xref: /openbmc/linux/fs/fuse/file.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 				      struct fuse_page_desc **desc)
24 {
25 	struct page **pages;
26 
27 	pages = kzalloc(npages * (sizeof(struct page *) +
28 				  sizeof(struct fuse_page_desc)), flags);
29 	*desc = (void *) (pages + npages);
30 
31 	return pages;
32 }
33 
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 			  int opcode, struct fuse_open_out *outargp)
36 {
37 	struct fuse_open_in inarg;
38 	FUSE_ARGS(args);
39 
40 	memset(&inarg, 0, sizeof(inarg));
41 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 	if (!fc->atomic_o_trunc)
43 		inarg.flags &= ~O_TRUNC;
44 	args.opcode = opcode;
45 	args.nodeid = nodeid;
46 	args.in_numargs = 1;
47 	args.in_args[0].size = sizeof(inarg);
48 	args.in_args[0].value = &inarg;
49 	args.out_numargs = 1;
50 	args.out_args[0].size = sizeof(*outargp);
51 	args.out_args[0].value = outargp;
52 
53 	return fuse_simple_request(fc, &args);
54 }
55 
56 struct fuse_release_args {
57 	struct fuse_args args;
58 	struct fuse_release_in inarg;
59 	struct inode *inode;
60 };
61 
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
63 {
64 	struct fuse_file *ff;
65 
66 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
67 	if (unlikely(!ff))
68 		return NULL;
69 
70 	ff->fc = fc;
71 	ff->release_args = kzalloc(sizeof(*ff->release_args),
72 				   GFP_KERNEL_ACCOUNT);
73 	if (!ff->release_args) {
74 		kfree(ff);
75 		return NULL;
76 	}
77 
78 	INIT_LIST_HEAD(&ff->write_entry);
79 	mutex_init(&ff->readdir.lock);
80 	refcount_set(&ff->count, 1);
81 	RB_CLEAR_NODE(&ff->polled_node);
82 	init_waitqueue_head(&ff->poll_wait);
83 
84 	ff->kh = atomic64_inc_return(&fc->khctr);
85 
86 	return ff;
87 }
88 
89 void fuse_file_free(struct fuse_file *ff)
90 {
91 	kfree(ff->release_args);
92 	mutex_destroy(&ff->readdir.lock);
93 	kfree(ff);
94 }
95 
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
97 {
98 	refcount_inc(&ff->count);
99 	return ff;
100 }
101 
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
103 			     int error)
104 {
105 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
106 
107 	iput(ra->inode);
108 	kfree(ra);
109 }
110 
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
112 {
113 	if (refcount_dec_and_test(&ff->count)) {
114 		struct fuse_args *args = &ff->release_args->args;
115 
116 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 			/* Do nothing when client does not implement 'open' */
118 			fuse_release_end(ff->fc, args, 0);
119 		} else if (sync) {
120 			fuse_simple_request(ff->fc, args);
121 			fuse_release_end(ff->fc, args, 0);
122 		} else {
123 			args->end = fuse_release_end;
124 			if (fuse_simple_background(ff->fc, args,
125 						   GFP_KERNEL | __GFP_NOFAIL))
126 				fuse_release_end(ff->fc, args, -ENOTCONN);
127 		}
128 		kfree(ff);
129 	}
130 }
131 
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
133 		 bool isdir)
134 {
135 	struct fuse_file *ff;
136 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
137 
138 	ff = fuse_file_alloc(fc);
139 	if (!ff)
140 		return -ENOMEM;
141 
142 	ff->fh = 0;
143 	/* Default for no-open */
144 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 	if (isdir ? !fc->no_opendir : !fc->no_open) {
146 		struct fuse_open_out outarg;
147 		int err;
148 
149 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
150 		if (!err) {
151 			ff->fh = outarg.fh;
152 			ff->open_flags = outarg.open_flags;
153 
154 		} else if (err != -ENOSYS) {
155 			fuse_file_free(ff);
156 			return err;
157 		} else {
158 			if (isdir)
159 				fc->no_opendir = 1;
160 			else
161 				fc->no_open = 1;
162 		}
163 	}
164 
165 	if (isdir)
166 		ff->open_flags &= ~FOPEN_DIRECT_IO;
167 
168 	ff->nodeid = nodeid;
169 	file->private_data = ff;
170 
171 	return 0;
172 }
173 EXPORT_SYMBOL_GPL(fuse_do_open);
174 
175 static void fuse_link_write_file(struct file *file)
176 {
177 	struct inode *inode = file_inode(file);
178 	struct fuse_inode *fi = get_fuse_inode(inode);
179 	struct fuse_file *ff = file->private_data;
180 	/*
181 	 * file may be written through mmap, so chain it onto the
182 	 * inodes's write_file list
183 	 */
184 	spin_lock(&fi->lock);
185 	if (list_empty(&ff->write_entry))
186 		list_add(&ff->write_entry, &fi->write_files);
187 	spin_unlock(&fi->lock);
188 }
189 
190 void fuse_finish_open(struct inode *inode, struct file *file)
191 {
192 	struct fuse_file *ff = file->private_data;
193 	struct fuse_conn *fc = get_fuse_conn(inode);
194 
195 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 		invalidate_inode_pages2(inode->i_mapping);
197 	if (ff->open_flags & FOPEN_STREAM)
198 		stream_open(inode, file);
199 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 		nonseekable_open(inode, file);
201 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 		struct fuse_inode *fi = get_fuse_inode(inode);
203 
204 		spin_lock(&fi->lock);
205 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 		i_size_write(inode, 0);
207 		spin_unlock(&fi->lock);
208 		fuse_invalidate_attr(inode);
209 		if (fc->writeback_cache)
210 			file_update_time(file);
211 	}
212 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 		fuse_link_write_file(file);
214 }
215 
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
217 {
218 	struct fuse_conn *fc = get_fuse_conn(inode);
219 	int err;
220 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 			  fc->atomic_o_trunc &&
222 			  fc->writeback_cache;
223 
224 	err = generic_file_open(inode, file);
225 	if (err)
226 		return err;
227 
228 	if (is_wb_truncate) {
229 		inode_lock(inode);
230 		fuse_set_nowrite(inode);
231 	}
232 
233 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
234 
235 	if (!err)
236 		fuse_finish_open(inode, file);
237 
238 	if (is_wb_truncate) {
239 		fuse_release_nowrite(inode);
240 		inode_unlock(inode);
241 	}
242 
243 	return err;
244 }
245 
246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 				 int flags, int opcode)
248 {
249 	struct fuse_conn *fc = ff->fc;
250 	struct fuse_release_args *ra = ff->release_args;
251 
252 	/* Inode is NULL on error path of fuse_create_open() */
253 	if (likely(fi)) {
254 		spin_lock(&fi->lock);
255 		list_del(&ff->write_entry);
256 		spin_unlock(&fi->lock);
257 	}
258 	spin_lock(&fc->lock);
259 	if (!RB_EMPTY_NODE(&ff->polled_node))
260 		rb_erase(&ff->polled_node, &fc->polled_files);
261 	spin_unlock(&fc->lock);
262 
263 	wake_up_interruptible_all(&ff->poll_wait);
264 
265 	ra->inarg.fh = ff->fh;
266 	ra->inarg.flags = flags;
267 	ra->args.in_numargs = 1;
268 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 	ra->args.in_args[0].value = &ra->inarg;
270 	ra->args.opcode = opcode;
271 	ra->args.nodeid = ff->nodeid;
272 	ra->args.force = true;
273 	ra->args.nocreds = true;
274 }
275 
276 void fuse_release_common(struct file *file, bool isdir)
277 {
278 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 	struct fuse_file *ff = file->private_data;
280 	struct fuse_release_args *ra = ff->release_args;
281 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
282 
283 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
284 
285 	if (ff->flock) {
286 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
288 							  (fl_owner_t) file);
289 	}
290 	/* Hold inode until release is finished */
291 	ra->inode = igrab(file_inode(file));
292 
293 	/*
294 	 * Normally this will send the RELEASE request, however if
295 	 * some asynchronous READ or WRITE requests are outstanding,
296 	 * the sending will be delayed.
297 	 *
298 	 * Make the release synchronous if this is a fuseblk mount,
299 	 * synchronous RELEASE is allowed (and desirable) in this case
300 	 * because the server can be trusted not to screw up.
301 	 */
302 	fuse_file_put(ff, ff->fc->destroy, isdir);
303 }
304 
305 static int fuse_open(struct inode *inode, struct file *file)
306 {
307 	return fuse_open_common(inode, file, false);
308 }
309 
310 static int fuse_release(struct inode *inode, struct file *file)
311 {
312 	struct fuse_conn *fc = get_fuse_conn(inode);
313 
314 	/* see fuse_vma_close() for !writeback_cache case */
315 	if (fc->writeback_cache)
316 		write_inode_now(inode, 1);
317 
318 	fuse_release_common(file, false);
319 
320 	/* return value is ignored by VFS */
321 	return 0;
322 }
323 
324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
325 {
326 	WARN_ON(refcount_read(&ff->count) > 1);
327 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
328 	/*
329 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 	 * synchronous, we are fine with not doing igrab() here"
331 	 */
332 	fuse_file_put(ff, true, false);
333 }
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
335 
336 /*
337  * Scramble the ID space with XTEA, so that the value of the files_struct
338  * pointer is not exposed to userspace.
339  */
340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
341 {
342 	u32 *k = fc->scramble_key;
343 	u64 v = (unsigned long) id;
344 	u32 v0 = v;
345 	u32 v1 = v >> 32;
346 	u32 sum = 0;
347 	int i;
348 
349 	for (i = 0; i < 32; i++) {
350 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
351 		sum += 0x9E3779B9;
352 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
353 	}
354 
355 	return (u64) v0 + ((u64) v1 << 32);
356 }
357 
358 struct fuse_writepage_args {
359 	struct fuse_io_args ia;
360 	struct list_head writepages_entry;
361 	struct list_head queue_entry;
362 	struct fuse_writepage_args *next;
363 	struct inode *inode;
364 };
365 
366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 					    pgoff_t idx_from, pgoff_t idx_to)
368 {
369 	struct fuse_writepage_args *wpa;
370 
371 	list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
372 		pgoff_t curr_index;
373 
374 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
375 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
376 		if (idx_from < curr_index + wpa->ia.ap.num_pages &&
377 		    curr_index <= idx_to) {
378 			return wpa;
379 		}
380 	}
381 	return NULL;
382 }
383 
384 /*
385  * Check if any page in a range is under writeback
386  *
387  * This is currently done by walking the list of writepage requests
388  * for the inode, which can be pretty inefficient.
389  */
390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
391 				   pgoff_t idx_to)
392 {
393 	struct fuse_inode *fi = get_fuse_inode(inode);
394 	bool found;
395 
396 	spin_lock(&fi->lock);
397 	found = fuse_find_writeback(fi, idx_from, idx_to);
398 	spin_unlock(&fi->lock);
399 
400 	return found;
401 }
402 
403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
404 {
405 	return fuse_range_is_writeback(inode, index, index);
406 }
407 
408 /*
409  * Wait for page writeback to be completed.
410  *
411  * Since fuse doesn't rely on the VM writeback tracking, this has to
412  * use some other means.
413  */
414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
415 {
416 	struct fuse_inode *fi = get_fuse_inode(inode);
417 
418 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
419 }
420 
421 /*
422  * Wait for all pending writepages on the inode to finish.
423  *
424  * This is currently done by blocking further writes with FUSE_NOWRITE
425  * and waiting for all sent writes to complete.
426  *
427  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
428  * could conflict with truncation.
429  */
430 static void fuse_sync_writes(struct inode *inode)
431 {
432 	fuse_set_nowrite(inode);
433 	fuse_release_nowrite(inode);
434 }
435 
436 static int fuse_flush(struct file *file, fl_owner_t id)
437 {
438 	struct inode *inode = file_inode(file);
439 	struct fuse_conn *fc = get_fuse_conn(inode);
440 	struct fuse_file *ff = file->private_data;
441 	struct fuse_flush_in inarg;
442 	FUSE_ARGS(args);
443 	int err;
444 
445 	if (is_bad_inode(inode))
446 		return -EIO;
447 
448 	if (fc->no_flush)
449 		return 0;
450 
451 	err = write_inode_now(inode, 1);
452 	if (err)
453 		return err;
454 
455 	inode_lock(inode);
456 	fuse_sync_writes(inode);
457 	inode_unlock(inode);
458 
459 	err = filemap_check_errors(file->f_mapping);
460 	if (err)
461 		return err;
462 
463 	memset(&inarg, 0, sizeof(inarg));
464 	inarg.fh = ff->fh;
465 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
466 	args.opcode = FUSE_FLUSH;
467 	args.nodeid = get_node_id(inode);
468 	args.in_numargs = 1;
469 	args.in_args[0].size = sizeof(inarg);
470 	args.in_args[0].value = &inarg;
471 	args.force = true;
472 
473 	err = fuse_simple_request(fc, &args);
474 	if (err == -ENOSYS) {
475 		fc->no_flush = 1;
476 		err = 0;
477 	}
478 	return err;
479 }
480 
481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
482 		      int datasync, int opcode)
483 {
484 	struct inode *inode = file->f_mapping->host;
485 	struct fuse_conn *fc = get_fuse_conn(inode);
486 	struct fuse_file *ff = file->private_data;
487 	FUSE_ARGS(args);
488 	struct fuse_fsync_in inarg;
489 
490 	memset(&inarg, 0, sizeof(inarg));
491 	inarg.fh = ff->fh;
492 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
493 	args.opcode = opcode;
494 	args.nodeid = get_node_id(inode);
495 	args.in_numargs = 1;
496 	args.in_args[0].size = sizeof(inarg);
497 	args.in_args[0].value = &inarg;
498 	return fuse_simple_request(fc, &args);
499 }
500 
501 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
502 		      int datasync)
503 {
504 	struct inode *inode = file->f_mapping->host;
505 	struct fuse_conn *fc = get_fuse_conn(inode);
506 	int err;
507 
508 	if (is_bad_inode(inode))
509 		return -EIO;
510 
511 	inode_lock(inode);
512 
513 	/*
514 	 * Start writeback against all dirty pages of the inode, then
515 	 * wait for all outstanding writes, before sending the FSYNC
516 	 * request.
517 	 */
518 	err = file_write_and_wait_range(file, start, end);
519 	if (err)
520 		goto out;
521 
522 	fuse_sync_writes(inode);
523 
524 	/*
525 	 * Due to implementation of fuse writeback
526 	 * file_write_and_wait_range() does not catch errors.
527 	 * We have to do this directly after fuse_sync_writes()
528 	 */
529 	err = file_check_and_advance_wb_err(file);
530 	if (err)
531 		goto out;
532 
533 	err = sync_inode_metadata(inode, 1);
534 	if (err)
535 		goto out;
536 
537 	if (fc->no_fsync)
538 		goto out;
539 
540 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
541 	if (err == -ENOSYS) {
542 		fc->no_fsync = 1;
543 		err = 0;
544 	}
545 out:
546 	inode_unlock(inode);
547 
548 	return err;
549 }
550 
551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
552 			 size_t count, int opcode)
553 {
554 	struct fuse_file *ff = file->private_data;
555 	struct fuse_args *args = &ia->ap.args;
556 
557 	ia->read.in.fh = ff->fh;
558 	ia->read.in.offset = pos;
559 	ia->read.in.size = count;
560 	ia->read.in.flags = file->f_flags;
561 	args->opcode = opcode;
562 	args->nodeid = ff->nodeid;
563 	args->in_numargs = 1;
564 	args->in_args[0].size = sizeof(ia->read.in);
565 	args->in_args[0].value = &ia->read.in;
566 	args->out_argvar = true;
567 	args->out_numargs = 1;
568 	args->out_args[0].size = count;
569 }
570 
571 static void fuse_release_user_pages(struct fuse_args_pages *ap,
572 				    bool should_dirty)
573 {
574 	unsigned int i;
575 
576 	for (i = 0; i < ap->num_pages; i++) {
577 		if (should_dirty)
578 			set_page_dirty_lock(ap->pages[i]);
579 		put_page(ap->pages[i]);
580 	}
581 }
582 
583 static void fuse_io_release(struct kref *kref)
584 {
585 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
586 }
587 
588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
589 {
590 	if (io->err)
591 		return io->err;
592 
593 	if (io->bytes >= 0 && io->write)
594 		return -EIO;
595 
596 	return io->bytes < 0 ? io->size : io->bytes;
597 }
598 
599 /**
600  * In case of short read, the caller sets 'pos' to the position of
601  * actual end of fuse request in IO request. Otherwise, if bytes_requested
602  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
603  *
604  * An example:
605  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
606  * both submitted asynchronously. The first of them was ACKed by userspace as
607  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
608  * second request was ACKed as short, e.g. only 1K was read, resulting in
609  * pos == 33K.
610  *
611  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
612  * will be equal to the length of the longest contiguous fragment of
613  * transferred data starting from the beginning of IO request.
614  */
615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
616 {
617 	int left;
618 
619 	spin_lock(&io->lock);
620 	if (err)
621 		io->err = io->err ? : err;
622 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
623 		io->bytes = pos;
624 
625 	left = --io->reqs;
626 	if (!left && io->blocking)
627 		complete(io->done);
628 	spin_unlock(&io->lock);
629 
630 	if (!left && !io->blocking) {
631 		ssize_t res = fuse_get_res_by_io(io);
632 
633 		if (res >= 0) {
634 			struct inode *inode = file_inode(io->iocb->ki_filp);
635 			struct fuse_conn *fc = get_fuse_conn(inode);
636 			struct fuse_inode *fi = get_fuse_inode(inode);
637 
638 			spin_lock(&fi->lock);
639 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
640 			spin_unlock(&fi->lock);
641 		}
642 
643 		io->iocb->ki_complete(io->iocb, res, 0);
644 	}
645 
646 	kref_put(&io->refcnt, fuse_io_release);
647 }
648 
649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
650 					  unsigned int npages)
651 {
652 	struct fuse_io_args *ia;
653 
654 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
655 	if (ia) {
656 		ia->io = io;
657 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
658 						&ia->ap.descs);
659 		if (!ia->ap.pages) {
660 			kfree(ia);
661 			ia = NULL;
662 		}
663 	}
664 	return ia;
665 }
666 
667 static void fuse_io_free(struct fuse_io_args *ia)
668 {
669 	kfree(ia->ap.pages);
670 	kfree(ia);
671 }
672 
673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
674 				  int err)
675 {
676 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
677 	struct fuse_io_priv *io = ia->io;
678 	ssize_t pos = -1;
679 
680 	fuse_release_user_pages(&ia->ap, io->should_dirty);
681 
682 	if (err) {
683 		/* Nothing */
684 	} else if (io->write) {
685 		if (ia->write.out.size > ia->write.in.size) {
686 			err = -EIO;
687 		} else if (ia->write.in.size != ia->write.out.size) {
688 			pos = ia->write.in.offset - io->offset +
689 				ia->write.out.size;
690 		}
691 	} else {
692 		u32 outsize = args->out_args[0].size;
693 
694 		if (ia->read.in.size != outsize)
695 			pos = ia->read.in.offset - io->offset + outsize;
696 	}
697 
698 	fuse_aio_complete(io, err, pos);
699 	fuse_io_free(ia);
700 }
701 
702 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
703 				   struct fuse_io_args *ia, size_t num_bytes)
704 {
705 	ssize_t err;
706 	struct fuse_io_priv *io = ia->io;
707 
708 	spin_lock(&io->lock);
709 	kref_get(&io->refcnt);
710 	io->size += num_bytes;
711 	io->reqs++;
712 	spin_unlock(&io->lock);
713 
714 	ia->ap.args.end = fuse_aio_complete_req;
715 	err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
716 	if (err)
717 		fuse_aio_complete_req(fc, &ia->ap.args, err);
718 
719 	return num_bytes;
720 }
721 
722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
723 			      fl_owner_t owner)
724 {
725 	struct file *file = ia->io->iocb->ki_filp;
726 	struct fuse_file *ff = file->private_data;
727 	struct fuse_conn *fc = ff->fc;
728 
729 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
730 	if (owner != NULL) {
731 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
732 		ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
733 	}
734 
735 	if (ia->io->async)
736 		return fuse_async_req_send(fc, ia, count);
737 
738 	return fuse_simple_request(fc, &ia->ap.args);
739 }
740 
741 static void fuse_read_update_size(struct inode *inode, loff_t size,
742 				  u64 attr_ver)
743 {
744 	struct fuse_conn *fc = get_fuse_conn(inode);
745 	struct fuse_inode *fi = get_fuse_inode(inode);
746 
747 	spin_lock(&fi->lock);
748 	if (attr_ver == fi->attr_version && size < inode->i_size &&
749 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
750 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
751 		i_size_write(inode, size);
752 	}
753 	spin_unlock(&fi->lock);
754 }
755 
756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
757 			    struct fuse_args_pages *ap)
758 {
759 	struct fuse_conn *fc = get_fuse_conn(inode);
760 
761 	if (fc->writeback_cache) {
762 		/*
763 		 * A hole in a file. Some data after the hole are in page cache,
764 		 * but have not reached the client fs yet. So, the hole is not
765 		 * present there.
766 		 */
767 		int i;
768 		int start_idx = num_read >> PAGE_SHIFT;
769 		size_t off = num_read & (PAGE_SIZE - 1);
770 
771 		for (i = start_idx; i < ap->num_pages; i++) {
772 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
773 			off = 0;
774 		}
775 	} else {
776 		loff_t pos = page_offset(ap->pages[0]) + num_read;
777 		fuse_read_update_size(inode, pos, attr_ver);
778 	}
779 }
780 
781 static int fuse_do_readpage(struct file *file, struct page *page)
782 {
783 	struct inode *inode = page->mapping->host;
784 	struct fuse_conn *fc = get_fuse_conn(inode);
785 	loff_t pos = page_offset(page);
786 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
787 	struct fuse_io_args ia = {
788 		.ap.args.page_zeroing = true,
789 		.ap.args.out_pages = true,
790 		.ap.num_pages = 1,
791 		.ap.pages = &page,
792 		.ap.descs = &desc,
793 	};
794 	ssize_t res;
795 	u64 attr_ver;
796 
797 	/*
798 	 * Page writeback can extend beyond the lifetime of the
799 	 * page-cache page, so make sure we read a properly synced
800 	 * page.
801 	 */
802 	fuse_wait_on_page_writeback(inode, page->index);
803 
804 	attr_ver = fuse_get_attr_version(fc);
805 
806 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
807 	res = fuse_simple_request(fc, &ia.ap.args);
808 	if (res < 0)
809 		return res;
810 	/*
811 	 * Short read means EOF.  If file size is larger, truncate it
812 	 */
813 	if (res < desc.length)
814 		fuse_short_read(inode, attr_ver, res, &ia.ap);
815 
816 	SetPageUptodate(page);
817 
818 	return 0;
819 }
820 
821 static int fuse_readpage(struct file *file, struct page *page)
822 {
823 	struct inode *inode = page->mapping->host;
824 	int err;
825 
826 	err = -EIO;
827 	if (is_bad_inode(inode))
828 		goto out;
829 
830 	err = fuse_do_readpage(file, page);
831 	fuse_invalidate_atime(inode);
832  out:
833 	unlock_page(page);
834 	return err;
835 }
836 
837 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
838 			       int err)
839 {
840 	int i;
841 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
842 	struct fuse_args_pages *ap = &ia->ap;
843 	size_t count = ia->read.in.size;
844 	size_t num_read = args->out_args[0].size;
845 	struct address_space *mapping = NULL;
846 
847 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
848 		mapping = ap->pages[i]->mapping;
849 
850 	if (mapping) {
851 		struct inode *inode = mapping->host;
852 
853 		/*
854 		 * Short read means EOF. If file size is larger, truncate it
855 		 */
856 		if (!err && num_read < count)
857 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
858 
859 		fuse_invalidate_atime(inode);
860 	}
861 
862 	for (i = 0; i < ap->num_pages; i++) {
863 		struct page *page = ap->pages[i];
864 
865 		if (!err)
866 			SetPageUptodate(page);
867 		else
868 			SetPageError(page);
869 		unlock_page(page);
870 		put_page(page);
871 	}
872 	if (ia->ff)
873 		fuse_file_put(ia->ff, false, false);
874 
875 	fuse_io_free(ia);
876 }
877 
878 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
879 {
880 	struct fuse_file *ff = file->private_data;
881 	struct fuse_conn *fc = ff->fc;
882 	struct fuse_args_pages *ap = &ia->ap;
883 	loff_t pos = page_offset(ap->pages[0]);
884 	size_t count = ap->num_pages << PAGE_SHIFT;
885 	int err;
886 
887 	ap->args.out_pages = true;
888 	ap->args.page_zeroing = true;
889 	ap->args.page_replace = true;
890 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
891 	ia->read.attr_ver = fuse_get_attr_version(fc);
892 	if (fc->async_read) {
893 		ia->ff = fuse_file_get(ff);
894 		ap->args.end = fuse_readpages_end;
895 		err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
896 		if (!err)
897 			return;
898 	} else {
899 		err = fuse_simple_request(fc, &ap->args);
900 	}
901 	fuse_readpages_end(fc, &ap->args, err);
902 }
903 
904 struct fuse_fill_data {
905 	struct fuse_io_args *ia;
906 	struct file *file;
907 	struct inode *inode;
908 	unsigned int nr_pages;
909 	unsigned int max_pages;
910 };
911 
912 static int fuse_readpages_fill(void *_data, struct page *page)
913 {
914 	struct fuse_fill_data *data = _data;
915 	struct fuse_io_args *ia = data->ia;
916 	struct fuse_args_pages *ap = &ia->ap;
917 	struct inode *inode = data->inode;
918 	struct fuse_conn *fc = get_fuse_conn(inode);
919 
920 	fuse_wait_on_page_writeback(inode, page->index);
921 
922 	if (ap->num_pages &&
923 	    (ap->num_pages == fc->max_pages ||
924 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
925 	     ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
926 		data->max_pages = min_t(unsigned int, data->nr_pages,
927 					fc->max_pages);
928 		fuse_send_readpages(ia, data->file);
929 		data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
930 		if (!ia) {
931 			unlock_page(page);
932 			return -ENOMEM;
933 		}
934 		ap = &ia->ap;
935 	}
936 
937 	if (WARN_ON(ap->num_pages >= data->max_pages)) {
938 		unlock_page(page);
939 		fuse_io_free(ia);
940 		return -EIO;
941 	}
942 
943 	get_page(page);
944 	ap->pages[ap->num_pages] = page;
945 	ap->descs[ap->num_pages].length = PAGE_SIZE;
946 	ap->num_pages++;
947 	data->nr_pages--;
948 	return 0;
949 }
950 
951 static int fuse_readpages(struct file *file, struct address_space *mapping,
952 			  struct list_head *pages, unsigned nr_pages)
953 {
954 	struct inode *inode = mapping->host;
955 	struct fuse_conn *fc = get_fuse_conn(inode);
956 	struct fuse_fill_data data;
957 	int err;
958 
959 	err = -EIO;
960 	if (is_bad_inode(inode))
961 		goto out;
962 
963 	data.file = file;
964 	data.inode = inode;
965 	data.nr_pages = nr_pages;
966 	data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
967 ;
968 	data.ia = fuse_io_alloc(NULL, data.max_pages);
969 	err = -ENOMEM;
970 	if (!data.ia)
971 		goto out;
972 
973 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
974 	if (!err) {
975 		if (data.ia->ap.num_pages)
976 			fuse_send_readpages(data.ia, file);
977 		else
978 			fuse_io_free(data.ia);
979 	}
980 out:
981 	return err;
982 }
983 
984 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
985 {
986 	struct inode *inode = iocb->ki_filp->f_mapping->host;
987 	struct fuse_conn *fc = get_fuse_conn(inode);
988 
989 	/*
990 	 * In auto invalidate mode, always update attributes on read.
991 	 * Otherwise, only update if we attempt to read past EOF (to ensure
992 	 * i_size is up to date).
993 	 */
994 	if (fc->auto_inval_data ||
995 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
996 		int err;
997 		err = fuse_update_attributes(inode, iocb->ki_filp);
998 		if (err)
999 			return err;
1000 	}
1001 
1002 	return generic_file_read_iter(iocb, to);
1003 }
1004 
1005 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1006 				 loff_t pos, size_t count)
1007 {
1008 	struct fuse_args *args = &ia->ap.args;
1009 
1010 	ia->write.in.fh = ff->fh;
1011 	ia->write.in.offset = pos;
1012 	ia->write.in.size = count;
1013 	args->opcode = FUSE_WRITE;
1014 	args->nodeid = ff->nodeid;
1015 	args->in_numargs = 2;
1016 	if (ff->fc->minor < 9)
1017 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1018 	else
1019 		args->in_args[0].size = sizeof(ia->write.in);
1020 	args->in_args[0].value = &ia->write.in;
1021 	args->in_args[1].size = count;
1022 	args->out_numargs = 1;
1023 	args->out_args[0].size = sizeof(ia->write.out);
1024 	args->out_args[0].value = &ia->write.out;
1025 }
1026 
1027 static unsigned int fuse_write_flags(struct kiocb *iocb)
1028 {
1029 	unsigned int flags = iocb->ki_filp->f_flags;
1030 
1031 	if (iocb->ki_flags & IOCB_DSYNC)
1032 		flags |= O_DSYNC;
1033 	if (iocb->ki_flags & IOCB_SYNC)
1034 		flags |= O_SYNC;
1035 
1036 	return flags;
1037 }
1038 
1039 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1040 			       size_t count, fl_owner_t owner)
1041 {
1042 	struct kiocb *iocb = ia->io->iocb;
1043 	struct file *file = iocb->ki_filp;
1044 	struct fuse_file *ff = file->private_data;
1045 	struct fuse_conn *fc = ff->fc;
1046 	struct fuse_write_in *inarg = &ia->write.in;
1047 	ssize_t err;
1048 
1049 	fuse_write_args_fill(ia, ff, pos, count);
1050 	inarg->flags = fuse_write_flags(iocb);
1051 	if (owner != NULL) {
1052 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1053 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1054 	}
1055 
1056 	if (ia->io->async)
1057 		return fuse_async_req_send(fc, ia, count);
1058 
1059 	err = fuse_simple_request(fc, &ia->ap.args);
1060 	if (!err && ia->write.out.size > count)
1061 		err = -EIO;
1062 
1063 	return err ?: ia->write.out.size;
1064 }
1065 
1066 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1067 {
1068 	struct fuse_conn *fc = get_fuse_conn(inode);
1069 	struct fuse_inode *fi = get_fuse_inode(inode);
1070 	bool ret = false;
1071 
1072 	spin_lock(&fi->lock);
1073 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1074 	if (pos > inode->i_size) {
1075 		i_size_write(inode, pos);
1076 		ret = true;
1077 	}
1078 	spin_unlock(&fi->lock);
1079 
1080 	return ret;
1081 }
1082 
1083 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1084 				     struct kiocb *iocb, struct inode *inode,
1085 				     loff_t pos, size_t count)
1086 {
1087 	struct fuse_args_pages *ap = &ia->ap;
1088 	struct file *file = iocb->ki_filp;
1089 	struct fuse_file *ff = file->private_data;
1090 	struct fuse_conn *fc = ff->fc;
1091 	unsigned int offset, i;
1092 	int err;
1093 
1094 	for (i = 0; i < ap->num_pages; i++)
1095 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1096 
1097 	fuse_write_args_fill(ia, ff, pos, count);
1098 	ia->write.in.flags = fuse_write_flags(iocb);
1099 
1100 	err = fuse_simple_request(fc, &ap->args);
1101 	if (!err && ia->write.out.size > count)
1102 		err = -EIO;
1103 
1104 	offset = ap->descs[0].offset;
1105 	count = ia->write.out.size;
1106 	for (i = 0; i < ap->num_pages; i++) {
1107 		struct page *page = ap->pages[i];
1108 
1109 		if (!err && !offset && count >= PAGE_SIZE)
1110 			SetPageUptodate(page);
1111 
1112 		if (count > PAGE_SIZE - offset)
1113 			count -= PAGE_SIZE - offset;
1114 		else
1115 			count = 0;
1116 		offset = 0;
1117 
1118 		unlock_page(page);
1119 		put_page(page);
1120 	}
1121 
1122 	return err;
1123 }
1124 
1125 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1126 				     struct address_space *mapping,
1127 				     struct iov_iter *ii, loff_t pos,
1128 				     unsigned int max_pages)
1129 {
1130 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1131 	unsigned offset = pos & (PAGE_SIZE - 1);
1132 	size_t count = 0;
1133 	int err;
1134 
1135 	ap->args.in_pages = true;
1136 	ap->descs[0].offset = offset;
1137 
1138 	do {
1139 		size_t tmp;
1140 		struct page *page;
1141 		pgoff_t index = pos >> PAGE_SHIFT;
1142 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1143 				     iov_iter_count(ii));
1144 
1145 		bytes = min_t(size_t, bytes, fc->max_write - count);
1146 
1147  again:
1148 		err = -EFAULT;
1149 		if (iov_iter_fault_in_readable(ii, bytes))
1150 			break;
1151 
1152 		err = -ENOMEM;
1153 		page = grab_cache_page_write_begin(mapping, index, 0);
1154 		if (!page)
1155 			break;
1156 
1157 		if (mapping_writably_mapped(mapping))
1158 			flush_dcache_page(page);
1159 
1160 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1161 		flush_dcache_page(page);
1162 
1163 		iov_iter_advance(ii, tmp);
1164 		if (!tmp) {
1165 			unlock_page(page);
1166 			put_page(page);
1167 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1168 			goto again;
1169 		}
1170 
1171 		err = 0;
1172 		ap->pages[ap->num_pages] = page;
1173 		ap->descs[ap->num_pages].length = tmp;
1174 		ap->num_pages++;
1175 
1176 		count += tmp;
1177 		pos += tmp;
1178 		offset += tmp;
1179 		if (offset == PAGE_SIZE)
1180 			offset = 0;
1181 
1182 		if (!fc->big_writes)
1183 			break;
1184 	} while (iov_iter_count(ii) && count < fc->max_write &&
1185 		 ap->num_pages < max_pages && offset == 0);
1186 
1187 	return count > 0 ? count : err;
1188 }
1189 
1190 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1191 				     unsigned int max_pages)
1192 {
1193 	return min_t(unsigned int,
1194 		     ((pos + len - 1) >> PAGE_SHIFT) -
1195 		     (pos >> PAGE_SHIFT) + 1,
1196 		     max_pages);
1197 }
1198 
1199 static ssize_t fuse_perform_write(struct kiocb *iocb,
1200 				  struct address_space *mapping,
1201 				  struct iov_iter *ii, loff_t pos)
1202 {
1203 	struct inode *inode = mapping->host;
1204 	struct fuse_conn *fc = get_fuse_conn(inode);
1205 	struct fuse_inode *fi = get_fuse_inode(inode);
1206 	int err = 0;
1207 	ssize_t res = 0;
1208 
1209 	if (inode->i_size < pos + iov_iter_count(ii))
1210 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1211 
1212 	do {
1213 		ssize_t count;
1214 		struct fuse_io_args ia = {};
1215 		struct fuse_args_pages *ap = &ia.ap;
1216 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1217 						      fc->max_pages);
1218 
1219 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1220 		if (!ap->pages) {
1221 			err = -ENOMEM;
1222 			break;
1223 		}
1224 
1225 		count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1226 		if (count <= 0) {
1227 			err = count;
1228 		} else {
1229 			err = fuse_send_write_pages(&ia, iocb, inode,
1230 						    pos, count);
1231 			if (!err) {
1232 				size_t num_written = ia.write.out.size;
1233 
1234 				res += num_written;
1235 				pos += num_written;
1236 
1237 				/* break out of the loop on short write */
1238 				if (num_written != count)
1239 					err = -EIO;
1240 			}
1241 		}
1242 		kfree(ap->pages);
1243 	} while (!err && iov_iter_count(ii));
1244 
1245 	if (res > 0)
1246 		fuse_write_update_size(inode, pos);
1247 
1248 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1249 	fuse_invalidate_attr(inode);
1250 
1251 	return res > 0 ? res : err;
1252 }
1253 
1254 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1255 {
1256 	struct file *file = iocb->ki_filp;
1257 	struct address_space *mapping = file->f_mapping;
1258 	ssize_t written = 0;
1259 	ssize_t written_buffered = 0;
1260 	struct inode *inode = mapping->host;
1261 	ssize_t err;
1262 	loff_t endbyte = 0;
1263 
1264 	if (get_fuse_conn(inode)->writeback_cache) {
1265 		/* Update size (EOF optimization) and mode (SUID clearing) */
1266 		err = fuse_update_attributes(mapping->host, file);
1267 		if (err)
1268 			return err;
1269 
1270 		return generic_file_write_iter(iocb, from);
1271 	}
1272 
1273 	inode_lock(inode);
1274 
1275 	/* We can write back this queue in page reclaim */
1276 	current->backing_dev_info = inode_to_bdi(inode);
1277 
1278 	err = generic_write_checks(iocb, from);
1279 	if (err <= 0)
1280 		goto out;
1281 
1282 	err = file_remove_privs(file);
1283 	if (err)
1284 		goto out;
1285 
1286 	err = file_update_time(file);
1287 	if (err)
1288 		goto out;
1289 
1290 	if (iocb->ki_flags & IOCB_DIRECT) {
1291 		loff_t pos = iocb->ki_pos;
1292 		written = generic_file_direct_write(iocb, from);
1293 		if (written < 0 || !iov_iter_count(from))
1294 			goto out;
1295 
1296 		pos += written;
1297 
1298 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1299 		if (written_buffered < 0) {
1300 			err = written_buffered;
1301 			goto out;
1302 		}
1303 		endbyte = pos + written_buffered - 1;
1304 
1305 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1306 						   endbyte);
1307 		if (err)
1308 			goto out;
1309 
1310 		invalidate_mapping_pages(file->f_mapping,
1311 					 pos >> PAGE_SHIFT,
1312 					 endbyte >> PAGE_SHIFT);
1313 
1314 		written += written_buffered;
1315 		iocb->ki_pos = pos + written_buffered;
1316 	} else {
1317 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1318 		if (written >= 0)
1319 			iocb->ki_pos += written;
1320 	}
1321 out:
1322 	current->backing_dev_info = NULL;
1323 	inode_unlock(inode);
1324 	if (written > 0)
1325 		written = generic_write_sync(iocb, written);
1326 
1327 	return written ? written : err;
1328 }
1329 
1330 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1331 					       unsigned int index,
1332 					       unsigned int nr_pages)
1333 {
1334 	int i;
1335 
1336 	for (i = index; i < index + nr_pages; i++)
1337 		descs[i].length = PAGE_SIZE - descs[i].offset;
1338 }
1339 
1340 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1341 {
1342 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1343 }
1344 
1345 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1346 					size_t max_size)
1347 {
1348 	return min(iov_iter_single_seg_count(ii), max_size);
1349 }
1350 
1351 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1352 			       size_t *nbytesp, int write,
1353 			       unsigned int max_pages)
1354 {
1355 	size_t nbytes = 0;  /* # bytes already packed in req */
1356 	ssize_t ret = 0;
1357 
1358 	/* Special case for kernel I/O: can copy directly into the buffer */
1359 	if (iov_iter_is_kvec(ii)) {
1360 		unsigned long user_addr = fuse_get_user_addr(ii);
1361 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1362 
1363 		if (write)
1364 			ap->args.in_args[1].value = (void *) user_addr;
1365 		else
1366 			ap->args.out_args[0].value = (void *) user_addr;
1367 
1368 		iov_iter_advance(ii, frag_size);
1369 		*nbytesp = frag_size;
1370 		return 0;
1371 	}
1372 
1373 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1374 		unsigned npages;
1375 		size_t start;
1376 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1377 					*nbytesp - nbytes,
1378 					max_pages - ap->num_pages,
1379 					&start);
1380 		if (ret < 0)
1381 			break;
1382 
1383 		iov_iter_advance(ii, ret);
1384 		nbytes += ret;
1385 
1386 		ret += start;
1387 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1388 
1389 		ap->descs[ap->num_pages].offset = start;
1390 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1391 
1392 		ap->num_pages += npages;
1393 		ap->descs[ap->num_pages - 1].length -=
1394 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1395 	}
1396 
1397 	if (write)
1398 		ap->args.in_pages = 1;
1399 	else
1400 		ap->args.out_pages = 1;
1401 
1402 	*nbytesp = nbytes;
1403 
1404 	return ret < 0 ? ret : 0;
1405 }
1406 
1407 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1408 		       loff_t *ppos, int flags)
1409 {
1410 	int write = flags & FUSE_DIO_WRITE;
1411 	int cuse = flags & FUSE_DIO_CUSE;
1412 	struct file *file = io->iocb->ki_filp;
1413 	struct inode *inode = file->f_mapping->host;
1414 	struct fuse_file *ff = file->private_data;
1415 	struct fuse_conn *fc = ff->fc;
1416 	size_t nmax = write ? fc->max_write : fc->max_read;
1417 	loff_t pos = *ppos;
1418 	size_t count = iov_iter_count(iter);
1419 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1420 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1421 	ssize_t res = 0;
1422 	int err = 0;
1423 	struct fuse_io_args *ia;
1424 	unsigned int max_pages;
1425 
1426 	max_pages = iov_iter_npages(iter, fc->max_pages);
1427 	ia = fuse_io_alloc(io, max_pages);
1428 	if (!ia)
1429 		return -ENOMEM;
1430 
1431 	ia->io = io;
1432 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1433 		if (!write)
1434 			inode_lock(inode);
1435 		fuse_sync_writes(inode);
1436 		if (!write)
1437 			inode_unlock(inode);
1438 	}
1439 
1440 	io->should_dirty = !write && iter_is_iovec(iter);
1441 	while (count) {
1442 		ssize_t nres;
1443 		fl_owner_t owner = current->files;
1444 		size_t nbytes = min(count, nmax);
1445 
1446 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1447 					  max_pages);
1448 		if (err && !nbytes)
1449 			break;
1450 
1451 		if (write) {
1452 			if (!capable(CAP_FSETID))
1453 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1454 
1455 			nres = fuse_send_write(ia, pos, nbytes, owner);
1456 		} else {
1457 			nres = fuse_send_read(ia, pos, nbytes, owner);
1458 		}
1459 
1460 		if (!io->async || nres < 0) {
1461 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1462 			fuse_io_free(ia);
1463 		}
1464 		ia = NULL;
1465 		if (nres < 0) {
1466 			err = nres;
1467 			break;
1468 		}
1469 		WARN_ON(nres > nbytes);
1470 
1471 		count -= nres;
1472 		res += nres;
1473 		pos += nres;
1474 		if (nres != nbytes)
1475 			break;
1476 		if (count) {
1477 			max_pages = iov_iter_npages(iter, fc->max_pages);
1478 			ia = fuse_io_alloc(io, max_pages);
1479 			if (!ia)
1480 				break;
1481 		}
1482 	}
1483 	if (ia)
1484 		fuse_io_free(ia);
1485 	if (res > 0)
1486 		*ppos = pos;
1487 
1488 	return res > 0 ? res : err;
1489 }
1490 EXPORT_SYMBOL_GPL(fuse_direct_io);
1491 
1492 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1493 				  struct iov_iter *iter,
1494 				  loff_t *ppos)
1495 {
1496 	ssize_t res;
1497 	struct inode *inode = file_inode(io->iocb->ki_filp);
1498 
1499 	res = fuse_direct_io(io, iter, ppos, 0);
1500 
1501 	fuse_invalidate_atime(inode);
1502 
1503 	return res;
1504 }
1505 
1506 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1507 
1508 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1509 {
1510 	ssize_t res;
1511 
1512 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1513 		res = fuse_direct_IO(iocb, to);
1514 	} else {
1515 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1516 
1517 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1518 	}
1519 
1520 	return res;
1521 }
1522 
1523 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1524 {
1525 	struct inode *inode = file_inode(iocb->ki_filp);
1526 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1527 	ssize_t res;
1528 
1529 	/* Don't allow parallel writes to the same file */
1530 	inode_lock(inode);
1531 	res = generic_write_checks(iocb, from);
1532 	if (res > 0) {
1533 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1534 			res = fuse_direct_IO(iocb, from);
1535 		} else {
1536 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1537 					     FUSE_DIO_WRITE);
1538 		}
1539 	}
1540 	fuse_invalidate_attr(inode);
1541 	if (res > 0)
1542 		fuse_write_update_size(inode, iocb->ki_pos);
1543 	inode_unlock(inode);
1544 
1545 	return res;
1546 }
1547 
1548 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1549 {
1550 	struct file *file = iocb->ki_filp;
1551 	struct fuse_file *ff = file->private_data;
1552 
1553 	if (is_bad_inode(file_inode(file)))
1554 		return -EIO;
1555 
1556 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1557 		return fuse_cache_read_iter(iocb, to);
1558 	else
1559 		return fuse_direct_read_iter(iocb, to);
1560 }
1561 
1562 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1563 {
1564 	struct file *file = iocb->ki_filp;
1565 	struct fuse_file *ff = file->private_data;
1566 
1567 	if (is_bad_inode(file_inode(file)))
1568 		return -EIO;
1569 
1570 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1571 		return fuse_cache_write_iter(iocb, from);
1572 	else
1573 		return fuse_direct_write_iter(iocb, from);
1574 }
1575 
1576 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1577 {
1578 	struct fuse_args_pages *ap = &wpa->ia.ap;
1579 	int i;
1580 
1581 	for (i = 0; i < ap->num_pages; i++)
1582 		__free_page(ap->pages[i]);
1583 
1584 	if (wpa->ia.ff)
1585 		fuse_file_put(wpa->ia.ff, false, false);
1586 
1587 	kfree(ap->pages);
1588 	kfree(wpa);
1589 }
1590 
1591 static void fuse_writepage_finish(struct fuse_conn *fc,
1592 				  struct fuse_writepage_args *wpa)
1593 {
1594 	struct fuse_args_pages *ap = &wpa->ia.ap;
1595 	struct inode *inode = wpa->inode;
1596 	struct fuse_inode *fi = get_fuse_inode(inode);
1597 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1598 	int i;
1599 
1600 	list_del(&wpa->writepages_entry);
1601 	for (i = 0; i < ap->num_pages; i++) {
1602 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1603 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1604 		wb_writeout_inc(&bdi->wb);
1605 	}
1606 	wake_up(&fi->page_waitq);
1607 }
1608 
1609 /* Called under fi->lock, may release and reacquire it */
1610 static void fuse_send_writepage(struct fuse_conn *fc,
1611 				struct fuse_writepage_args *wpa, loff_t size)
1612 __releases(fi->lock)
1613 __acquires(fi->lock)
1614 {
1615 	struct fuse_writepage_args *aux, *next;
1616 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1617 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1618 	struct fuse_args *args = &wpa->ia.ap.args;
1619 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1620 	int err;
1621 
1622 	fi->writectr++;
1623 	if (inarg->offset + data_size <= size) {
1624 		inarg->size = data_size;
1625 	} else if (inarg->offset < size) {
1626 		inarg->size = size - inarg->offset;
1627 	} else {
1628 		/* Got truncated off completely */
1629 		goto out_free;
1630 	}
1631 
1632 	args->in_args[1].size = inarg->size;
1633 	args->force = true;
1634 	args->nocreds = true;
1635 
1636 	err = fuse_simple_background(fc, args, GFP_ATOMIC);
1637 	if (err == -ENOMEM) {
1638 		spin_unlock(&fi->lock);
1639 		err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1640 		spin_lock(&fi->lock);
1641 	}
1642 
1643 	/* Fails on broken connection only */
1644 	if (unlikely(err))
1645 		goto out_free;
1646 
1647 	return;
1648 
1649  out_free:
1650 	fi->writectr--;
1651 	fuse_writepage_finish(fc, wpa);
1652 	spin_unlock(&fi->lock);
1653 
1654 	/* After fuse_writepage_finish() aux request list is private */
1655 	for (aux = wpa->next; aux; aux = next) {
1656 		next = aux->next;
1657 		aux->next = NULL;
1658 		fuse_writepage_free(aux);
1659 	}
1660 
1661 	fuse_writepage_free(wpa);
1662 	spin_lock(&fi->lock);
1663 }
1664 
1665 /*
1666  * If fi->writectr is positive (no truncate or fsync going on) send
1667  * all queued writepage requests.
1668  *
1669  * Called with fi->lock
1670  */
1671 void fuse_flush_writepages(struct inode *inode)
1672 __releases(fi->lock)
1673 __acquires(fi->lock)
1674 {
1675 	struct fuse_conn *fc = get_fuse_conn(inode);
1676 	struct fuse_inode *fi = get_fuse_inode(inode);
1677 	loff_t crop = i_size_read(inode);
1678 	struct fuse_writepage_args *wpa;
1679 
1680 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1681 		wpa = list_entry(fi->queued_writes.next,
1682 				 struct fuse_writepage_args, queue_entry);
1683 		list_del_init(&wpa->queue_entry);
1684 		fuse_send_writepage(fc, wpa, crop);
1685 	}
1686 }
1687 
1688 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1689 			       int error)
1690 {
1691 	struct fuse_writepage_args *wpa =
1692 		container_of(args, typeof(*wpa), ia.ap.args);
1693 	struct inode *inode = wpa->inode;
1694 	struct fuse_inode *fi = get_fuse_inode(inode);
1695 
1696 	mapping_set_error(inode->i_mapping, error);
1697 	spin_lock(&fi->lock);
1698 	while (wpa->next) {
1699 		struct fuse_conn *fc = get_fuse_conn(inode);
1700 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1701 		struct fuse_writepage_args *next = wpa->next;
1702 
1703 		wpa->next = next->next;
1704 		next->next = NULL;
1705 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1706 		list_add(&next->writepages_entry, &fi->writepages);
1707 
1708 		/*
1709 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1710 		 * based on primary request size.
1711 		 *
1712 		 * 1st case (trivial): there are no concurrent activities using
1713 		 * fuse_set/release_nowrite.  Then we're on safe side because
1714 		 * fuse_flush_writepages() would call fuse_send_writepage()
1715 		 * anyway.
1716 		 *
1717 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1718 		 * now for completion of all in-flight requests.  This happens
1719 		 * rarely and no more than once per page, so this should be
1720 		 * okay.
1721 		 *
1722 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1723 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1724 		 * that fuse_set_nowrite returned implies that all in-flight
1725 		 * requests were completed along with all of their secondary
1726 		 * requests.  Further primary requests are blocked by negative
1727 		 * writectr.  Hence there cannot be any in-flight requests and
1728 		 * no invocations of fuse_writepage_end() while we're in
1729 		 * fuse_set_nowrite..fuse_release_nowrite section.
1730 		 */
1731 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1732 	}
1733 	fi->writectr--;
1734 	fuse_writepage_finish(fc, wpa);
1735 	spin_unlock(&fi->lock);
1736 	fuse_writepage_free(wpa);
1737 }
1738 
1739 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1740 					       struct fuse_inode *fi)
1741 {
1742 	struct fuse_file *ff = NULL;
1743 
1744 	spin_lock(&fi->lock);
1745 	if (!list_empty(&fi->write_files)) {
1746 		ff = list_entry(fi->write_files.next, struct fuse_file,
1747 				write_entry);
1748 		fuse_file_get(ff);
1749 	}
1750 	spin_unlock(&fi->lock);
1751 
1752 	return ff;
1753 }
1754 
1755 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1756 					     struct fuse_inode *fi)
1757 {
1758 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1759 	WARN_ON(!ff);
1760 	return ff;
1761 }
1762 
1763 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1764 {
1765 	struct fuse_conn *fc = get_fuse_conn(inode);
1766 	struct fuse_inode *fi = get_fuse_inode(inode);
1767 	struct fuse_file *ff;
1768 	int err;
1769 
1770 	ff = __fuse_write_file_get(fc, fi);
1771 	err = fuse_flush_times(inode, ff);
1772 	if (ff)
1773 		fuse_file_put(ff, false, false);
1774 
1775 	return err;
1776 }
1777 
1778 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1779 {
1780 	struct fuse_writepage_args *wpa;
1781 	struct fuse_args_pages *ap;
1782 
1783 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1784 	if (wpa) {
1785 		ap = &wpa->ia.ap;
1786 		ap->num_pages = 0;
1787 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1788 		if (!ap->pages) {
1789 			kfree(wpa);
1790 			wpa = NULL;
1791 		}
1792 	}
1793 	return wpa;
1794 
1795 }
1796 
1797 static int fuse_writepage_locked(struct page *page)
1798 {
1799 	struct address_space *mapping = page->mapping;
1800 	struct inode *inode = mapping->host;
1801 	struct fuse_conn *fc = get_fuse_conn(inode);
1802 	struct fuse_inode *fi = get_fuse_inode(inode);
1803 	struct fuse_writepage_args *wpa;
1804 	struct fuse_args_pages *ap;
1805 	struct page *tmp_page;
1806 	int error = -ENOMEM;
1807 
1808 	set_page_writeback(page);
1809 
1810 	wpa = fuse_writepage_args_alloc();
1811 	if (!wpa)
1812 		goto err;
1813 	ap = &wpa->ia.ap;
1814 
1815 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1816 	if (!tmp_page)
1817 		goto err_free;
1818 
1819 	error = -EIO;
1820 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1821 	if (!wpa->ia.ff)
1822 		goto err_nofile;
1823 
1824 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1825 
1826 	copy_highpage(tmp_page, page);
1827 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1828 	wpa->next = NULL;
1829 	ap->args.in_pages = true;
1830 	ap->num_pages = 1;
1831 	ap->pages[0] = tmp_page;
1832 	ap->descs[0].offset = 0;
1833 	ap->descs[0].length = PAGE_SIZE;
1834 	ap->args.end = fuse_writepage_end;
1835 	wpa->inode = inode;
1836 
1837 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1838 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1839 
1840 	spin_lock(&fi->lock);
1841 	list_add(&wpa->writepages_entry, &fi->writepages);
1842 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1843 	fuse_flush_writepages(inode);
1844 	spin_unlock(&fi->lock);
1845 
1846 	end_page_writeback(page);
1847 
1848 	return 0;
1849 
1850 err_nofile:
1851 	__free_page(tmp_page);
1852 err_free:
1853 	kfree(wpa);
1854 err:
1855 	mapping_set_error(page->mapping, error);
1856 	end_page_writeback(page);
1857 	return error;
1858 }
1859 
1860 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1861 {
1862 	int err;
1863 
1864 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1865 		/*
1866 		 * ->writepages() should be called for sync() and friends.  We
1867 		 * should only get here on direct reclaim and then we are
1868 		 * allowed to skip a page which is already in flight
1869 		 */
1870 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1871 
1872 		redirty_page_for_writepage(wbc, page);
1873 		unlock_page(page);
1874 		return 0;
1875 	}
1876 
1877 	err = fuse_writepage_locked(page);
1878 	unlock_page(page);
1879 
1880 	return err;
1881 }
1882 
1883 struct fuse_fill_wb_data {
1884 	struct fuse_writepage_args *wpa;
1885 	struct fuse_file *ff;
1886 	struct inode *inode;
1887 	struct page **orig_pages;
1888 	unsigned int max_pages;
1889 };
1890 
1891 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1892 {
1893 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1894 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1895 	struct page **pages;
1896 	struct fuse_page_desc *descs;
1897 	unsigned int npages = min_t(unsigned int,
1898 				    max_t(unsigned int, data->max_pages * 2,
1899 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1900 				    fc->max_pages);
1901 	WARN_ON(npages <= data->max_pages);
1902 
1903 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1904 	if (!pages)
1905 		return false;
1906 
1907 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1908 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1909 	kfree(ap->pages);
1910 	ap->pages = pages;
1911 	ap->descs = descs;
1912 	data->max_pages = npages;
1913 
1914 	return true;
1915 }
1916 
1917 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1918 {
1919 	struct fuse_writepage_args *wpa = data->wpa;
1920 	struct inode *inode = data->inode;
1921 	struct fuse_inode *fi = get_fuse_inode(inode);
1922 	int num_pages = wpa->ia.ap.num_pages;
1923 	int i;
1924 
1925 	wpa->ia.ff = fuse_file_get(data->ff);
1926 	spin_lock(&fi->lock);
1927 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1928 	fuse_flush_writepages(inode);
1929 	spin_unlock(&fi->lock);
1930 
1931 	for (i = 0; i < num_pages; i++)
1932 		end_page_writeback(data->orig_pages[i]);
1933 }
1934 
1935 /*
1936  * First recheck under fi->lock if the offending offset is still under
1937  * writeback.  If yes, then iterate auxiliary write requests, to see if there's
1938  * one already added for a page at this offset.  If there's none, then insert
1939  * this new request onto the auxiliary list, otherwise reuse the existing one by
1940  * copying the new page contents over to the old temporary page.
1941  */
1942 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1943 				     struct page *page)
1944 {
1945 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1946 	struct fuse_writepage_args *tmp;
1947 	struct fuse_writepage_args *old_wpa;
1948 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1949 
1950 	WARN_ON(new_ap->num_pages != 0);
1951 
1952 	spin_lock(&fi->lock);
1953 	list_del(&new_wpa->writepages_entry);
1954 	old_wpa = fuse_find_writeback(fi, page->index, page->index);
1955 	if (!old_wpa) {
1956 		list_add(&new_wpa->writepages_entry, &fi->writepages);
1957 		spin_unlock(&fi->lock);
1958 		return false;
1959 	}
1960 
1961 	new_ap->num_pages = 1;
1962 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1963 		pgoff_t curr_index;
1964 
1965 		WARN_ON(tmp->inode != new_wpa->inode);
1966 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1967 		if (curr_index == page->index) {
1968 			WARN_ON(tmp->ia.ap.num_pages != 1);
1969 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1970 			break;
1971 		}
1972 	}
1973 
1974 	if (!tmp) {
1975 		new_wpa->next = old_wpa->next;
1976 		old_wpa->next = new_wpa;
1977 	}
1978 
1979 	spin_unlock(&fi->lock);
1980 
1981 	if (tmp) {
1982 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
1983 
1984 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1985 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
1986 		wb_writeout_inc(&bdi->wb);
1987 		fuse_writepage_free(new_wpa);
1988 	}
1989 
1990 	return true;
1991 }
1992 
1993 static int fuse_writepages_fill(struct page *page,
1994 		struct writeback_control *wbc, void *_data)
1995 {
1996 	struct fuse_fill_wb_data *data = _data;
1997 	struct fuse_writepage_args *wpa = data->wpa;
1998 	struct fuse_args_pages *ap = &wpa->ia.ap;
1999 	struct inode *inode = data->inode;
2000 	struct fuse_inode *fi = get_fuse_inode(inode);
2001 	struct fuse_conn *fc = get_fuse_conn(inode);
2002 	struct page *tmp_page;
2003 	bool is_writeback;
2004 	int err;
2005 
2006 	if (!data->ff) {
2007 		err = -EIO;
2008 		data->ff = fuse_write_file_get(fc, fi);
2009 		if (!data->ff)
2010 			goto out_unlock;
2011 	}
2012 
2013 	/*
2014 	 * Being under writeback is unlikely but possible.  For example direct
2015 	 * read to an mmaped fuse file will set the page dirty twice; once when
2016 	 * the pages are faulted with get_user_pages(), and then after the read
2017 	 * completed.
2018 	 */
2019 	is_writeback = fuse_page_is_writeback(inode, page->index);
2020 
2021 	if (wpa && ap->num_pages &&
2022 	    (is_writeback || ap->num_pages == fc->max_pages ||
2023 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2024 	     data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2025 		fuse_writepages_send(data);
2026 		data->wpa = NULL;
2027 	} else if (wpa && ap->num_pages == data->max_pages) {
2028 		if (!fuse_pages_realloc(data)) {
2029 			fuse_writepages_send(data);
2030 			data->wpa = NULL;
2031 		}
2032 	}
2033 
2034 	err = -ENOMEM;
2035 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2036 	if (!tmp_page)
2037 		goto out_unlock;
2038 
2039 	/*
2040 	 * The page must not be redirtied until the writeout is completed
2041 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2042 	 * there could be more than one temporary page instance for each real
2043 	 * page.
2044 	 *
2045 	 * This is ensured by holding the page lock in page_mkwrite() while
2046 	 * checking fuse_page_is_writeback().  We already hold the page lock
2047 	 * since clear_page_dirty_for_io() and keep it held until we add the
2048 	 * request to the fi->writepages list and increment ap->num_pages.
2049 	 * After this fuse_page_is_writeback() will indicate that the page is
2050 	 * under writeback, so we can release the page lock.
2051 	 */
2052 	if (data->wpa == NULL) {
2053 		err = -ENOMEM;
2054 		wpa = fuse_writepage_args_alloc();
2055 		if (!wpa) {
2056 			__free_page(tmp_page);
2057 			goto out_unlock;
2058 		}
2059 		data->max_pages = 1;
2060 
2061 		ap = &wpa->ia.ap;
2062 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2063 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2064 		wpa->next = NULL;
2065 		ap->args.in_pages = true;
2066 		ap->args.end = fuse_writepage_end;
2067 		ap->num_pages = 0;
2068 		wpa->inode = inode;
2069 
2070 		spin_lock(&fi->lock);
2071 		list_add(&wpa->writepages_entry, &fi->writepages);
2072 		spin_unlock(&fi->lock);
2073 
2074 		data->wpa = wpa;
2075 	}
2076 	set_page_writeback(page);
2077 
2078 	copy_highpage(tmp_page, page);
2079 	ap->pages[ap->num_pages] = tmp_page;
2080 	ap->descs[ap->num_pages].offset = 0;
2081 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2082 
2083 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2084 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2085 
2086 	err = 0;
2087 	if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2088 		end_page_writeback(page);
2089 		data->wpa = NULL;
2090 		goto out_unlock;
2091 	}
2092 	data->orig_pages[ap->num_pages] = page;
2093 
2094 	/*
2095 	 * Protected by fi->lock against concurrent access by
2096 	 * fuse_page_is_writeback().
2097 	 */
2098 	spin_lock(&fi->lock);
2099 	ap->num_pages++;
2100 	spin_unlock(&fi->lock);
2101 
2102 out_unlock:
2103 	unlock_page(page);
2104 
2105 	return err;
2106 }
2107 
2108 static int fuse_writepages(struct address_space *mapping,
2109 			   struct writeback_control *wbc)
2110 {
2111 	struct inode *inode = mapping->host;
2112 	struct fuse_conn *fc = get_fuse_conn(inode);
2113 	struct fuse_fill_wb_data data;
2114 	int err;
2115 
2116 	err = -EIO;
2117 	if (is_bad_inode(inode))
2118 		goto out;
2119 
2120 	data.inode = inode;
2121 	data.wpa = NULL;
2122 	data.ff = NULL;
2123 
2124 	err = -ENOMEM;
2125 	data.orig_pages = kcalloc(fc->max_pages,
2126 				  sizeof(struct page *),
2127 				  GFP_NOFS);
2128 	if (!data.orig_pages)
2129 		goto out;
2130 
2131 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2132 	if (data.wpa) {
2133 		/* Ignore errors if we can write at least one page */
2134 		WARN_ON(!data.wpa->ia.ap.num_pages);
2135 		fuse_writepages_send(&data);
2136 		err = 0;
2137 	}
2138 	if (data.ff)
2139 		fuse_file_put(data.ff, false, false);
2140 
2141 	kfree(data.orig_pages);
2142 out:
2143 	return err;
2144 }
2145 
2146 /*
2147  * It's worthy to make sure that space is reserved on disk for the write,
2148  * but how to implement it without killing performance need more thinking.
2149  */
2150 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2151 		loff_t pos, unsigned len, unsigned flags,
2152 		struct page **pagep, void **fsdata)
2153 {
2154 	pgoff_t index = pos >> PAGE_SHIFT;
2155 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2156 	struct page *page;
2157 	loff_t fsize;
2158 	int err = -ENOMEM;
2159 
2160 	WARN_ON(!fc->writeback_cache);
2161 
2162 	page = grab_cache_page_write_begin(mapping, index, flags);
2163 	if (!page)
2164 		goto error;
2165 
2166 	fuse_wait_on_page_writeback(mapping->host, page->index);
2167 
2168 	if (PageUptodate(page) || len == PAGE_SIZE)
2169 		goto success;
2170 	/*
2171 	 * Check if the start this page comes after the end of file, in which
2172 	 * case the readpage can be optimized away.
2173 	 */
2174 	fsize = i_size_read(mapping->host);
2175 	if (fsize <= (pos & PAGE_MASK)) {
2176 		size_t off = pos & ~PAGE_MASK;
2177 		if (off)
2178 			zero_user_segment(page, 0, off);
2179 		goto success;
2180 	}
2181 	err = fuse_do_readpage(file, page);
2182 	if (err)
2183 		goto cleanup;
2184 success:
2185 	*pagep = page;
2186 	return 0;
2187 
2188 cleanup:
2189 	unlock_page(page);
2190 	put_page(page);
2191 error:
2192 	return err;
2193 }
2194 
2195 static int fuse_write_end(struct file *file, struct address_space *mapping,
2196 		loff_t pos, unsigned len, unsigned copied,
2197 		struct page *page, void *fsdata)
2198 {
2199 	struct inode *inode = page->mapping->host;
2200 
2201 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2202 	if (!copied)
2203 		goto unlock;
2204 
2205 	if (!PageUptodate(page)) {
2206 		/* Zero any unwritten bytes at the end of the page */
2207 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2208 		if (endoff)
2209 			zero_user_segment(page, endoff, PAGE_SIZE);
2210 		SetPageUptodate(page);
2211 	}
2212 
2213 	fuse_write_update_size(inode, pos + copied);
2214 	set_page_dirty(page);
2215 
2216 unlock:
2217 	unlock_page(page);
2218 	put_page(page);
2219 
2220 	return copied;
2221 }
2222 
2223 static int fuse_launder_page(struct page *page)
2224 {
2225 	int err = 0;
2226 	if (clear_page_dirty_for_io(page)) {
2227 		struct inode *inode = page->mapping->host;
2228 		err = fuse_writepage_locked(page);
2229 		if (!err)
2230 			fuse_wait_on_page_writeback(inode, page->index);
2231 	}
2232 	return err;
2233 }
2234 
2235 /*
2236  * Write back dirty pages now, because there may not be any suitable
2237  * open files later
2238  */
2239 static void fuse_vma_close(struct vm_area_struct *vma)
2240 {
2241 	filemap_write_and_wait(vma->vm_file->f_mapping);
2242 }
2243 
2244 /*
2245  * Wait for writeback against this page to complete before allowing it
2246  * to be marked dirty again, and hence written back again, possibly
2247  * before the previous writepage completed.
2248  *
2249  * Block here, instead of in ->writepage(), so that the userspace fs
2250  * can only block processes actually operating on the filesystem.
2251  *
2252  * Otherwise unprivileged userspace fs would be able to block
2253  * unrelated:
2254  *
2255  * - page migration
2256  * - sync(2)
2257  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2258  */
2259 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2260 {
2261 	struct page *page = vmf->page;
2262 	struct inode *inode = file_inode(vmf->vma->vm_file);
2263 
2264 	file_update_time(vmf->vma->vm_file);
2265 	lock_page(page);
2266 	if (page->mapping != inode->i_mapping) {
2267 		unlock_page(page);
2268 		return VM_FAULT_NOPAGE;
2269 	}
2270 
2271 	fuse_wait_on_page_writeback(inode, page->index);
2272 	return VM_FAULT_LOCKED;
2273 }
2274 
2275 static const struct vm_operations_struct fuse_file_vm_ops = {
2276 	.close		= fuse_vma_close,
2277 	.fault		= filemap_fault,
2278 	.map_pages	= filemap_map_pages,
2279 	.page_mkwrite	= fuse_page_mkwrite,
2280 };
2281 
2282 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2283 {
2284 	struct fuse_file *ff = file->private_data;
2285 
2286 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2287 		/* Can't provide the coherency needed for MAP_SHARED */
2288 		if (vma->vm_flags & VM_MAYSHARE)
2289 			return -ENODEV;
2290 
2291 		invalidate_inode_pages2(file->f_mapping);
2292 
2293 		return generic_file_mmap(file, vma);
2294 	}
2295 
2296 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2297 		fuse_link_write_file(file);
2298 
2299 	file_accessed(file);
2300 	vma->vm_ops = &fuse_file_vm_ops;
2301 	return 0;
2302 }
2303 
2304 static int convert_fuse_file_lock(struct fuse_conn *fc,
2305 				  const struct fuse_file_lock *ffl,
2306 				  struct file_lock *fl)
2307 {
2308 	switch (ffl->type) {
2309 	case F_UNLCK:
2310 		break;
2311 
2312 	case F_RDLCK:
2313 	case F_WRLCK:
2314 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2315 		    ffl->end < ffl->start)
2316 			return -EIO;
2317 
2318 		fl->fl_start = ffl->start;
2319 		fl->fl_end = ffl->end;
2320 
2321 		/*
2322 		 * Convert pid into init's pid namespace.  The locks API will
2323 		 * translate it into the caller's pid namespace.
2324 		 */
2325 		rcu_read_lock();
2326 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2327 		rcu_read_unlock();
2328 		break;
2329 
2330 	default:
2331 		return -EIO;
2332 	}
2333 	fl->fl_type = ffl->type;
2334 	return 0;
2335 }
2336 
2337 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2338 			 const struct file_lock *fl, int opcode, pid_t pid,
2339 			 int flock, struct fuse_lk_in *inarg)
2340 {
2341 	struct inode *inode = file_inode(file);
2342 	struct fuse_conn *fc = get_fuse_conn(inode);
2343 	struct fuse_file *ff = file->private_data;
2344 
2345 	memset(inarg, 0, sizeof(*inarg));
2346 	inarg->fh = ff->fh;
2347 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2348 	inarg->lk.start = fl->fl_start;
2349 	inarg->lk.end = fl->fl_end;
2350 	inarg->lk.type = fl->fl_type;
2351 	inarg->lk.pid = pid;
2352 	if (flock)
2353 		inarg->lk_flags |= FUSE_LK_FLOCK;
2354 	args->opcode = opcode;
2355 	args->nodeid = get_node_id(inode);
2356 	args->in_numargs = 1;
2357 	args->in_args[0].size = sizeof(*inarg);
2358 	args->in_args[0].value = inarg;
2359 }
2360 
2361 static int fuse_getlk(struct file *file, struct file_lock *fl)
2362 {
2363 	struct inode *inode = file_inode(file);
2364 	struct fuse_conn *fc = get_fuse_conn(inode);
2365 	FUSE_ARGS(args);
2366 	struct fuse_lk_in inarg;
2367 	struct fuse_lk_out outarg;
2368 	int err;
2369 
2370 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2371 	args.out_numargs = 1;
2372 	args.out_args[0].size = sizeof(outarg);
2373 	args.out_args[0].value = &outarg;
2374 	err = fuse_simple_request(fc, &args);
2375 	if (!err)
2376 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2377 
2378 	return err;
2379 }
2380 
2381 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2382 {
2383 	struct inode *inode = file_inode(file);
2384 	struct fuse_conn *fc = get_fuse_conn(inode);
2385 	FUSE_ARGS(args);
2386 	struct fuse_lk_in inarg;
2387 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2388 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2389 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2390 	int err;
2391 
2392 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2393 		/* NLM needs asynchronous locks, which we don't support yet */
2394 		return -ENOLCK;
2395 	}
2396 
2397 	/* Unlock on close is handled by the flush method */
2398 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2399 		return 0;
2400 
2401 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2402 	err = fuse_simple_request(fc, &args);
2403 
2404 	/* locking is restartable */
2405 	if (err == -EINTR)
2406 		err = -ERESTARTSYS;
2407 
2408 	return err;
2409 }
2410 
2411 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2412 {
2413 	struct inode *inode = file_inode(file);
2414 	struct fuse_conn *fc = get_fuse_conn(inode);
2415 	int err;
2416 
2417 	if (cmd == F_CANCELLK) {
2418 		err = 0;
2419 	} else if (cmd == F_GETLK) {
2420 		if (fc->no_lock) {
2421 			posix_test_lock(file, fl);
2422 			err = 0;
2423 		} else
2424 			err = fuse_getlk(file, fl);
2425 	} else {
2426 		if (fc->no_lock)
2427 			err = posix_lock_file(file, fl, NULL);
2428 		else
2429 			err = fuse_setlk(file, fl, 0);
2430 	}
2431 	return err;
2432 }
2433 
2434 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2435 {
2436 	struct inode *inode = file_inode(file);
2437 	struct fuse_conn *fc = get_fuse_conn(inode);
2438 	int err;
2439 
2440 	if (fc->no_flock) {
2441 		err = locks_lock_file_wait(file, fl);
2442 	} else {
2443 		struct fuse_file *ff = file->private_data;
2444 
2445 		/* emulate flock with POSIX locks */
2446 		ff->flock = true;
2447 		err = fuse_setlk(file, fl, 1);
2448 	}
2449 
2450 	return err;
2451 }
2452 
2453 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2454 {
2455 	struct inode *inode = mapping->host;
2456 	struct fuse_conn *fc = get_fuse_conn(inode);
2457 	FUSE_ARGS(args);
2458 	struct fuse_bmap_in inarg;
2459 	struct fuse_bmap_out outarg;
2460 	int err;
2461 
2462 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2463 		return 0;
2464 
2465 	memset(&inarg, 0, sizeof(inarg));
2466 	inarg.block = block;
2467 	inarg.blocksize = inode->i_sb->s_blocksize;
2468 	args.opcode = FUSE_BMAP;
2469 	args.nodeid = get_node_id(inode);
2470 	args.in_numargs = 1;
2471 	args.in_args[0].size = sizeof(inarg);
2472 	args.in_args[0].value = &inarg;
2473 	args.out_numargs = 1;
2474 	args.out_args[0].size = sizeof(outarg);
2475 	args.out_args[0].value = &outarg;
2476 	err = fuse_simple_request(fc, &args);
2477 	if (err == -ENOSYS)
2478 		fc->no_bmap = 1;
2479 
2480 	return err ? 0 : outarg.block;
2481 }
2482 
2483 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2484 {
2485 	struct inode *inode = file->f_mapping->host;
2486 	struct fuse_conn *fc = get_fuse_conn(inode);
2487 	struct fuse_file *ff = file->private_data;
2488 	FUSE_ARGS(args);
2489 	struct fuse_lseek_in inarg = {
2490 		.fh = ff->fh,
2491 		.offset = offset,
2492 		.whence = whence
2493 	};
2494 	struct fuse_lseek_out outarg;
2495 	int err;
2496 
2497 	if (fc->no_lseek)
2498 		goto fallback;
2499 
2500 	args.opcode = FUSE_LSEEK;
2501 	args.nodeid = ff->nodeid;
2502 	args.in_numargs = 1;
2503 	args.in_args[0].size = sizeof(inarg);
2504 	args.in_args[0].value = &inarg;
2505 	args.out_numargs = 1;
2506 	args.out_args[0].size = sizeof(outarg);
2507 	args.out_args[0].value = &outarg;
2508 	err = fuse_simple_request(fc, &args);
2509 	if (err) {
2510 		if (err == -ENOSYS) {
2511 			fc->no_lseek = 1;
2512 			goto fallback;
2513 		}
2514 		return err;
2515 	}
2516 
2517 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2518 
2519 fallback:
2520 	err = fuse_update_attributes(inode, file);
2521 	if (!err)
2522 		return generic_file_llseek(file, offset, whence);
2523 	else
2524 		return err;
2525 }
2526 
2527 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2528 {
2529 	loff_t retval;
2530 	struct inode *inode = file_inode(file);
2531 
2532 	switch (whence) {
2533 	case SEEK_SET:
2534 	case SEEK_CUR:
2535 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2536 		retval = generic_file_llseek(file, offset, whence);
2537 		break;
2538 	case SEEK_END:
2539 		inode_lock(inode);
2540 		retval = fuse_update_attributes(inode, file);
2541 		if (!retval)
2542 			retval = generic_file_llseek(file, offset, whence);
2543 		inode_unlock(inode);
2544 		break;
2545 	case SEEK_HOLE:
2546 	case SEEK_DATA:
2547 		inode_lock(inode);
2548 		retval = fuse_lseek(file, offset, whence);
2549 		inode_unlock(inode);
2550 		break;
2551 	default:
2552 		retval = -EINVAL;
2553 	}
2554 
2555 	return retval;
2556 }
2557 
2558 /*
2559  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2560  * ABI was defined to be 'struct iovec' which is different on 32bit
2561  * and 64bit.  Fortunately we can determine which structure the server
2562  * used from the size of the reply.
2563  */
2564 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2565 				     size_t transferred, unsigned count,
2566 				     bool is_compat)
2567 {
2568 #ifdef CONFIG_COMPAT
2569 	if (count * sizeof(struct compat_iovec) == transferred) {
2570 		struct compat_iovec *ciov = src;
2571 		unsigned i;
2572 
2573 		/*
2574 		 * With this interface a 32bit server cannot support
2575 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2576 		 * requests
2577 		 */
2578 		if (!is_compat)
2579 			return -EINVAL;
2580 
2581 		for (i = 0; i < count; i++) {
2582 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2583 			dst[i].iov_len = ciov[i].iov_len;
2584 		}
2585 		return 0;
2586 	}
2587 #endif
2588 
2589 	if (count * sizeof(struct iovec) != transferred)
2590 		return -EIO;
2591 
2592 	memcpy(dst, src, transferred);
2593 	return 0;
2594 }
2595 
2596 /* Make sure iov_length() won't overflow */
2597 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2598 				 size_t count)
2599 {
2600 	size_t n;
2601 	u32 max = fc->max_pages << PAGE_SHIFT;
2602 
2603 	for (n = 0; n < count; n++, iov++) {
2604 		if (iov->iov_len > (size_t) max)
2605 			return -ENOMEM;
2606 		max -= iov->iov_len;
2607 	}
2608 	return 0;
2609 }
2610 
2611 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2612 				 void *src, size_t transferred, unsigned count,
2613 				 bool is_compat)
2614 {
2615 	unsigned i;
2616 	struct fuse_ioctl_iovec *fiov = src;
2617 
2618 	if (fc->minor < 16) {
2619 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2620 						 count, is_compat);
2621 	}
2622 
2623 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2624 		return -EIO;
2625 
2626 	for (i = 0; i < count; i++) {
2627 		/* Did the server supply an inappropriate value? */
2628 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2629 		    fiov[i].len != (unsigned long) fiov[i].len)
2630 			return -EIO;
2631 
2632 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2633 		dst[i].iov_len = (size_t) fiov[i].len;
2634 
2635 #ifdef CONFIG_COMPAT
2636 		if (is_compat &&
2637 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2638 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2639 			return -EIO;
2640 #endif
2641 	}
2642 
2643 	return 0;
2644 }
2645 
2646 
2647 /*
2648  * For ioctls, there is no generic way to determine how much memory
2649  * needs to be read and/or written.  Furthermore, ioctls are allowed
2650  * to dereference the passed pointer, so the parameter requires deep
2651  * copying but FUSE has no idea whatsoever about what to copy in or
2652  * out.
2653  *
2654  * This is solved by allowing FUSE server to retry ioctl with
2655  * necessary in/out iovecs.  Let's assume the ioctl implementation
2656  * needs to read in the following structure.
2657  *
2658  * struct a {
2659  *	char	*buf;
2660  *	size_t	buflen;
2661  * }
2662  *
2663  * On the first callout to FUSE server, inarg->in_size and
2664  * inarg->out_size will be NULL; then, the server completes the ioctl
2665  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2666  * the actual iov array to
2667  *
2668  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2669  *
2670  * which tells FUSE to copy in the requested area and retry the ioctl.
2671  * On the second round, the server has access to the structure and
2672  * from that it can tell what to look for next, so on the invocation,
2673  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2674  *
2675  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2676  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2677  *
2678  * FUSE will copy both struct a and the pointed buffer from the
2679  * process doing the ioctl and retry ioctl with both struct a and the
2680  * buffer.
2681  *
2682  * This time, FUSE server has everything it needs and completes ioctl
2683  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2684  *
2685  * Copying data out works the same way.
2686  *
2687  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2688  * automatically initializes in and out iovs by decoding @cmd with
2689  * _IOC_* macros and the server is not allowed to request RETRY.  This
2690  * limits ioctl data transfers to well-formed ioctls and is the forced
2691  * behavior for all FUSE servers.
2692  */
2693 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2694 		   unsigned int flags)
2695 {
2696 	struct fuse_file *ff = file->private_data;
2697 	struct fuse_conn *fc = ff->fc;
2698 	struct fuse_ioctl_in inarg = {
2699 		.fh = ff->fh,
2700 		.cmd = cmd,
2701 		.arg = arg,
2702 		.flags = flags
2703 	};
2704 	struct fuse_ioctl_out outarg;
2705 	struct iovec *iov_page = NULL;
2706 	struct iovec *in_iov = NULL, *out_iov = NULL;
2707 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2708 	size_t in_size, out_size, c;
2709 	ssize_t transferred;
2710 	int err, i;
2711 	struct iov_iter ii;
2712 	struct fuse_args_pages ap = {};
2713 
2714 #if BITS_PER_LONG == 32
2715 	inarg.flags |= FUSE_IOCTL_32BIT;
2716 #else
2717 	if (flags & FUSE_IOCTL_COMPAT) {
2718 		inarg.flags |= FUSE_IOCTL_32BIT;
2719 #ifdef CONFIG_X86_X32
2720 		if (in_x32_syscall())
2721 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2722 #endif
2723 	}
2724 #endif
2725 
2726 	/* assume all the iovs returned by client always fits in a page */
2727 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2728 
2729 	err = -ENOMEM;
2730 	ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2731 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2732 	if (!ap.pages || !iov_page)
2733 		goto out;
2734 
2735 	fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2736 
2737 	/*
2738 	 * If restricted, initialize IO parameters as encoded in @cmd.
2739 	 * RETRY from server is not allowed.
2740 	 */
2741 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2742 		struct iovec *iov = iov_page;
2743 
2744 		iov->iov_base = (void __user *)arg;
2745 		iov->iov_len = _IOC_SIZE(cmd);
2746 
2747 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2748 			in_iov = iov;
2749 			in_iovs = 1;
2750 		}
2751 
2752 		if (_IOC_DIR(cmd) & _IOC_READ) {
2753 			out_iov = iov;
2754 			out_iovs = 1;
2755 		}
2756 	}
2757 
2758  retry:
2759 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2760 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2761 
2762 	/*
2763 	 * Out data can be used either for actual out data or iovs,
2764 	 * make sure there always is at least one page.
2765 	 */
2766 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2767 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2768 
2769 	/* make sure there are enough buffer pages and init request with them */
2770 	err = -ENOMEM;
2771 	if (max_pages > fc->max_pages)
2772 		goto out;
2773 	while (ap.num_pages < max_pages) {
2774 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2775 		if (!ap.pages[ap.num_pages])
2776 			goto out;
2777 		ap.num_pages++;
2778 	}
2779 
2780 
2781 	/* okay, let's send it to the client */
2782 	ap.args.opcode = FUSE_IOCTL;
2783 	ap.args.nodeid = ff->nodeid;
2784 	ap.args.in_numargs = 1;
2785 	ap.args.in_args[0].size = sizeof(inarg);
2786 	ap.args.in_args[0].value = &inarg;
2787 	if (in_size) {
2788 		ap.args.in_numargs++;
2789 		ap.args.in_args[1].size = in_size;
2790 		ap.args.in_pages = true;
2791 
2792 		err = -EFAULT;
2793 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2794 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2795 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2796 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2797 				goto out;
2798 		}
2799 	}
2800 
2801 	ap.args.out_numargs = 2;
2802 	ap.args.out_args[0].size = sizeof(outarg);
2803 	ap.args.out_args[0].value = &outarg;
2804 	ap.args.out_args[1].size = out_size;
2805 	ap.args.out_pages = true;
2806 	ap.args.out_argvar = true;
2807 
2808 	transferred = fuse_simple_request(fc, &ap.args);
2809 	err = transferred;
2810 	if (transferred < 0)
2811 		goto out;
2812 
2813 	/* did it ask for retry? */
2814 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2815 		void *vaddr;
2816 
2817 		/* no retry if in restricted mode */
2818 		err = -EIO;
2819 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2820 			goto out;
2821 
2822 		in_iovs = outarg.in_iovs;
2823 		out_iovs = outarg.out_iovs;
2824 
2825 		/*
2826 		 * Make sure things are in boundary, separate checks
2827 		 * are to protect against overflow.
2828 		 */
2829 		err = -ENOMEM;
2830 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2831 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2832 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2833 			goto out;
2834 
2835 		vaddr = kmap_atomic(ap.pages[0]);
2836 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2837 					    transferred, in_iovs + out_iovs,
2838 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2839 		kunmap_atomic(vaddr);
2840 		if (err)
2841 			goto out;
2842 
2843 		in_iov = iov_page;
2844 		out_iov = in_iov + in_iovs;
2845 
2846 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2847 		if (err)
2848 			goto out;
2849 
2850 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2851 		if (err)
2852 			goto out;
2853 
2854 		goto retry;
2855 	}
2856 
2857 	err = -EIO;
2858 	if (transferred > inarg.out_size)
2859 		goto out;
2860 
2861 	err = -EFAULT;
2862 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2863 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2864 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2865 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2866 			goto out;
2867 	}
2868 	err = 0;
2869  out:
2870 	free_page((unsigned long) iov_page);
2871 	while (ap.num_pages)
2872 		__free_page(ap.pages[--ap.num_pages]);
2873 	kfree(ap.pages);
2874 
2875 	return err ? err : outarg.result;
2876 }
2877 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2878 
2879 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2880 		       unsigned long arg, unsigned int flags)
2881 {
2882 	struct inode *inode = file_inode(file);
2883 	struct fuse_conn *fc = get_fuse_conn(inode);
2884 
2885 	if (!fuse_allow_current_process(fc))
2886 		return -EACCES;
2887 
2888 	if (is_bad_inode(inode))
2889 		return -EIO;
2890 
2891 	return fuse_do_ioctl(file, cmd, arg, flags);
2892 }
2893 
2894 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2895 			    unsigned long arg)
2896 {
2897 	return fuse_ioctl_common(file, cmd, arg, 0);
2898 }
2899 
2900 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2901 				   unsigned long arg)
2902 {
2903 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2904 }
2905 
2906 /*
2907  * All files which have been polled are linked to RB tree
2908  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2909  * find the matching one.
2910  */
2911 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2912 					      struct rb_node **parent_out)
2913 {
2914 	struct rb_node **link = &fc->polled_files.rb_node;
2915 	struct rb_node *last = NULL;
2916 
2917 	while (*link) {
2918 		struct fuse_file *ff;
2919 
2920 		last = *link;
2921 		ff = rb_entry(last, struct fuse_file, polled_node);
2922 
2923 		if (kh < ff->kh)
2924 			link = &last->rb_left;
2925 		else if (kh > ff->kh)
2926 			link = &last->rb_right;
2927 		else
2928 			return link;
2929 	}
2930 
2931 	if (parent_out)
2932 		*parent_out = last;
2933 	return link;
2934 }
2935 
2936 /*
2937  * The file is about to be polled.  Make sure it's on the polled_files
2938  * RB tree.  Note that files once added to the polled_files tree are
2939  * not removed before the file is released.  This is because a file
2940  * polled once is likely to be polled again.
2941  */
2942 static void fuse_register_polled_file(struct fuse_conn *fc,
2943 				      struct fuse_file *ff)
2944 {
2945 	spin_lock(&fc->lock);
2946 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2947 		struct rb_node **link, *uninitialized_var(parent);
2948 
2949 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2950 		BUG_ON(*link);
2951 		rb_link_node(&ff->polled_node, parent, link);
2952 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2953 	}
2954 	spin_unlock(&fc->lock);
2955 }
2956 
2957 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2958 {
2959 	struct fuse_file *ff = file->private_data;
2960 	struct fuse_conn *fc = ff->fc;
2961 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2962 	struct fuse_poll_out outarg;
2963 	FUSE_ARGS(args);
2964 	int err;
2965 
2966 	if (fc->no_poll)
2967 		return DEFAULT_POLLMASK;
2968 
2969 	poll_wait(file, &ff->poll_wait, wait);
2970 	inarg.events = mangle_poll(poll_requested_events(wait));
2971 
2972 	/*
2973 	 * Ask for notification iff there's someone waiting for it.
2974 	 * The client may ignore the flag and always notify.
2975 	 */
2976 	if (waitqueue_active(&ff->poll_wait)) {
2977 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2978 		fuse_register_polled_file(fc, ff);
2979 	}
2980 
2981 	args.opcode = FUSE_POLL;
2982 	args.nodeid = ff->nodeid;
2983 	args.in_numargs = 1;
2984 	args.in_args[0].size = sizeof(inarg);
2985 	args.in_args[0].value = &inarg;
2986 	args.out_numargs = 1;
2987 	args.out_args[0].size = sizeof(outarg);
2988 	args.out_args[0].value = &outarg;
2989 	err = fuse_simple_request(fc, &args);
2990 
2991 	if (!err)
2992 		return demangle_poll(outarg.revents);
2993 	if (err == -ENOSYS) {
2994 		fc->no_poll = 1;
2995 		return DEFAULT_POLLMASK;
2996 	}
2997 	return EPOLLERR;
2998 }
2999 EXPORT_SYMBOL_GPL(fuse_file_poll);
3000 
3001 /*
3002  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3003  * wakes up the poll waiters.
3004  */
3005 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3006 			    struct fuse_notify_poll_wakeup_out *outarg)
3007 {
3008 	u64 kh = outarg->kh;
3009 	struct rb_node **link;
3010 
3011 	spin_lock(&fc->lock);
3012 
3013 	link = fuse_find_polled_node(fc, kh, NULL);
3014 	if (*link) {
3015 		struct fuse_file *ff;
3016 
3017 		ff = rb_entry(*link, struct fuse_file, polled_node);
3018 		wake_up_interruptible_sync(&ff->poll_wait);
3019 	}
3020 
3021 	spin_unlock(&fc->lock);
3022 	return 0;
3023 }
3024 
3025 static void fuse_do_truncate(struct file *file)
3026 {
3027 	struct inode *inode = file->f_mapping->host;
3028 	struct iattr attr;
3029 
3030 	attr.ia_valid = ATTR_SIZE;
3031 	attr.ia_size = i_size_read(inode);
3032 
3033 	attr.ia_file = file;
3034 	attr.ia_valid |= ATTR_FILE;
3035 
3036 	fuse_do_setattr(file_dentry(file), &attr, file);
3037 }
3038 
3039 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3040 {
3041 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3042 }
3043 
3044 static ssize_t
3045 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3046 {
3047 	DECLARE_COMPLETION_ONSTACK(wait);
3048 	ssize_t ret = 0;
3049 	struct file *file = iocb->ki_filp;
3050 	struct fuse_file *ff = file->private_data;
3051 	bool async_dio = ff->fc->async_dio;
3052 	loff_t pos = 0;
3053 	struct inode *inode;
3054 	loff_t i_size;
3055 	size_t count = iov_iter_count(iter);
3056 	loff_t offset = iocb->ki_pos;
3057 	struct fuse_io_priv *io;
3058 
3059 	pos = offset;
3060 	inode = file->f_mapping->host;
3061 	i_size = i_size_read(inode);
3062 
3063 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3064 		return 0;
3065 
3066 	/* optimization for short read */
3067 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3068 		if (offset >= i_size)
3069 			return 0;
3070 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3071 		count = iov_iter_count(iter);
3072 	}
3073 
3074 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3075 	if (!io)
3076 		return -ENOMEM;
3077 	spin_lock_init(&io->lock);
3078 	kref_init(&io->refcnt);
3079 	io->reqs = 1;
3080 	io->bytes = -1;
3081 	io->size = 0;
3082 	io->offset = offset;
3083 	io->write = (iov_iter_rw(iter) == WRITE);
3084 	io->err = 0;
3085 	/*
3086 	 * By default, we want to optimize all I/Os with async request
3087 	 * submission to the client filesystem if supported.
3088 	 */
3089 	io->async = async_dio;
3090 	io->iocb = iocb;
3091 	io->blocking = is_sync_kiocb(iocb);
3092 
3093 	/*
3094 	 * We cannot asynchronously extend the size of a file.
3095 	 * In such case the aio will behave exactly like sync io.
3096 	 */
3097 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3098 		io->blocking = true;
3099 
3100 	if (io->async && io->blocking) {
3101 		/*
3102 		 * Additional reference to keep io around after
3103 		 * calling fuse_aio_complete()
3104 		 */
3105 		kref_get(&io->refcnt);
3106 		io->done = &wait;
3107 	}
3108 
3109 	if (iov_iter_rw(iter) == WRITE) {
3110 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3111 		fuse_invalidate_attr(inode);
3112 	} else {
3113 		ret = __fuse_direct_read(io, iter, &pos);
3114 	}
3115 
3116 	if (io->async) {
3117 		bool blocking = io->blocking;
3118 
3119 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3120 
3121 		/* we have a non-extending, async request, so return */
3122 		if (!blocking)
3123 			return -EIOCBQUEUED;
3124 
3125 		wait_for_completion(&wait);
3126 		ret = fuse_get_res_by_io(io);
3127 	}
3128 
3129 	kref_put(&io->refcnt, fuse_io_release);
3130 
3131 	if (iov_iter_rw(iter) == WRITE) {
3132 		if (ret > 0)
3133 			fuse_write_update_size(inode, pos);
3134 		else if (ret < 0 && offset + count > i_size)
3135 			fuse_do_truncate(file);
3136 	}
3137 
3138 	return ret;
3139 }
3140 
3141 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3142 {
3143 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3144 
3145 	if (!err)
3146 		fuse_sync_writes(inode);
3147 
3148 	return err;
3149 }
3150 
3151 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3152 				loff_t length)
3153 {
3154 	struct fuse_file *ff = file->private_data;
3155 	struct inode *inode = file_inode(file);
3156 	struct fuse_inode *fi = get_fuse_inode(inode);
3157 	struct fuse_conn *fc = ff->fc;
3158 	FUSE_ARGS(args);
3159 	struct fuse_fallocate_in inarg = {
3160 		.fh = ff->fh,
3161 		.offset = offset,
3162 		.length = length,
3163 		.mode = mode
3164 	};
3165 	int err;
3166 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3167 			   (mode & FALLOC_FL_PUNCH_HOLE);
3168 
3169 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3170 		return -EOPNOTSUPP;
3171 
3172 	if (fc->no_fallocate)
3173 		return -EOPNOTSUPP;
3174 
3175 	if (lock_inode) {
3176 		inode_lock(inode);
3177 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3178 			loff_t endbyte = offset + length - 1;
3179 
3180 			err = fuse_writeback_range(inode, offset, endbyte);
3181 			if (err)
3182 				goto out;
3183 		}
3184 	}
3185 
3186 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3187 	    offset + length > i_size_read(inode)) {
3188 		err = inode_newsize_ok(inode, offset + length);
3189 		if (err)
3190 			goto out;
3191 	}
3192 
3193 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3194 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3195 
3196 	args.opcode = FUSE_FALLOCATE;
3197 	args.nodeid = ff->nodeid;
3198 	args.in_numargs = 1;
3199 	args.in_args[0].size = sizeof(inarg);
3200 	args.in_args[0].value = &inarg;
3201 	err = fuse_simple_request(fc, &args);
3202 	if (err == -ENOSYS) {
3203 		fc->no_fallocate = 1;
3204 		err = -EOPNOTSUPP;
3205 	}
3206 	if (err)
3207 		goto out;
3208 
3209 	/* we could have extended the file */
3210 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3211 		bool changed = fuse_write_update_size(inode, offset + length);
3212 
3213 		if (changed && fc->writeback_cache)
3214 			file_update_time(file);
3215 	}
3216 
3217 	if (mode & FALLOC_FL_PUNCH_HOLE)
3218 		truncate_pagecache_range(inode, offset, offset + length - 1);
3219 
3220 	fuse_invalidate_attr(inode);
3221 
3222 out:
3223 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3224 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3225 
3226 	if (lock_inode)
3227 		inode_unlock(inode);
3228 
3229 	return err;
3230 }
3231 
3232 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3233 				      struct file *file_out, loff_t pos_out,
3234 				      size_t len, unsigned int flags)
3235 {
3236 	struct fuse_file *ff_in = file_in->private_data;
3237 	struct fuse_file *ff_out = file_out->private_data;
3238 	struct inode *inode_in = file_inode(file_in);
3239 	struct inode *inode_out = file_inode(file_out);
3240 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3241 	struct fuse_conn *fc = ff_in->fc;
3242 	FUSE_ARGS(args);
3243 	struct fuse_copy_file_range_in inarg = {
3244 		.fh_in = ff_in->fh,
3245 		.off_in = pos_in,
3246 		.nodeid_out = ff_out->nodeid,
3247 		.fh_out = ff_out->fh,
3248 		.off_out = pos_out,
3249 		.len = len,
3250 		.flags = flags
3251 	};
3252 	struct fuse_write_out outarg;
3253 	ssize_t err;
3254 	/* mark unstable when write-back is not used, and file_out gets
3255 	 * extended */
3256 	bool is_unstable = (!fc->writeback_cache) &&
3257 			   ((pos_out + len) > inode_out->i_size);
3258 
3259 	if (fc->no_copy_file_range)
3260 		return -EOPNOTSUPP;
3261 
3262 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3263 		return -EXDEV;
3264 
3265 	if (fc->writeback_cache) {
3266 		inode_lock(inode_in);
3267 		err = fuse_writeback_range(inode_in, pos_in, pos_in + len);
3268 		inode_unlock(inode_in);
3269 		if (err)
3270 			return err;
3271 	}
3272 
3273 	inode_lock(inode_out);
3274 
3275 	err = file_modified(file_out);
3276 	if (err)
3277 		goto out;
3278 
3279 	if (fc->writeback_cache) {
3280 		err = fuse_writeback_range(inode_out, pos_out, pos_out + len);
3281 		if (err)
3282 			goto out;
3283 	}
3284 
3285 	if (is_unstable)
3286 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3287 
3288 	args.opcode = FUSE_COPY_FILE_RANGE;
3289 	args.nodeid = ff_in->nodeid;
3290 	args.in_numargs = 1;
3291 	args.in_args[0].size = sizeof(inarg);
3292 	args.in_args[0].value = &inarg;
3293 	args.out_numargs = 1;
3294 	args.out_args[0].size = sizeof(outarg);
3295 	args.out_args[0].value = &outarg;
3296 	err = fuse_simple_request(fc, &args);
3297 	if (err == -ENOSYS) {
3298 		fc->no_copy_file_range = 1;
3299 		err = -EOPNOTSUPP;
3300 	}
3301 	if (err)
3302 		goto out;
3303 
3304 	if (fc->writeback_cache) {
3305 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3306 		file_update_time(file_out);
3307 	}
3308 
3309 	fuse_invalidate_attr(inode_out);
3310 
3311 	err = outarg.size;
3312 out:
3313 	if (is_unstable)
3314 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3315 
3316 	inode_unlock(inode_out);
3317 	file_accessed(file_in);
3318 
3319 	return err;
3320 }
3321 
3322 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3323 				    struct file *dst_file, loff_t dst_off,
3324 				    size_t len, unsigned int flags)
3325 {
3326 	ssize_t ret;
3327 
3328 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3329 				     len, flags);
3330 
3331 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3332 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3333 					      dst_off, len, flags);
3334 	return ret;
3335 }
3336 
3337 static const struct file_operations fuse_file_operations = {
3338 	.llseek		= fuse_file_llseek,
3339 	.read_iter	= fuse_file_read_iter,
3340 	.write_iter	= fuse_file_write_iter,
3341 	.mmap		= fuse_file_mmap,
3342 	.open		= fuse_open,
3343 	.flush		= fuse_flush,
3344 	.release	= fuse_release,
3345 	.fsync		= fuse_fsync,
3346 	.lock		= fuse_file_lock,
3347 	.flock		= fuse_file_flock,
3348 	.splice_read	= generic_file_splice_read,
3349 	.splice_write	= iter_file_splice_write,
3350 	.unlocked_ioctl	= fuse_file_ioctl,
3351 	.compat_ioctl	= fuse_file_compat_ioctl,
3352 	.poll		= fuse_file_poll,
3353 	.fallocate	= fuse_file_fallocate,
3354 	.copy_file_range = fuse_copy_file_range,
3355 };
3356 
3357 static const struct address_space_operations fuse_file_aops  = {
3358 	.readpage	= fuse_readpage,
3359 	.writepage	= fuse_writepage,
3360 	.writepages	= fuse_writepages,
3361 	.launder_page	= fuse_launder_page,
3362 	.readpages	= fuse_readpages,
3363 	.set_page_dirty	= __set_page_dirty_nobuffers,
3364 	.bmap		= fuse_bmap,
3365 	.direct_IO	= fuse_direct_IO,
3366 	.write_begin	= fuse_write_begin,
3367 	.write_end	= fuse_write_end,
3368 };
3369 
3370 void fuse_init_file_inode(struct inode *inode)
3371 {
3372 	struct fuse_inode *fi = get_fuse_inode(inode);
3373 
3374 	inode->i_fop = &fuse_file_operations;
3375 	inode->i_data.a_ops = &fuse_file_aops;
3376 
3377 	INIT_LIST_HEAD(&fi->write_files);
3378 	INIT_LIST_HEAD(&fi->queued_writes);
3379 	fi->writectr = 0;
3380 	init_waitqueue_head(&fi->page_waitq);
3381 	INIT_LIST_HEAD(&fi->writepages);
3382 }
3383