1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/module.h> 16 #include <linux/compat.h> 17 #include <linux/swap.h> 18 #include <linux/aio.h> 19 #include <linux/falloc.h> 20 21 static const struct file_operations fuse_direct_io_file_operations; 22 23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 24 int opcode, struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 struct fuse_req *req; 28 int err; 29 30 req = fuse_get_req_nopages(fc); 31 if (IS_ERR(req)) 32 return PTR_ERR(req); 33 34 memset(&inarg, 0, sizeof(inarg)); 35 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 36 if (!fc->atomic_o_trunc) 37 inarg.flags &= ~O_TRUNC; 38 req->in.h.opcode = opcode; 39 req->in.h.nodeid = nodeid; 40 req->in.numargs = 1; 41 req->in.args[0].size = sizeof(inarg); 42 req->in.args[0].value = &inarg; 43 req->out.numargs = 1; 44 req->out.args[0].size = sizeof(*outargp); 45 req->out.args[0].value = outargp; 46 fuse_request_send(fc, req); 47 err = req->out.h.error; 48 fuse_put_request(fc, req); 49 50 return err; 51 } 52 53 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 54 { 55 struct fuse_file *ff; 56 57 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL); 58 if (unlikely(!ff)) 59 return NULL; 60 61 ff->fc = fc; 62 ff->reserved_req = fuse_request_alloc(0); 63 if (unlikely(!ff->reserved_req)) { 64 kfree(ff); 65 return NULL; 66 } 67 68 INIT_LIST_HEAD(&ff->write_entry); 69 atomic_set(&ff->count, 0); 70 RB_CLEAR_NODE(&ff->polled_node); 71 init_waitqueue_head(&ff->poll_wait); 72 73 spin_lock(&fc->lock); 74 ff->kh = ++fc->khctr; 75 spin_unlock(&fc->lock); 76 77 return ff; 78 } 79 80 void fuse_file_free(struct fuse_file *ff) 81 { 82 fuse_request_free(ff->reserved_req); 83 kfree(ff); 84 } 85 86 struct fuse_file *fuse_file_get(struct fuse_file *ff) 87 { 88 atomic_inc(&ff->count); 89 return ff; 90 } 91 92 static void fuse_release_async(struct work_struct *work) 93 { 94 struct fuse_req *req; 95 struct fuse_conn *fc; 96 struct path path; 97 98 req = container_of(work, struct fuse_req, misc.release.work); 99 path = req->misc.release.path; 100 fc = get_fuse_conn(path.dentry->d_inode); 101 102 fuse_put_request(fc, req); 103 path_put(&path); 104 } 105 106 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req) 107 { 108 if (fc->destroy_req) { 109 /* 110 * If this is a fuseblk mount, then it's possible that 111 * releasing the path will result in releasing the 112 * super block and sending the DESTROY request. If 113 * the server is single threaded, this would hang. 114 * For this reason do the path_put() in a separate 115 * thread. 116 */ 117 atomic_inc(&req->count); 118 INIT_WORK(&req->misc.release.work, fuse_release_async); 119 schedule_work(&req->misc.release.work); 120 } else { 121 path_put(&req->misc.release.path); 122 } 123 } 124 125 static void fuse_file_put(struct fuse_file *ff, bool sync) 126 { 127 if (atomic_dec_and_test(&ff->count)) { 128 struct fuse_req *req = ff->reserved_req; 129 130 if (ff->fc->no_open) { 131 /* 132 * Drop the release request when client does not 133 * implement 'open' 134 */ 135 req->background = 0; 136 path_put(&req->misc.release.path); 137 fuse_put_request(ff->fc, req); 138 } else if (sync) { 139 req->background = 0; 140 fuse_request_send(ff->fc, req); 141 path_put(&req->misc.release.path); 142 fuse_put_request(ff->fc, req); 143 } else { 144 req->end = fuse_release_end; 145 req->background = 1; 146 fuse_request_send_background(ff->fc, req); 147 } 148 kfree(ff); 149 } 150 } 151 152 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 153 bool isdir) 154 { 155 struct fuse_file *ff; 156 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 157 158 ff = fuse_file_alloc(fc); 159 if (!ff) 160 return -ENOMEM; 161 162 ff->fh = 0; 163 ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */ 164 if (!fc->no_open || isdir) { 165 struct fuse_open_out outarg; 166 int err; 167 168 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 169 if (!err) { 170 ff->fh = outarg.fh; 171 ff->open_flags = outarg.open_flags; 172 173 } else if (err != -ENOSYS || isdir) { 174 fuse_file_free(ff); 175 return err; 176 } else { 177 fc->no_open = 1; 178 } 179 } 180 181 if (isdir) 182 ff->open_flags &= ~FOPEN_DIRECT_IO; 183 184 ff->nodeid = nodeid; 185 file->private_data = fuse_file_get(ff); 186 187 return 0; 188 } 189 EXPORT_SYMBOL_GPL(fuse_do_open); 190 191 static void fuse_link_write_file(struct file *file) 192 { 193 struct inode *inode = file_inode(file); 194 struct fuse_conn *fc = get_fuse_conn(inode); 195 struct fuse_inode *fi = get_fuse_inode(inode); 196 struct fuse_file *ff = file->private_data; 197 /* 198 * file may be written through mmap, so chain it onto the 199 * inodes's write_file list 200 */ 201 spin_lock(&fc->lock); 202 if (list_empty(&ff->write_entry)) 203 list_add(&ff->write_entry, &fi->write_files); 204 spin_unlock(&fc->lock); 205 } 206 207 void fuse_finish_open(struct inode *inode, struct file *file) 208 { 209 struct fuse_file *ff = file->private_data; 210 struct fuse_conn *fc = get_fuse_conn(inode); 211 212 if (ff->open_flags & FOPEN_DIRECT_IO) 213 file->f_op = &fuse_direct_io_file_operations; 214 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 215 invalidate_inode_pages2(inode->i_mapping); 216 if (ff->open_flags & FOPEN_NONSEEKABLE) 217 nonseekable_open(inode, file); 218 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 219 struct fuse_inode *fi = get_fuse_inode(inode); 220 221 spin_lock(&fc->lock); 222 fi->attr_version = ++fc->attr_version; 223 i_size_write(inode, 0); 224 spin_unlock(&fc->lock); 225 fuse_invalidate_attr(inode); 226 } 227 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 228 fuse_link_write_file(file); 229 } 230 231 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 232 { 233 struct fuse_conn *fc = get_fuse_conn(inode); 234 int err; 235 236 err = generic_file_open(inode, file); 237 if (err) 238 return err; 239 240 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 241 if (err) 242 return err; 243 244 fuse_finish_open(inode, file); 245 246 return 0; 247 } 248 249 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode) 250 { 251 struct fuse_conn *fc = ff->fc; 252 struct fuse_req *req = ff->reserved_req; 253 struct fuse_release_in *inarg = &req->misc.release.in; 254 255 spin_lock(&fc->lock); 256 list_del(&ff->write_entry); 257 if (!RB_EMPTY_NODE(&ff->polled_node)) 258 rb_erase(&ff->polled_node, &fc->polled_files); 259 spin_unlock(&fc->lock); 260 261 wake_up_interruptible_all(&ff->poll_wait); 262 263 inarg->fh = ff->fh; 264 inarg->flags = flags; 265 req->in.h.opcode = opcode; 266 req->in.h.nodeid = ff->nodeid; 267 req->in.numargs = 1; 268 req->in.args[0].size = sizeof(struct fuse_release_in); 269 req->in.args[0].value = inarg; 270 } 271 272 void fuse_release_common(struct file *file, int opcode) 273 { 274 struct fuse_file *ff; 275 struct fuse_req *req; 276 277 ff = file->private_data; 278 if (unlikely(!ff)) 279 return; 280 281 req = ff->reserved_req; 282 fuse_prepare_release(ff, file->f_flags, opcode); 283 284 if (ff->flock) { 285 struct fuse_release_in *inarg = &req->misc.release.in; 286 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 287 inarg->lock_owner = fuse_lock_owner_id(ff->fc, 288 (fl_owner_t) file); 289 } 290 /* Hold vfsmount and dentry until release is finished */ 291 path_get(&file->f_path); 292 req->misc.release.path = file->f_path; 293 294 /* 295 * Normally this will send the RELEASE request, however if 296 * some asynchronous READ or WRITE requests are outstanding, 297 * the sending will be delayed. 298 * 299 * Make the release synchronous if this is a fuseblk mount, 300 * synchronous RELEASE is allowed (and desirable) in this case 301 * because the server can be trusted not to screw up. 302 */ 303 fuse_file_put(ff, ff->fc->destroy_req != NULL); 304 } 305 306 static int fuse_open(struct inode *inode, struct file *file) 307 { 308 return fuse_open_common(inode, file, false); 309 } 310 311 static int fuse_release(struct inode *inode, struct file *file) 312 { 313 struct fuse_conn *fc = get_fuse_conn(inode); 314 315 /* see fuse_vma_close() for !writeback_cache case */ 316 if (fc->writeback_cache) 317 filemap_write_and_wait(file->f_mapping); 318 319 if (test_bit(FUSE_I_MTIME_DIRTY, &get_fuse_inode(inode)->state)) 320 fuse_flush_mtime(file, true); 321 322 fuse_release_common(file, FUSE_RELEASE); 323 324 /* return value is ignored by VFS */ 325 return 0; 326 } 327 328 void fuse_sync_release(struct fuse_file *ff, int flags) 329 { 330 WARN_ON(atomic_read(&ff->count) > 1); 331 fuse_prepare_release(ff, flags, FUSE_RELEASE); 332 ff->reserved_req->force = 1; 333 ff->reserved_req->background = 0; 334 fuse_request_send(ff->fc, ff->reserved_req); 335 fuse_put_request(ff->fc, ff->reserved_req); 336 kfree(ff); 337 } 338 EXPORT_SYMBOL_GPL(fuse_sync_release); 339 340 /* 341 * Scramble the ID space with XTEA, so that the value of the files_struct 342 * pointer is not exposed to userspace. 343 */ 344 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 345 { 346 u32 *k = fc->scramble_key; 347 u64 v = (unsigned long) id; 348 u32 v0 = v; 349 u32 v1 = v >> 32; 350 u32 sum = 0; 351 int i; 352 353 for (i = 0; i < 32; i++) { 354 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 355 sum += 0x9E3779B9; 356 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 357 } 358 359 return (u64) v0 + ((u64) v1 << 32); 360 } 361 362 /* 363 * Check if any page in a range is under writeback 364 * 365 * This is currently done by walking the list of writepage requests 366 * for the inode, which can be pretty inefficient. 367 */ 368 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 369 pgoff_t idx_to) 370 { 371 struct fuse_conn *fc = get_fuse_conn(inode); 372 struct fuse_inode *fi = get_fuse_inode(inode); 373 struct fuse_req *req; 374 bool found = false; 375 376 spin_lock(&fc->lock); 377 list_for_each_entry(req, &fi->writepages, writepages_entry) { 378 pgoff_t curr_index; 379 380 BUG_ON(req->inode != inode); 381 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT; 382 if (idx_from < curr_index + req->num_pages && 383 curr_index <= idx_to) { 384 found = true; 385 break; 386 } 387 } 388 spin_unlock(&fc->lock); 389 390 return found; 391 } 392 393 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 394 { 395 return fuse_range_is_writeback(inode, index, index); 396 } 397 398 /* 399 * Wait for page writeback to be completed. 400 * 401 * Since fuse doesn't rely on the VM writeback tracking, this has to 402 * use some other means. 403 */ 404 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 405 { 406 struct fuse_inode *fi = get_fuse_inode(inode); 407 408 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 409 return 0; 410 } 411 412 /* 413 * Wait for all pending writepages on the inode to finish. 414 * 415 * This is currently done by blocking further writes with FUSE_NOWRITE 416 * and waiting for all sent writes to complete. 417 * 418 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 419 * could conflict with truncation. 420 */ 421 static void fuse_sync_writes(struct inode *inode) 422 { 423 fuse_set_nowrite(inode); 424 fuse_release_nowrite(inode); 425 } 426 427 static int fuse_flush(struct file *file, fl_owner_t id) 428 { 429 struct inode *inode = file_inode(file); 430 struct fuse_conn *fc = get_fuse_conn(inode); 431 struct fuse_file *ff = file->private_data; 432 struct fuse_req *req; 433 struct fuse_flush_in inarg; 434 int err; 435 436 if (is_bad_inode(inode)) 437 return -EIO; 438 439 if (fc->no_flush) 440 return 0; 441 442 err = filemap_write_and_wait(file->f_mapping); 443 if (err) 444 return err; 445 446 mutex_lock(&inode->i_mutex); 447 fuse_sync_writes(inode); 448 mutex_unlock(&inode->i_mutex); 449 450 req = fuse_get_req_nofail_nopages(fc, file); 451 memset(&inarg, 0, sizeof(inarg)); 452 inarg.fh = ff->fh; 453 inarg.lock_owner = fuse_lock_owner_id(fc, id); 454 req->in.h.opcode = FUSE_FLUSH; 455 req->in.h.nodeid = get_node_id(inode); 456 req->in.numargs = 1; 457 req->in.args[0].size = sizeof(inarg); 458 req->in.args[0].value = &inarg; 459 req->force = 1; 460 fuse_request_send(fc, req); 461 err = req->out.h.error; 462 fuse_put_request(fc, req); 463 if (err == -ENOSYS) { 464 fc->no_flush = 1; 465 err = 0; 466 } 467 return err; 468 } 469 470 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 471 int datasync, int isdir) 472 { 473 struct inode *inode = file->f_mapping->host; 474 struct fuse_conn *fc = get_fuse_conn(inode); 475 struct fuse_file *ff = file->private_data; 476 struct fuse_req *req; 477 struct fuse_fsync_in inarg; 478 int err; 479 480 if (is_bad_inode(inode)) 481 return -EIO; 482 483 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 484 if (err) 485 return err; 486 487 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir)) 488 return 0; 489 490 mutex_lock(&inode->i_mutex); 491 492 /* 493 * Start writeback against all dirty pages of the inode, then 494 * wait for all outstanding writes, before sending the FSYNC 495 * request. 496 */ 497 err = write_inode_now(inode, 0); 498 if (err) 499 goto out; 500 501 fuse_sync_writes(inode); 502 503 if (test_bit(FUSE_I_MTIME_DIRTY, &get_fuse_inode(inode)->state)) { 504 int err = fuse_flush_mtime(file, false); 505 if (err) 506 goto out; 507 } 508 509 req = fuse_get_req_nopages(fc); 510 if (IS_ERR(req)) { 511 err = PTR_ERR(req); 512 goto out; 513 } 514 515 memset(&inarg, 0, sizeof(inarg)); 516 inarg.fh = ff->fh; 517 inarg.fsync_flags = datasync ? 1 : 0; 518 req->in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC; 519 req->in.h.nodeid = get_node_id(inode); 520 req->in.numargs = 1; 521 req->in.args[0].size = sizeof(inarg); 522 req->in.args[0].value = &inarg; 523 fuse_request_send(fc, req); 524 err = req->out.h.error; 525 fuse_put_request(fc, req); 526 if (err == -ENOSYS) { 527 if (isdir) 528 fc->no_fsyncdir = 1; 529 else 530 fc->no_fsync = 1; 531 err = 0; 532 } 533 out: 534 mutex_unlock(&inode->i_mutex); 535 return err; 536 } 537 538 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 539 int datasync) 540 { 541 return fuse_fsync_common(file, start, end, datasync, 0); 542 } 543 544 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos, 545 size_t count, int opcode) 546 { 547 struct fuse_read_in *inarg = &req->misc.read.in; 548 struct fuse_file *ff = file->private_data; 549 550 inarg->fh = ff->fh; 551 inarg->offset = pos; 552 inarg->size = count; 553 inarg->flags = file->f_flags; 554 req->in.h.opcode = opcode; 555 req->in.h.nodeid = ff->nodeid; 556 req->in.numargs = 1; 557 req->in.args[0].size = sizeof(struct fuse_read_in); 558 req->in.args[0].value = inarg; 559 req->out.argvar = 1; 560 req->out.numargs = 1; 561 req->out.args[0].size = count; 562 } 563 564 static void fuse_release_user_pages(struct fuse_req *req, int write) 565 { 566 unsigned i; 567 568 for (i = 0; i < req->num_pages; i++) { 569 struct page *page = req->pages[i]; 570 if (write) 571 set_page_dirty_lock(page); 572 put_page(page); 573 } 574 } 575 576 /** 577 * In case of short read, the caller sets 'pos' to the position of 578 * actual end of fuse request in IO request. Otherwise, if bytes_requested 579 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 580 * 581 * An example: 582 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 583 * both submitted asynchronously. The first of them was ACKed by userspace as 584 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 585 * second request was ACKed as short, e.g. only 1K was read, resulting in 586 * pos == 33K. 587 * 588 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 589 * will be equal to the length of the longest contiguous fragment of 590 * transferred data starting from the beginning of IO request. 591 */ 592 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 593 { 594 int left; 595 596 spin_lock(&io->lock); 597 if (err) 598 io->err = io->err ? : err; 599 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 600 io->bytes = pos; 601 602 left = --io->reqs; 603 spin_unlock(&io->lock); 604 605 if (!left) { 606 long res; 607 608 if (io->err) 609 res = io->err; 610 else if (io->bytes >= 0 && io->write) 611 res = -EIO; 612 else { 613 res = io->bytes < 0 ? io->size : io->bytes; 614 615 if (!is_sync_kiocb(io->iocb)) { 616 struct inode *inode = file_inode(io->iocb->ki_filp); 617 struct fuse_conn *fc = get_fuse_conn(inode); 618 struct fuse_inode *fi = get_fuse_inode(inode); 619 620 spin_lock(&fc->lock); 621 fi->attr_version = ++fc->attr_version; 622 spin_unlock(&fc->lock); 623 } 624 } 625 626 aio_complete(io->iocb, res, 0); 627 kfree(io); 628 } 629 } 630 631 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req) 632 { 633 struct fuse_io_priv *io = req->io; 634 ssize_t pos = -1; 635 636 fuse_release_user_pages(req, !io->write); 637 638 if (io->write) { 639 if (req->misc.write.in.size != req->misc.write.out.size) 640 pos = req->misc.write.in.offset - io->offset + 641 req->misc.write.out.size; 642 } else { 643 if (req->misc.read.in.size != req->out.args[0].size) 644 pos = req->misc.read.in.offset - io->offset + 645 req->out.args[0].size; 646 } 647 648 fuse_aio_complete(io, req->out.h.error, pos); 649 } 650 651 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req, 652 size_t num_bytes, struct fuse_io_priv *io) 653 { 654 spin_lock(&io->lock); 655 io->size += num_bytes; 656 io->reqs++; 657 spin_unlock(&io->lock); 658 659 req->io = io; 660 req->end = fuse_aio_complete_req; 661 662 __fuse_get_request(req); 663 fuse_request_send_background(fc, req); 664 665 return num_bytes; 666 } 667 668 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io, 669 loff_t pos, size_t count, fl_owner_t owner) 670 { 671 struct file *file = io->file; 672 struct fuse_file *ff = file->private_data; 673 struct fuse_conn *fc = ff->fc; 674 675 fuse_read_fill(req, file, pos, count, FUSE_READ); 676 if (owner != NULL) { 677 struct fuse_read_in *inarg = &req->misc.read.in; 678 679 inarg->read_flags |= FUSE_READ_LOCKOWNER; 680 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 681 } 682 683 if (io->async) 684 return fuse_async_req_send(fc, req, count, io); 685 686 fuse_request_send(fc, req); 687 return req->out.args[0].size; 688 } 689 690 static void fuse_read_update_size(struct inode *inode, loff_t size, 691 u64 attr_ver) 692 { 693 struct fuse_conn *fc = get_fuse_conn(inode); 694 struct fuse_inode *fi = get_fuse_inode(inode); 695 696 spin_lock(&fc->lock); 697 if (attr_ver == fi->attr_version && size < inode->i_size && 698 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 699 fi->attr_version = ++fc->attr_version; 700 i_size_write(inode, size); 701 } 702 spin_unlock(&fc->lock); 703 } 704 705 static void fuse_short_read(struct fuse_req *req, struct inode *inode, 706 u64 attr_ver) 707 { 708 size_t num_read = req->out.args[0].size; 709 struct fuse_conn *fc = get_fuse_conn(inode); 710 711 if (fc->writeback_cache) { 712 /* 713 * A hole in a file. Some data after the hole are in page cache, 714 * but have not reached the client fs yet. So, the hole is not 715 * present there. 716 */ 717 int i; 718 int start_idx = num_read >> PAGE_CACHE_SHIFT; 719 size_t off = num_read & (PAGE_CACHE_SIZE - 1); 720 721 for (i = start_idx; i < req->num_pages; i++) { 722 zero_user_segment(req->pages[i], off, PAGE_CACHE_SIZE); 723 off = 0; 724 } 725 } else { 726 loff_t pos = page_offset(req->pages[0]) + num_read; 727 fuse_read_update_size(inode, pos, attr_ver); 728 } 729 } 730 731 static int fuse_do_readpage(struct file *file, struct page *page) 732 { 733 struct fuse_io_priv io = { .async = 0, .file = file }; 734 struct inode *inode = page->mapping->host; 735 struct fuse_conn *fc = get_fuse_conn(inode); 736 struct fuse_req *req; 737 size_t num_read; 738 loff_t pos = page_offset(page); 739 size_t count = PAGE_CACHE_SIZE; 740 u64 attr_ver; 741 int err; 742 743 /* 744 * Page writeback can extend beyond the lifetime of the 745 * page-cache page, so make sure we read a properly synced 746 * page. 747 */ 748 fuse_wait_on_page_writeback(inode, page->index); 749 750 req = fuse_get_req(fc, 1); 751 if (IS_ERR(req)) 752 return PTR_ERR(req); 753 754 attr_ver = fuse_get_attr_version(fc); 755 756 req->out.page_zeroing = 1; 757 req->out.argpages = 1; 758 req->num_pages = 1; 759 req->pages[0] = page; 760 req->page_descs[0].length = count; 761 num_read = fuse_send_read(req, &io, pos, count, NULL); 762 err = req->out.h.error; 763 764 if (!err) { 765 /* 766 * Short read means EOF. If file size is larger, truncate it 767 */ 768 if (num_read < count) 769 fuse_short_read(req, inode, attr_ver); 770 771 SetPageUptodate(page); 772 } 773 774 fuse_put_request(fc, req); 775 776 return err; 777 } 778 779 static int fuse_readpage(struct file *file, struct page *page) 780 { 781 struct inode *inode = page->mapping->host; 782 int err; 783 784 err = -EIO; 785 if (is_bad_inode(inode)) 786 goto out; 787 788 err = fuse_do_readpage(file, page); 789 fuse_invalidate_atime(inode); 790 out: 791 unlock_page(page); 792 return err; 793 } 794 795 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req) 796 { 797 int i; 798 size_t count = req->misc.read.in.size; 799 size_t num_read = req->out.args[0].size; 800 struct address_space *mapping = NULL; 801 802 for (i = 0; mapping == NULL && i < req->num_pages; i++) 803 mapping = req->pages[i]->mapping; 804 805 if (mapping) { 806 struct inode *inode = mapping->host; 807 808 /* 809 * Short read means EOF. If file size is larger, truncate it 810 */ 811 if (!req->out.h.error && num_read < count) 812 fuse_short_read(req, inode, req->misc.read.attr_ver); 813 814 fuse_invalidate_atime(inode); 815 } 816 817 for (i = 0; i < req->num_pages; i++) { 818 struct page *page = req->pages[i]; 819 if (!req->out.h.error) 820 SetPageUptodate(page); 821 else 822 SetPageError(page); 823 unlock_page(page); 824 page_cache_release(page); 825 } 826 if (req->ff) 827 fuse_file_put(req->ff, false); 828 } 829 830 static void fuse_send_readpages(struct fuse_req *req, struct file *file) 831 { 832 struct fuse_file *ff = file->private_data; 833 struct fuse_conn *fc = ff->fc; 834 loff_t pos = page_offset(req->pages[0]); 835 size_t count = req->num_pages << PAGE_CACHE_SHIFT; 836 837 req->out.argpages = 1; 838 req->out.page_zeroing = 1; 839 req->out.page_replace = 1; 840 fuse_read_fill(req, file, pos, count, FUSE_READ); 841 req->misc.read.attr_ver = fuse_get_attr_version(fc); 842 if (fc->async_read) { 843 req->ff = fuse_file_get(ff); 844 req->end = fuse_readpages_end; 845 fuse_request_send_background(fc, req); 846 } else { 847 fuse_request_send(fc, req); 848 fuse_readpages_end(fc, req); 849 fuse_put_request(fc, req); 850 } 851 } 852 853 struct fuse_fill_data { 854 struct fuse_req *req; 855 struct file *file; 856 struct inode *inode; 857 unsigned nr_pages; 858 }; 859 860 static int fuse_readpages_fill(void *_data, struct page *page) 861 { 862 struct fuse_fill_data *data = _data; 863 struct fuse_req *req = data->req; 864 struct inode *inode = data->inode; 865 struct fuse_conn *fc = get_fuse_conn(inode); 866 867 fuse_wait_on_page_writeback(inode, page->index); 868 869 if (req->num_pages && 870 (req->num_pages == FUSE_MAX_PAGES_PER_REQ || 871 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read || 872 req->pages[req->num_pages - 1]->index + 1 != page->index)) { 873 int nr_alloc = min_t(unsigned, data->nr_pages, 874 FUSE_MAX_PAGES_PER_REQ); 875 fuse_send_readpages(req, data->file); 876 if (fc->async_read) 877 req = fuse_get_req_for_background(fc, nr_alloc); 878 else 879 req = fuse_get_req(fc, nr_alloc); 880 881 data->req = req; 882 if (IS_ERR(req)) { 883 unlock_page(page); 884 return PTR_ERR(req); 885 } 886 } 887 888 if (WARN_ON(req->num_pages >= req->max_pages)) { 889 fuse_put_request(fc, req); 890 return -EIO; 891 } 892 893 page_cache_get(page); 894 req->pages[req->num_pages] = page; 895 req->page_descs[req->num_pages].length = PAGE_SIZE; 896 req->num_pages++; 897 data->nr_pages--; 898 return 0; 899 } 900 901 static int fuse_readpages(struct file *file, struct address_space *mapping, 902 struct list_head *pages, unsigned nr_pages) 903 { 904 struct inode *inode = mapping->host; 905 struct fuse_conn *fc = get_fuse_conn(inode); 906 struct fuse_fill_data data; 907 int err; 908 int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ); 909 910 err = -EIO; 911 if (is_bad_inode(inode)) 912 goto out; 913 914 data.file = file; 915 data.inode = inode; 916 if (fc->async_read) 917 data.req = fuse_get_req_for_background(fc, nr_alloc); 918 else 919 data.req = fuse_get_req(fc, nr_alloc); 920 data.nr_pages = nr_pages; 921 err = PTR_ERR(data.req); 922 if (IS_ERR(data.req)) 923 goto out; 924 925 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 926 if (!err) { 927 if (data.req->num_pages) 928 fuse_send_readpages(data.req, file); 929 else 930 fuse_put_request(fc, data.req); 931 } 932 out: 933 return err; 934 } 935 936 static ssize_t fuse_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 937 unsigned long nr_segs, loff_t pos) 938 { 939 struct inode *inode = iocb->ki_filp->f_mapping->host; 940 struct fuse_conn *fc = get_fuse_conn(inode); 941 942 /* 943 * In auto invalidate mode, always update attributes on read. 944 * Otherwise, only update if we attempt to read past EOF (to ensure 945 * i_size is up to date). 946 */ 947 if (fc->auto_inval_data || 948 (pos + iov_length(iov, nr_segs) > i_size_read(inode))) { 949 int err; 950 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL); 951 if (err) 952 return err; 953 } 954 955 return generic_file_aio_read(iocb, iov, nr_segs, pos); 956 } 957 958 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff, 959 loff_t pos, size_t count) 960 { 961 struct fuse_write_in *inarg = &req->misc.write.in; 962 struct fuse_write_out *outarg = &req->misc.write.out; 963 964 inarg->fh = ff->fh; 965 inarg->offset = pos; 966 inarg->size = count; 967 req->in.h.opcode = FUSE_WRITE; 968 req->in.h.nodeid = ff->nodeid; 969 req->in.numargs = 2; 970 if (ff->fc->minor < 9) 971 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 972 else 973 req->in.args[0].size = sizeof(struct fuse_write_in); 974 req->in.args[0].value = inarg; 975 req->in.args[1].size = count; 976 req->out.numargs = 1; 977 req->out.args[0].size = sizeof(struct fuse_write_out); 978 req->out.args[0].value = outarg; 979 } 980 981 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io, 982 loff_t pos, size_t count, fl_owner_t owner) 983 { 984 struct file *file = io->file; 985 struct fuse_file *ff = file->private_data; 986 struct fuse_conn *fc = ff->fc; 987 struct fuse_write_in *inarg = &req->misc.write.in; 988 989 fuse_write_fill(req, ff, pos, count); 990 inarg->flags = file->f_flags; 991 if (owner != NULL) { 992 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 993 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 994 } 995 996 if (io->async) 997 return fuse_async_req_send(fc, req, count, io); 998 999 fuse_request_send(fc, req); 1000 return req->misc.write.out.size; 1001 } 1002 1003 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1004 { 1005 struct fuse_conn *fc = get_fuse_conn(inode); 1006 struct fuse_inode *fi = get_fuse_inode(inode); 1007 bool ret = false; 1008 1009 spin_lock(&fc->lock); 1010 fi->attr_version = ++fc->attr_version; 1011 if (pos > inode->i_size) { 1012 i_size_write(inode, pos); 1013 ret = true; 1014 } 1015 spin_unlock(&fc->lock); 1016 1017 return ret; 1018 } 1019 1020 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file, 1021 struct inode *inode, loff_t pos, 1022 size_t count) 1023 { 1024 size_t res; 1025 unsigned offset; 1026 unsigned i; 1027 struct fuse_io_priv io = { .async = 0, .file = file }; 1028 1029 for (i = 0; i < req->num_pages; i++) 1030 fuse_wait_on_page_writeback(inode, req->pages[i]->index); 1031 1032 res = fuse_send_write(req, &io, pos, count, NULL); 1033 1034 offset = req->page_descs[0].offset; 1035 count = res; 1036 for (i = 0; i < req->num_pages; i++) { 1037 struct page *page = req->pages[i]; 1038 1039 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE) 1040 SetPageUptodate(page); 1041 1042 if (count > PAGE_CACHE_SIZE - offset) 1043 count -= PAGE_CACHE_SIZE - offset; 1044 else 1045 count = 0; 1046 offset = 0; 1047 1048 unlock_page(page); 1049 page_cache_release(page); 1050 } 1051 1052 return res; 1053 } 1054 1055 static ssize_t fuse_fill_write_pages(struct fuse_req *req, 1056 struct address_space *mapping, 1057 struct iov_iter *ii, loff_t pos) 1058 { 1059 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1060 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 1061 size_t count = 0; 1062 int err; 1063 1064 req->in.argpages = 1; 1065 req->page_descs[0].offset = offset; 1066 1067 do { 1068 size_t tmp; 1069 struct page *page; 1070 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1071 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset, 1072 iov_iter_count(ii)); 1073 1074 bytes = min_t(size_t, bytes, fc->max_write - count); 1075 1076 again: 1077 err = -EFAULT; 1078 if (iov_iter_fault_in_readable(ii, bytes)) 1079 break; 1080 1081 err = -ENOMEM; 1082 page = grab_cache_page_write_begin(mapping, index, 0); 1083 if (!page) 1084 break; 1085 1086 if (mapping_writably_mapped(mapping)) 1087 flush_dcache_page(page); 1088 1089 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1090 flush_dcache_page(page); 1091 1092 mark_page_accessed(page); 1093 1094 if (!tmp) { 1095 unlock_page(page); 1096 page_cache_release(page); 1097 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1098 goto again; 1099 } 1100 1101 err = 0; 1102 req->pages[req->num_pages] = page; 1103 req->page_descs[req->num_pages].length = tmp; 1104 req->num_pages++; 1105 1106 iov_iter_advance(ii, tmp); 1107 count += tmp; 1108 pos += tmp; 1109 offset += tmp; 1110 if (offset == PAGE_CACHE_SIZE) 1111 offset = 0; 1112 1113 if (!fc->big_writes) 1114 break; 1115 } while (iov_iter_count(ii) && count < fc->max_write && 1116 req->num_pages < req->max_pages && offset == 0); 1117 1118 return count > 0 ? count : err; 1119 } 1120 1121 static inline unsigned fuse_wr_pages(loff_t pos, size_t len) 1122 { 1123 return min_t(unsigned, 1124 ((pos + len - 1) >> PAGE_CACHE_SHIFT) - 1125 (pos >> PAGE_CACHE_SHIFT) + 1, 1126 FUSE_MAX_PAGES_PER_REQ); 1127 } 1128 1129 static ssize_t fuse_perform_write(struct file *file, 1130 struct address_space *mapping, 1131 struct iov_iter *ii, loff_t pos) 1132 { 1133 struct inode *inode = mapping->host; 1134 struct fuse_conn *fc = get_fuse_conn(inode); 1135 struct fuse_inode *fi = get_fuse_inode(inode); 1136 int err = 0; 1137 ssize_t res = 0; 1138 1139 if (is_bad_inode(inode)) 1140 return -EIO; 1141 1142 if (inode->i_size < pos + iov_iter_count(ii)) 1143 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1144 1145 do { 1146 struct fuse_req *req; 1147 ssize_t count; 1148 unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii)); 1149 1150 req = fuse_get_req(fc, nr_pages); 1151 if (IS_ERR(req)) { 1152 err = PTR_ERR(req); 1153 break; 1154 } 1155 1156 count = fuse_fill_write_pages(req, mapping, ii, pos); 1157 if (count <= 0) { 1158 err = count; 1159 } else { 1160 size_t num_written; 1161 1162 num_written = fuse_send_write_pages(req, file, inode, 1163 pos, count); 1164 err = req->out.h.error; 1165 if (!err) { 1166 res += num_written; 1167 pos += num_written; 1168 1169 /* break out of the loop on short write */ 1170 if (num_written != count) 1171 err = -EIO; 1172 } 1173 } 1174 fuse_put_request(fc, req); 1175 } while (!err && iov_iter_count(ii)); 1176 1177 if (res > 0) 1178 fuse_write_update_size(inode, pos); 1179 1180 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1181 fuse_invalidate_attr(inode); 1182 1183 return res > 0 ? res : err; 1184 } 1185 1186 static ssize_t fuse_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 1187 unsigned long nr_segs, loff_t pos) 1188 { 1189 struct file *file = iocb->ki_filp; 1190 struct address_space *mapping = file->f_mapping; 1191 size_t count = 0; 1192 size_t ocount = 0; 1193 ssize_t written = 0; 1194 ssize_t written_buffered = 0; 1195 struct inode *inode = mapping->host; 1196 ssize_t err; 1197 struct iov_iter i; 1198 loff_t endbyte = 0; 1199 1200 if (get_fuse_conn(inode)->writeback_cache) { 1201 /* Update size (EOF optimization) and mode (SUID clearing) */ 1202 err = fuse_update_attributes(mapping->host, NULL, file, NULL); 1203 if (err) 1204 return err; 1205 1206 return generic_file_aio_write(iocb, iov, nr_segs, pos); 1207 } 1208 1209 WARN_ON(iocb->ki_pos != pos); 1210 1211 ocount = 0; 1212 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1213 if (err) 1214 return err; 1215 1216 count = ocount; 1217 mutex_lock(&inode->i_mutex); 1218 1219 /* We can write back this queue in page reclaim */ 1220 current->backing_dev_info = mapping->backing_dev_info; 1221 1222 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1223 if (err) 1224 goto out; 1225 1226 if (count == 0) 1227 goto out; 1228 1229 err = file_remove_suid(file); 1230 if (err) 1231 goto out; 1232 1233 err = file_update_time(file); 1234 if (err) 1235 goto out; 1236 1237 if (file->f_flags & O_DIRECT) { 1238 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 1239 count, ocount); 1240 if (written < 0 || written == count) 1241 goto out; 1242 1243 pos += written; 1244 count -= written; 1245 1246 iov_iter_init(&i, iov, nr_segs, count, written); 1247 written_buffered = fuse_perform_write(file, mapping, &i, pos); 1248 if (written_buffered < 0) { 1249 err = written_buffered; 1250 goto out; 1251 } 1252 endbyte = pos + written_buffered - 1; 1253 1254 err = filemap_write_and_wait_range(file->f_mapping, pos, 1255 endbyte); 1256 if (err) 1257 goto out; 1258 1259 invalidate_mapping_pages(file->f_mapping, 1260 pos >> PAGE_CACHE_SHIFT, 1261 endbyte >> PAGE_CACHE_SHIFT); 1262 1263 written += written_buffered; 1264 iocb->ki_pos = pos + written_buffered; 1265 } else { 1266 iov_iter_init(&i, iov, nr_segs, count, 0); 1267 written = fuse_perform_write(file, mapping, &i, pos); 1268 if (written >= 0) 1269 iocb->ki_pos = pos + written; 1270 } 1271 out: 1272 current->backing_dev_info = NULL; 1273 mutex_unlock(&inode->i_mutex); 1274 1275 return written ? written : err; 1276 } 1277 1278 static inline void fuse_page_descs_length_init(struct fuse_req *req, 1279 unsigned index, unsigned nr_pages) 1280 { 1281 int i; 1282 1283 for (i = index; i < index + nr_pages; i++) 1284 req->page_descs[i].length = PAGE_SIZE - 1285 req->page_descs[i].offset; 1286 } 1287 1288 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1289 { 1290 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1291 } 1292 1293 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1294 size_t max_size) 1295 { 1296 return min(iov_iter_single_seg_count(ii), max_size); 1297 } 1298 1299 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii, 1300 size_t *nbytesp, int write) 1301 { 1302 size_t nbytes = 0; /* # bytes already packed in req */ 1303 1304 /* Special case for kernel I/O: can copy directly into the buffer */ 1305 if (segment_eq(get_fs(), KERNEL_DS)) { 1306 unsigned long user_addr = fuse_get_user_addr(ii); 1307 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1308 1309 if (write) 1310 req->in.args[1].value = (void *) user_addr; 1311 else 1312 req->out.args[0].value = (void *) user_addr; 1313 1314 iov_iter_advance(ii, frag_size); 1315 *nbytesp = frag_size; 1316 return 0; 1317 } 1318 1319 while (nbytes < *nbytesp && req->num_pages < req->max_pages) { 1320 unsigned npages; 1321 unsigned long user_addr = fuse_get_user_addr(ii); 1322 unsigned offset = user_addr & ~PAGE_MASK; 1323 size_t frag_size = fuse_get_frag_size(ii, *nbytesp - nbytes); 1324 int ret; 1325 1326 unsigned n = req->max_pages - req->num_pages; 1327 frag_size = min_t(size_t, frag_size, n << PAGE_SHIFT); 1328 1329 npages = (frag_size + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 1330 npages = clamp(npages, 1U, n); 1331 1332 ret = get_user_pages_fast(user_addr, npages, !write, 1333 &req->pages[req->num_pages]); 1334 if (ret < 0) 1335 return ret; 1336 1337 npages = ret; 1338 frag_size = min_t(size_t, frag_size, 1339 (npages << PAGE_SHIFT) - offset); 1340 iov_iter_advance(ii, frag_size); 1341 1342 req->page_descs[req->num_pages].offset = offset; 1343 fuse_page_descs_length_init(req, req->num_pages, npages); 1344 1345 req->num_pages += npages; 1346 req->page_descs[req->num_pages - 1].length -= 1347 (npages << PAGE_SHIFT) - offset - frag_size; 1348 1349 nbytes += frag_size; 1350 } 1351 1352 if (write) 1353 req->in.argpages = 1; 1354 else 1355 req->out.argpages = 1; 1356 1357 *nbytesp = nbytes; 1358 1359 return 0; 1360 } 1361 1362 static inline int fuse_iter_npages(const struct iov_iter *ii_p) 1363 { 1364 struct iov_iter ii = *ii_p; 1365 int npages = 0; 1366 1367 while (iov_iter_count(&ii) && npages < FUSE_MAX_PAGES_PER_REQ) { 1368 unsigned long user_addr = fuse_get_user_addr(&ii); 1369 unsigned offset = user_addr & ~PAGE_MASK; 1370 size_t frag_size = iov_iter_single_seg_count(&ii); 1371 1372 npages += (frag_size + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 1373 iov_iter_advance(&ii, frag_size); 1374 } 1375 1376 return min(npages, FUSE_MAX_PAGES_PER_REQ); 1377 } 1378 1379 ssize_t fuse_direct_io(struct fuse_io_priv *io, const struct iovec *iov, 1380 unsigned long nr_segs, size_t count, loff_t *ppos, 1381 int flags) 1382 { 1383 int write = flags & FUSE_DIO_WRITE; 1384 int cuse = flags & FUSE_DIO_CUSE; 1385 struct file *file = io->file; 1386 struct inode *inode = file->f_mapping->host; 1387 struct fuse_file *ff = file->private_data; 1388 struct fuse_conn *fc = ff->fc; 1389 size_t nmax = write ? fc->max_write : fc->max_read; 1390 loff_t pos = *ppos; 1391 pgoff_t idx_from = pos >> PAGE_CACHE_SHIFT; 1392 pgoff_t idx_to = (pos + count - 1) >> PAGE_CACHE_SHIFT; 1393 ssize_t res = 0; 1394 struct fuse_req *req; 1395 struct iov_iter ii; 1396 1397 iov_iter_init(&ii, iov, nr_segs, count, 0); 1398 1399 if (io->async) 1400 req = fuse_get_req_for_background(fc, fuse_iter_npages(&ii)); 1401 else 1402 req = fuse_get_req(fc, fuse_iter_npages(&ii)); 1403 if (IS_ERR(req)) 1404 return PTR_ERR(req); 1405 1406 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1407 if (!write) 1408 mutex_lock(&inode->i_mutex); 1409 fuse_sync_writes(inode); 1410 if (!write) 1411 mutex_unlock(&inode->i_mutex); 1412 } 1413 1414 while (count) { 1415 size_t nres; 1416 fl_owner_t owner = current->files; 1417 size_t nbytes = min(count, nmax); 1418 int err = fuse_get_user_pages(req, &ii, &nbytes, write); 1419 if (err) { 1420 res = err; 1421 break; 1422 } 1423 1424 if (write) 1425 nres = fuse_send_write(req, io, pos, nbytes, owner); 1426 else 1427 nres = fuse_send_read(req, io, pos, nbytes, owner); 1428 1429 if (!io->async) 1430 fuse_release_user_pages(req, !write); 1431 if (req->out.h.error) { 1432 if (!res) 1433 res = req->out.h.error; 1434 break; 1435 } else if (nres > nbytes) { 1436 res = -EIO; 1437 break; 1438 } 1439 count -= nres; 1440 res += nres; 1441 pos += nres; 1442 if (nres != nbytes) 1443 break; 1444 if (count) { 1445 fuse_put_request(fc, req); 1446 if (io->async) 1447 req = fuse_get_req_for_background(fc, 1448 fuse_iter_npages(&ii)); 1449 else 1450 req = fuse_get_req(fc, fuse_iter_npages(&ii)); 1451 if (IS_ERR(req)) 1452 break; 1453 } 1454 } 1455 if (!IS_ERR(req)) 1456 fuse_put_request(fc, req); 1457 if (res > 0) 1458 *ppos = pos; 1459 1460 return res; 1461 } 1462 EXPORT_SYMBOL_GPL(fuse_direct_io); 1463 1464 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1465 const struct iovec *iov, 1466 unsigned long nr_segs, loff_t *ppos, 1467 size_t count) 1468 { 1469 ssize_t res; 1470 struct file *file = io->file; 1471 struct inode *inode = file_inode(file); 1472 1473 if (is_bad_inode(inode)) 1474 return -EIO; 1475 1476 res = fuse_direct_io(io, iov, nr_segs, count, ppos, 0); 1477 1478 fuse_invalidate_attr(inode); 1479 1480 return res; 1481 } 1482 1483 static ssize_t fuse_direct_read(struct file *file, char __user *buf, 1484 size_t count, loff_t *ppos) 1485 { 1486 struct fuse_io_priv io = { .async = 0, .file = file }; 1487 struct iovec iov = { .iov_base = buf, .iov_len = count }; 1488 return __fuse_direct_read(&io, &iov, 1, ppos, count); 1489 } 1490 1491 static ssize_t __fuse_direct_write(struct fuse_io_priv *io, 1492 const struct iovec *iov, 1493 unsigned long nr_segs, loff_t *ppos) 1494 { 1495 struct file *file = io->file; 1496 struct inode *inode = file_inode(file); 1497 size_t count = iov_length(iov, nr_segs); 1498 ssize_t res; 1499 1500 res = generic_write_checks(file, ppos, &count, 0); 1501 if (!res) 1502 res = fuse_direct_io(io, iov, nr_segs, count, ppos, 1503 FUSE_DIO_WRITE); 1504 1505 fuse_invalidate_attr(inode); 1506 1507 return res; 1508 } 1509 1510 static ssize_t fuse_direct_write(struct file *file, const char __user *buf, 1511 size_t count, loff_t *ppos) 1512 { 1513 struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = count }; 1514 struct inode *inode = file_inode(file); 1515 ssize_t res; 1516 struct fuse_io_priv io = { .async = 0, .file = file }; 1517 1518 if (is_bad_inode(inode)) 1519 return -EIO; 1520 1521 /* Don't allow parallel writes to the same file */ 1522 mutex_lock(&inode->i_mutex); 1523 res = __fuse_direct_write(&io, &iov, 1, ppos); 1524 if (res > 0) 1525 fuse_write_update_size(inode, *ppos); 1526 mutex_unlock(&inode->i_mutex); 1527 1528 return res; 1529 } 1530 1531 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req) 1532 { 1533 int i; 1534 1535 for (i = 0; i < req->num_pages; i++) 1536 __free_page(req->pages[i]); 1537 1538 if (req->ff) 1539 fuse_file_put(req->ff, false); 1540 } 1541 1542 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req) 1543 { 1544 struct inode *inode = req->inode; 1545 struct fuse_inode *fi = get_fuse_inode(inode); 1546 struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info; 1547 int i; 1548 1549 list_del(&req->writepages_entry); 1550 for (i = 0; i < req->num_pages; i++) { 1551 dec_bdi_stat(bdi, BDI_WRITEBACK); 1552 dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP); 1553 bdi_writeout_inc(bdi); 1554 } 1555 wake_up(&fi->page_waitq); 1556 } 1557 1558 /* Called under fc->lock, may release and reacquire it */ 1559 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req, 1560 loff_t size) 1561 __releases(fc->lock) 1562 __acquires(fc->lock) 1563 { 1564 struct fuse_inode *fi = get_fuse_inode(req->inode); 1565 struct fuse_write_in *inarg = &req->misc.write.in; 1566 __u64 data_size = req->num_pages * PAGE_CACHE_SIZE; 1567 1568 if (!fc->connected) 1569 goto out_free; 1570 1571 if (inarg->offset + data_size <= size) { 1572 inarg->size = data_size; 1573 } else if (inarg->offset < size) { 1574 inarg->size = size - inarg->offset; 1575 } else { 1576 /* Got truncated off completely */ 1577 goto out_free; 1578 } 1579 1580 req->in.args[1].size = inarg->size; 1581 fi->writectr++; 1582 fuse_request_send_background_locked(fc, req); 1583 return; 1584 1585 out_free: 1586 fuse_writepage_finish(fc, req); 1587 spin_unlock(&fc->lock); 1588 fuse_writepage_free(fc, req); 1589 fuse_put_request(fc, req); 1590 spin_lock(&fc->lock); 1591 } 1592 1593 /* 1594 * If fi->writectr is positive (no truncate or fsync going on) send 1595 * all queued writepage requests. 1596 * 1597 * Called with fc->lock 1598 */ 1599 void fuse_flush_writepages(struct inode *inode) 1600 __releases(fc->lock) 1601 __acquires(fc->lock) 1602 { 1603 struct fuse_conn *fc = get_fuse_conn(inode); 1604 struct fuse_inode *fi = get_fuse_inode(inode); 1605 size_t crop = i_size_read(inode); 1606 struct fuse_req *req; 1607 1608 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1609 req = list_entry(fi->queued_writes.next, struct fuse_req, list); 1610 list_del_init(&req->list); 1611 fuse_send_writepage(fc, req, crop); 1612 } 1613 } 1614 1615 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req) 1616 { 1617 struct inode *inode = req->inode; 1618 struct fuse_inode *fi = get_fuse_inode(inode); 1619 1620 mapping_set_error(inode->i_mapping, req->out.h.error); 1621 spin_lock(&fc->lock); 1622 while (req->misc.write.next) { 1623 struct fuse_conn *fc = get_fuse_conn(inode); 1624 struct fuse_write_in *inarg = &req->misc.write.in; 1625 struct fuse_req *next = req->misc.write.next; 1626 req->misc.write.next = next->misc.write.next; 1627 next->misc.write.next = NULL; 1628 next->ff = fuse_file_get(req->ff); 1629 list_add(&next->writepages_entry, &fi->writepages); 1630 1631 /* 1632 * Skip fuse_flush_writepages() to make it easy to crop requests 1633 * based on primary request size. 1634 * 1635 * 1st case (trivial): there are no concurrent activities using 1636 * fuse_set/release_nowrite. Then we're on safe side because 1637 * fuse_flush_writepages() would call fuse_send_writepage() 1638 * anyway. 1639 * 1640 * 2nd case: someone called fuse_set_nowrite and it is waiting 1641 * now for completion of all in-flight requests. This happens 1642 * rarely and no more than once per page, so this should be 1643 * okay. 1644 * 1645 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1646 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1647 * that fuse_set_nowrite returned implies that all in-flight 1648 * requests were completed along with all of their secondary 1649 * requests. Further primary requests are blocked by negative 1650 * writectr. Hence there cannot be any in-flight requests and 1651 * no invocations of fuse_writepage_end() while we're in 1652 * fuse_set_nowrite..fuse_release_nowrite section. 1653 */ 1654 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1655 } 1656 fi->writectr--; 1657 fuse_writepage_finish(fc, req); 1658 spin_unlock(&fc->lock); 1659 fuse_writepage_free(fc, req); 1660 } 1661 1662 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1663 struct fuse_inode *fi) 1664 { 1665 struct fuse_file *ff = NULL; 1666 1667 spin_lock(&fc->lock); 1668 if (!WARN_ON(list_empty(&fi->write_files))) { 1669 ff = list_entry(fi->write_files.next, struct fuse_file, 1670 write_entry); 1671 fuse_file_get(ff); 1672 } 1673 spin_unlock(&fc->lock); 1674 1675 return ff; 1676 } 1677 1678 static int fuse_writepage_locked(struct page *page) 1679 { 1680 struct address_space *mapping = page->mapping; 1681 struct inode *inode = mapping->host; 1682 struct fuse_conn *fc = get_fuse_conn(inode); 1683 struct fuse_inode *fi = get_fuse_inode(inode); 1684 struct fuse_req *req; 1685 struct page *tmp_page; 1686 int error = -ENOMEM; 1687 1688 set_page_writeback(page); 1689 1690 req = fuse_request_alloc_nofs(1); 1691 if (!req) 1692 goto err; 1693 1694 req->background = 1; /* writeback always goes to bg_queue */ 1695 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1696 if (!tmp_page) 1697 goto err_free; 1698 1699 error = -EIO; 1700 req->ff = fuse_write_file_get(fc, fi); 1701 if (!req->ff) 1702 goto err_free; 1703 1704 fuse_write_fill(req, req->ff, page_offset(page), 0); 1705 1706 copy_highpage(tmp_page, page); 1707 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1708 req->misc.write.next = NULL; 1709 req->in.argpages = 1; 1710 req->num_pages = 1; 1711 req->pages[0] = tmp_page; 1712 req->page_descs[0].offset = 0; 1713 req->page_descs[0].length = PAGE_SIZE; 1714 req->end = fuse_writepage_end; 1715 req->inode = inode; 1716 1717 inc_bdi_stat(mapping->backing_dev_info, BDI_WRITEBACK); 1718 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP); 1719 1720 spin_lock(&fc->lock); 1721 list_add(&req->writepages_entry, &fi->writepages); 1722 list_add_tail(&req->list, &fi->queued_writes); 1723 fuse_flush_writepages(inode); 1724 spin_unlock(&fc->lock); 1725 1726 end_page_writeback(page); 1727 1728 return 0; 1729 1730 err_free: 1731 fuse_request_free(req); 1732 err: 1733 end_page_writeback(page); 1734 return error; 1735 } 1736 1737 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1738 { 1739 int err; 1740 1741 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1742 /* 1743 * ->writepages() should be called for sync() and friends. We 1744 * should only get here on direct reclaim and then we are 1745 * allowed to skip a page which is already in flight 1746 */ 1747 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1748 1749 redirty_page_for_writepage(wbc, page); 1750 return 0; 1751 } 1752 1753 err = fuse_writepage_locked(page); 1754 unlock_page(page); 1755 1756 return err; 1757 } 1758 1759 struct fuse_fill_wb_data { 1760 struct fuse_req *req; 1761 struct fuse_file *ff; 1762 struct inode *inode; 1763 struct page **orig_pages; 1764 }; 1765 1766 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1767 { 1768 struct fuse_req *req = data->req; 1769 struct inode *inode = data->inode; 1770 struct fuse_conn *fc = get_fuse_conn(inode); 1771 struct fuse_inode *fi = get_fuse_inode(inode); 1772 int num_pages = req->num_pages; 1773 int i; 1774 1775 req->ff = fuse_file_get(data->ff); 1776 spin_lock(&fc->lock); 1777 list_add_tail(&req->list, &fi->queued_writes); 1778 fuse_flush_writepages(inode); 1779 spin_unlock(&fc->lock); 1780 1781 for (i = 0; i < num_pages; i++) 1782 end_page_writeback(data->orig_pages[i]); 1783 } 1784 1785 static bool fuse_writepage_in_flight(struct fuse_req *new_req, 1786 struct page *page) 1787 { 1788 struct fuse_conn *fc = get_fuse_conn(new_req->inode); 1789 struct fuse_inode *fi = get_fuse_inode(new_req->inode); 1790 struct fuse_req *tmp; 1791 struct fuse_req *old_req; 1792 bool found = false; 1793 pgoff_t curr_index; 1794 1795 BUG_ON(new_req->num_pages != 0); 1796 1797 spin_lock(&fc->lock); 1798 list_del(&new_req->writepages_entry); 1799 list_for_each_entry(old_req, &fi->writepages, writepages_entry) { 1800 BUG_ON(old_req->inode != new_req->inode); 1801 curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT; 1802 if (curr_index <= page->index && 1803 page->index < curr_index + old_req->num_pages) { 1804 found = true; 1805 break; 1806 } 1807 } 1808 if (!found) { 1809 list_add(&new_req->writepages_entry, &fi->writepages); 1810 goto out_unlock; 1811 } 1812 1813 new_req->num_pages = 1; 1814 for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) { 1815 BUG_ON(tmp->inode != new_req->inode); 1816 curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT; 1817 if (tmp->num_pages == 1 && 1818 curr_index == page->index) { 1819 old_req = tmp; 1820 } 1821 } 1822 1823 if (old_req->num_pages == 1 && (old_req->state == FUSE_REQ_INIT || 1824 old_req->state == FUSE_REQ_PENDING)) { 1825 struct backing_dev_info *bdi = page->mapping->backing_dev_info; 1826 1827 copy_highpage(old_req->pages[0], page); 1828 spin_unlock(&fc->lock); 1829 1830 dec_bdi_stat(bdi, BDI_WRITEBACK); 1831 dec_zone_page_state(page, NR_WRITEBACK_TEMP); 1832 bdi_writeout_inc(bdi); 1833 fuse_writepage_free(fc, new_req); 1834 fuse_request_free(new_req); 1835 goto out; 1836 } else { 1837 new_req->misc.write.next = old_req->misc.write.next; 1838 old_req->misc.write.next = new_req; 1839 } 1840 out_unlock: 1841 spin_unlock(&fc->lock); 1842 out: 1843 return found; 1844 } 1845 1846 static int fuse_writepages_fill(struct page *page, 1847 struct writeback_control *wbc, void *_data) 1848 { 1849 struct fuse_fill_wb_data *data = _data; 1850 struct fuse_req *req = data->req; 1851 struct inode *inode = data->inode; 1852 struct fuse_conn *fc = get_fuse_conn(inode); 1853 struct page *tmp_page; 1854 bool is_writeback; 1855 int err; 1856 1857 if (!data->ff) { 1858 err = -EIO; 1859 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode)); 1860 if (!data->ff) 1861 goto out_unlock; 1862 } 1863 1864 /* 1865 * Being under writeback is unlikely but possible. For example direct 1866 * read to an mmaped fuse file will set the page dirty twice; once when 1867 * the pages are faulted with get_user_pages(), and then after the read 1868 * completed. 1869 */ 1870 is_writeback = fuse_page_is_writeback(inode, page->index); 1871 1872 if (req && req->num_pages && 1873 (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ || 1874 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write || 1875 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) { 1876 fuse_writepages_send(data); 1877 data->req = NULL; 1878 } 1879 err = -ENOMEM; 1880 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1881 if (!tmp_page) 1882 goto out_unlock; 1883 1884 /* 1885 * The page must not be redirtied until the writeout is completed 1886 * (i.e. userspace has sent a reply to the write request). Otherwise 1887 * there could be more than one temporary page instance for each real 1888 * page. 1889 * 1890 * This is ensured by holding the page lock in page_mkwrite() while 1891 * checking fuse_page_is_writeback(). We already hold the page lock 1892 * since clear_page_dirty_for_io() and keep it held until we add the 1893 * request to the fi->writepages list and increment req->num_pages. 1894 * After this fuse_page_is_writeback() will indicate that the page is 1895 * under writeback, so we can release the page lock. 1896 */ 1897 if (data->req == NULL) { 1898 struct fuse_inode *fi = get_fuse_inode(inode); 1899 1900 err = -ENOMEM; 1901 req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ); 1902 if (!req) { 1903 __free_page(tmp_page); 1904 goto out_unlock; 1905 } 1906 1907 fuse_write_fill(req, data->ff, page_offset(page), 0); 1908 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1909 req->misc.write.next = NULL; 1910 req->in.argpages = 1; 1911 req->background = 1; 1912 req->num_pages = 0; 1913 req->end = fuse_writepage_end; 1914 req->inode = inode; 1915 1916 spin_lock(&fc->lock); 1917 list_add(&req->writepages_entry, &fi->writepages); 1918 spin_unlock(&fc->lock); 1919 1920 data->req = req; 1921 } 1922 set_page_writeback(page); 1923 1924 copy_highpage(tmp_page, page); 1925 req->pages[req->num_pages] = tmp_page; 1926 req->page_descs[req->num_pages].offset = 0; 1927 req->page_descs[req->num_pages].length = PAGE_SIZE; 1928 1929 inc_bdi_stat(page->mapping->backing_dev_info, BDI_WRITEBACK); 1930 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP); 1931 1932 err = 0; 1933 if (is_writeback && fuse_writepage_in_flight(req, page)) { 1934 end_page_writeback(page); 1935 data->req = NULL; 1936 goto out_unlock; 1937 } 1938 data->orig_pages[req->num_pages] = page; 1939 1940 /* 1941 * Protected by fc->lock against concurrent access by 1942 * fuse_page_is_writeback(). 1943 */ 1944 spin_lock(&fc->lock); 1945 req->num_pages++; 1946 spin_unlock(&fc->lock); 1947 1948 out_unlock: 1949 unlock_page(page); 1950 1951 return err; 1952 } 1953 1954 static int fuse_writepages(struct address_space *mapping, 1955 struct writeback_control *wbc) 1956 { 1957 struct inode *inode = mapping->host; 1958 struct fuse_fill_wb_data data; 1959 int err; 1960 1961 err = -EIO; 1962 if (is_bad_inode(inode)) 1963 goto out; 1964 1965 data.inode = inode; 1966 data.req = NULL; 1967 data.ff = NULL; 1968 1969 err = -ENOMEM; 1970 data.orig_pages = kzalloc(sizeof(struct page *) * 1971 FUSE_MAX_PAGES_PER_REQ, 1972 GFP_NOFS); 1973 if (!data.orig_pages) 1974 goto out; 1975 1976 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 1977 if (data.req) { 1978 /* Ignore errors if we can write at least one page */ 1979 BUG_ON(!data.req->num_pages); 1980 fuse_writepages_send(&data); 1981 err = 0; 1982 } 1983 if (data.ff) 1984 fuse_file_put(data.ff, false); 1985 1986 kfree(data.orig_pages); 1987 out: 1988 return err; 1989 } 1990 1991 /* 1992 * It's worthy to make sure that space is reserved on disk for the write, 1993 * but how to implement it without killing performance need more thinking. 1994 */ 1995 static int fuse_write_begin(struct file *file, struct address_space *mapping, 1996 loff_t pos, unsigned len, unsigned flags, 1997 struct page **pagep, void **fsdata) 1998 { 1999 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2000 struct fuse_conn *fc = get_fuse_conn(file->f_dentry->d_inode); 2001 struct page *page; 2002 loff_t fsize; 2003 int err = -ENOMEM; 2004 2005 WARN_ON(!fc->writeback_cache); 2006 2007 page = grab_cache_page_write_begin(mapping, index, flags); 2008 if (!page) 2009 goto error; 2010 2011 fuse_wait_on_page_writeback(mapping->host, page->index); 2012 2013 if (PageUptodate(page) || len == PAGE_CACHE_SIZE) 2014 goto success; 2015 /* 2016 * Check if the start this page comes after the end of file, in which 2017 * case the readpage can be optimized away. 2018 */ 2019 fsize = i_size_read(mapping->host); 2020 if (fsize <= (pos & PAGE_CACHE_MASK)) { 2021 size_t off = pos & ~PAGE_CACHE_MASK; 2022 if (off) 2023 zero_user_segment(page, 0, off); 2024 goto success; 2025 } 2026 err = fuse_do_readpage(file, page); 2027 if (err) 2028 goto cleanup; 2029 success: 2030 *pagep = page; 2031 return 0; 2032 2033 cleanup: 2034 unlock_page(page); 2035 page_cache_release(page); 2036 error: 2037 return err; 2038 } 2039 2040 static int fuse_write_end(struct file *file, struct address_space *mapping, 2041 loff_t pos, unsigned len, unsigned copied, 2042 struct page *page, void *fsdata) 2043 { 2044 struct inode *inode = page->mapping->host; 2045 2046 if (!PageUptodate(page)) { 2047 /* Zero any unwritten bytes at the end of the page */ 2048 size_t endoff = (pos + copied) & ~PAGE_CACHE_MASK; 2049 if (endoff) 2050 zero_user_segment(page, endoff, PAGE_CACHE_SIZE); 2051 SetPageUptodate(page); 2052 } 2053 2054 fuse_write_update_size(inode, pos + copied); 2055 set_page_dirty(page); 2056 unlock_page(page); 2057 page_cache_release(page); 2058 2059 return copied; 2060 } 2061 2062 static int fuse_launder_page(struct page *page) 2063 { 2064 int err = 0; 2065 if (clear_page_dirty_for_io(page)) { 2066 struct inode *inode = page->mapping->host; 2067 err = fuse_writepage_locked(page); 2068 if (!err) 2069 fuse_wait_on_page_writeback(inode, page->index); 2070 } 2071 return err; 2072 } 2073 2074 /* 2075 * Write back dirty pages now, because there may not be any suitable 2076 * open files later 2077 */ 2078 static void fuse_vma_close(struct vm_area_struct *vma) 2079 { 2080 filemap_write_and_wait(vma->vm_file->f_mapping); 2081 } 2082 2083 /* 2084 * Wait for writeback against this page to complete before allowing it 2085 * to be marked dirty again, and hence written back again, possibly 2086 * before the previous writepage completed. 2087 * 2088 * Block here, instead of in ->writepage(), so that the userspace fs 2089 * can only block processes actually operating on the filesystem. 2090 * 2091 * Otherwise unprivileged userspace fs would be able to block 2092 * unrelated: 2093 * 2094 * - page migration 2095 * - sync(2) 2096 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2097 */ 2098 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2099 { 2100 struct page *page = vmf->page; 2101 struct inode *inode = file_inode(vma->vm_file); 2102 2103 file_update_time(vma->vm_file); 2104 lock_page(page); 2105 if (page->mapping != inode->i_mapping) { 2106 unlock_page(page); 2107 return VM_FAULT_NOPAGE; 2108 } 2109 2110 fuse_wait_on_page_writeback(inode, page->index); 2111 return VM_FAULT_LOCKED; 2112 } 2113 2114 static const struct vm_operations_struct fuse_file_vm_ops = { 2115 .close = fuse_vma_close, 2116 .fault = filemap_fault, 2117 .map_pages = filemap_map_pages, 2118 .page_mkwrite = fuse_page_mkwrite, 2119 .remap_pages = generic_file_remap_pages, 2120 }; 2121 2122 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2123 { 2124 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2125 fuse_link_write_file(file); 2126 2127 file_accessed(file); 2128 vma->vm_ops = &fuse_file_vm_ops; 2129 return 0; 2130 } 2131 2132 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma) 2133 { 2134 /* Can't provide the coherency needed for MAP_SHARED */ 2135 if (vma->vm_flags & VM_MAYSHARE) 2136 return -ENODEV; 2137 2138 invalidate_inode_pages2(file->f_mapping); 2139 2140 return generic_file_mmap(file, vma); 2141 } 2142 2143 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl, 2144 struct file_lock *fl) 2145 { 2146 switch (ffl->type) { 2147 case F_UNLCK: 2148 break; 2149 2150 case F_RDLCK: 2151 case F_WRLCK: 2152 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2153 ffl->end < ffl->start) 2154 return -EIO; 2155 2156 fl->fl_start = ffl->start; 2157 fl->fl_end = ffl->end; 2158 fl->fl_pid = ffl->pid; 2159 break; 2160 2161 default: 2162 return -EIO; 2163 } 2164 fl->fl_type = ffl->type; 2165 return 0; 2166 } 2167 2168 static void fuse_lk_fill(struct fuse_req *req, struct file *file, 2169 const struct file_lock *fl, int opcode, pid_t pid, 2170 int flock) 2171 { 2172 struct inode *inode = file_inode(file); 2173 struct fuse_conn *fc = get_fuse_conn(inode); 2174 struct fuse_file *ff = file->private_data; 2175 struct fuse_lk_in *arg = &req->misc.lk_in; 2176 2177 arg->fh = ff->fh; 2178 arg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2179 arg->lk.start = fl->fl_start; 2180 arg->lk.end = fl->fl_end; 2181 arg->lk.type = fl->fl_type; 2182 arg->lk.pid = pid; 2183 if (flock) 2184 arg->lk_flags |= FUSE_LK_FLOCK; 2185 req->in.h.opcode = opcode; 2186 req->in.h.nodeid = get_node_id(inode); 2187 req->in.numargs = 1; 2188 req->in.args[0].size = sizeof(*arg); 2189 req->in.args[0].value = arg; 2190 } 2191 2192 static int fuse_getlk(struct file *file, struct file_lock *fl) 2193 { 2194 struct inode *inode = file_inode(file); 2195 struct fuse_conn *fc = get_fuse_conn(inode); 2196 struct fuse_req *req; 2197 struct fuse_lk_out outarg; 2198 int err; 2199 2200 req = fuse_get_req_nopages(fc); 2201 if (IS_ERR(req)) 2202 return PTR_ERR(req); 2203 2204 fuse_lk_fill(req, file, fl, FUSE_GETLK, 0, 0); 2205 req->out.numargs = 1; 2206 req->out.args[0].size = sizeof(outarg); 2207 req->out.args[0].value = &outarg; 2208 fuse_request_send(fc, req); 2209 err = req->out.h.error; 2210 fuse_put_request(fc, req); 2211 if (!err) 2212 err = convert_fuse_file_lock(&outarg.lk, fl); 2213 2214 return err; 2215 } 2216 2217 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2218 { 2219 struct inode *inode = file_inode(file); 2220 struct fuse_conn *fc = get_fuse_conn(inode); 2221 struct fuse_req *req; 2222 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2223 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0; 2224 int err; 2225 2226 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2227 /* NLM needs asynchronous locks, which we don't support yet */ 2228 return -ENOLCK; 2229 } 2230 2231 /* Unlock on close is handled by the flush method */ 2232 if (fl->fl_flags & FL_CLOSE) 2233 return 0; 2234 2235 req = fuse_get_req_nopages(fc); 2236 if (IS_ERR(req)) 2237 return PTR_ERR(req); 2238 2239 fuse_lk_fill(req, file, fl, opcode, pid, flock); 2240 fuse_request_send(fc, req); 2241 err = req->out.h.error; 2242 /* locking is restartable */ 2243 if (err == -EINTR) 2244 err = -ERESTARTSYS; 2245 fuse_put_request(fc, req); 2246 return err; 2247 } 2248 2249 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2250 { 2251 struct inode *inode = file_inode(file); 2252 struct fuse_conn *fc = get_fuse_conn(inode); 2253 int err; 2254 2255 if (cmd == F_CANCELLK) { 2256 err = 0; 2257 } else if (cmd == F_GETLK) { 2258 if (fc->no_lock) { 2259 posix_test_lock(file, fl); 2260 err = 0; 2261 } else 2262 err = fuse_getlk(file, fl); 2263 } else { 2264 if (fc->no_lock) 2265 err = posix_lock_file(file, fl, NULL); 2266 else 2267 err = fuse_setlk(file, fl, 0); 2268 } 2269 return err; 2270 } 2271 2272 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2273 { 2274 struct inode *inode = file_inode(file); 2275 struct fuse_conn *fc = get_fuse_conn(inode); 2276 int err; 2277 2278 if (fc->no_flock) { 2279 err = flock_lock_file_wait(file, fl); 2280 } else { 2281 struct fuse_file *ff = file->private_data; 2282 2283 /* emulate flock with POSIX locks */ 2284 fl->fl_owner = (fl_owner_t) file; 2285 ff->flock = true; 2286 err = fuse_setlk(file, fl, 1); 2287 } 2288 2289 return err; 2290 } 2291 2292 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2293 { 2294 struct inode *inode = mapping->host; 2295 struct fuse_conn *fc = get_fuse_conn(inode); 2296 struct fuse_req *req; 2297 struct fuse_bmap_in inarg; 2298 struct fuse_bmap_out outarg; 2299 int err; 2300 2301 if (!inode->i_sb->s_bdev || fc->no_bmap) 2302 return 0; 2303 2304 req = fuse_get_req_nopages(fc); 2305 if (IS_ERR(req)) 2306 return 0; 2307 2308 memset(&inarg, 0, sizeof(inarg)); 2309 inarg.block = block; 2310 inarg.blocksize = inode->i_sb->s_blocksize; 2311 req->in.h.opcode = FUSE_BMAP; 2312 req->in.h.nodeid = get_node_id(inode); 2313 req->in.numargs = 1; 2314 req->in.args[0].size = sizeof(inarg); 2315 req->in.args[0].value = &inarg; 2316 req->out.numargs = 1; 2317 req->out.args[0].size = sizeof(outarg); 2318 req->out.args[0].value = &outarg; 2319 fuse_request_send(fc, req); 2320 err = req->out.h.error; 2321 fuse_put_request(fc, req); 2322 if (err == -ENOSYS) 2323 fc->no_bmap = 1; 2324 2325 return err ? 0 : outarg.block; 2326 } 2327 2328 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2329 { 2330 loff_t retval; 2331 struct inode *inode = file_inode(file); 2332 2333 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2334 if (whence == SEEK_CUR || whence == SEEK_SET) 2335 return generic_file_llseek(file, offset, whence); 2336 2337 mutex_lock(&inode->i_mutex); 2338 retval = fuse_update_attributes(inode, NULL, file, NULL); 2339 if (!retval) 2340 retval = generic_file_llseek(file, offset, whence); 2341 mutex_unlock(&inode->i_mutex); 2342 2343 return retval; 2344 } 2345 2346 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov, 2347 unsigned int nr_segs, size_t bytes, bool to_user) 2348 { 2349 struct iov_iter ii; 2350 int page_idx = 0; 2351 2352 if (!bytes) 2353 return 0; 2354 2355 iov_iter_init(&ii, iov, nr_segs, bytes, 0); 2356 2357 while (iov_iter_count(&ii)) { 2358 struct page *page = pages[page_idx++]; 2359 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii)); 2360 void *kaddr; 2361 2362 kaddr = kmap(page); 2363 2364 while (todo) { 2365 char __user *uaddr = ii.iov->iov_base + ii.iov_offset; 2366 size_t iov_len = ii.iov->iov_len - ii.iov_offset; 2367 size_t copy = min(todo, iov_len); 2368 size_t left; 2369 2370 if (!to_user) 2371 left = copy_from_user(kaddr, uaddr, copy); 2372 else 2373 left = copy_to_user(uaddr, kaddr, copy); 2374 2375 if (unlikely(left)) 2376 return -EFAULT; 2377 2378 iov_iter_advance(&ii, copy); 2379 todo -= copy; 2380 kaddr += copy; 2381 } 2382 2383 kunmap(page); 2384 } 2385 2386 return 0; 2387 } 2388 2389 /* 2390 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2391 * ABI was defined to be 'struct iovec' which is different on 32bit 2392 * and 64bit. Fortunately we can determine which structure the server 2393 * used from the size of the reply. 2394 */ 2395 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2396 size_t transferred, unsigned count, 2397 bool is_compat) 2398 { 2399 #ifdef CONFIG_COMPAT 2400 if (count * sizeof(struct compat_iovec) == transferred) { 2401 struct compat_iovec *ciov = src; 2402 unsigned i; 2403 2404 /* 2405 * With this interface a 32bit server cannot support 2406 * non-compat (i.e. ones coming from 64bit apps) ioctl 2407 * requests 2408 */ 2409 if (!is_compat) 2410 return -EINVAL; 2411 2412 for (i = 0; i < count; i++) { 2413 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2414 dst[i].iov_len = ciov[i].iov_len; 2415 } 2416 return 0; 2417 } 2418 #endif 2419 2420 if (count * sizeof(struct iovec) != transferred) 2421 return -EIO; 2422 2423 memcpy(dst, src, transferred); 2424 return 0; 2425 } 2426 2427 /* Make sure iov_length() won't overflow */ 2428 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count) 2429 { 2430 size_t n; 2431 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT; 2432 2433 for (n = 0; n < count; n++, iov++) { 2434 if (iov->iov_len > (size_t) max) 2435 return -ENOMEM; 2436 max -= iov->iov_len; 2437 } 2438 return 0; 2439 } 2440 2441 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2442 void *src, size_t transferred, unsigned count, 2443 bool is_compat) 2444 { 2445 unsigned i; 2446 struct fuse_ioctl_iovec *fiov = src; 2447 2448 if (fc->minor < 16) { 2449 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2450 count, is_compat); 2451 } 2452 2453 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2454 return -EIO; 2455 2456 for (i = 0; i < count; i++) { 2457 /* Did the server supply an inappropriate value? */ 2458 if (fiov[i].base != (unsigned long) fiov[i].base || 2459 fiov[i].len != (unsigned long) fiov[i].len) 2460 return -EIO; 2461 2462 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2463 dst[i].iov_len = (size_t) fiov[i].len; 2464 2465 #ifdef CONFIG_COMPAT 2466 if (is_compat && 2467 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2468 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2469 return -EIO; 2470 #endif 2471 } 2472 2473 return 0; 2474 } 2475 2476 2477 /* 2478 * For ioctls, there is no generic way to determine how much memory 2479 * needs to be read and/or written. Furthermore, ioctls are allowed 2480 * to dereference the passed pointer, so the parameter requires deep 2481 * copying but FUSE has no idea whatsoever about what to copy in or 2482 * out. 2483 * 2484 * This is solved by allowing FUSE server to retry ioctl with 2485 * necessary in/out iovecs. Let's assume the ioctl implementation 2486 * needs to read in the following structure. 2487 * 2488 * struct a { 2489 * char *buf; 2490 * size_t buflen; 2491 * } 2492 * 2493 * On the first callout to FUSE server, inarg->in_size and 2494 * inarg->out_size will be NULL; then, the server completes the ioctl 2495 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2496 * the actual iov array to 2497 * 2498 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2499 * 2500 * which tells FUSE to copy in the requested area and retry the ioctl. 2501 * On the second round, the server has access to the structure and 2502 * from that it can tell what to look for next, so on the invocation, 2503 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2504 * 2505 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2506 * { .iov_base = a.buf, .iov_len = a.buflen } } 2507 * 2508 * FUSE will copy both struct a and the pointed buffer from the 2509 * process doing the ioctl and retry ioctl with both struct a and the 2510 * buffer. 2511 * 2512 * This time, FUSE server has everything it needs and completes ioctl 2513 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2514 * 2515 * Copying data out works the same way. 2516 * 2517 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2518 * automatically initializes in and out iovs by decoding @cmd with 2519 * _IOC_* macros and the server is not allowed to request RETRY. This 2520 * limits ioctl data transfers to well-formed ioctls and is the forced 2521 * behavior for all FUSE servers. 2522 */ 2523 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2524 unsigned int flags) 2525 { 2526 struct fuse_file *ff = file->private_data; 2527 struct fuse_conn *fc = ff->fc; 2528 struct fuse_ioctl_in inarg = { 2529 .fh = ff->fh, 2530 .cmd = cmd, 2531 .arg = arg, 2532 .flags = flags 2533 }; 2534 struct fuse_ioctl_out outarg; 2535 struct fuse_req *req = NULL; 2536 struct page **pages = NULL; 2537 struct iovec *iov_page = NULL; 2538 struct iovec *in_iov = NULL, *out_iov = NULL; 2539 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages; 2540 size_t in_size, out_size, transferred; 2541 int err; 2542 2543 #if BITS_PER_LONG == 32 2544 inarg.flags |= FUSE_IOCTL_32BIT; 2545 #else 2546 if (flags & FUSE_IOCTL_COMPAT) 2547 inarg.flags |= FUSE_IOCTL_32BIT; 2548 #endif 2549 2550 /* assume all the iovs returned by client always fits in a page */ 2551 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2552 2553 err = -ENOMEM; 2554 pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL); 2555 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2556 if (!pages || !iov_page) 2557 goto out; 2558 2559 /* 2560 * If restricted, initialize IO parameters as encoded in @cmd. 2561 * RETRY from server is not allowed. 2562 */ 2563 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2564 struct iovec *iov = iov_page; 2565 2566 iov->iov_base = (void __user *)arg; 2567 iov->iov_len = _IOC_SIZE(cmd); 2568 2569 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2570 in_iov = iov; 2571 in_iovs = 1; 2572 } 2573 2574 if (_IOC_DIR(cmd) & _IOC_READ) { 2575 out_iov = iov; 2576 out_iovs = 1; 2577 } 2578 } 2579 2580 retry: 2581 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2582 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2583 2584 /* 2585 * Out data can be used either for actual out data or iovs, 2586 * make sure there always is at least one page. 2587 */ 2588 out_size = max_t(size_t, out_size, PAGE_SIZE); 2589 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2590 2591 /* make sure there are enough buffer pages and init request with them */ 2592 err = -ENOMEM; 2593 if (max_pages > FUSE_MAX_PAGES_PER_REQ) 2594 goto out; 2595 while (num_pages < max_pages) { 2596 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2597 if (!pages[num_pages]) 2598 goto out; 2599 num_pages++; 2600 } 2601 2602 req = fuse_get_req(fc, num_pages); 2603 if (IS_ERR(req)) { 2604 err = PTR_ERR(req); 2605 req = NULL; 2606 goto out; 2607 } 2608 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages); 2609 req->num_pages = num_pages; 2610 fuse_page_descs_length_init(req, 0, req->num_pages); 2611 2612 /* okay, let's send it to the client */ 2613 req->in.h.opcode = FUSE_IOCTL; 2614 req->in.h.nodeid = ff->nodeid; 2615 req->in.numargs = 1; 2616 req->in.args[0].size = sizeof(inarg); 2617 req->in.args[0].value = &inarg; 2618 if (in_size) { 2619 req->in.numargs++; 2620 req->in.args[1].size = in_size; 2621 req->in.argpages = 1; 2622 2623 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size, 2624 false); 2625 if (err) 2626 goto out; 2627 } 2628 2629 req->out.numargs = 2; 2630 req->out.args[0].size = sizeof(outarg); 2631 req->out.args[0].value = &outarg; 2632 req->out.args[1].size = out_size; 2633 req->out.argpages = 1; 2634 req->out.argvar = 1; 2635 2636 fuse_request_send(fc, req); 2637 err = req->out.h.error; 2638 transferred = req->out.args[1].size; 2639 fuse_put_request(fc, req); 2640 req = NULL; 2641 if (err) 2642 goto out; 2643 2644 /* did it ask for retry? */ 2645 if (outarg.flags & FUSE_IOCTL_RETRY) { 2646 void *vaddr; 2647 2648 /* no retry if in restricted mode */ 2649 err = -EIO; 2650 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2651 goto out; 2652 2653 in_iovs = outarg.in_iovs; 2654 out_iovs = outarg.out_iovs; 2655 2656 /* 2657 * Make sure things are in boundary, separate checks 2658 * are to protect against overflow. 2659 */ 2660 err = -ENOMEM; 2661 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2662 out_iovs > FUSE_IOCTL_MAX_IOV || 2663 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2664 goto out; 2665 2666 vaddr = kmap_atomic(pages[0]); 2667 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2668 transferred, in_iovs + out_iovs, 2669 (flags & FUSE_IOCTL_COMPAT) != 0); 2670 kunmap_atomic(vaddr); 2671 if (err) 2672 goto out; 2673 2674 in_iov = iov_page; 2675 out_iov = in_iov + in_iovs; 2676 2677 err = fuse_verify_ioctl_iov(in_iov, in_iovs); 2678 if (err) 2679 goto out; 2680 2681 err = fuse_verify_ioctl_iov(out_iov, out_iovs); 2682 if (err) 2683 goto out; 2684 2685 goto retry; 2686 } 2687 2688 err = -EIO; 2689 if (transferred > inarg.out_size) 2690 goto out; 2691 2692 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true); 2693 out: 2694 if (req) 2695 fuse_put_request(fc, req); 2696 free_page((unsigned long) iov_page); 2697 while (num_pages) 2698 __free_page(pages[--num_pages]); 2699 kfree(pages); 2700 2701 return err ? err : outarg.result; 2702 } 2703 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2704 2705 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2706 unsigned long arg, unsigned int flags) 2707 { 2708 struct inode *inode = file_inode(file); 2709 struct fuse_conn *fc = get_fuse_conn(inode); 2710 2711 if (!fuse_allow_current_process(fc)) 2712 return -EACCES; 2713 2714 if (is_bad_inode(inode)) 2715 return -EIO; 2716 2717 return fuse_do_ioctl(file, cmd, arg, flags); 2718 } 2719 2720 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2721 unsigned long arg) 2722 { 2723 return fuse_ioctl_common(file, cmd, arg, 0); 2724 } 2725 2726 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2727 unsigned long arg) 2728 { 2729 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2730 } 2731 2732 /* 2733 * All files which have been polled are linked to RB tree 2734 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2735 * find the matching one. 2736 */ 2737 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2738 struct rb_node **parent_out) 2739 { 2740 struct rb_node **link = &fc->polled_files.rb_node; 2741 struct rb_node *last = NULL; 2742 2743 while (*link) { 2744 struct fuse_file *ff; 2745 2746 last = *link; 2747 ff = rb_entry(last, struct fuse_file, polled_node); 2748 2749 if (kh < ff->kh) 2750 link = &last->rb_left; 2751 else if (kh > ff->kh) 2752 link = &last->rb_right; 2753 else 2754 return link; 2755 } 2756 2757 if (parent_out) 2758 *parent_out = last; 2759 return link; 2760 } 2761 2762 /* 2763 * The file is about to be polled. Make sure it's on the polled_files 2764 * RB tree. Note that files once added to the polled_files tree are 2765 * not removed before the file is released. This is because a file 2766 * polled once is likely to be polled again. 2767 */ 2768 static void fuse_register_polled_file(struct fuse_conn *fc, 2769 struct fuse_file *ff) 2770 { 2771 spin_lock(&fc->lock); 2772 if (RB_EMPTY_NODE(&ff->polled_node)) { 2773 struct rb_node **link, *uninitialized_var(parent); 2774 2775 link = fuse_find_polled_node(fc, ff->kh, &parent); 2776 BUG_ON(*link); 2777 rb_link_node(&ff->polled_node, parent, link); 2778 rb_insert_color(&ff->polled_node, &fc->polled_files); 2779 } 2780 spin_unlock(&fc->lock); 2781 } 2782 2783 unsigned fuse_file_poll(struct file *file, poll_table *wait) 2784 { 2785 struct fuse_file *ff = file->private_data; 2786 struct fuse_conn *fc = ff->fc; 2787 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2788 struct fuse_poll_out outarg; 2789 struct fuse_req *req; 2790 int err; 2791 2792 if (fc->no_poll) 2793 return DEFAULT_POLLMASK; 2794 2795 poll_wait(file, &ff->poll_wait, wait); 2796 inarg.events = (__u32)poll_requested_events(wait); 2797 2798 /* 2799 * Ask for notification iff there's someone waiting for it. 2800 * The client may ignore the flag and always notify. 2801 */ 2802 if (waitqueue_active(&ff->poll_wait)) { 2803 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2804 fuse_register_polled_file(fc, ff); 2805 } 2806 2807 req = fuse_get_req_nopages(fc); 2808 if (IS_ERR(req)) 2809 return POLLERR; 2810 2811 req->in.h.opcode = FUSE_POLL; 2812 req->in.h.nodeid = ff->nodeid; 2813 req->in.numargs = 1; 2814 req->in.args[0].size = sizeof(inarg); 2815 req->in.args[0].value = &inarg; 2816 req->out.numargs = 1; 2817 req->out.args[0].size = sizeof(outarg); 2818 req->out.args[0].value = &outarg; 2819 fuse_request_send(fc, req); 2820 err = req->out.h.error; 2821 fuse_put_request(fc, req); 2822 2823 if (!err) 2824 return outarg.revents; 2825 if (err == -ENOSYS) { 2826 fc->no_poll = 1; 2827 return DEFAULT_POLLMASK; 2828 } 2829 return POLLERR; 2830 } 2831 EXPORT_SYMBOL_GPL(fuse_file_poll); 2832 2833 /* 2834 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2835 * wakes up the poll waiters. 2836 */ 2837 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2838 struct fuse_notify_poll_wakeup_out *outarg) 2839 { 2840 u64 kh = outarg->kh; 2841 struct rb_node **link; 2842 2843 spin_lock(&fc->lock); 2844 2845 link = fuse_find_polled_node(fc, kh, NULL); 2846 if (*link) { 2847 struct fuse_file *ff; 2848 2849 ff = rb_entry(*link, struct fuse_file, polled_node); 2850 wake_up_interruptible_sync(&ff->poll_wait); 2851 } 2852 2853 spin_unlock(&fc->lock); 2854 return 0; 2855 } 2856 2857 static void fuse_do_truncate(struct file *file) 2858 { 2859 struct inode *inode = file->f_mapping->host; 2860 struct iattr attr; 2861 2862 attr.ia_valid = ATTR_SIZE; 2863 attr.ia_size = i_size_read(inode); 2864 2865 attr.ia_file = file; 2866 attr.ia_valid |= ATTR_FILE; 2867 2868 fuse_do_setattr(inode, &attr, file); 2869 } 2870 2871 static inline loff_t fuse_round_up(loff_t off) 2872 { 2873 return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT); 2874 } 2875 2876 static ssize_t 2877 fuse_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2878 loff_t offset, unsigned long nr_segs) 2879 { 2880 ssize_t ret = 0; 2881 struct file *file = iocb->ki_filp; 2882 struct fuse_file *ff = file->private_data; 2883 bool async_dio = ff->fc->async_dio; 2884 loff_t pos = 0; 2885 struct inode *inode; 2886 loff_t i_size; 2887 size_t count = iov_length(iov, nr_segs); 2888 struct fuse_io_priv *io; 2889 2890 pos = offset; 2891 inode = file->f_mapping->host; 2892 i_size = i_size_read(inode); 2893 2894 if ((rw == READ) && (offset > i_size)) 2895 return 0; 2896 2897 /* optimization for short read */ 2898 if (async_dio && rw != WRITE && offset + count > i_size) { 2899 if (offset >= i_size) 2900 return 0; 2901 count = min_t(loff_t, count, fuse_round_up(i_size - offset)); 2902 } 2903 2904 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2905 if (!io) 2906 return -ENOMEM; 2907 spin_lock_init(&io->lock); 2908 io->reqs = 1; 2909 io->bytes = -1; 2910 io->size = 0; 2911 io->offset = offset; 2912 io->write = (rw == WRITE); 2913 io->err = 0; 2914 io->file = file; 2915 /* 2916 * By default, we want to optimize all I/Os with async request 2917 * submission to the client filesystem if supported. 2918 */ 2919 io->async = async_dio; 2920 io->iocb = iocb; 2921 2922 /* 2923 * We cannot asynchronously extend the size of a file. We have no method 2924 * to wait on real async I/O requests, so we must submit this request 2925 * synchronously. 2926 */ 2927 if (!is_sync_kiocb(iocb) && (offset + count > i_size) && rw == WRITE) 2928 io->async = false; 2929 2930 if (rw == WRITE) 2931 ret = __fuse_direct_write(io, iov, nr_segs, &pos); 2932 else 2933 ret = __fuse_direct_read(io, iov, nr_segs, &pos, count); 2934 2935 if (io->async) { 2936 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2937 2938 /* we have a non-extending, async request, so return */ 2939 if (!is_sync_kiocb(iocb)) 2940 return -EIOCBQUEUED; 2941 2942 ret = wait_on_sync_kiocb(iocb); 2943 } else { 2944 kfree(io); 2945 } 2946 2947 if (rw == WRITE) { 2948 if (ret > 0) 2949 fuse_write_update_size(inode, pos); 2950 else if (ret < 0 && offset + count > i_size) 2951 fuse_do_truncate(file); 2952 } 2953 2954 return ret; 2955 } 2956 2957 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2958 loff_t length) 2959 { 2960 struct fuse_file *ff = file->private_data; 2961 struct inode *inode = file->f_inode; 2962 struct fuse_inode *fi = get_fuse_inode(inode); 2963 struct fuse_conn *fc = ff->fc; 2964 struct fuse_req *req; 2965 struct fuse_fallocate_in inarg = { 2966 .fh = ff->fh, 2967 .offset = offset, 2968 .length = length, 2969 .mode = mode 2970 }; 2971 int err; 2972 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2973 (mode & FALLOC_FL_PUNCH_HOLE); 2974 2975 if (fc->no_fallocate) 2976 return -EOPNOTSUPP; 2977 2978 if (lock_inode) { 2979 mutex_lock(&inode->i_mutex); 2980 if (mode & FALLOC_FL_PUNCH_HOLE) { 2981 loff_t endbyte = offset + length - 1; 2982 err = filemap_write_and_wait_range(inode->i_mapping, 2983 offset, endbyte); 2984 if (err) 2985 goto out; 2986 2987 fuse_sync_writes(inode); 2988 } 2989 } 2990 2991 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2992 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2993 2994 req = fuse_get_req_nopages(fc); 2995 if (IS_ERR(req)) { 2996 err = PTR_ERR(req); 2997 goto out; 2998 } 2999 3000 req->in.h.opcode = FUSE_FALLOCATE; 3001 req->in.h.nodeid = ff->nodeid; 3002 req->in.numargs = 1; 3003 req->in.args[0].size = sizeof(inarg); 3004 req->in.args[0].value = &inarg; 3005 fuse_request_send(fc, req); 3006 err = req->out.h.error; 3007 if (err == -ENOSYS) { 3008 fc->no_fallocate = 1; 3009 err = -EOPNOTSUPP; 3010 } 3011 fuse_put_request(fc, req); 3012 3013 if (err) 3014 goto out; 3015 3016 /* we could have extended the file */ 3017 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3018 bool changed = fuse_write_update_size(inode, offset + length); 3019 3020 if (changed && fc->writeback_cache) { 3021 struct fuse_inode *fi = get_fuse_inode(inode); 3022 3023 inode->i_mtime = current_fs_time(inode->i_sb); 3024 set_bit(FUSE_I_MTIME_DIRTY, &fi->state); 3025 } 3026 } 3027 3028 if (mode & FALLOC_FL_PUNCH_HOLE) 3029 truncate_pagecache_range(inode, offset, offset + length - 1); 3030 3031 fuse_invalidate_attr(inode); 3032 3033 out: 3034 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3035 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3036 3037 if (lock_inode) 3038 mutex_unlock(&inode->i_mutex); 3039 3040 return err; 3041 } 3042 3043 static const struct file_operations fuse_file_operations = { 3044 .llseek = fuse_file_llseek, 3045 .read = do_sync_read, 3046 .aio_read = fuse_file_aio_read, 3047 .write = do_sync_write, 3048 .aio_write = fuse_file_aio_write, 3049 .mmap = fuse_file_mmap, 3050 .open = fuse_open, 3051 .flush = fuse_flush, 3052 .release = fuse_release, 3053 .fsync = fuse_fsync, 3054 .lock = fuse_file_lock, 3055 .flock = fuse_file_flock, 3056 .splice_read = generic_file_splice_read, 3057 .unlocked_ioctl = fuse_file_ioctl, 3058 .compat_ioctl = fuse_file_compat_ioctl, 3059 .poll = fuse_file_poll, 3060 .fallocate = fuse_file_fallocate, 3061 }; 3062 3063 static const struct file_operations fuse_direct_io_file_operations = { 3064 .llseek = fuse_file_llseek, 3065 .read = fuse_direct_read, 3066 .write = fuse_direct_write, 3067 .mmap = fuse_direct_mmap, 3068 .open = fuse_open, 3069 .flush = fuse_flush, 3070 .release = fuse_release, 3071 .fsync = fuse_fsync, 3072 .lock = fuse_file_lock, 3073 .flock = fuse_file_flock, 3074 .unlocked_ioctl = fuse_file_ioctl, 3075 .compat_ioctl = fuse_file_compat_ioctl, 3076 .poll = fuse_file_poll, 3077 .fallocate = fuse_file_fallocate, 3078 /* no splice_read */ 3079 }; 3080 3081 static const struct address_space_operations fuse_file_aops = { 3082 .readpage = fuse_readpage, 3083 .writepage = fuse_writepage, 3084 .writepages = fuse_writepages, 3085 .launder_page = fuse_launder_page, 3086 .readpages = fuse_readpages, 3087 .set_page_dirty = __set_page_dirty_nobuffers, 3088 .bmap = fuse_bmap, 3089 .direct_IO = fuse_direct_IO, 3090 .write_begin = fuse_write_begin, 3091 .write_end = fuse_write_end, 3092 }; 3093 3094 void fuse_init_file_inode(struct inode *inode) 3095 { 3096 inode->i_fop = &fuse_file_operations; 3097 inode->i_data.a_ops = &fuse_file_aops; 3098 } 3099