used to prevent new
3158 	 * faults while the copy is ongoing.
3159 	 */
3160 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3161 	if (err)
3162 		goto out;
3163 
3164 	if (is_unstable)
3165 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3166 
3167 	args.opcode = FUSE_COPY_FILE_RANGE;
3168 	args.nodeid = ff_in->nodeid;
3169 	args.in_numargs = 1;
3170 	args.in_args[0].size = sizeof(inarg);
3171 	args.in_args[0].value = &inarg;
3172 	args.out_numargs = 1;
3173 	args.out_args[0].size = sizeof(outarg);
3174 	args.out_args[0].value = &outarg;
3175 	err = fuse_simple_request(fm, &args);
3176 	if (err == -ENOSYS) {
3177 		fc->no_copy_file_range = 1;
3178 		err = -EOPNOTSUPP;
3179 	}
3180 	if (err)
3181 		goto out;
3182 
3183 	truncate_inode_pages_range(inode_out->i_mapping,
3184 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3185 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3186 
3187 	file_update_time(file_out);
3188 	fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size);
3189 
3190 	err = outarg.size;
3191 out:
3192 	if (is_unstable)
3193 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3194 
3195 	inode_unlock(inode_out);
3196 	file_accessed(file_in);
3197 
3198 	fuse_flush_time_update(inode_out);
3199 
3200 	return err;
3201 }
3202 
3203 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3204 				    struct file *dst_file, loff_t dst_off,
3205 				    size_t len, unsigned int flags)
3206 {
3207 	ssize_t ret;
3208 
3209 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3210 				     len, flags);
3211 
3212 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3213 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3214 					      dst_off, len, flags);
3215 	return ret;
3216 }
3217 
3218 static const struct file_operations fuse_file_operations = {
3219 	.llseek		= fuse_file_llseek,
3220 	.read_iter	= fuse_file_read_iter,
3221 	.write_iter	= fuse_file_write_iter,
3222 	.mmap		= fuse_file_mmap,
3223 	.open		= fuse_open,
3224 	.flush		= fuse_flush,
3225 	.release	= fuse_release,
3226 	.fsync		= fuse_fsync,
3227 	.lock		= fuse_file_lock,
3228 	.get_unmapped_area = thp_get_unmapped_area,
3229 	.flock		= fuse_file_flock,
3230 	.splice_read	= filemap_splice_read,
3231 	.splice_write	= iter_file_splice_write,
3232 	.unlocked_ioctl	= fuse_file_ioctl,
3233 	.compat_ioctl	= fuse_file_compat_ioctl,
3234 	.poll		= fuse_file_poll,
3235 	.fallocate	= fuse_file_fallocate,
3236 	.copy_file_range = fuse_copy_file_range,
3237 };
3238 
3239 static const struct address_space_operations fuse_file_aops  = {
3240 	.read_folio	= fuse_read_folio,
3241 	.readahead	= fuse_readahead,
3242 	.writepage	= fuse_writepage,
3243 	.writepages	= fuse_writepages,
3244 	.launder_folio	= fuse_launder_folio,
3245 	.dirty_folio	= filemap_dirty_folio,
3246 	.bmap		= fuse_bmap,
3247 	.direct_IO	= fuse_direct_IO,
3248 	.write_begin	= fuse_write_begin,
3249 	.write_end	= fuse_write_end,
3250 };
3251 
3252 void fuse_init_file_inode(struct inode *inode, unsigned int flags)
3253 {
3254 	struct fuse_inode *fi = get_fuse_inode(inode);
3255 
3256 	inode->i_fop = &fuse_file_operations;
3257 	inode->i_data.a_ops = &fuse_file_aops;
3258 
3259 	INIT_LIST_HEAD(&fi->write_files);
3260 	INIT_LIST_HEAD(&fi->queued_writes);
3261 	fi->writectr = 0;
3262 	init_waitqueue_head(&fi->page_waitq);
3263 	fi->writepages = RB_ROOT;
3264 
3265 	if (IS_ENABLED(CONFIG_FUSE_DAX))
3266 		fuse_dax_inode_init(inode, flags);
3267 }
3268