xref: /openbmc/linux/fs/fuse/file.c (revision b96c0546)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 #include <linux/fs.h>
22 
23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 				      struct fuse_page_desc **desc)
25 {
26 	struct page **pages;
27 
28 	pages = kzalloc(npages * (sizeof(struct page *) +
29 				  sizeof(struct fuse_page_desc)), flags);
30 	*desc = (void *) (pages + npages);
31 
32 	return pages;
33 }
34 
35 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
36 			  int opcode, struct fuse_open_out *outargp)
37 {
38 	struct fuse_open_in inarg;
39 	FUSE_ARGS(args);
40 
41 	memset(&inarg, 0, sizeof(inarg));
42 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 	if (!fm->fc->atomic_o_trunc)
44 		inarg.flags &= ~O_TRUNC;
45 	args.opcode = opcode;
46 	args.nodeid = nodeid;
47 	args.in_numargs = 1;
48 	args.in_args[0].size = sizeof(inarg);
49 	args.in_args[0].value = &inarg;
50 	args.out_numargs = 1;
51 	args.out_args[0].size = sizeof(*outargp);
52 	args.out_args[0].value = outargp;
53 
54 	return fuse_simple_request(fm, &args);
55 }
56 
57 struct fuse_release_args {
58 	struct fuse_args args;
59 	struct fuse_release_in inarg;
60 	struct inode *inode;
61 };
62 
63 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
64 {
65 	struct fuse_file *ff;
66 
67 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
68 	if (unlikely(!ff))
69 		return NULL;
70 
71 	ff->fm = fm;
72 	ff->release_args = kzalloc(sizeof(*ff->release_args),
73 				   GFP_KERNEL_ACCOUNT);
74 	if (!ff->release_args) {
75 		kfree(ff);
76 		return NULL;
77 	}
78 
79 	INIT_LIST_HEAD(&ff->write_entry);
80 	mutex_init(&ff->readdir.lock);
81 	refcount_set(&ff->count, 1);
82 	RB_CLEAR_NODE(&ff->polled_node);
83 	init_waitqueue_head(&ff->poll_wait);
84 
85 	ff->kh = atomic64_inc_return(&fm->fc->khctr);
86 
87 	return ff;
88 }
89 
90 void fuse_file_free(struct fuse_file *ff)
91 {
92 	kfree(ff->release_args);
93 	mutex_destroy(&ff->readdir.lock);
94 	kfree(ff);
95 }
96 
97 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 {
99 	refcount_inc(&ff->count);
100 	return ff;
101 }
102 
103 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
104 			     int error)
105 {
106 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107 
108 	iput(ra->inode);
109 	kfree(ra);
110 }
111 
112 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 {
114 	if (refcount_dec_and_test(&ff->count)) {
115 		struct fuse_args *args = &ff->release_args->args;
116 
117 		if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
118 			/* Do nothing when client does not implement 'open' */
119 			fuse_release_end(ff->fm, args, 0);
120 		} else if (sync) {
121 			fuse_simple_request(ff->fm, args);
122 			fuse_release_end(ff->fm, args, 0);
123 		} else {
124 			args->end = fuse_release_end;
125 			if (fuse_simple_background(ff->fm, args,
126 						   GFP_KERNEL | __GFP_NOFAIL))
127 				fuse_release_end(ff->fm, args, -ENOTCONN);
128 		}
129 		kfree(ff);
130 	}
131 }
132 
133 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
134 		 bool isdir)
135 {
136 	struct fuse_conn *fc = fm->fc;
137 	struct fuse_file *ff;
138 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
139 
140 	ff = fuse_file_alloc(fm);
141 	if (!ff)
142 		return -ENOMEM;
143 
144 	ff->fh = 0;
145 	/* Default for no-open */
146 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
147 	if (isdir ? !fc->no_opendir : !fc->no_open) {
148 		struct fuse_open_out outarg;
149 		int err;
150 
151 		err = fuse_send_open(fm, nodeid, file, opcode, &outarg);
152 		if (!err) {
153 			ff->fh = outarg.fh;
154 			ff->open_flags = outarg.open_flags;
155 
156 		} else if (err != -ENOSYS) {
157 			fuse_file_free(ff);
158 			return err;
159 		} else {
160 			if (isdir)
161 				fc->no_opendir = 1;
162 			else
163 				fc->no_open = 1;
164 		}
165 	}
166 
167 	if (isdir)
168 		ff->open_flags &= ~FOPEN_DIRECT_IO;
169 
170 	ff->nodeid = nodeid;
171 	file->private_data = ff;
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(fuse_do_open);
176 
177 static void fuse_link_write_file(struct file *file)
178 {
179 	struct inode *inode = file_inode(file);
180 	struct fuse_inode *fi = get_fuse_inode(inode);
181 	struct fuse_file *ff = file->private_data;
182 	/*
183 	 * file may be written through mmap, so chain it onto the
184 	 * inodes's write_file list
185 	 */
186 	spin_lock(&fi->lock);
187 	if (list_empty(&ff->write_entry))
188 		list_add(&ff->write_entry, &fi->write_files);
189 	spin_unlock(&fi->lock);
190 }
191 
192 void fuse_finish_open(struct inode *inode, struct file *file)
193 {
194 	struct fuse_file *ff = file->private_data;
195 	struct fuse_conn *fc = get_fuse_conn(inode);
196 
197 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
198 		invalidate_inode_pages2(inode->i_mapping);
199 	if (ff->open_flags & FOPEN_STREAM)
200 		stream_open(inode, file);
201 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
202 		nonseekable_open(inode, file);
203 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
204 		struct fuse_inode *fi = get_fuse_inode(inode);
205 
206 		spin_lock(&fi->lock);
207 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
208 		i_size_write(inode, 0);
209 		spin_unlock(&fi->lock);
210 		fuse_invalidate_attr(inode);
211 		if (fc->writeback_cache)
212 			file_update_time(file);
213 	}
214 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
215 		fuse_link_write_file(file);
216 }
217 
218 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
219 {
220 	struct fuse_mount *fm = get_fuse_mount(inode);
221 	struct fuse_conn *fc = fm->fc;
222 	int err;
223 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
224 			  fc->atomic_o_trunc &&
225 			  fc->writeback_cache;
226 	bool dax_truncate = (file->f_flags & O_TRUNC) &&
227 			  fc->atomic_o_trunc && FUSE_IS_DAX(inode);
228 
229 	err = generic_file_open(inode, file);
230 	if (err)
231 		return err;
232 
233 	if (is_wb_truncate || dax_truncate) {
234 		inode_lock(inode);
235 		fuse_set_nowrite(inode);
236 	}
237 
238 	if (dax_truncate) {
239 		down_write(&get_fuse_inode(inode)->i_mmap_sem);
240 		err = fuse_dax_break_layouts(inode, 0, 0);
241 		if (err)
242 			goto out;
243 	}
244 
245 	err = fuse_do_open(fm, get_node_id(inode), file, isdir);
246 	if (!err)
247 		fuse_finish_open(inode, file);
248 
249 out:
250 	if (dax_truncate)
251 		up_write(&get_fuse_inode(inode)->i_mmap_sem);
252 
253 	if (is_wb_truncate | dax_truncate) {
254 		fuse_release_nowrite(inode);
255 		inode_unlock(inode);
256 	}
257 
258 	return err;
259 }
260 
261 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
262 				 int flags, int opcode)
263 {
264 	struct fuse_conn *fc = ff->fm->fc;
265 	struct fuse_release_args *ra = ff->release_args;
266 
267 	/* Inode is NULL on error path of fuse_create_open() */
268 	if (likely(fi)) {
269 		spin_lock(&fi->lock);
270 		list_del(&ff->write_entry);
271 		spin_unlock(&fi->lock);
272 	}
273 	spin_lock(&fc->lock);
274 	if (!RB_EMPTY_NODE(&ff->polled_node))
275 		rb_erase(&ff->polled_node, &fc->polled_files);
276 	spin_unlock(&fc->lock);
277 
278 	wake_up_interruptible_all(&ff->poll_wait);
279 
280 	ra->inarg.fh = ff->fh;
281 	ra->inarg.flags = flags;
282 	ra->args.in_numargs = 1;
283 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
284 	ra->args.in_args[0].value = &ra->inarg;
285 	ra->args.opcode = opcode;
286 	ra->args.nodeid = ff->nodeid;
287 	ra->args.force = true;
288 	ra->args.nocreds = true;
289 }
290 
291 void fuse_release_common(struct file *file, bool isdir)
292 {
293 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
294 	struct fuse_file *ff = file->private_data;
295 	struct fuse_release_args *ra = ff->release_args;
296 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
297 
298 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
299 
300 	if (ff->flock) {
301 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
302 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc,
303 							  (fl_owner_t) file);
304 	}
305 	/* Hold inode until release is finished */
306 	ra->inode = igrab(file_inode(file));
307 
308 	/*
309 	 * Normally this will send the RELEASE request, however if
310 	 * some asynchronous READ or WRITE requests are outstanding,
311 	 * the sending will be delayed.
312 	 *
313 	 * Make the release synchronous if this is a fuseblk mount,
314 	 * synchronous RELEASE is allowed (and desirable) in this case
315 	 * because the server can be trusted not to screw up.
316 	 */
317 	fuse_file_put(ff, ff->fm->fc->destroy, isdir);
318 }
319 
320 static int fuse_open(struct inode *inode, struct file *file)
321 {
322 	return fuse_open_common(inode, file, false);
323 }
324 
325 static int fuse_release(struct inode *inode, struct file *file)
326 {
327 	struct fuse_conn *fc = get_fuse_conn(inode);
328 
329 	/* see fuse_vma_close() for !writeback_cache case */
330 	if (fc->writeback_cache)
331 		write_inode_now(inode, 1);
332 
333 	fuse_release_common(file, false);
334 
335 	/* return value is ignored by VFS */
336 	return 0;
337 }
338 
339 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
340 {
341 	WARN_ON(refcount_read(&ff->count) > 1);
342 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
343 	/*
344 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
345 	 * synchronous, we are fine with not doing igrab() here"
346 	 */
347 	fuse_file_put(ff, true, false);
348 }
349 EXPORT_SYMBOL_GPL(fuse_sync_release);
350 
351 /*
352  * Scramble the ID space with XTEA, so that the value of the files_struct
353  * pointer is not exposed to userspace.
354  */
355 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
356 {
357 	u32 *k = fc->scramble_key;
358 	u64 v = (unsigned long) id;
359 	u32 v0 = v;
360 	u32 v1 = v >> 32;
361 	u32 sum = 0;
362 	int i;
363 
364 	for (i = 0; i < 32; i++) {
365 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
366 		sum += 0x9E3779B9;
367 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
368 	}
369 
370 	return (u64) v0 + ((u64) v1 << 32);
371 }
372 
373 struct fuse_writepage_args {
374 	struct fuse_io_args ia;
375 	struct rb_node writepages_entry;
376 	struct list_head queue_entry;
377 	struct fuse_writepage_args *next;
378 	struct inode *inode;
379 };
380 
381 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
382 					    pgoff_t idx_from, pgoff_t idx_to)
383 {
384 	struct rb_node *n;
385 
386 	n = fi->writepages.rb_node;
387 
388 	while (n) {
389 		struct fuse_writepage_args *wpa;
390 		pgoff_t curr_index;
391 
392 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
393 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
394 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
395 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
396 			n = n->rb_right;
397 		else if (idx_to < curr_index)
398 			n = n->rb_left;
399 		else
400 			return wpa;
401 	}
402 	return NULL;
403 }
404 
405 /*
406  * Check if any page in a range is under writeback
407  *
408  * This is currently done by walking the list of writepage requests
409  * for the inode, which can be pretty inefficient.
410  */
411 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
412 				   pgoff_t idx_to)
413 {
414 	struct fuse_inode *fi = get_fuse_inode(inode);
415 	bool found;
416 
417 	spin_lock(&fi->lock);
418 	found = fuse_find_writeback(fi, idx_from, idx_to);
419 	spin_unlock(&fi->lock);
420 
421 	return found;
422 }
423 
424 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
425 {
426 	return fuse_range_is_writeback(inode, index, index);
427 }
428 
429 /*
430  * Wait for page writeback to be completed.
431  *
432  * Since fuse doesn't rely on the VM writeback tracking, this has to
433  * use some other means.
434  */
435 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
436 {
437 	struct fuse_inode *fi = get_fuse_inode(inode);
438 
439 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
440 }
441 
442 /*
443  * Wait for all pending writepages on the inode to finish.
444  *
445  * This is currently done by blocking further writes with FUSE_NOWRITE
446  * and waiting for all sent writes to complete.
447  *
448  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
449  * could conflict with truncation.
450  */
451 static void fuse_sync_writes(struct inode *inode)
452 {
453 	fuse_set_nowrite(inode);
454 	fuse_release_nowrite(inode);
455 }
456 
457 static int fuse_flush(struct file *file, fl_owner_t id)
458 {
459 	struct inode *inode = file_inode(file);
460 	struct fuse_mount *fm = get_fuse_mount(inode);
461 	struct fuse_file *ff = file->private_data;
462 	struct fuse_flush_in inarg;
463 	FUSE_ARGS(args);
464 	int err;
465 
466 	if (is_bad_inode(inode))
467 		return -EIO;
468 
469 	err = write_inode_now(inode, 1);
470 	if (err)
471 		return err;
472 
473 	inode_lock(inode);
474 	fuse_sync_writes(inode);
475 	inode_unlock(inode);
476 
477 	err = filemap_check_errors(file->f_mapping);
478 	if (err)
479 		return err;
480 
481 	err = 0;
482 	if (fm->fc->no_flush)
483 		goto inval_attr_out;
484 
485 	memset(&inarg, 0, sizeof(inarg));
486 	inarg.fh = ff->fh;
487 	inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
488 	args.opcode = FUSE_FLUSH;
489 	args.nodeid = get_node_id(inode);
490 	args.in_numargs = 1;
491 	args.in_args[0].size = sizeof(inarg);
492 	args.in_args[0].value = &inarg;
493 	args.force = true;
494 
495 	err = fuse_simple_request(fm, &args);
496 	if (err == -ENOSYS) {
497 		fm->fc->no_flush = 1;
498 		err = 0;
499 	}
500 
501 inval_attr_out:
502 	/*
503 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
504 	 * enabled, i_blocks from cached attr may not be accurate.
505 	 */
506 	if (!err && fm->fc->writeback_cache)
507 		fuse_invalidate_attr(inode);
508 	return err;
509 }
510 
511 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
512 		      int datasync, int opcode)
513 {
514 	struct inode *inode = file->f_mapping->host;
515 	struct fuse_mount *fm = get_fuse_mount(inode);
516 	struct fuse_file *ff = file->private_data;
517 	FUSE_ARGS(args);
518 	struct fuse_fsync_in inarg;
519 
520 	memset(&inarg, 0, sizeof(inarg));
521 	inarg.fh = ff->fh;
522 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
523 	args.opcode = opcode;
524 	args.nodeid = get_node_id(inode);
525 	args.in_numargs = 1;
526 	args.in_args[0].size = sizeof(inarg);
527 	args.in_args[0].value = &inarg;
528 	return fuse_simple_request(fm, &args);
529 }
530 
531 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
532 		      int datasync)
533 {
534 	struct inode *inode = file->f_mapping->host;
535 	struct fuse_conn *fc = get_fuse_conn(inode);
536 	int err;
537 
538 	if (is_bad_inode(inode))
539 		return -EIO;
540 
541 	inode_lock(inode);
542 
543 	/*
544 	 * Start writeback against all dirty pages of the inode, then
545 	 * wait for all outstanding writes, before sending the FSYNC
546 	 * request.
547 	 */
548 	err = file_write_and_wait_range(file, start, end);
549 	if (err)
550 		goto out;
551 
552 	fuse_sync_writes(inode);
553 
554 	/*
555 	 * Due to implementation of fuse writeback
556 	 * file_write_and_wait_range() does not catch errors.
557 	 * We have to do this directly after fuse_sync_writes()
558 	 */
559 	err = file_check_and_advance_wb_err(file);
560 	if (err)
561 		goto out;
562 
563 	err = sync_inode_metadata(inode, 1);
564 	if (err)
565 		goto out;
566 
567 	if (fc->no_fsync)
568 		goto out;
569 
570 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
571 	if (err == -ENOSYS) {
572 		fc->no_fsync = 1;
573 		err = 0;
574 	}
575 out:
576 	inode_unlock(inode);
577 
578 	return err;
579 }
580 
581 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
582 			 size_t count, int opcode)
583 {
584 	struct fuse_file *ff = file->private_data;
585 	struct fuse_args *args = &ia->ap.args;
586 
587 	ia->read.in.fh = ff->fh;
588 	ia->read.in.offset = pos;
589 	ia->read.in.size = count;
590 	ia->read.in.flags = file->f_flags;
591 	args->opcode = opcode;
592 	args->nodeid = ff->nodeid;
593 	args->in_numargs = 1;
594 	args->in_args[0].size = sizeof(ia->read.in);
595 	args->in_args[0].value = &ia->read.in;
596 	args->out_argvar = true;
597 	args->out_numargs = 1;
598 	args->out_args[0].size = count;
599 }
600 
601 static void fuse_release_user_pages(struct fuse_args_pages *ap,
602 				    bool should_dirty)
603 {
604 	unsigned int i;
605 
606 	for (i = 0; i < ap->num_pages; i++) {
607 		if (should_dirty)
608 			set_page_dirty_lock(ap->pages[i]);
609 		put_page(ap->pages[i]);
610 	}
611 }
612 
613 static void fuse_io_release(struct kref *kref)
614 {
615 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
616 }
617 
618 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
619 {
620 	if (io->err)
621 		return io->err;
622 
623 	if (io->bytes >= 0 && io->write)
624 		return -EIO;
625 
626 	return io->bytes < 0 ? io->size : io->bytes;
627 }
628 
629 /**
630  * In case of short read, the caller sets 'pos' to the position of
631  * actual end of fuse request in IO request. Otherwise, if bytes_requested
632  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
633  *
634  * An example:
635  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
636  * both submitted asynchronously. The first of them was ACKed by userspace as
637  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
638  * second request was ACKed as short, e.g. only 1K was read, resulting in
639  * pos == 33K.
640  *
641  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
642  * will be equal to the length of the longest contiguous fragment of
643  * transferred data starting from the beginning of IO request.
644  */
645 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
646 {
647 	int left;
648 
649 	spin_lock(&io->lock);
650 	if (err)
651 		io->err = io->err ? : err;
652 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
653 		io->bytes = pos;
654 
655 	left = --io->reqs;
656 	if (!left && io->blocking)
657 		complete(io->done);
658 	spin_unlock(&io->lock);
659 
660 	if (!left && !io->blocking) {
661 		ssize_t res = fuse_get_res_by_io(io);
662 
663 		if (res >= 0) {
664 			struct inode *inode = file_inode(io->iocb->ki_filp);
665 			struct fuse_conn *fc = get_fuse_conn(inode);
666 			struct fuse_inode *fi = get_fuse_inode(inode);
667 
668 			spin_lock(&fi->lock);
669 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
670 			spin_unlock(&fi->lock);
671 		}
672 
673 		io->iocb->ki_complete(io->iocb, res, 0);
674 	}
675 
676 	kref_put(&io->refcnt, fuse_io_release);
677 }
678 
679 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
680 					  unsigned int npages)
681 {
682 	struct fuse_io_args *ia;
683 
684 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
685 	if (ia) {
686 		ia->io = io;
687 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
688 						&ia->ap.descs);
689 		if (!ia->ap.pages) {
690 			kfree(ia);
691 			ia = NULL;
692 		}
693 	}
694 	return ia;
695 }
696 
697 static void fuse_io_free(struct fuse_io_args *ia)
698 {
699 	kfree(ia->ap.pages);
700 	kfree(ia);
701 }
702 
703 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
704 				  int err)
705 {
706 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
707 	struct fuse_io_priv *io = ia->io;
708 	ssize_t pos = -1;
709 
710 	fuse_release_user_pages(&ia->ap, io->should_dirty);
711 
712 	if (err) {
713 		/* Nothing */
714 	} else if (io->write) {
715 		if (ia->write.out.size > ia->write.in.size) {
716 			err = -EIO;
717 		} else if (ia->write.in.size != ia->write.out.size) {
718 			pos = ia->write.in.offset - io->offset +
719 				ia->write.out.size;
720 		}
721 	} else {
722 		u32 outsize = args->out_args[0].size;
723 
724 		if (ia->read.in.size != outsize)
725 			pos = ia->read.in.offset - io->offset + outsize;
726 	}
727 
728 	fuse_aio_complete(io, err, pos);
729 	fuse_io_free(ia);
730 }
731 
732 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
733 				   struct fuse_io_args *ia, size_t num_bytes)
734 {
735 	ssize_t err;
736 	struct fuse_io_priv *io = ia->io;
737 
738 	spin_lock(&io->lock);
739 	kref_get(&io->refcnt);
740 	io->size += num_bytes;
741 	io->reqs++;
742 	spin_unlock(&io->lock);
743 
744 	ia->ap.args.end = fuse_aio_complete_req;
745 	ia->ap.args.may_block = io->should_dirty;
746 	err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
747 	if (err)
748 		fuse_aio_complete_req(fm, &ia->ap.args, err);
749 
750 	return num_bytes;
751 }
752 
753 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
754 			      fl_owner_t owner)
755 {
756 	struct file *file = ia->io->iocb->ki_filp;
757 	struct fuse_file *ff = file->private_data;
758 	struct fuse_mount *fm = ff->fm;
759 
760 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
761 	if (owner != NULL) {
762 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
763 		ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
764 	}
765 
766 	if (ia->io->async)
767 		return fuse_async_req_send(fm, ia, count);
768 
769 	return fuse_simple_request(fm, &ia->ap.args);
770 }
771 
772 static void fuse_read_update_size(struct inode *inode, loff_t size,
773 				  u64 attr_ver)
774 {
775 	struct fuse_conn *fc = get_fuse_conn(inode);
776 	struct fuse_inode *fi = get_fuse_inode(inode);
777 
778 	spin_lock(&fi->lock);
779 	if (attr_ver == fi->attr_version && size < inode->i_size &&
780 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
781 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
782 		i_size_write(inode, size);
783 	}
784 	spin_unlock(&fi->lock);
785 }
786 
787 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
788 			    struct fuse_args_pages *ap)
789 {
790 	struct fuse_conn *fc = get_fuse_conn(inode);
791 
792 	if (fc->writeback_cache) {
793 		/*
794 		 * A hole in a file. Some data after the hole are in page cache,
795 		 * but have not reached the client fs yet. So, the hole is not
796 		 * present there.
797 		 */
798 		int i;
799 		int start_idx = num_read >> PAGE_SHIFT;
800 		size_t off = num_read & (PAGE_SIZE - 1);
801 
802 		for (i = start_idx; i < ap->num_pages; i++) {
803 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
804 			off = 0;
805 		}
806 	} else {
807 		loff_t pos = page_offset(ap->pages[0]) + num_read;
808 		fuse_read_update_size(inode, pos, attr_ver);
809 	}
810 }
811 
812 static int fuse_do_readpage(struct file *file, struct page *page)
813 {
814 	struct inode *inode = page->mapping->host;
815 	struct fuse_mount *fm = get_fuse_mount(inode);
816 	loff_t pos = page_offset(page);
817 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
818 	struct fuse_io_args ia = {
819 		.ap.args.page_zeroing = true,
820 		.ap.args.out_pages = true,
821 		.ap.num_pages = 1,
822 		.ap.pages = &page,
823 		.ap.descs = &desc,
824 	};
825 	ssize_t res;
826 	u64 attr_ver;
827 
828 	/*
829 	 * Page writeback can extend beyond the lifetime of the
830 	 * page-cache page, so make sure we read a properly synced
831 	 * page.
832 	 */
833 	fuse_wait_on_page_writeback(inode, page->index);
834 
835 	attr_ver = fuse_get_attr_version(fm->fc);
836 
837 	/* Don't overflow end offset */
838 	if (pos + (desc.length - 1) == LLONG_MAX)
839 		desc.length--;
840 
841 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
842 	res = fuse_simple_request(fm, &ia.ap.args);
843 	if (res < 0)
844 		return res;
845 	/*
846 	 * Short read means EOF.  If file size is larger, truncate it
847 	 */
848 	if (res < desc.length)
849 		fuse_short_read(inode, attr_ver, res, &ia.ap);
850 
851 	SetPageUptodate(page);
852 
853 	return 0;
854 }
855 
856 static int fuse_readpage(struct file *file, struct page *page)
857 {
858 	struct inode *inode = page->mapping->host;
859 	int err;
860 
861 	err = -EIO;
862 	if (is_bad_inode(inode))
863 		goto out;
864 
865 	err = fuse_do_readpage(file, page);
866 	fuse_invalidate_atime(inode);
867  out:
868 	unlock_page(page);
869 	return err;
870 }
871 
872 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
873 			       int err)
874 {
875 	int i;
876 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
877 	struct fuse_args_pages *ap = &ia->ap;
878 	size_t count = ia->read.in.size;
879 	size_t num_read = args->out_args[0].size;
880 	struct address_space *mapping = NULL;
881 
882 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
883 		mapping = ap->pages[i]->mapping;
884 
885 	if (mapping) {
886 		struct inode *inode = mapping->host;
887 
888 		/*
889 		 * Short read means EOF. If file size is larger, truncate it
890 		 */
891 		if (!err && num_read < count)
892 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
893 
894 		fuse_invalidate_atime(inode);
895 	}
896 
897 	for (i = 0; i < ap->num_pages; i++) {
898 		struct page *page = ap->pages[i];
899 
900 		if (!err)
901 			SetPageUptodate(page);
902 		else
903 			SetPageError(page);
904 		unlock_page(page);
905 		put_page(page);
906 	}
907 	if (ia->ff)
908 		fuse_file_put(ia->ff, false, false);
909 
910 	fuse_io_free(ia);
911 }
912 
913 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
914 {
915 	struct fuse_file *ff = file->private_data;
916 	struct fuse_mount *fm = ff->fm;
917 	struct fuse_args_pages *ap = &ia->ap;
918 	loff_t pos = page_offset(ap->pages[0]);
919 	size_t count = ap->num_pages << PAGE_SHIFT;
920 	ssize_t res;
921 	int err;
922 
923 	ap->args.out_pages = true;
924 	ap->args.page_zeroing = true;
925 	ap->args.page_replace = true;
926 
927 	/* Don't overflow end offset */
928 	if (pos + (count - 1) == LLONG_MAX) {
929 		count--;
930 		ap->descs[ap->num_pages - 1].length--;
931 	}
932 	WARN_ON((loff_t) (pos + count) < 0);
933 
934 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
935 	ia->read.attr_ver = fuse_get_attr_version(fm->fc);
936 	if (fm->fc->async_read) {
937 		ia->ff = fuse_file_get(ff);
938 		ap->args.end = fuse_readpages_end;
939 		err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
940 		if (!err)
941 			return;
942 	} else {
943 		res = fuse_simple_request(fm, &ap->args);
944 		err = res < 0 ? res : 0;
945 	}
946 	fuse_readpages_end(fm, &ap->args, err);
947 }
948 
949 static void fuse_readahead(struct readahead_control *rac)
950 {
951 	struct inode *inode = rac->mapping->host;
952 	struct fuse_conn *fc = get_fuse_conn(inode);
953 	unsigned int i, max_pages, nr_pages = 0;
954 
955 	if (is_bad_inode(inode))
956 		return;
957 
958 	max_pages = min_t(unsigned int, fc->max_pages,
959 			fc->max_read / PAGE_SIZE);
960 
961 	for (;;) {
962 		struct fuse_io_args *ia;
963 		struct fuse_args_pages *ap;
964 
965 		nr_pages = readahead_count(rac) - nr_pages;
966 		if (nr_pages > max_pages)
967 			nr_pages = max_pages;
968 		if (nr_pages == 0)
969 			break;
970 		ia = fuse_io_alloc(NULL, nr_pages);
971 		if (!ia)
972 			return;
973 		ap = &ia->ap;
974 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
975 		for (i = 0; i < nr_pages; i++) {
976 			fuse_wait_on_page_writeback(inode,
977 						    readahead_index(rac) + i);
978 			ap->descs[i].length = PAGE_SIZE;
979 		}
980 		ap->num_pages = nr_pages;
981 		fuse_send_readpages(ia, rac->file);
982 	}
983 }
984 
985 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
986 {
987 	struct inode *inode = iocb->ki_filp->f_mapping->host;
988 	struct fuse_conn *fc = get_fuse_conn(inode);
989 
990 	/*
991 	 * In auto invalidate mode, always update attributes on read.
992 	 * Otherwise, only update if we attempt to read past EOF (to ensure
993 	 * i_size is up to date).
994 	 */
995 	if (fc->auto_inval_data ||
996 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
997 		int err;
998 		err = fuse_update_attributes(inode, iocb->ki_filp);
999 		if (err)
1000 			return err;
1001 	}
1002 
1003 	return generic_file_read_iter(iocb, to);
1004 }
1005 
1006 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1007 				 loff_t pos, size_t count)
1008 {
1009 	struct fuse_args *args = &ia->ap.args;
1010 
1011 	ia->write.in.fh = ff->fh;
1012 	ia->write.in.offset = pos;
1013 	ia->write.in.size = count;
1014 	args->opcode = FUSE_WRITE;
1015 	args->nodeid = ff->nodeid;
1016 	args->in_numargs = 2;
1017 	if (ff->fm->fc->minor < 9)
1018 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1019 	else
1020 		args->in_args[0].size = sizeof(ia->write.in);
1021 	args->in_args[0].value = &ia->write.in;
1022 	args->in_args[1].size = count;
1023 	args->out_numargs = 1;
1024 	args->out_args[0].size = sizeof(ia->write.out);
1025 	args->out_args[0].value = &ia->write.out;
1026 }
1027 
1028 static unsigned int fuse_write_flags(struct kiocb *iocb)
1029 {
1030 	unsigned int flags = iocb->ki_filp->f_flags;
1031 
1032 	if (iocb->ki_flags & IOCB_DSYNC)
1033 		flags |= O_DSYNC;
1034 	if (iocb->ki_flags & IOCB_SYNC)
1035 		flags |= O_SYNC;
1036 
1037 	return flags;
1038 }
1039 
1040 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1041 			       size_t count, fl_owner_t owner)
1042 {
1043 	struct kiocb *iocb = ia->io->iocb;
1044 	struct file *file = iocb->ki_filp;
1045 	struct fuse_file *ff = file->private_data;
1046 	struct fuse_mount *fm = ff->fm;
1047 	struct fuse_write_in *inarg = &ia->write.in;
1048 	ssize_t err;
1049 
1050 	fuse_write_args_fill(ia, ff, pos, count);
1051 	inarg->flags = fuse_write_flags(iocb);
1052 	if (owner != NULL) {
1053 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1054 		inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1055 	}
1056 
1057 	if (ia->io->async)
1058 		return fuse_async_req_send(fm, ia, count);
1059 
1060 	err = fuse_simple_request(fm, &ia->ap.args);
1061 	if (!err && ia->write.out.size > count)
1062 		err = -EIO;
1063 
1064 	return err ?: ia->write.out.size;
1065 }
1066 
1067 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1068 {
1069 	struct fuse_conn *fc = get_fuse_conn(inode);
1070 	struct fuse_inode *fi = get_fuse_inode(inode);
1071 	bool ret = false;
1072 
1073 	spin_lock(&fi->lock);
1074 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1075 	if (pos > inode->i_size) {
1076 		i_size_write(inode, pos);
1077 		ret = true;
1078 	}
1079 	spin_unlock(&fi->lock);
1080 
1081 	return ret;
1082 }
1083 
1084 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1085 				     struct kiocb *iocb, struct inode *inode,
1086 				     loff_t pos, size_t count)
1087 {
1088 	struct fuse_args_pages *ap = &ia->ap;
1089 	struct file *file = iocb->ki_filp;
1090 	struct fuse_file *ff = file->private_data;
1091 	struct fuse_mount *fm = ff->fm;
1092 	unsigned int offset, i;
1093 	int err;
1094 
1095 	for (i = 0; i < ap->num_pages; i++)
1096 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1097 
1098 	fuse_write_args_fill(ia, ff, pos, count);
1099 	ia->write.in.flags = fuse_write_flags(iocb);
1100 
1101 	err = fuse_simple_request(fm, &ap->args);
1102 	if (!err && ia->write.out.size > count)
1103 		err = -EIO;
1104 
1105 	offset = ap->descs[0].offset;
1106 	count = ia->write.out.size;
1107 	for (i = 0; i < ap->num_pages; i++) {
1108 		struct page *page = ap->pages[i];
1109 
1110 		if (!err && !offset && count >= PAGE_SIZE)
1111 			SetPageUptodate(page);
1112 
1113 		if (count > PAGE_SIZE - offset)
1114 			count -= PAGE_SIZE - offset;
1115 		else
1116 			count = 0;
1117 		offset = 0;
1118 
1119 		unlock_page(page);
1120 		put_page(page);
1121 	}
1122 
1123 	return err;
1124 }
1125 
1126 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1127 				     struct address_space *mapping,
1128 				     struct iov_iter *ii, loff_t pos,
1129 				     unsigned int max_pages)
1130 {
1131 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1132 	unsigned offset = pos & (PAGE_SIZE - 1);
1133 	size_t count = 0;
1134 	int err;
1135 
1136 	ap->args.in_pages = true;
1137 	ap->descs[0].offset = offset;
1138 
1139 	do {
1140 		size_t tmp;
1141 		struct page *page;
1142 		pgoff_t index = pos >> PAGE_SHIFT;
1143 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1144 				     iov_iter_count(ii));
1145 
1146 		bytes = min_t(size_t, bytes, fc->max_write - count);
1147 
1148  again:
1149 		err = -EFAULT;
1150 		if (iov_iter_fault_in_readable(ii, bytes))
1151 			break;
1152 
1153 		err = -ENOMEM;
1154 		page = grab_cache_page_write_begin(mapping, index, 0);
1155 		if (!page)
1156 			break;
1157 
1158 		if (mapping_writably_mapped(mapping))
1159 			flush_dcache_page(page);
1160 
1161 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1162 		flush_dcache_page(page);
1163 
1164 		iov_iter_advance(ii, tmp);
1165 		if (!tmp) {
1166 			unlock_page(page);
1167 			put_page(page);
1168 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1169 			goto again;
1170 		}
1171 
1172 		err = 0;
1173 		ap->pages[ap->num_pages] = page;
1174 		ap->descs[ap->num_pages].length = tmp;
1175 		ap->num_pages++;
1176 
1177 		count += tmp;
1178 		pos += tmp;
1179 		offset += tmp;
1180 		if (offset == PAGE_SIZE)
1181 			offset = 0;
1182 
1183 		if (!fc->big_writes)
1184 			break;
1185 	} while (iov_iter_count(ii) && count < fc->max_write &&
1186 		 ap->num_pages < max_pages && offset == 0);
1187 
1188 	return count > 0 ? count : err;
1189 }
1190 
1191 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1192 				     unsigned int max_pages)
1193 {
1194 	return min_t(unsigned int,
1195 		     ((pos + len - 1) >> PAGE_SHIFT) -
1196 		     (pos >> PAGE_SHIFT) + 1,
1197 		     max_pages);
1198 }
1199 
1200 static ssize_t fuse_perform_write(struct kiocb *iocb,
1201 				  struct address_space *mapping,
1202 				  struct iov_iter *ii, loff_t pos)
1203 {
1204 	struct inode *inode = mapping->host;
1205 	struct fuse_conn *fc = get_fuse_conn(inode);
1206 	struct fuse_inode *fi = get_fuse_inode(inode);
1207 	int err = 0;
1208 	ssize_t res = 0;
1209 
1210 	if (inode->i_size < pos + iov_iter_count(ii))
1211 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1212 
1213 	do {
1214 		ssize_t count;
1215 		struct fuse_io_args ia = {};
1216 		struct fuse_args_pages *ap = &ia.ap;
1217 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1218 						      fc->max_pages);
1219 
1220 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1221 		if (!ap->pages) {
1222 			err = -ENOMEM;
1223 			break;
1224 		}
1225 
1226 		count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1227 		if (count <= 0) {
1228 			err = count;
1229 		} else {
1230 			err = fuse_send_write_pages(&ia, iocb, inode,
1231 						    pos, count);
1232 			if (!err) {
1233 				size_t num_written = ia.write.out.size;
1234 
1235 				res += num_written;
1236 				pos += num_written;
1237 
1238 				/* break out of the loop on short write */
1239 				if (num_written != count)
1240 					err = -EIO;
1241 			}
1242 		}
1243 		kfree(ap->pages);
1244 	} while (!err && iov_iter_count(ii));
1245 
1246 	if (res > 0)
1247 		fuse_write_update_size(inode, pos);
1248 
1249 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1250 	fuse_invalidate_attr(inode);
1251 
1252 	return res > 0 ? res : err;
1253 }
1254 
1255 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1256 {
1257 	struct file *file = iocb->ki_filp;
1258 	struct address_space *mapping = file->f_mapping;
1259 	ssize_t written = 0;
1260 	ssize_t written_buffered = 0;
1261 	struct inode *inode = mapping->host;
1262 	ssize_t err;
1263 	loff_t endbyte = 0;
1264 
1265 	if (get_fuse_conn(inode)->writeback_cache) {
1266 		/* Update size (EOF optimization) and mode (SUID clearing) */
1267 		err = fuse_update_attributes(mapping->host, file);
1268 		if (err)
1269 			return err;
1270 
1271 		return generic_file_write_iter(iocb, from);
1272 	}
1273 
1274 	inode_lock(inode);
1275 
1276 	/* We can write back this queue in page reclaim */
1277 	current->backing_dev_info = inode_to_bdi(inode);
1278 
1279 	err = generic_write_checks(iocb, from);
1280 	if (err <= 0)
1281 		goto out;
1282 
1283 	err = file_remove_privs(file);
1284 	if (err)
1285 		goto out;
1286 
1287 	err = file_update_time(file);
1288 	if (err)
1289 		goto out;
1290 
1291 	if (iocb->ki_flags & IOCB_DIRECT) {
1292 		loff_t pos = iocb->ki_pos;
1293 		written = generic_file_direct_write(iocb, from);
1294 		if (written < 0 || !iov_iter_count(from))
1295 			goto out;
1296 
1297 		pos += written;
1298 
1299 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1300 		if (written_buffered < 0) {
1301 			err = written_buffered;
1302 			goto out;
1303 		}
1304 		endbyte = pos + written_buffered - 1;
1305 
1306 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1307 						   endbyte);
1308 		if (err)
1309 			goto out;
1310 
1311 		invalidate_mapping_pages(file->f_mapping,
1312 					 pos >> PAGE_SHIFT,
1313 					 endbyte >> PAGE_SHIFT);
1314 
1315 		written += written_buffered;
1316 		iocb->ki_pos = pos + written_buffered;
1317 	} else {
1318 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1319 		if (written >= 0)
1320 			iocb->ki_pos += written;
1321 	}
1322 out:
1323 	current->backing_dev_info = NULL;
1324 	inode_unlock(inode);
1325 	if (written > 0)
1326 		written = generic_write_sync(iocb, written);
1327 
1328 	return written ? written : err;
1329 }
1330 
1331 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1332 					       unsigned int index,
1333 					       unsigned int nr_pages)
1334 {
1335 	int i;
1336 
1337 	for (i = index; i < index + nr_pages; i++)
1338 		descs[i].length = PAGE_SIZE - descs[i].offset;
1339 }
1340 
1341 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1342 {
1343 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1344 }
1345 
1346 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1347 					size_t max_size)
1348 {
1349 	return min(iov_iter_single_seg_count(ii), max_size);
1350 }
1351 
1352 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1353 			       size_t *nbytesp, int write,
1354 			       unsigned int max_pages)
1355 {
1356 	size_t nbytes = 0;  /* # bytes already packed in req */
1357 	ssize_t ret = 0;
1358 
1359 	/* Special case for kernel I/O: can copy directly into the buffer */
1360 	if (iov_iter_is_kvec(ii)) {
1361 		unsigned long user_addr = fuse_get_user_addr(ii);
1362 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1363 
1364 		if (write)
1365 			ap->args.in_args[1].value = (void *) user_addr;
1366 		else
1367 			ap->args.out_args[0].value = (void *) user_addr;
1368 
1369 		iov_iter_advance(ii, frag_size);
1370 		*nbytesp = frag_size;
1371 		return 0;
1372 	}
1373 
1374 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1375 		unsigned npages;
1376 		size_t start;
1377 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1378 					*nbytesp - nbytes,
1379 					max_pages - ap->num_pages,
1380 					&start);
1381 		if (ret < 0)
1382 			break;
1383 
1384 		iov_iter_advance(ii, ret);
1385 		nbytes += ret;
1386 
1387 		ret += start;
1388 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1389 
1390 		ap->descs[ap->num_pages].offset = start;
1391 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1392 
1393 		ap->num_pages += npages;
1394 		ap->descs[ap->num_pages - 1].length -=
1395 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1396 	}
1397 
1398 	if (write)
1399 		ap->args.in_pages = true;
1400 	else
1401 		ap->args.out_pages = true;
1402 
1403 	*nbytesp = nbytes;
1404 
1405 	return ret < 0 ? ret : 0;
1406 }
1407 
1408 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1409 		       loff_t *ppos, int flags)
1410 {
1411 	int write = flags & FUSE_DIO_WRITE;
1412 	int cuse = flags & FUSE_DIO_CUSE;
1413 	struct file *file = io->iocb->ki_filp;
1414 	struct inode *inode = file->f_mapping->host;
1415 	struct fuse_file *ff = file->private_data;
1416 	struct fuse_conn *fc = ff->fm->fc;
1417 	size_t nmax = write ? fc->max_write : fc->max_read;
1418 	loff_t pos = *ppos;
1419 	size_t count = iov_iter_count(iter);
1420 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1421 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1422 	ssize_t res = 0;
1423 	int err = 0;
1424 	struct fuse_io_args *ia;
1425 	unsigned int max_pages;
1426 
1427 	max_pages = iov_iter_npages(iter, fc->max_pages);
1428 	ia = fuse_io_alloc(io, max_pages);
1429 	if (!ia)
1430 		return -ENOMEM;
1431 
1432 	ia->io = io;
1433 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1434 		if (!write)
1435 			inode_lock(inode);
1436 		fuse_sync_writes(inode);
1437 		if (!write)
1438 			inode_unlock(inode);
1439 	}
1440 
1441 	io->should_dirty = !write && iter_is_iovec(iter);
1442 	while (count) {
1443 		ssize_t nres;
1444 		fl_owner_t owner = current->files;
1445 		size_t nbytes = min(count, nmax);
1446 
1447 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1448 					  max_pages);
1449 		if (err && !nbytes)
1450 			break;
1451 
1452 		if (write) {
1453 			if (!capable(CAP_FSETID))
1454 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1455 
1456 			nres = fuse_send_write(ia, pos, nbytes, owner);
1457 		} else {
1458 			nres = fuse_send_read(ia, pos, nbytes, owner);
1459 		}
1460 
1461 		if (!io->async || nres < 0) {
1462 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1463 			fuse_io_free(ia);
1464 		}
1465 		ia = NULL;
1466 		if (nres < 0) {
1467 			iov_iter_revert(iter, nbytes);
1468 			err = nres;
1469 			break;
1470 		}
1471 		WARN_ON(nres > nbytes);
1472 
1473 		count -= nres;
1474 		res += nres;
1475 		pos += nres;
1476 		if (nres != nbytes) {
1477 			iov_iter_revert(iter, nbytes - nres);
1478 			break;
1479 		}
1480 		if (count) {
1481 			max_pages = iov_iter_npages(iter, fc->max_pages);
1482 			ia = fuse_io_alloc(io, max_pages);
1483 			if (!ia)
1484 				break;
1485 		}
1486 	}
1487 	if (ia)
1488 		fuse_io_free(ia);
1489 	if (res > 0)
1490 		*ppos = pos;
1491 
1492 	return res > 0 ? res : err;
1493 }
1494 EXPORT_SYMBOL_GPL(fuse_direct_io);
1495 
1496 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1497 				  struct iov_iter *iter,
1498 				  loff_t *ppos)
1499 {
1500 	ssize_t res;
1501 	struct inode *inode = file_inode(io->iocb->ki_filp);
1502 
1503 	res = fuse_direct_io(io, iter, ppos, 0);
1504 
1505 	fuse_invalidate_atime(inode);
1506 
1507 	return res;
1508 }
1509 
1510 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1511 
1512 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1513 {
1514 	ssize_t res;
1515 
1516 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1517 		res = fuse_direct_IO(iocb, to);
1518 	} else {
1519 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1520 
1521 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1522 	}
1523 
1524 	return res;
1525 }
1526 
1527 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1528 {
1529 	struct inode *inode = file_inode(iocb->ki_filp);
1530 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1531 	ssize_t res;
1532 
1533 	/* Don't allow parallel writes to the same file */
1534 	inode_lock(inode);
1535 	res = generic_write_checks(iocb, from);
1536 	if (res > 0) {
1537 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1538 			res = fuse_direct_IO(iocb, from);
1539 		} else {
1540 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1541 					     FUSE_DIO_WRITE);
1542 		}
1543 	}
1544 	fuse_invalidate_attr(inode);
1545 	if (res > 0)
1546 		fuse_write_update_size(inode, iocb->ki_pos);
1547 	inode_unlock(inode);
1548 
1549 	return res;
1550 }
1551 
1552 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1553 {
1554 	struct file *file = iocb->ki_filp;
1555 	struct fuse_file *ff = file->private_data;
1556 	struct inode *inode = file_inode(file);
1557 
1558 	if (is_bad_inode(inode))
1559 		return -EIO;
1560 
1561 	if (FUSE_IS_DAX(inode))
1562 		return fuse_dax_read_iter(iocb, to);
1563 
1564 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1565 		return fuse_cache_read_iter(iocb, to);
1566 	else
1567 		return fuse_direct_read_iter(iocb, to);
1568 }
1569 
1570 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1571 {
1572 	struct file *file = iocb->ki_filp;
1573 	struct fuse_file *ff = file->private_data;
1574 	struct inode *inode = file_inode(file);
1575 
1576 	if (is_bad_inode(inode))
1577 		return -EIO;
1578 
1579 	if (FUSE_IS_DAX(inode))
1580 		return fuse_dax_write_iter(iocb, from);
1581 
1582 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1583 		return fuse_cache_write_iter(iocb, from);
1584 	else
1585 		return fuse_direct_write_iter(iocb, from);
1586 }
1587 
1588 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1589 {
1590 	struct fuse_args_pages *ap = &wpa->ia.ap;
1591 	int i;
1592 
1593 	for (i = 0; i < ap->num_pages; i++)
1594 		__free_page(ap->pages[i]);
1595 
1596 	if (wpa->ia.ff)
1597 		fuse_file_put(wpa->ia.ff, false, false);
1598 
1599 	kfree(ap->pages);
1600 	kfree(wpa);
1601 }
1602 
1603 static void fuse_writepage_finish(struct fuse_mount *fm,
1604 				  struct fuse_writepage_args *wpa)
1605 {
1606 	struct fuse_args_pages *ap = &wpa->ia.ap;
1607 	struct inode *inode = wpa->inode;
1608 	struct fuse_inode *fi = get_fuse_inode(inode);
1609 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1610 	int i;
1611 
1612 	for (i = 0; i < ap->num_pages; i++) {
1613 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1614 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1615 		wb_writeout_inc(&bdi->wb);
1616 	}
1617 	wake_up(&fi->page_waitq);
1618 }
1619 
1620 /* Called under fi->lock, may release and reacquire it */
1621 static void fuse_send_writepage(struct fuse_mount *fm,
1622 				struct fuse_writepage_args *wpa, loff_t size)
1623 __releases(fi->lock)
1624 __acquires(fi->lock)
1625 {
1626 	struct fuse_writepage_args *aux, *next;
1627 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1628 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1629 	struct fuse_args *args = &wpa->ia.ap.args;
1630 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1631 	int err;
1632 
1633 	fi->writectr++;
1634 	if (inarg->offset + data_size <= size) {
1635 		inarg->size = data_size;
1636 	} else if (inarg->offset < size) {
1637 		inarg->size = size - inarg->offset;
1638 	} else {
1639 		/* Got truncated off completely */
1640 		goto out_free;
1641 	}
1642 
1643 	args->in_args[1].size = inarg->size;
1644 	args->force = true;
1645 	args->nocreds = true;
1646 
1647 	err = fuse_simple_background(fm, args, GFP_ATOMIC);
1648 	if (err == -ENOMEM) {
1649 		spin_unlock(&fi->lock);
1650 		err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1651 		spin_lock(&fi->lock);
1652 	}
1653 
1654 	/* Fails on broken connection only */
1655 	if (unlikely(err))
1656 		goto out_free;
1657 
1658 	return;
1659 
1660  out_free:
1661 	fi->writectr--;
1662 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1663 	fuse_writepage_finish(fm, wpa);
1664 	spin_unlock(&fi->lock);
1665 
1666 	/* After fuse_writepage_finish() aux request list is private */
1667 	for (aux = wpa->next; aux; aux = next) {
1668 		next = aux->next;
1669 		aux->next = NULL;
1670 		fuse_writepage_free(aux);
1671 	}
1672 
1673 	fuse_writepage_free(wpa);
1674 	spin_lock(&fi->lock);
1675 }
1676 
1677 /*
1678  * If fi->writectr is positive (no truncate or fsync going on) send
1679  * all queued writepage requests.
1680  *
1681  * Called with fi->lock
1682  */
1683 void fuse_flush_writepages(struct inode *inode)
1684 __releases(fi->lock)
1685 __acquires(fi->lock)
1686 {
1687 	struct fuse_mount *fm = get_fuse_mount(inode);
1688 	struct fuse_inode *fi = get_fuse_inode(inode);
1689 	loff_t crop = i_size_read(inode);
1690 	struct fuse_writepage_args *wpa;
1691 
1692 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1693 		wpa = list_entry(fi->queued_writes.next,
1694 				 struct fuse_writepage_args, queue_entry);
1695 		list_del_init(&wpa->queue_entry);
1696 		fuse_send_writepage(fm, wpa, crop);
1697 	}
1698 }
1699 
1700 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1701 						struct fuse_writepage_args *wpa)
1702 {
1703 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1704 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1705 	struct rb_node **p = &root->rb_node;
1706 	struct rb_node  *parent = NULL;
1707 
1708 	WARN_ON(!wpa->ia.ap.num_pages);
1709 	while (*p) {
1710 		struct fuse_writepage_args *curr;
1711 		pgoff_t curr_index;
1712 
1713 		parent = *p;
1714 		curr = rb_entry(parent, struct fuse_writepage_args,
1715 				writepages_entry);
1716 		WARN_ON(curr->inode != wpa->inode);
1717 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1718 
1719 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1720 			p = &(*p)->rb_right;
1721 		else if (idx_to < curr_index)
1722 			p = &(*p)->rb_left;
1723 		else
1724 			return curr;
1725 	}
1726 
1727 	rb_link_node(&wpa->writepages_entry, parent, p);
1728 	rb_insert_color(&wpa->writepages_entry, root);
1729 	return NULL;
1730 }
1731 
1732 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1733 {
1734 	WARN_ON(fuse_insert_writeback(root, wpa));
1735 }
1736 
1737 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1738 			       int error)
1739 {
1740 	struct fuse_writepage_args *wpa =
1741 		container_of(args, typeof(*wpa), ia.ap.args);
1742 	struct inode *inode = wpa->inode;
1743 	struct fuse_inode *fi = get_fuse_inode(inode);
1744 
1745 	mapping_set_error(inode->i_mapping, error);
1746 	spin_lock(&fi->lock);
1747 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1748 	while (wpa->next) {
1749 		struct fuse_mount *fm = get_fuse_mount(inode);
1750 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1751 		struct fuse_writepage_args *next = wpa->next;
1752 
1753 		wpa->next = next->next;
1754 		next->next = NULL;
1755 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1756 		tree_insert(&fi->writepages, next);
1757 
1758 		/*
1759 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1760 		 * based on primary request size.
1761 		 *
1762 		 * 1st case (trivial): there are no concurrent activities using
1763 		 * fuse_set/release_nowrite.  Then we're on safe side because
1764 		 * fuse_flush_writepages() would call fuse_send_writepage()
1765 		 * anyway.
1766 		 *
1767 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1768 		 * now for completion of all in-flight requests.  This happens
1769 		 * rarely and no more than once per page, so this should be
1770 		 * okay.
1771 		 *
1772 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1773 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1774 		 * that fuse_set_nowrite returned implies that all in-flight
1775 		 * requests were completed along with all of their secondary
1776 		 * requests.  Further primary requests are blocked by negative
1777 		 * writectr.  Hence there cannot be any in-flight requests and
1778 		 * no invocations of fuse_writepage_end() while we're in
1779 		 * fuse_set_nowrite..fuse_release_nowrite section.
1780 		 */
1781 		fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1782 	}
1783 	fi->writectr--;
1784 	fuse_writepage_finish(fm, wpa);
1785 	spin_unlock(&fi->lock);
1786 	fuse_writepage_free(wpa);
1787 }
1788 
1789 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1790 					       struct fuse_inode *fi)
1791 {
1792 	struct fuse_file *ff = NULL;
1793 
1794 	spin_lock(&fi->lock);
1795 	if (!list_empty(&fi->write_files)) {
1796 		ff = list_entry(fi->write_files.next, struct fuse_file,
1797 				write_entry);
1798 		fuse_file_get(ff);
1799 	}
1800 	spin_unlock(&fi->lock);
1801 
1802 	return ff;
1803 }
1804 
1805 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1806 					     struct fuse_inode *fi)
1807 {
1808 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1809 	WARN_ON(!ff);
1810 	return ff;
1811 }
1812 
1813 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1814 {
1815 	struct fuse_conn *fc = get_fuse_conn(inode);
1816 	struct fuse_inode *fi = get_fuse_inode(inode);
1817 	struct fuse_file *ff;
1818 	int err;
1819 
1820 	ff = __fuse_write_file_get(fc, fi);
1821 	err = fuse_flush_times(inode, ff);
1822 	if (ff)
1823 		fuse_file_put(ff, false, false);
1824 
1825 	return err;
1826 }
1827 
1828 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1829 {
1830 	struct fuse_writepage_args *wpa;
1831 	struct fuse_args_pages *ap;
1832 
1833 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1834 	if (wpa) {
1835 		ap = &wpa->ia.ap;
1836 		ap->num_pages = 0;
1837 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1838 		if (!ap->pages) {
1839 			kfree(wpa);
1840 			wpa = NULL;
1841 		}
1842 	}
1843 	return wpa;
1844 
1845 }
1846 
1847 static int fuse_writepage_locked(struct page *page)
1848 {
1849 	struct address_space *mapping = page->mapping;
1850 	struct inode *inode = mapping->host;
1851 	struct fuse_conn *fc = get_fuse_conn(inode);
1852 	struct fuse_inode *fi = get_fuse_inode(inode);
1853 	struct fuse_writepage_args *wpa;
1854 	struct fuse_args_pages *ap;
1855 	struct page *tmp_page;
1856 	int error = -ENOMEM;
1857 
1858 	set_page_writeback(page);
1859 
1860 	wpa = fuse_writepage_args_alloc();
1861 	if (!wpa)
1862 		goto err;
1863 	ap = &wpa->ia.ap;
1864 
1865 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1866 	if (!tmp_page)
1867 		goto err_free;
1868 
1869 	error = -EIO;
1870 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1871 	if (!wpa->ia.ff)
1872 		goto err_nofile;
1873 
1874 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1875 
1876 	copy_highpage(tmp_page, page);
1877 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1878 	wpa->next = NULL;
1879 	ap->args.in_pages = true;
1880 	ap->num_pages = 1;
1881 	ap->pages[0] = tmp_page;
1882 	ap->descs[0].offset = 0;
1883 	ap->descs[0].length = PAGE_SIZE;
1884 	ap->args.end = fuse_writepage_end;
1885 	wpa->inode = inode;
1886 
1887 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1888 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1889 
1890 	spin_lock(&fi->lock);
1891 	tree_insert(&fi->writepages, wpa);
1892 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1893 	fuse_flush_writepages(inode);
1894 	spin_unlock(&fi->lock);
1895 
1896 	end_page_writeback(page);
1897 
1898 	return 0;
1899 
1900 err_nofile:
1901 	__free_page(tmp_page);
1902 err_free:
1903 	kfree(wpa);
1904 err:
1905 	mapping_set_error(page->mapping, error);
1906 	end_page_writeback(page);
1907 	return error;
1908 }
1909 
1910 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1911 {
1912 	int err;
1913 
1914 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1915 		/*
1916 		 * ->writepages() should be called for sync() and friends.  We
1917 		 * should only get here on direct reclaim and then we are
1918 		 * allowed to skip a page which is already in flight
1919 		 */
1920 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1921 
1922 		redirty_page_for_writepage(wbc, page);
1923 		unlock_page(page);
1924 		return 0;
1925 	}
1926 
1927 	err = fuse_writepage_locked(page);
1928 	unlock_page(page);
1929 
1930 	return err;
1931 }
1932 
1933 struct fuse_fill_wb_data {
1934 	struct fuse_writepage_args *wpa;
1935 	struct fuse_file *ff;
1936 	struct inode *inode;
1937 	struct page **orig_pages;
1938 	unsigned int max_pages;
1939 };
1940 
1941 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1942 {
1943 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1944 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1945 	struct page **pages;
1946 	struct fuse_page_desc *descs;
1947 	unsigned int npages = min_t(unsigned int,
1948 				    max_t(unsigned int, data->max_pages * 2,
1949 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1950 				    fc->max_pages);
1951 	WARN_ON(npages <= data->max_pages);
1952 
1953 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1954 	if (!pages)
1955 		return false;
1956 
1957 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1958 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1959 	kfree(ap->pages);
1960 	ap->pages = pages;
1961 	ap->descs = descs;
1962 	data->max_pages = npages;
1963 
1964 	return true;
1965 }
1966 
1967 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1968 {
1969 	struct fuse_writepage_args *wpa = data->wpa;
1970 	struct inode *inode = data->inode;
1971 	struct fuse_inode *fi = get_fuse_inode(inode);
1972 	int num_pages = wpa->ia.ap.num_pages;
1973 	int i;
1974 
1975 	wpa->ia.ff = fuse_file_get(data->ff);
1976 	spin_lock(&fi->lock);
1977 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1978 	fuse_flush_writepages(inode);
1979 	spin_unlock(&fi->lock);
1980 
1981 	for (i = 0; i < num_pages; i++)
1982 		end_page_writeback(data->orig_pages[i]);
1983 }
1984 
1985 /*
1986  * Check under fi->lock if the page is under writeback, and insert it onto the
1987  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
1988  * one already added for a page at this offset.  If there's none, then insert
1989  * this new request onto the auxiliary list, otherwise reuse the existing one by
1990  * swapping the new temp page with the old one.
1991  */
1992 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
1993 			       struct page *page)
1994 {
1995 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1996 	struct fuse_writepage_args *tmp;
1997 	struct fuse_writepage_args *old_wpa;
1998 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1999 
2000 	WARN_ON(new_ap->num_pages != 0);
2001 	new_ap->num_pages = 1;
2002 
2003 	spin_lock(&fi->lock);
2004 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2005 	if (!old_wpa) {
2006 		spin_unlock(&fi->lock);
2007 		return true;
2008 	}
2009 
2010 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2011 		pgoff_t curr_index;
2012 
2013 		WARN_ON(tmp->inode != new_wpa->inode);
2014 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2015 		if (curr_index == page->index) {
2016 			WARN_ON(tmp->ia.ap.num_pages != 1);
2017 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2018 			break;
2019 		}
2020 	}
2021 
2022 	if (!tmp) {
2023 		new_wpa->next = old_wpa->next;
2024 		old_wpa->next = new_wpa;
2025 	}
2026 
2027 	spin_unlock(&fi->lock);
2028 
2029 	if (tmp) {
2030 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2031 
2032 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2033 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2034 		wb_writeout_inc(&bdi->wb);
2035 		fuse_writepage_free(new_wpa);
2036 	}
2037 
2038 	return false;
2039 }
2040 
2041 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2042 				     struct fuse_args_pages *ap,
2043 				     struct fuse_fill_wb_data *data)
2044 {
2045 	WARN_ON(!ap->num_pages);
2046 
2047 	/*
2048 	 * Being under writeback is unlikely but possible.  For example direct
2049 	 * read to an mmaped fuse file will set the page dirty twice; once when
2050 	 * the pages are faulted with get_user_pages(), and then after the read
2051 	 * completed.
2052 	 */
2053 	if (fuse_page_is_writeback(data->inode, page->index))
2054 		return true;
2055 
2056 	/* Reached max pages */
2057 	if (ap->num_pages == fc->max_pages)
2058 		return true;
2059 
2060 	/* Reached max write bytes */
2061 	if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2062 		return true;
2063 
2064 	/* Discontinuity */
2065 	if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2066 		return true;
2067 
2068 	/* Need to grow the pages array?  If so, did the expansion fail? */
2069 	if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2070 		return true;
2071 
2072 	return false;
2073 }
2074 
2075 static int fuse_writepages_fill(struct page *page,
2076 		struct writeback_control *wbc, void *_data)
2077 {
2078 	struct fuse_fill_wb_data *data = _data;
2079 	struct fuse_writepage_args *wpa = data->wpa;
2080 	struct fuse_args_pages *ap = &wpa->ia.ap;
2081 	struct inode *inode = data->inode;
2082 	struct fuse_inode *fi = get_fuse_inode(inode);
2083 	struct fuse_conn *fc = get_fuse_conn(inode);
2084 	struct page *tmp_page;
2085 	int err;
2086 
2087 	if (!data->ff) {
2088 		err = -EIO;
2089 		data->ff = fuse_write_file_get(fc, fi);
2090 		if (!data->ff)
2091 			goto out_unlock;
2092 	}
2093 
2094 	if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2095 		fuse_writepages_send(data);
2096 		data->wpa = NULL;
2097 	}
2098 
2099 	err = -ENOMEM;
2100 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2101 	if (!tmp_page)
2102 		goto out_unlock;
2103 
2104 	/*
2105 	 * The page must not be redirtied until the writeout is completed
2106 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2107 	 * there could be more than one temporary page instance for each real
2108 	 * page.
2109 	 *
2110 	 * This is ensured by holding the page lock in page_mkwrite() while
2111 	 * checking fuse_page_is_writeback().  We already hold the page lock
2112 	 * since clear_page_dirty_for_io() and keep it held until we add the
2113 	 * request to the fi->writepages list and increment ap->num_pages.
2114 	 * After this fuse_page_is_writeback() will indicate that the page is
2115 	 * under writeback, so we can release the page lock.
2116 	 */
2117 	if (data->wpa == NULL) {
2118 		err = -ENOMEM;
2119 		wpa = fuse_writepage_args_alloc();
2120 		if (!wpa) {
2121 			__free_page(tmp_page);
2122 			goto out_unlock;
2123 		}
2124 		data->max_pages = 1;
2125 
2126 		ap = &wpa->ia.ap;
2127 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2128 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2129 		wpa->next = NULL;
2130 		ap->args.in_pages = true;
2131 		ap->args.end = fuse_writepage_end;
2132 		ap->num_pages = 0;
2133 		wpa->inode = inode;
2134 	}
2135 	set_page_writeback(page);
2136 
2137 	copy_highpage(tmp_page, page);
2138 	ap->pages[ap->num_pages] = tmp_page;
2139 	ap->descs[ap->num_pages].offset = 0;
2140 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2141 	data->orig_pages[ap->num_pages] = page;
2142 
2143 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2144 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2145 
2146 	err = 0;
2147 	if (data->wpa) {
2148 		/*
2149 		 * Protected by fi->lock against concurrent access by
2150 		 * fuse_page_is_writeback().
2151 		 */
2152 		spin_lock(&fi->lock);
2153 		ap->num_pages++;
2154 		spin_unlock(&fi->lock);
2155 	} else if (fuse_writepage_add(wpa, page)) {
2156 		data->wpa = wpa;
2157 	} else {
2158 		end_page_writeback(page);
2159 	}
2160 out_unlock:
2161 	unlock_page(page);
2162 
2163 	return err;
2164 }
2165 
2166 static int fuse_writepages(struct address_space *mapping,
2167 			   struct writeback_control *wbc)
2168 {
2169 	struct inode *inode = mapping->host;
2170 	struct fuse_conn *fc = get_fuse_conn(inode);
2171 	struct fuse_fill_wb_data data;
2172 	int err;
2173 
2174 	err = -EIO;
2175 	if (is_bad_inode(inode))
2176 		goto out;
2177 
2178 	data.inode = inode;
2179 	data.wpa = NULL;
2180 	data.ff = NULL;
2181 
2182 	err = -ENOMEM;
2183 	data.orig_pages = kcalloc(fc->max_pages,
2184 				  sizeof(struct page *),
2185 				  GFP_NOFS);
2186 	if (!data.orig_pages)
2187 		goto out;
2188 
2189 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2190 	if (data.wpa) {
2191 		WARN_ON(!data.wpa->ia.ap.num_pages);
2192 		fuse_writepages_send(&data);
2193 	}
2194 	if (data.ff)
2195 		fuse_file_put(data.ff, false, false);
2196 
2197 	kfree(data.orig_pages);
2198 out:
2199 	return err;
2200 }
2201 
2202 /*
2203  * It's worthy to make sure that space is reserved on disk for the write,
2204  * but how to implement it without killing performance need more thinking.
2205  */
2206 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2207 		loff_t pos, unsigned len, unsigned flags,
2208 		struct page **pagep, void **fsdata)
2209 {
2210 	pgoff_t index = pos >> PAGE_SHIFT;
2211 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2212 	struct page *page;
2213 	loff_t fsize;
2214 	int err = -ENOMEM;
2215 
2216 	WARN_ON(!fc->writeback_cache);
2217 
2218 	page = grab_cache_page_write_begin(mapping, index, flags);
2219 	if (!page)
2220 		goto error;
2221 
2222 	fuse_wait_on_page_writeback(mapping->host, page->index);
2223 
2224 	if (PageUptodate(page) || len == PAGE_SIZE)
2225 		goto success;
2226 	/*
2227 	 * Check if the start this page comes after the end of file, in which
2228 	 * case the readpage can be optimized away.
2229 	 */
2230 	fsize = i_size_read(mapping->host);
2231 	if (fsize <= (pos & PAGE_MASK)) {
2232 		size_t off = pos & ~PAGE_MASK;
2233 		if (off)
2234 			zero_user_segment(page, 0, off);
2235 		goto success;
2236 	}
2237 	err = fuse_do_readpage(file, page);
2238 	if (err)
2239 		goto cleanup;
2240 success:
2241 	*pagep = page;
2242 	return 0;
2243 
2244 cleanup:
2245 	unlock_page(page);
2246 	put_page(page);
2247 error:
2248 	return err;
2249 }
2250 
2251 static int fuse_write_end(struct file *file, struct address_space *mapping,
2252 		loff_t pos, unsigned len, unsigned copied,
2253 		struct page *page, void *fsdata)
2254 {
2255 	struct inode *inode = page->mapping->host;
2256 
2257 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2258 	if (!copied)
2259 		goto unlock;
2260 
2261 	if (!PageUptodate(page)) {
2262 		/* Zero any unwritten bytes at the end of the page */
2263 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2264 		if (endoff)
2265 			zero_user_segment(page, endoff, PAGE_SIZE);
2266 		SetPageUptodate(page);
2267 	}
2268 
2269 	fuse_write_update_size(inode, pos + copied);
2270 	set_page_dirty(page);
2271 
2272 unlock:
2273 	unlock_page(page);
2274 	put_page(page);
2275 
2276 	return copied;
2277 }
2278 
2279 static int fuse_launder_page(struct page *page)
2280 {
2281 	int err = 0;
2282 	if (clear_page_dirty_for_io(page)) {
2283 		struct inode *inode = page->mapping->host;
2284 		err = fuse_writepage_locked(page);
2285 		if (!err)
2286 			fuse_wait_on_page_writeback(inode, page->index);
2287 	}
2288 	return err;
2289 }
2290 
2291 /*
2292  * Write back dirty pages now, because there may not be any suitable
2293  * open files later
2294  */
2295 static void fuse_vma_close(struct vm_area_struct *vma)
2296 {
2297 	filemap_write_and_wait(vma->vm_file->f_mapping);
2298 }
2299 
2300 /*
2301  * Wait for writeback against this page to complete before allowing it
2302  * to be marked dirty again, and hence written back again, possibly
2303  * before the previous writepage completed.
2304  *
2305  * Block here, instead of in ->writepage(), so that the userspace fs
2306  * can only block processes actually operating on the filesystem.
2307  *
2308  * Otherwise unprivileged userspace fs would be able to block
2309  * unrelated:
2310  *
2311  * - page migration
2312  * - sync(2)
2313  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2314  */
2315 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2316 {
2317 	struct page *page = vmf->page;
2318 	struct inode *inode = file_inode(vmf->vma->vm_file);
2319 
2320 	file_update_time(vmf->vma->vm_file);
2321 	lock_page(page);
2322 	if (page->mapping != inode->i_mapping) {
2323 		unlock_page(page);
2324 		return VM_FAULT_NOPAGE;
2325 	}
2326 
2327 	fuse_wait_on_page_writeback(inode, page->index);
2328 	return VM_FAULT_LOCKED;
2329 }
2330 
2331 static const struct vm_operations_struct fuse_file_vm_ops = {
2332 	.close		= fuse_vma_close,
2333 	.fault		= filemap_fault,
2334 	.map_pages	= filemap_map_pages,
2335 	.page_mkwrite	= fuse_page_mkwrite,
2336 };
2337 
2338 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2339 {
2340 	struct fuse_file *ff = file->private_data;
2341 
2342 	/* DAX mmap is superior to direct_io mmap */
2343 	if (FUSE_IS_DAX(file_inode(file)))
2344 		return fuse_dax_mmap(file, vma);
2345 
2346 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2347 		/* Can't provide the coherency needed for MAP_SHARED */
2348 		if (vma->vm_flags & VM_MAYSHARE)
2349 			return -ENODEV;
2350 
2351 		invalidate_inode_pages2(file->f_mapping);
2352 
2353 		return generic_file_mmap(file, vma);
2354 	}
2355 
2356 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2357 		fuse_link_write_file(file);
2358 
2359 	file_accessed(file);
2360 	vma->vm_ops = &fuse_file_vm_ops;
2361 	return 0;
2362 }
2363 
2364 static int convert_fuse_file_lock(struct fuse_conn *fc,
2365 				  const struct fuse_file_lock *ffl,
2366 				  struct file_lock *fl)
2367 {
2368 	switch (ffl->type) {
2369 	case F_UNLCK:
2370 		break;
2371 
2372 	case F_RDLCK:
2373 	case F_WRLCK:
2374 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2375 		    ffl->end < ffl->start)
2376 			return -EIO;
2377 
2378 		fl->fl_start = ffl->start;
2379 		fl->fl_end = ffl->end;
2380 
2381 		/*
2382 		 * Convert pid into init's pid namespace.  The locks API will
2383 		 * translate it into the caller's pid namespace.
2384 		 */
2385 		rcu_read_lock();
2386 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2387 		rcu_read_unlock();
2388 		break;
2389 
2390 	default:
2391 		return -EIO;
2392 	}
2393 	fl->fl_type = ffl->type;
2394 	return 0;
2395 }
2396 
2397 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2398 			 const struct file_lock *fl, int opcode, pid_t pid,
2399 			 int flock, struct fuse_lk_in *inarg)
2400 {
2401 	struct inode *inode = file_inode(file);
2402 	struct fuse_conn *fc = get_fuse_conn(inode);
2403 	struct fuse_file *ff = file->private_data;
2404 
2405 	memset(inarg, 0, sizeof(*inarg));
2406 	inarg->fh = ff->fh;
2407 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2408 	inarg->lk.start = fl->fl_start;
2409 	inarg->lk.end = fl->fl_end;
2410 	inarg->lk.type = fl->fl_type;
2411 	inarg->lk.pid = pid;
2412 	if (flock)
2413 		inarg->lk_flags |= FUSE_LK_FLOCK;
2414 	args->opcode = opcode;
2415 	args->nodeid = get_node_id(inode);
2416 	args->in_numargs = 1;
2417 	args->in_args[0].size = sizeof(*inarg);
2418 	args->in_args[0].value = inarg;
2419 }
2420 
2421 static int fuse_getlk(struct file *file, struct file_lock *fl)
2422 {
2423 	struct inode *inode = file_inode(file);
2424 	struct fuse_mount *fm = get_fuse_mount(inode);
2425 	FUSE_ARGS(args);
2426 	struct fuse_lk_in inarg;
2427 	struct fuse_lk_out outarg;
2428 	int err;
2429 
2430 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2431 	args.out_numargs = 1;
2432 	args.out_args[0].size = sizeof(outarg);
2433 	args.out_args[0].value = &outarg;
2434 	err = fuse_simple_request(fm, &args);
2435 	if (!err)
2436 		err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2437 
2438 	return err;
2439 }
2440 
2441 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2442 {
2443 	struct inode *inode = file_inode(file);
2444 	struct fuse_mount *fm = get_fuse_mount(inode);
2445 	FUSE_ARGS(args);
2446 	struct fuse_lk_in inarg;
2447 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2448 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2449 	pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2450 	int err;
2451 
2452 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2453 		/* NLM needs asynchronous locks, which we don't support yet */
2454 		return -ENOLCK;
2455 	}
2456 
2457 	/* Unlock on close is handled by the flush method */
2458 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2459 		return 0;
2460 
2461 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2462 	err = fuse_simple_request(fm, &args);
2463 
2464 	/* locking is restartable */
2465 	if (err == -EINTR)
2466 		err = -ERESTARTSYS;
2467 
2468 	return err;
2469 }
2470 
2471 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2472 {
2473 	struct inode *inode = file_inode(file);
2474 	struct fuse_conn *fc = get_fuse_conn(inode);
2475 	int err;
2476 
2477 	if (cmd == F_CANCELLK) {
2478 		err = 0;
2479 	} else if (cmd == F_GETLK) {
2480 		if (fc->no_lock) {
2481 			posix_test_lock(file, fl);
2482 			err = 0;
2483 		} else
2484 			err = fuse_getlk(file, fl);
2485 	} else {
2486 		if (fc->no_lock)
2487 			err = posix_lock_file(file, fl, NULL);
2488 		else
2489 			err = fuse_setlk(file, fl, 0);
2490 	}
2491 	return err;
2492 }
2493 
2494 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2495 {
2496 	struct inode *inode = file_inode(file);
2497 	struct fuse_conn *fc = get_fuse_conn(inode);
2498 	int err;
2499 
2500 	if (fc->no_flock) {
2501 		err = locks_lock_file_wait(file, fl);
2502 	} else {
2503 		struct fuse_file *ff = file->private_data;
2504 
2505 		/* emulate flock with POSIX locks */
2506 		ff->flock = true;
2507 		err = fuse_setlk(file, fl, 1);
2508 	}
2509 
2510 	return err;
2511 }
2512 
2513 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2514 {
2515 	struct inode *inode = mapping->host;
2516 	struct fuse_mount *fm = get_fuse_mount(inode);
2517 	FUSE_ARGS(args);
2518 	struct fuse_bmap_in inarg;
2519 	struct fuse_bmap_out outarg;
2520 	int err;
2521 
2522 	if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2523 		return 0;
2524 
2525 	memset(&inarg, 0, sizeof(inarg));
2526 	inarg.block = block;
2527 	inarg.blocksize = inode->i_sb->s_blocksize;
2528 	args.opcode = FUSE_BMAP;
2529 	args.nodeid = get_node_id(inode);
2530 	args.in_numargs = 1;
2531 	args.in_args[0].size = sizeof(inarg);
2532 	args.in_args[0].value = &inarg;
2533 	args.out_numargs = 1;
2534 	args.out_args[0].size = sizeof(outarg);
2535 	args.out_args[0].value = &outarg;
2536 	err = fuse_simple_request(fm, &args);
2537 	if (err == -ENOSYS)
2538 		fm->fc->no_bmap = 1;
2539 
2540 	return err ? 0 : outarg.block;
2541 }
2542 
2543 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2544 {
2545 	struct inode *inode = file->f_mapping->host;
2546 	struct fuse_mount *fm = get_fuse_mount(inode);
2547 	struct fuse_file *ff = file->private_data;
2548 	FUSE_ARGS(args);
2549 	struct fuse_lseek_in inarg = {
2550 		.fh = ff->fh,
2551 		.offset = offset,
2552 		.whence = whence
2553 	};
2554 	struct fuse_lseek_out outarg;
2555 	int err;
2556 
2557 	if (fm->fc->no_lseek)
2558 		goto fallback;
2559 
2560 	args.opcode = FUSE_LSEEK;
2561 	args.nodeid = ff->nodeid;
2562 	args.in_numargs = 1;
2563 	args.in_args[0].size = sizeof(inarg);
2564 	args.in_args[0].value = &inarg;
2565 	args.out_numargs = 1;
2566 	args.out_args[0].size = sizeof(outarg);
2567 	args.out_args[0].value = &outarg;
2568 	err = fuse_simple_request(fm, &args);
2569 	if (err) {
2570 		if (err == -ENOSYS) {
2571 			fm->fc->no_lseek = 1;
2572 			goto fallback;
2573 		}
2574 		return err;
2575 	}
2576 
2577 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2578 
2579 fallback:
2580 	err = fuse_update_attributes(inode, file);
2581 	if (!err)
2582 		return generic_file_llseek(file, offset, whence);
2583 	else
2584 		return err;
2585 }
2586 
2587 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2588 {
2589 	loff_t retval;
2590 	struct inode *inode = file_inode(file);
2591 
2592 	switch (whence) {
2593 	case SEEK_SET:
2594 	case SEEK_CUR:
2595 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2596 		retval = generic_file_llseek(file, offset, whence);
2597 		break;
2598 	case SEEK_END:
2599 		inode_lock(inode);
2600 		retval = fuse_update_attributes(inode, file);
2601 		if (!retval)
2602 			retval = generic_file_llseek(file, offset, whence);
2603 		inode_unlock(inode);
2604 		break;
2605 	case SEEK_HOLE:
2606 	case SEEK_DATA:
2607 		inode_lock(inode);
2608 		retval = fuse_lseek(file, offset, whence);
2609 		inode_unlock(inode);
2610 		break;
2611 	default:
2612 		retval = -EINVAL;
2613 	}
2614 
2615 	return retval;
2616 }
2617 
2618 /*
2619  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2620  * ABI was defined to be 'struct iovec' which is different on 32bit
2621  * and 64bit.  Fortunately we can determine which structure the server
2622  * used from the size of the reply.
2623  */
2624 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2625 				     size_t transferred, unsigned count,
2626 				     bool is_compat)
2627 {
2628 #ifdef CONFIG_COMPAT
2629 	if (count * sizeof(struct compat_iovec) == transferred) {
2630 		struct compat_iovec *ciov = src;
2631 		unsigned i;
2632 
2633 		/*
2634 		 * With this interface a 32bit server cannot support
2635 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2636 		 * requests
2637 		 */
2638 		if (!is_compat)
2639 			return -EINVAL;
2640 
2641 		for (i = 0; i < count; i++) {
2642 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2643 			dst[i].iov_len = ciov[i].iov_len;
2644 		}
2645 		return 0;
2646 	}
2647 #endif
2648 
2649 	if (count * sizeof(struct iovec) != transferred)
2650 		return -EIO;
2651 
2652 	memcpy(dst, src, transferred);
2653 	return 0;
2654 }
2655 
2656 /* Make sure iov_length() won't overflow */
2657 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2658 				 size_t count)
2659 {
2660 	size_t n;
2661 	u32 max = fc->max_pages << PAGE_SHIFT;
2662 
2663 	for (n = 0; n < count; n++, iov++) {
2664 		if (iov->iov_len > (size_t) max)
2665 			return -ENOMEM;
2666 		max -= iov->iov_len;
2667 	}
2668 	return 0;
2669 }
2670 
2671 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2672 				 void *src, size_t transferred, unsigned count,
2673 				 bool is_compat)
2674 {
2675 	unsigned i;
2676 	struct fuse_ioctl_iovec *fiov = src;
2677 
2678 	if (fc->minor < 16) {
2679 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2680 						 count, is_compat);
2681 	}
2682 
2683 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2684 		return -EIO;
2685 
2686 	for (i = 0; i < count; i++) {
2687 		/* Did the server supply an inappropriate value? */
2688 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2689 		    fiov[i].len != (unsigned long) fiov[i].len)
2690 			return -EIO;
2691 
2692 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2693 		dst[i].iov_len = (size_t) fiov[i].len;
2694 
2695 #ifdef CONFIG_COMPAT
2696 		if (is_compat &&
2697 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2698 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2699 			return -EIO;
2700 #endif
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 
2707 /*
2708  * For ioctls, there is no generic way to determine how much memory
2709  * needs to be read and/or written.  Furthermore, ioctls are allowed
2710  * to dereference the passed pointer, so the parameter requires deep
2711  * copying but FUSE has no idea whatsoever about what to copy in or
2712  * out.
2713  *
2714  * This is solved by allowing FUSE server to retry ioctl with
2715  * necessary in/out iovecs.  Let's assume the ioctl implementation
2716  * needs to read in the following structure.
2717  *
2718  * struct a {
2719  *	char	*buf;
2720  *	size_t	buflen;
2721  * }
2722  *
2723  * On the first callout to FUSE server, inarg->in_size and
2724  * inarg->out_size will be NULL; then, the server completes the ioctl
2725  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2726  * the actual iov array to
2727  *
2728  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2729  *
2730  * which tells FUSE to copy in the requested area and retry the ioctl.
2731  * On the second round, the server has access to the structure and
2732  * from that it can tell what to look for next, so on the invocation,
2733  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2734  *
2735  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2736  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2737  *
2738  * FUSE will copy both struct a and the pointed buffer from the
2739  * process doing the ioctl and retry ioctl with both struct a and the
2740  * buffer.
2741  *
2742  * This time, FUSE server has everything it needs and completes ioctl
2743  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2744  *
2745  * Copying data out works the same way.
2746  *
2747  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2748  * automatically initializes in and out iovs by decoding @cmd with
2749  * _IOC_* macros and the server is not allowed to request RETRY.  This
2750  * limits ioctl data transfers to well-formed ioctls and is the forced
2751  * behavior for all FUSE servers.
2752  */
2753 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2754 		   unsigned int flags)
2755 {
2756 	struct fuse_file *ff = file->private_data;
2757 	struct fuse_mount *fm = ff->fm;
2758 	struct fuse_ioctl_in inarg = {
2759 		.fh = ff->fh,
2760 		.cmd = cmd,
2761 		.arg = arg,
2762 		.flags = flags
2763 	};
2764 	struct fuse_ioctl_out outarg;
2765 	struct iovec *iov_page = NULL;
2766 	struct iovec *in_iov = NULL, *out_iov = NULL;
2767 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2768 	size_t in_size, out_size, c;
2769 	ssize_t transferred;
2770 	int err, i;
2771 	struct iov_iter ii;
2772 	struct fuse_args_pages ap = {};
2773 
2774 #if BITS_PER_LONG == 32
2775 	inarg.flags |= FUSE_IOCTL_32BIT;
2776 #else
2777 	if (flags & FUSE_IOCTL_COMPAT) {
2778 		inarg.flags |= FUSE_IOCTL_32BIT;
2779 #ifdef CONFIG_X86_X32
2780 		if (in_x32_syscall())
2781 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2782 #endif
2783 	}
2784 #endif
2785 
2786 	/* assume all the iovs returned by client always fits in a page */
2787 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2788 
2789 	err = -ENOMEM;
2790 	ap.pages = fuse_pages_alloc(fm->fc->max_pages, GFP_KERNEL, &ap.descs);
2791 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2792 	if (!ap.pages || !iov_page)
2793 		goto out;
2794 
2795 	fuse_page_descs_length_init(ap.descs, 0, fm->fc->max_pages);
2796 
2797 	/*
2798 	 * If restricted, initialize IO parameters as encoded in @cmd.
2799 	 * RETRY from server is not allowed.
2800 	 */
2801 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2802 		struct iovec *iov = iov_page;
2803 
2804 		iov->iov_base = (void __user *)arg;
2805 
2806 		switch (cmd) {
2807 		case FS_IOC_GETFLAGS:
2808 		case FS_IOC_SETFLAGS:
2809 			iov->iov_len = sizeof(int);
2810 			break;
2811 		default:
2812 			iov->iov_len = _IOC_SIZE(cmd);
2813 			break;
2814 		}
2815 
2816 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2817 			in_iov = iov;
2818 			in_iovs = 1;
2819 		}
2820 
2821 		if (_IOC_DIR(cmd) & _IOC_READ) {
2822 			out_iov = iov;
2823 			out_iovs = 1;
2824 		}
2825 	}
2826 
2827  retry:
2828 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2829 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2830 
2831 	/*
2832 	 * Out data can be used either for actual out data or iovs,
2833 	 * make sure there always is at least one page.
2834 	 */
2835 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2836 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2837 
2838 	/* make sure there are enough buffer pages and init request with them */
2839 	err = -ENOMEM;
2840 	if (max_pages > fm->fc->max_pages)
2841 		goto out;
2842 	while (ap.num_pages < max_pages) {
2843 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2844 		if (!ap.pages[ap.num_pages])
2845 			goto out;
2846 		ap.num_pages++;
2847 	}
2848 
2849 
2850 	/* okay, let's send it to the client */
2851 	ap.args.opcode = FUSE_IOCTL;
2852 	ap.args.nodeid = ff->nodeid;
2853 	ap.args.in_numargs = 1;
2854 	ap.args.in_args[0].size = sizeof(inarg);
2855 	ap.args.in_args[0].value = &inarg;
2856 	if (in_size) {
2857 		ap.args.in_numargs++;
2858 		ap.args.in_args[1].size = in_size;
2859 		ap.args.in_pages = true;
2860 
2861 		err = -EFAULT;
2862 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2863 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2864 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2865 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2866 				goto out;
2867 		}
2868 	}
2869 
2870 	ap.args.out_numargs = 2;
2871 	ap.args.out_args[0].size = sizeof(outarg);
2872 	ap.args.out_args[0].value = &outarg;
2873 	ap.args.out_args[1].size = out_size;
2874 	ap.args.out_pages = true;
2875 	ap.args.out_argvar = true;
2876 
2877 	transferred = fuse_simple_request(fm, &ap.args);
2878 	err = transferred;
2879 	if (transferred < 0)
2880 		goto out;
2881 
2882 	/* did it ask for retry? */
2883 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2884 		void *vaddr;
2885 
2886 		/* no retry if in restricted mode */
2887 		err = -EIO;
2888 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2889 			goto out;
2890 
2891 		in_iovs = outarg.in_iovs;
2892 		out_iovs = outarg.out_iovs;
2893 
2894 		/*
2895 		 * Make sure things are in boundary, separate checks
2896 		 * are to protect against overflow.
2897 		 */
2898 		err = -ENOMEM;
2899 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2900 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2901 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2902 			goto out;
2903 
2904 		vaddr = kmap_atomic(ap.pages[0]);
2905 		err = fuse_copy_ioctl_iovec(fm->fc, iov_page, vaddr,
2906 					    transferred, in_iovs + out_iovs,
2907 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2908 		kunmap_atomic(vaddr);
2909 		if (err)
2910 			goto out;
2911 
2912 		in_iov = iov_page;
2913 		out_iov = in_iov + in_iovs;
2914 
2915 		err = fuse_verify_ioctl_iov(fm->fc, in_iov, in_iovs);
2916 		if (err)
2917 			goto out;
2918 
2919 		err = fuse_verify_ioctl_iov(fm->fc, out_iov, out_iovs);
2920 		if (err)
2921 			goto out;
2922 
2923 		goto retry;
2924 	}
2925 
2926 	err = -EIO;
2927 	if (transferred > inarg.out_size)
2928 		goto out;
2929 
2930 	err = -EFAULT;
2931 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2932 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2933 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2934 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2935 			goto out;
2936 	}
2937 	err = 0;
2938  out:
2939 	free_page((unsigned long) iov_page);
2940 	while (ap.num_pages)
2941 		__free_page(ap.pages[--ap.num_pages]);
2942 	kfree(ap.pages);
2943 
2944 	return err ? err : outarg.result;
2945 }
2946 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2947 
2948 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2949 		       unsigned long arg, unsigned int flags)
2950 {
2951 	struct inode *inode = file_inode(file);
2952 	struct fuse_conn *fc = get_fuse_conn(inode);
2953 
2954 	if (!fuse_allow_current_process(fc))
2955 		return -EACCES;
2956 
2957 	if (is_bad_inode(inode))
2958 		return -EIO;
2959 
2960 	return fuse_do_ioctl(file, cmd, arg, flags);
2961 }
2962 
2963 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2964 			    unsigned long arg)
2965 {
2966 	return fuse_ioctl_common(file, cmd, arg, 0);
2967 }
2968 
2969 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2970 				   unsigned long arg)
2971 {
2972 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2973 }
2974 
2975 /*
2976  * All files which have been polled are linked to RB tree
2977  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2978  * find the matching one.
2979  */
2980 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2981 					      struct rb_node **parent_out)
2982 {
2983 	struct rb_node **link = &fc->polled_files.rb_node;
2984 	struct rb_node *last = NULL;
2985 
2986 	while (*link) {
2987 		struct fuse_file *ff;
2988 
2989 		last = *link;
2990 		ff = rb_entry(last, struct fuse_file, polled_node);
2991 
2992 		if (kh < ff->kh)
2993 			link = &last->rb_left;
2994 		else if (kh > ff->kh)
2995 			link = &last->rb_right;
2996 		else
2997 			return link;
2998 	}
2999 
3000 	if (parent_out)
3001 		*parent_out = last;
3002 	return link;
3003 }
3004 
3005 /*
3006  * The file is about to be polled.  Make sure it's on the polled_files
3007  * RB tree.  Note that files once added to the polled_files tree are
3008  * not removed before the file is released.  This is because a file
3009  * polled once is likely to be polled again.
3010  */
3011 static void fuse_register_polled_file(struct fuse_conn *fc,
3012 				      struct fuse_file *ff)
3013 {
3014 	spin_lock(&fc->lock);
3015 	if (RB_EMPTY_NODE(&ff->polled_node)) {
3016 		struct rb_node **link, *parent;
3017 
3018 		link = fuse_find_polled_node(fc, ff->kh, &parent);
3019 		BUG_ON(*link);
3020 		rb_link_node(&ff->polled_node, parent, link);
3021 		rb_insert_color(&ff->polled_node, &fc->polled_files);
3022 	}
3023 	spin_unlock(&fc->lock);
3024 }
3025 
3026 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
3027 {
3028 	struct fuse_file *ff = file->private_data;
3029 	struct fuse_mount *fm = ff->fm;
3030 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3031 	struct fuse_poll_out outarg;
3032 	FUSE_ARGS(args);
3033 	int err;
3034 
3035 	if (fm->fc->no_poll)
3036 		return DEFAULT_POLLMASK;
3037 
3038 	poll_wait(file, &ff->poll_wait, wait);
3039 	inarg.events = mangle_poll(poll_requested_events(wait));
3040 
3041 	/*
3042 	 * Ask for notification iff there's someone waiting for it.
3043 	 * The client may ignore the flag and always notify.
3044 	 */
3045 	if (waitqueue_active(&ff->poll_wait)) {
3046 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3047 		fuse_register_polled_file(fm->fc, ff);
3048 	}
3049 
3050 	args.opcode = FUSE_POLL;
3051 	args.nodeid = ff->nodeid;
3052 	args.in_numargs = 1;
3053 	args.in_args[0].size = sizeof(inarg);
3054 	args.in_args[0].value = &inarg;
3055 	args.out_numargs = 1;
3056 	args.out_args[0].size = sizeof(outarg);
3057 	args.out_args[0].value = &outarg;
3058 	err = fuse_simple_request(fm, &args);
3059 
3060 	if (!err)
3061 		return demangle_poll(outarg.revents);
3062 	if (err == -ENOSYS) {
3063 		fm->fc->no_poll = 1;
3064 		return DEFAULT_POLLMASK;
3065 	}
3066 	return EPOLLERR;
3067 }
3068 EXPORT_SYMBOL_GPL(fuse_file_poll);
3069 
3070 /*
3071  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3072  * wakes up the poll waiters.
3073  */
3074 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3075 			    struct fuse_notify_poll_wakeup_out *outarg)
3076 {
3077 	u64 kh = outarg->kh;
3078 	struct rb_node **link;
3079 
3080 	spin_lock(&fc->lock);
3081 
3082 	link = fuse_find_polled_node(fc, kh, NULL);
3083 	if (*link) {
3084 		struct fuse_file *ff;
3085 
3086 		ff = rb_entry(*link, struct fuse_file, polled_node);
3087 		wake_up_interruptible_sync(&ff->poll_wait);
3088 	}
3089 
3090 	spin_unlock(&fc->lock);
3091 	return 0;
3092 }
3093 
3094 static void fuse_do_truncate(struct file *file)
3095 {
3096 	struct inode *inode = file->f_mapping->host;
3097 	struct iattr attr;
3098 
3099 	attr.ia_valid = ATTR_SIZE;
3100 	attr.ia_size = i_size_read(inode);
3101 
3102 	attr.ia_file = file;
3103 	attr.ia_valid |= ATTR_FILE;
3104 
3105 	fuse_do_setattr(file_dentry(file), &attr, file);
3106 }
3107 
3108 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3109 {
3110 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3111 }
3112 
3113 static ssize_t
3114 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3115 {
3116 	DECLARE_COMPLETION_ONSTACK(wait);
3117 	ssize_t ret = 0;
3118 	struct file *file = iocb->ki_filp;
3119 	struct fuse_file *ff = file->private_data;
3120 	loff_t pos = 0;
3121 	struct inode *inode;
3122 	loff_t i_size;
3123 	size_t count = iov_iter_count(iter), shortened = 0;
3124 	loff_t offset = iocb->ki_pos;
3125 	struct fuse_io_priv *io;
3126 
3127 	pos = offset;
3128 	inode = file->f_mapping->host;
3129 	i_size = i_size_read(inode);
3130 
3131 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3132 		return 0;
3133 
3134 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3135 	if (!io)
3136 		return -ENOMEM;
3137 	spin_lock_init(&io->lock);
3138 	kref_init(&io->refcnt);
3139 	io->reqs = 1;
3140 	io->bytes = -1;
3141 	io->size = 0;
3142 	io->offset = offset;
3143 	io->write = (iov_iter_rw(iter) == WRITE);
3144 	io->err = 0;
3145 	/*
3146 	 * By default, we want to optimize all I/Os with async request
3147 	 * submission to the client filesystem if supported.
3148 	 */
3149 	io->async = ff->fm->fc->async_dio;
3150 	io->iocb = iocb;
3151 	io->blocking = is_sync_kiocb(iocb);
3152 
3153 	/* optimization for short read */
3154 	if (io->async && !io->write && offset + count > i_size) {
3155 		iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3156 		shortened = count - iov_iter_count(iter);
3157 		count -= shortened;
3158 	}
3159 
3160 	/*
3161 	 * We cannot asynchronously extend the size of a file.
3162 	 * In such case the aio will behave exactly like sync io.
3163 	 */
3164 	if ((offset + count > i_size) && io->write)
3165 		io->blocking = true;
3166 
3167 	if (io->async && io->blocking) {
3168 		/*
3169 		 * Additional reference to keep io around after
3170 		 * calling fuse_aio_complete()
3171 		 */
3172 		kref_get(&io->refcnt);
3173 		io->done = &wait;
3174 	}
3175 
3176 	if (iov_iter_rw(iter) == WRITE) {
3177 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3178 		fuse_invalidate_attr(inode);
3179 	} else {
3180 		ret = __fuse_direct_read(io, iter, &pos);
3181 	}
3182 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3183 
3184 	if (io->async) {
3185 		bool blocking = io->blocking;
3186 
3187 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3188 
3189 		/* we have a non-extending, async request, so return */
3190 		if (!blocking)
3191 			return -EIOCBQUEUED;
3192 
3193 		wait_for_completion(&wait);
3194 		ret = fuse_get_res_by_io(io);
3195 	}
3196 
3197 	kref_put(&io->refcnt, fuse_io_release);
3198 
3199 	if (iov_iter_rw(iter) == WRITE) {
3200 		if (ret > 0)
3201 			fuse_write_update_size(inode, pos);
3202 		else if (ret < 0 && offset + count > i_size)
3203 			fuse_do_truncate(file);
3204 	}
3205 
3206 	return ret;
3207 }
3208 
3209 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3210 {
3211 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3212 
3213 	if (!err)
3214 		fuse_sync_writes(inode);
3215 
3216 	return err;
3217 }
3218 
3219 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3220 				loff_t length)
3221 {
3222 	struct fuse_file *ff = file->private_data;
3223 	struct inode *inode = file_inode(file);
3224 	struct fuse_inode *fi = get_fuse_inode(inode);
3225 	struct fuse_mount *fm = ff->fm;
3226 	FUSE_ARGS(args);
3227 	struct fuse_fallocate_in inarg = {
3228 		.fh = ff->fh,
3229 		.offset = offset,
3230 		.length = length,
3231 		.mode = mode
3232 	};
3233 	int err;
3234 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3235 			   (mode & FALLOC_FL_PUNCH_HOLE);
3236 
3237 	bool block_faults = FUSE_IS_DAX(inode) && lock_inode;
3238 
3239 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3240 		return -EOPNOTSUPP;
3241 
3242 	if (fm->fc->no_fallocate)
3243 		return -EOPNOTSUPP;
3244 
3245 	if (lock_inode) {
3246 		inode_lock(inode);
3247 		if (block_faults) {
3248 			down_write(&fi->i_mmap_sem);
3249 			err = fuse_dax_break_layouts(inode, 0, 0);
3250 			if (err)
3251 				goto out;
3252 		}
3253 
3254 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3255 			loff_t endbyte = offset + length - 1;
3256 
3257 			err = fuse_writeback_range(inode, offset, endbyte);
3258 			if (err)
3259 				goto out;
3260 		}
3261 	}
3262 
3263 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3264 	    offset + length > i_size_read(inode)) {
3265 		err = inode_newsize_ok(inode, offset + length);
3266 		if (err)
3267 			goto out;
3268 	}
3269 
3270 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3271 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3272 
3273 	args.opcode = FUSE_FALLOCATE;
3274 	args.nodeid = ff->nodeid;
3275 	args.in_numargs = 1;
3276 	args.in_args[0].size = sizeof(inarg);
3277 	args.in_args[0].value = &inarg;
3278 	err = fuse_simple_request(fm, &args);
3279 	if (err == -ENOSYS) {
3280 		fm->fc->no_fallocate = 1;
3281 		err = -EOPNOTSUPP;
3282 	}
3283 	if (err)
3284 		goto out;
3285 
3286 	/* we could have extended the file */
3287 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3288 		bool changed = fuse_write_update_size(inode, offset + length);
3289 
3290 		if (changed && fm->fc->writeback_cache)
3291 			file_update_time(file);
3292 	}
3293 
3294 	if (mode & FALLOC_FL_PUNCH_HOLE)
3295 		truncate_pagecache_range(inode, offset, offset + length - 1);
3296 
3297 	fuse_invalidate_attr(inode);
3298 
3299 out:
3300 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3301 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3302 
3303 	if (block_faults)
3304 		up_write(&fi->i_mmap_sem);
3305 
3306 	if (lock_inode)
3307 		inode_unlock(inode);
3308 
3309 	return err;
3310 }
3311 
3312 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3313 				      struct file *file_out, loff_t pos_out,
3314 				      size_t len, unsigned int flags)
3315 {
3316 	struct fuse_file *ff_in = file_in->private_data;
3317 	struct fuse_file *ff_out = file_out->private_data;
3318 	struct inode *inode_in = file_inode(file_in);
3319 	struct inode *inode_out = file_inode(file_out);
3320 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3321 	struct fuse_mount *fm = ff_in->fm;
3322 	struct fuse_conn *fc = fm->fc;
3323 	FUSE_ARGS(args);
3324 	struct fuse_copy_file_range_in inarg = {
3325 		.fh_in = ff_in->fh,
3326 		.off_in = pos_in,
3327 		.nodeid_out = ff_out->nodeid,
3328 		.fh_out = ff_out->fh,
3329 		.off_out = pos_out,
3330 		.len = len,
3331 		.flags = flags
3332 	};
3333 	struct fuse_write_out outarg;
3334 	ssize_t err;
3335 	/* mark unstable when write-back is not used, and file_out gets
3336 	 * extended */
3337 	bool is_unstable = (!fc->writeback_cache) &&
3338 			   ((pos_out + len) > inode_out->i_size);
3339 
3340 	if (fc->no_copy_file_range)
3341 		return -EOPNOTSUPP;
3342 
3343 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3344 		return -EXDEV;
3345 
3346 	inode_lock(inode_in);
3347 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3348 	inode_unlock(inode_in);
3349 	if (err)
3350 		return err;
3351 
3352 	inode_lock(inode_out);
3353 
3354 	err = file_modified(file_out);
3355 	if (err)
3356 		goto out;
3357 
3358 	/*
3359 	 * Write out dirty pages in the destination file before sending the COPY
3360 	 * request to userspace.  After the request is completed, truncate off
3361 	 * pages (including partial ones) from the cache that have been copied,
3362 	 * since these contain stale data at that point.
3363 	 *
3364 	 * This should be mostly correct, but if the COPY writes to partial
3365 	 * pages (at the start or end) and the parts not covered by the COPY are
3366 	 * written through a memory map after calling fuse_writeback_range(),
3367 	 * then these partial page modifications will be lost on truncation.
3368 	 *
3369 	 * It is unlikely that someone would rely on such mixed style
3370 	 * modifications.  Yet this does give less guarantees than if the
3371 	 * copying was performed with write(2).
3372 	 *
3373 	 * To fix this a i_mmap_sem style lock could be used to prevent new
3374 	 * faults while the copy is ongoing.
3375 	 */
3376 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3377 	if (err)
3378 		goto out;
3379 
3380 	if (is_unstable)
3381 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3382 
3383 	args.opcode = FUSE_COPY_FILE_RANGE;
3384 	args.nodeid = ff_in->nodeid;
3385 	args.in_numargs = 1;
3386 	args.in_args[0].size = sizeof(inarg);
3387 	args.in_args[0].value = &inarg;
3388 	args.out_numargs = 1;
3389 	args.out_args[0].size = sizeof(outarg);
3390 	args.out_args[0].value = &outarg;
3391 	err = fuse_simple_request(fm, &args);
3392 	if (err == -ENOSYS) {
3393 		fc->no_copy_file_range = 1;
3394 		err = -EOPNOTSUPP;
3395 	}
3396 	if (err)
3397 		goto out;
3398 
3399 	truncate_inode_pages_range(inode_out->i_mapping,
3400 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3401 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3402 
3403 	if (fc->writeback_cache) {
3404 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3405 		file_update_time(file_out);
3406 	}
3407 
3408 	fuse_invalidate_attr(inode_out);
3409 
3410 	err = outarg.size;
3411 out:
3412 	if (is_unstable)
3413 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3414 
3415 	inode_unlock(inode_out);
3416 	file_accessed(file_in);
3417 
3418 	return err;
3419 }
3420 
3421 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3422 				    struct file *dst_file, loff_t dst_off,
3423 				    size_t len, unsigned int flags)
3424 {
3425 	ssize_t ret;
3426 
3427 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3428 				     len, flags);
3429 
3430 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3431 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3432 					      dst_off, len, flags);
3433 	return ret;
3434 }
3435 
3436 static const struct file_operations fuse_file_operations = {
3437 	.llseek		= fuse_file_llseek,
3438 	.read_iter	= fuse_file_read_iter,
3439 	.write_iter	= fuse_file_write_iter,
3440 	.mmap		= fuse_file_mmap,
3441 	.open		= fuse_open,
3442 	.flush		= fuse_flush,
3443 	.release	= fuse_release,
3444 	.fsync		= fuse_fsync,
3445 	.lock		= fuse_file_lock,
3446 	.get_unmapped_area = thp_get_unmapped_area,
3447 	.flock		= fuse_file_flock,
3448 	.splice_read	= generic_file_splice_read,
3449 	.splice_write	= iter_file_splice_write,
3450 	.unlocked_ioctl	= fuse_file_ioctl,
3451 	.compat_ioctl	= fuse_file_compat_ioctl,
3452 	.poll		= fuse_file_poll,
3453 	.fallocate	= fuse_file_fallocate,
3454 	.copy_file_range = fuse_copy_file_range,
3455 };
3456 
3457 static const struct address_space_operations fuse_file_aops  = {
3458 	.readpage	= fuse_readpage,
3459 	.readahead	= fuse_readahead,
3460 	.writepage	= fuse_writepage,
3461 	.writepages	= fuse_writepages,
3462 	.launder_page	= fuse_launder_page,
3463 	.set_page_dirty	= __set_page_dirty_nobuffers,
3464 	.bmap		= fuse_bmap,
3465 	.direct_IO	= fuse_direct_IO,
3466 	.write_begin	= fuse_write_begin,
3467 	.write_end	= fuse_write_end,
3468 };
3469 
3470 void fuse_init_file_inode(struct inode *inode)
3471 {
3472 	struct fuse_inode *fi = get_fuse_inode(inode);
3473 
3474 	inode->i_fop = &fuse_file_operations;
3475 	inode->i_data.a_ops = &fuse_file_aops;
3476 
3477 	INIT_LIST_HEAD(&fi->write_files);
3478 	INIT_LIST_HEAD(&fi->queued_writes);
3479 	fi->writectr = 0;
3480 	init_waitqueue_head(&fi->page_waitq);
3481 	fi->writepages = RB_ROOT;
3482 
3483 	if (IS_ENABLED(CONFIG_FUSE_DAX))
3484 		fuse_dax_inode_init(inode);
3485 }
3486