1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/module.h> 16 #include <linux/compat.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 21 static const struct file_operations fuse_direct_io_file_operations; 22 23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 24 int opcode, struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 FUSE_ARGS(args); 28 29 memset(&inarg, 0, sizeof(inarg)); 30 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 31 if (!fc->atomic_o_trunc) 32 inarg.flags &= ~O_TRUNC; 33 args.in.h.opcode = opcode; 34 args.in.h.nodeid = nodeid; 35 args.in.numargs = 1; 36 args.in.args[0].size = sizeof(inarg); 37 args.in.args[0].value = &inarg; 38 args.out.numargs = 1; 39 args.out.args[0].size = sizeof(*outargp); 40 args.out.args[0].value = outargp; 41 42 return fuse_simple_request(fc, &args); 43 } 44 45 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 46 { 47 struct fuse_file *ff; 48 49 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL); 50 if (unlikely(!ff)) 51 return NULL; 52 53 ff->fc = fc; 54 ff->reserved_req = fuse_request_alloc(0); 55 if (unlikely(!ff->reserved_req)) { 56 kfree(ff); 57 return NULL; 58 } 59 60 INIT_LIST_HEAD(&ff->write_entry); 61 refcount_set(&ff->count, 1); 62 RB_CLEAR_NODE(&ff->polled_node); 63 init_waitqueue_head(&ff->poll_wait); 64 65 spin_lock(&fc->lock); 66 ff->kh = ++fc->khctr; 67 spin_unlock(&fc->lock); 68 69 return ff; 70 } 71 72 void fuse_file_free(struct fuse_file *ff) 73 { 74 fuse_request_free(ff->reserved_req); 75 kfree(ff); 76 } 77 78 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 79 { 80 refcount_inc(&ff->count); 81 return ff; 82 } 83 84 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req) 85 { 86 iput(req->misc.release.inode); 87 } 88 89 static void fuse_file_put(struct fuse_file *ff, bool sync) 90 { 91 if (refcount_dec_and_test(&ff->count)) { 92 struct fuse_req *req = ff->reserved_req; 93 94 if (ff->fc->no_open) { 95 /* 96 * Drop the release request when client does not 97 * implement 'open' 98 */ 99 __clear_bit(FR_BACKGROUND, &req->flags); 100 iput(req->misc.release.inode); 101 fuse_put_request(ff->fc, req); 102 } else if (sync) { 103 __set_bit(FR_FORCE, &req->flags); 104 __clear_bit(FR_BACKGROUND, &req->flags); 105 fuse_request_send(ff->fc, req); 106 iput(req->misc.release.inode); 107 fuse_put_request(ff->fc, req); 108 } else { 109 req->end = fuse_release_end; 110 __set_bit(FR_BACKGROUND, &req->flags); 111 fuse_request_send_background(ff->fc, req); 112 } 113 kfree(ff); 114 } 115 } 116 117 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 118 bool isdir) 119 { 120 struct fuse_file *ff; 121 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 122 123 ff = fuse_file_alloc(fc); 124 if (!ff) 125 return -ENOMEM; 126 127 ff->fh = 0; 128 ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */ 129 if (!fc->no_open || isdir) { 130 struct fuse_open_out outarg; 131 int err; 132 133 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 134 if (!err) { 135 ff->fh = outarg.fh; 136 ff->open_flags = outarg.open_flags; 137 138 } else if (err != -ENOSYS || isdir) { 139 fuse_file_free(ff); 140 return err; 141 } else { 142 fc->no_open = 1; 143 } 144 } 145 146 if (isdir) 147 ff->open_flags &= ~FOPEN_DIRECT_IO; 148 149 ff->nodeid = nodeid; 150 file->private_data = ff; 151 152 return 0; 153 } 154 EXPORT_SYMBOL_GPL(fuse_do_open); 155 156 static void fuse_link_write_file(struct file *file) 157 { 158 struct inode *inode = file_inode(file); 159 struct fuse_conn *fc = get_fuse_conn(inode); 160 struct fuse_inode *fi = get_fuse_inode(inode); 161 struct fuse_file *ff = file->private_data; 162 /* 163 * file may be written through mmap, so chain it onto the 164 * inodes's write_file list 165 */ 166 spin_lock(&fc->lock); 167 if (list_empty(&ff->write_entry)) 168 list_add(&ff->write_entry, &fi->write_files); 169 spin_unlock(&fc->lock); 170 } 171 172 void fuse_finish_open(struct inode *inode, struct file *file) 173 { 174 struct fuse_file *ff = file->private_data; 175 struct fuse_conn *fc = get_fuse_conn(inode); 176 177 if (ff->open_flags & FOPEN_DIRECT_IO) 178 file->f_op = &fuse_direct_io_file_operations; 179 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 180 invalidate_inode_pages2(inode->i_mapping); 181 if (ff->open_flags & FOPEN_NONSEEKABLE) 182 nonseekable_open(inode, file); 183 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 184 struct fuse_inode *fi = get_fuse_inode(inode); 185 186 spin_lock(&fc->lock); 187 fi->attr_version = ++fc->attr_version; 188 i_size_write(inode, 0); 189 spin_unlock(&fc->lock); 190 fuse_invalidate_attr(inode); 191 if (fc->writeback_cache) 192 file_update_time(file); 193 } 194 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 195 fuse_link_write_file(file); 196 } 197 198 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 199 { 200 struct fuse_conn *fc = get_fuse_conn(inode); 201 int err; 202 bool lock_inode = (file->f_flags & O_TRUNC) && 203 fc->atomic_o_trunc && 204 fc->writeback_cache; 205 206 err = generic_file_open(inode, file); 207 if (err) 208 return err; 209 210 if (lock_inode) 211 inode_lock(inode); 212 213 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 214 215 if (!err) 216 fuse_finish_open(inode, file); 217 218 if (lock_inode) 219 inode_unlock(inode); 220 221 return err; 222 } 223 224 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode) 225 { 226 struct fuse_conn *fc = ff->fc; 227 struct fuse_req *req = ff->reserved_req; 228 struct fuse_release_in *inarg = &req->misc.release.in; 229 230 spin_lock(&fc->lock); 231 list_del(&ff->write_entry); 232 if (!RB_EMPTY_NODE(&ff->polled_node)) 233 rb_erase(&ff->polled_node, &fc->polled_files); 234 spin_unlock(&fc->lock); 235 236 wake_up_interruptible_all(&ff->poll_wait); 237 238 inarg->fh = ff->fh; 239 inarg->flags = flags; 240 req->in.h.opcode = opcode; 241 req->in.h.nodeid = ff->nodeid; 242 req->in.numargs = 1; 243 req->in.args[0].size = sizeof(struct fuse_release_in); 244 req->in.args[0].value = inarg; 245 } 246 247 void fuse_release_common(struct file *file, int opcode) 248 { 249 struct fuse_file *ff = file->private_data; 250 struct fuse_req *req = ff->reserved_req; 251 252 fuse_prepare_release(ff, file->f_flags, opcode); 253 254 if (ff->flock) { 255 struct fuse_release_in *inarg = &req->misc.release.in; 256 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 257 inarg->lock_owner = fuse_lock_owner_id(ff->fc, 258 (fl_owner_t) file); 259 } 260 /* Hold inode until release is finished */ 261 req->misc.release.inode = igrab(file_inode(file)); 262 263 /* 264 * Normally this will send the RELEASE request, however if 265 * some asynchronous READ or WRITE requests are outstanding, 266 * the sending will be delayed. 267 * 268 * Make the release synchronous if this is a fuseblk mount, 269 * synchronous RELEASE is allowed (and desirable) in this case 270 * because the server can be trusted not to screw up. 271 */ 272 fuse_file_put(ff, ff->fc->destroy_req != NULL); 273 } 274 275 static int fuse_open(struct inode *inode, struct file *file) 276 { 277 return fuse_open_common(inode, file, false); 278 } 279 280 static int fuse_release(struct inode *inode, struct file *file) 281 { 282 struct fuse_conn *fc = get_fuse_conn(inode); 283 284 /* see fuse_vma_close() for !writeback_cache case */ 285 if (fc->writeback_cache) 286 write_inode_now(inode, 1); 287 288 fuse_release_common(file, FUSE_RELEASE); 289 290 /* return value is ignored by VFS */ 291 return 0; 292 } 293 294 void fuse_sync_release(struct fuse_file *ff, int flags) 295 { 296 WARN_ON(refcount_read(&ff->count) > 1); 297 fuse_prepare_release(ff, flags, FUSE_RELEASE); 298 /* 299 * iput(NULL) is a no-op and since the refcount is 1 and everything's 300 * synchronous, we are fine with not doing igrab() here" 301 */ 302 fuse_file_put(ff, true); 303 } 304 EXPORT_SYMBOL_GPL(fuse_sync_release); 305 306 /* 307 * Scramble the ID space with XTEA, so that the value of the files_struct 308 * pointer is not exposed to userspace. 309 */ 310 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 311 { 312 u32 *k = fc->scramble_key; 313 u64 v = (unsigned long) id; 314 u32 v0 = v; 315 u32 v1 = v >> 32; 316 u32 sum = 0; 317 int i; 318 319 for (i = 0; i < 32; i++) { 320 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 321 sum += 0x9E3779B9; 322 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 323 } 324 325 return (u64) v0 + ((u64) v1 << 32); 326 } 327 328 /* 329 * Check if any page in a range is under writeback 330 * 331 * This is currently done by walking the list of writepage requests 332 * for the inode, which can be pretty inefficient. 333 */ 334 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 335 pgoff_t idx_to) 336 { 337 struct fuse_conn *fc = get_fuse_conn(inode); 338 struct fuse_inode *fi = get_fuse_inode(inode); 339 struct fuse_req *req; 340 bool found = false; 341 342 spin_lock(&fc->lock); 343 list_for_each_entry(req, &fi->writepages, writepages_entry) { 344 pgoff_t curr_index; 345 346 BUG_ON(req->inode != inode); 347 curr_index = req->misc.write.in.offset >> PAGE_SHIFT; 348 if (idx_from < curr_index + req->num_pages && 349 curr_index <= idx_to) { 350 found = true; 351 break; 352 } 353 } 354 spin_unlock(&fc->lock); 355 356 return found; 357 } 358 359 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 360 { 361 return fuse_range_is_writeback(inode, index, index); 362 } 363 364 /* 365 * Wait for page writeback to be completed. 366 * 367 * Since fuse doesn't rely on the VM writeback tracking, this has to 368 * use some other means. 369 */ 370 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 371 { 372 struct fuse_inode *fi = get_fuse_inode(inode); 373 374 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 375 return 0; 376 } 377 378 /* 379 * Wait for all pending writepages on the inode to finish. 380 * 381 * This is currently done by blocking further writes with FUSE_NOWRITE 382 * and waiting for all sent writes to complete. 383 * 384 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 385 * could conflict with truncation. 386 */ 387 static void fuse_sync_writes(struct inode *inode) 388 { 389 fuse_set_nowrite(inode); 390 fuse_release_nowrite(inode); 391 } 392 393 static int fuse_flush(struct file *file, fl_owner_t id) 394 { 395 struct inode *inode = file_inode(file); 396 struct fuse_conn *fc = get_fuse_conn(inode); 397 struct fuse_file *ff = file->private_data; 398 struct fuse_req *req; 399 struct fuse_flush_in inarg; 400 int err; 401 402 if (is_bad_inode(inode)) 403 return -EIO; 404 405 if (fc->no_flush) 406 return 0; 407 408 err = write_inode_now(inode, 1); 409 if (err) 410 return err; 411 412 inode_lock(inode); 413 fuse_sync_writes(inode); 414 inode_unlock(inode); 415 416 err = filemap_check_errors(file->f_mapping); 417 if (err) 418 return err; 419 420 req = fuse_get_req_nofail_nopages(fc, file); 421 memset(&inarg, 0, sizeof(inarg)); 422 inarg.fh = ff->fh; 423 inarg.lock_owner = fuse_lock_owner_id(fc, id); 424 req->in.h.opcode = FUSE_FLUSH; 425 req->in.h.nodeid = get_node_id(inode); 426 req->in.numargs = 1; 427 req->in.args[0].size = sizeof(inarg); 428 req->in.args[0].value = &inarg; 429 __set_bit(FR_FORCE, &req->flags); 430 fuse_request_send(fc, req); 431 err = req->out.h.error; 432 fuse_put_request(fc, req); 433 if (err == -ENOSYS) { 434 fc->no_flush = 1; 435 err = 0; 436 } 437 return err; 438 } 439 440 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 441 int datasync, int isdir) 442 { 443 struct inode *inode = file->f_mapping->host; 444 struct fuse_conn *fc = get_fuse_conn(inode); 445 struct fuse_file *ff = file->private_data; 446 FUSE_ARGS(args); 447 struct fuse_fsync_in inarg; 448 int err; 449 450 if (is_bad_inode(inode)) 451 return -EIO; 452 453 inode_lock(inode); 454 455 /* 456 * Start writeback against all dirty pages of the inode, then 457 * wait for all outstanding writes, before sending the FSYNC 458 * request. 459 */ 460 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 461 if (err) 462 goto out; 463 464 fuse_sync_writes(inode); 465 466 /* 467 * Due to implementation of fuse writeback 468 * filemap_write_and_wait_range() does not catch errors. 469 * We have to do this directly after fuse_sync_writes() 470 */ 471 err = filemap_check_errors(file->f_mapping); 472 if (err) 473 goto out; 474 475 err = sync_inode_metadata(inode, 1); 476 if (err) 477 goto out; 478 479 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir)) 480 goto out; 481 482 memset(&inarg, 0, sizeof(inarg)); 483 inarg.fh = ff->fh; 484 inarg.fsync_flags = datasync ? 1 : 0; 485 args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC; 486 args.in.h.nodeid = get_node_id(inode); 487 args.in.numargs = 1; 488 args.in.args[0].size = sizeof(inarg); 489 args.in.args[0].value = &inarg; 490 err = fuse_simple_request(fc, &args); 491 if (err == -ENOSYS) { 492 if (isdir) 493 fc->no_fsyncdir = 1; 494 else 495 fc->no_fsync = 1; 496 err = 0; 497 } 498 out: 499 inode_unlock(inode); 500 return err; 501 } 502 503 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 504 int datasync) 505 { 506 return fuse_fsync_common(file, start, end, datasync, 0); 507 } 508 509 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos, 510 size_t count, int opcode) 511 { 512 struct fuse_read_in *inarg = &req->misc.read.in; 513 struct fuse_file *ff = file->private_data; 514 515 inarg->fh = ff->fh; 516 inarg->offset = pos; 517 inarg->size = count; 518 inarg->flags = file->f_flags; 519 req->in.h.opcode = opcode; 520 req->in.h.nodeid = ff->nodeid; 521 req->in.numargs = 1; 522 req->in.args[0].size = sizeof(struct fuse_read_in); 523 req->in.args[0].value = inarg; 524 req->out.argvar = 1; 525 req->out.numargs = 1; 526 req->out.args[0].size = count; 527 } 528 529 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty) 530 { 531 unsigned i; 532 533 for (i = 0; i < req->num_pages; i++) { 534 struct page *page = req->pages[i]; 535 if (should_dirty) 536 set_page_dirty_lock(page); 537 put_page(page); 538 } 539 } 540 541 static void fuse_io_release(struct kref *kref) 542 { 543 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 544 } 545 546 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 547 { 548 if (io->err) 549 return io->err; 550 551 if (io->bytes >= 0 && io->write) 552 return -EIO; 553 554 return io->bytes < 0 ? io->size : io->bytes; 555 } 556 557 /** 558 * In case of short read, the caller sets 'pos' to the position of 559 * actual end of fuse request in IO request. Otherwise, if bytes_requested 560 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 561 * 562 * An example: 563 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 564 * both submitted asynchronously. The first of them was ACKed by userspace as 565 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 566 * second request was ACKed as short, e.g. only 1K was read, resulting in 567 * pos == 33K. 568 * 569 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 570 * will be equal to the length of the longest contiguous fragment of 571 * transferred data starting from the beginning of IO request. 572 */ 573 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 574 { 575 int left; 576 577 spin_lock(&io->lock); 578 if (err) 579 io->err = io->err ? : err; 580 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 581 io->bytes = pos; 582 583 left = --io->reqs; 584 if (!left && io->blocking) 585 complete(io->done); 586 spin_unlock(&io->lock); 587 588 if (!left && !io->blocking) { 589 ssize_t res = fuse_get_res_by_io(io); 590 591 if (res >= 0) { 592 struct inode *inode = file_inode(io->iocb->ki_filp); 593 struct fuse_conn *fc = get_fuse_conn(inode); 594 struct fuse_inode *fi = get_fuse_inode(inode); 595 596 spin_lock(&fc->lock); 597 fi->attr_version = ++fc->attr_version; 598 spin_unlock(&fc->lock); 599 } 600 601 io->iocb->ki_complete(io->iocb, res, 0); 602 } 603 604 kref_put(&io->refcnt, fuse_io_release); 605 } 606 607 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req) 608 { 609 struct fuse_io_priv *io = req->io; 610 ssize_t pos = -1; 611 612 fuse_release_user_pages(req, io->should_dirty); 613 614 if (io->write) { 615 if (req->misc.write.in.size != req->misc.write.out.size) 616 pos = req->misc.write.in.offset - io->offset + 617 req->misc.write.out.size; 618 } else { 619 if (req->misc.read.in.size != req->out.args[0].size) 620 pos = req->misc.read.in.offset - io->offset + 621 req->out.args[0].size; 622 } 623 624 fuse_aio_complete(io, req->out.h.error, pos); 625 } 626 627 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req, 628 size_t num_bytes, struct fuse_io_priv *io) 629 { 630 spin_lock(&io->lock); 631 kref_get(&io->refcnt); 632 io->size += num_bytes; 633 io->reqs++; 634 spin_unlock(&io->lock); 635 636 req->io = io; 637 req->end = fuse_aio_complete_req; 638 639 __fuse_get_request(req); 640 fuse_request_send_background(fc, req); 641 642 return num_bytes; 643 } 644 645 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io, 646 loff_t pos, size_t count, fl_owner_t owner) 647 { 648 struct file *file = io->file; 649 struct fuse_file *ff = file->private_data; 650 struct fuse_conn *fc = ff->fc; 651 652 fuse_read_fill(req, file, pos, count, FUSE_READ); 653 if (owner != NULL) { 654 struct fuse_read_in *inarg = &req->misc.read.in; 655 656 inarg->read_flags |= FUSE_READ_LOCKOWNER; 657 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 658 } 659 660 if (io->async) 661 return fuse_async_req_send(fc, req, count, io); 662 663 fuse_request_send(fc, req); 664 return req->out.args[0].size; 665 } 666 667 static void fuse_read_update_size(struct inode *inode, loff_t size, 668 u64 attr_ver) 669 { 670 struct fuse_conn *fc = get_fuse_conn(inode); 671 struct fuse_inode *fi = get_fuse_inode(inode); 672 673 spin_lock(&fc->lock); 674 if (attr_ver == fi->attr_version && size < inode->i_size && 675 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 676 fi->attr_version = ++fc->attr_version; 677 i_size_write(inode, size); 678 } 679 spin_unlock(&fc->lock); 680 } 681 682 static void fuse_short_read(struct fuse_req *req, struct inode *inode, 683 u64 attr_ver) 684 { 685 size_t num_read = req->out.args[0].size; 686 struct fuse_conn *fc = get_fuse_conn(inode); 687 688 if (fc->writeback_cache) { 689 /* 690 * A hole in a file. Some data after the hole are in page cache, 691 * but have not reached the client fs yet. So, the hole is not 692 * present there. 693 */ 694 int i; 695 int start_idx = num_read >> PAGE_SHIFT; 696 size_t off = num_read & (PAGE_SIZE - 1); 697 698 for (i = start_idx; i < req->num_pages; i++) { 699 zero_user_segment(req->pages[i], off, PAGE_SIZE); 700 off = 0; 701 } 702 } else { 703 loff_t pos = page_offset(req->pages[0]) + num_read; 704 fuse_read_update_size(inode, pos, attr_ver); 705 } 706 } 707 708 static int fuse_do_readpage(struct file *file, struct page *page) 709 { 710 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(file); 711 struct inode *inode = page->mapping->host; 712 struct fuse_conn *fc = get_fuse_conn(inode); 713 struct fuse_req *req; 714 size_t num_read; 715 loff_t pos = page_offset(page); 716 size_t count = PAGE_SIZE; 717 u64 attr_ver; 718 int err; 719 720 /* 721 * Page writeback can extend beyond the lifetime of the 722 * page-cache page, so make sure we read a properly synced 723 * page. 724 */ 725 fuse_wait_on_page_writeback(inode, page->index); 726 727 req = fuse_get_req(fc, 1); 728 if (IS_ERR(req)) 729 return PTR_ERR(req); 730 731 attr_ver = fuse_get_attr_version(fc); 732 733 req->out.page_zeroing = 1; 734 req->out.argpages = 1; 735 req->num_pages = 1; 736 req->pages[0] = page; 737 req->page_descs[0].length = count; 738 num_read = fuse_send_read(req, &io, pos, count, NULL); 739 err = req->out.h.error; 740 741 if (!err) { 742 /* 743 * Short read means EOF. If file size is larger, truncate it 744 */ 745 if (num_read < count) 746 fuse_short_read(req, inode, attr_ver); 747 748 SetPageUptodate(page); 749 } 750 751 fuse_put_request(fc, req); 752 753 return err; 754 } 755 756 static int fuse_readpage(struct file *file, struct page *page) 757 { 758 struct inode *inode = page->mapping->host; 759 int err; 760 761 err = -EIO; 762 if (is_bad_inode(inode)) 763 goto out; 764 765 err = fuse_do_readpage(file, page); 766 fuse_invalidate_atime(inode); 767 out: 768 unlock_page(page); 769 return err; 770 } 771 772 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req) 773 { 774 int i; 775 size_t count = req->misc.read.in.size; 776 size_t num_read = req->out.args[0].size; 777 struct address_space *mapping = NULL; 778 779 for (i = 0; mapping == NULL && i < req->num_pages; i++) 780 mapping = req->pages[i]->mapping; 781 782 if (mapping) { 783 struct inode *inode = mapping->host; 784 785 /* 786 * Short read means EOF. If file size is larger, truncate it 787 */ 788 if (!req->out.h.error && num_read < count) 789 fuse_short_read(req, inode, req->misc.read.attr_ver); 790 791 fuse_invalidate_atime(inode); 792 } 793 794 for (i = 0; i < req->num_pages; i++) { 795 struct page *page = req->pages[i]; 796 if (!req->out.h.error) 797 SetPageUptodate(page); 798 else 799 SetPageError(page); 800 unlock_page(page); 801 put_page(page); 802 } 803 if (req->ff) 804 fuse_file_put(req->ff, false); 805 } 806 807 static void fuse_send_readpages(struct fuse_req *req, struct file *file) 808 { 809 struct fuse_file *ff = file->private_data; 810 struct fuse_conn *fc = ff->fc; 811 loff_t pos = page_offset(req->pages[0]); 812 size_t count = req->num_pages << PAGE_SHIFT; 813 814 req->out.argpages = 1; 815 req->out.page_zeroing = 1; 816 req->out.page_replace = 1; 817 fuse_read_fill(req, file, pos, count, FUSE_READ); 818 req->misc.read.attr_ver = fuse_get_attr_version(fc); 819 if (fc->async_read) { 820 req->ff = fuse_file_get(ff); 821 req->end = fuse_readpages_end; 822 fuse_request_send_background(fc, req); 823 } else { 824 fuse_request_send(fc, req); 825 fuse_readpages_end(fc, req); 826 fuse_put_request(fc, req); 827 } 828 } 829 830 struct fuse_fill_data { 831 struct fuse_req *req; 832 struct file *file; 833 struct inode *inode; 834 unsigned nr_pages; 835 }; 836 837 static int fuse_readpages_fill(void *_data, struct page *page) 838 { 839 struct fuse_fill_data *data = _data; 840 struct fuse_req *req = data->req; 841 struct inode *inode = data->inode; 842 struct fuse_conn *fc = get_fuse_conn(inode); 843 844 fuse_wait_on_page_writeback(inode, page->index); 845 846 if (req->num_pages && 847 (req->num_pages == FUSE_MAX_PAGES_PER_REQ || 848 (req->num_pages + 1) * PAGE_SIZE > fc->max_read || 849 req->pages[req->num_pages - 1]->index + 1 != page->index)) { 850 int nr_alloc = min_t(unsigned, data->nr_pages, 851 FUSE_MAX_PAGES_PER_REQ); 852 fuse_send_readpages(req, data->file); 853 if (fc->async_read) 854 req = fuse_get_req_for_background(fc, nr_alloc); 855 else 856 req = fuse_get_req(fc, nr_alloc); 857 858 data->req = req; 859 if (IS_ERR(req)) { 860 unlock_page(page); 861 return PTR_ERR(req); 862 } 863 } 864 865 if (WARN_ON(req->num_pages >= req->max_pages)) { 866 fuse_put_request(fc, req); 867 return -EIO; 868 } 869 870 get_page(page); 871 req->pages[req->num_pages] = page; 872 req->page_descs[req->num_pages].length = PAGE_SIZE; 873 req->num_pages++; 874 data->nr_pages--; 875 return 0; 876 } 877 878 static int fuse_readpages(struct file *file, struct address_space *mapping, 879 struct list_head *pages, unsigned nr_pages) 880 { 881 struct inode *inode = mapping->host; 882 struct fuse_conn *fc = get_fuse_conn(inode); 883 struct fuse_fill_data data; 884 int err; 885 int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ); 886 887 err = -EIO; 888 if (is_bad_inode(inode)) 889 goto out; 890 891 data.file = file; 892 data.inode = inode; 893 if (fc->async_read) 894 data.req = fuse_get_req_for_background(fc, nr_alloc); 895 else 896 data.req = fuse_get_req(fc, nr_alloc); 897 data.nr_pages = nr_pages; 898 err = PTR_ERR(data.req); 899 if (IS_ERR(data.req)) 900 goto out; 901 902 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 903 if (!err) { 904 if (data.req->num_pages) 905 fuse_send_readpages(data.req, file); 906 else 907 fuse_put_request(fc, data.req); 908 } 909 out: 910 return err; 911 } 912 913 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 914 { 915 struct inode *inode = iocb->ki_filp->f_mapping->host; 916 struct fuse_conn *fc = get_fuse_conn(inode); 917 918 /* 919 * In auto invalidate mode, always update attributes on read. 920 * Otherwise, only update if we attempt to read past EOF (to ensure 921 * i_size is up to date). 922 */ 923 if (fc->auto_inval_data || 924 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 925 int err; 926 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL); 927 if (err) 928 return err; 929 } 930 931 return generic_file_read_iter(iocb, to); 932 } 933 934 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff, 935 loff_t pos, size_t count) 936 { 937 struct fuse_write_in *inarg = &req->misc.write.in; 938 struct fuse_write_out *outarg = &req->misc.write.out; 939 940 inarg->fh = ff->fh; 941 inarg->offset = pos; 942 inarg->size = count; 943 req->in.h.opcode = FUSE_WRITE; 944 req->in.h.nodeid = ff->nodeid; 945 req->in.numargs = 2; 946 if (ff->fc->minor < 9) 947 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 948 else 949 req->in.args[0].size = sizeof(struct fuse_write_in); 950 req->in.args[0].value = inarg; 951 req->in.args[1].size = count; 952 req->out.numargs = 1; 953 req->out.args[0].size = sizeof(struct fuse_write_out); 954 req->out.args[0].value = outarg; 955 } 956 957 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io, 958 loff_t pos, size_t count, fl_owner_t owner) 959 { 960 struct file *file = io->file; 961 struct fuse_file *ff = file->private_data; 962 struct fuse_conn *fc = ff->fc; 963 struct fuse_write_in *inarg = &req->misc.write.in; 964 965 fuse_write_fill(req, ff, pos, count); 966 inarg->flags = file->f_flags; 967 if (owner != NULL) { 968 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 969 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 970 } 971 972 if (io->async) 973 return fuse_async_req_send(fc, req, count, io); 974 975 fuse_request_send(fc, req); 976 return req->misc.write.out.size; 977 } 978 979 bool fuse_write_update_size(struct inode *inode, loff_t pos) 980 { 981 struct fuse_conn *fc = get_fuse_conn(inode); 982 struct fuse_inode *fi = get_fuse_inode(inode); 983 bool ret = false; 984 985 spin_lock(&fc->lock); 986 fi->attr_version = ++fc->attr_version; 987 if (pos > inode->i_size) { 988 i_size_write(inode, pos); 989 ret = true; 990 } 991 spin_unlock(&fc->lock); 992 993 return ret; 994 } 995 996 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file, 997 struct inode *inode, loff_t pos, 998 size_t count) 999 { 1000 size_t res; 1001 unsigned offset; 1002 unsigned i; 1003 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(file); 1004 1005 for (i = 0; i < req->num_pages; i++) 1006 fuse_wait_on_page_writeback(inode, req->pages[i]->index); 1007 1008 res = fuse_send_write(req, &io, pos, count, NULL); 1009 1010 offset = req->page_descs[0].offset; 1011 count = res; 1012 for (i = 0; i < req->num_pages; i++) { 1013 struct page *page = req->pages[i]; 1014 1015 if (!req->out.h.error && !offset && count >= PAGE_SIZE) 1016 SetPageUptodate(page); 1017 1018 if (count > PAGE_SIZE - offset) 1019 count -= PAGE_SIZE - offset; 1020 else 1021 count = 0; 1022 offset = 0; 1023 1024 unlock_page(page); 1025 put_page(page); 1026 } 1027 1028 return res; 1029 } 1030 1031 static ssize_t fuse_fill_write_pages(struct fuse_req *req, 1032 struct address_space *mapping, 1033 struct iov_iter *ii, loff_t pos) 1034 { 1035 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1036 unsigned offset = pos & (PAGE_SIZE - 1); 1037 size_t count = 0; 1038 int err; 1039 1040 req->in.argpages = 1; 1041 req->page_descs[0].offset = offset; 1042 1043 do { 1044 size_t tmp; 1045 struct page *page; 1046 pgoff_t index = pos >> PAGE_SHIFT; 1047 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1048 iov_iter_count(ii)); 1049 1050 bytes = min_t(size_t, bytes, fc->max_write - count); 1051 1052 again: 1053 err = -EFAULT; 1054 if (iov_iter_fault_in_readable(ii, bytes)) 1055 break; 1056 1057 err = -ENOMEM; 1058 page = grab_cache_page_write_begin(mapping, index, 0); 1059 if (!page) 1060 break; 1061 1062 if (mapping_writably_mapped(mapping)) 1063 flush_dcache_page(page); 1064 1065 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1066 flush_dcache_page(page); 1067 1068 iov_iter_advance(ii, tmp); 1069 if (!tmp) { 1070 unlock_page(page); 1071 put_page(page); 1072 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1073 goto again; 1074 } 1075 1076 err = 0; 1077 req->pages[req->num_pages] = page; 1078 req->page_descs[req->num_pages].length = tmp; 1079 req->num_pages++; 1080 1081 count += tmp; 1082 pos += tmp; 1083 offset += tmp; 1084 if (offset == PAGE_SIZE) 1085 offset = 0; 1086 1087 if (!fc->big_writes) 1088 break; 1089 } while (iov_iter_count(ii) && count < fc->max_write && 1090 req->num_pages < req->max_pages && offset == 0); 1091 1092 return count > 0 ? count : err; 1093 } 1094 1095 static inline unsigned fuse_wr_pages(loff_t pos, size_t len) 1096 { 1097 return min_t(unsigned, 1098 ((pos + len - 1) >> PAGE_SHIFT) - 1099 (pos >> PAGE_SHIFT) + 1, 1100 FUSE_MAX_PAGES_PER_REQ); 1101 } 1102 1103 static ssize_t fuse_perform_write(struct file *file, 1104 struct address_space *mapping, 1105 struct iov_iter *ii, loff_t pos) 1106 { 1107 struct inode *inode = mapping->host; 1108 struct fuse_conn *fc = get_fuse_conn(inode); 1109 struct fuse_inode *fi = get_fuse_inode(inode); 1110 int err = 0; 1111 ssize_t res = 0; 1112 1113 if (is_bad_inode(inode)) 1114 return -EIO; 1115 1116 if (inode->i_size < pos + iov_iter_count(ii)) 1117 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1118 1119 do { 1120 struct fuse_req *req; 1121 ssize_t count; 1122 unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii)); 1123 1124 req = fuse_get_req(fc, nr_pages); 1125 if (IS_ERR(req)) { 1126 err = PTR_ERR(req); 1127 break; 1128 } 1129 1130 count = fuse_fill_write_pages(req, mapping, ii, pos); 1131 if (count <= 0) { 1132 err = count; 1133 } else { 1134 size_t num_written; 1135 1136 num_written = fuse_send_write_pages(req, file, inode, 1137 pos, count); 1138 err = req->out.h.error; 1139 if (!err) { 1140 res += num_written; 1141 pos += num_written; 1142 1143 /* break out of the loop on short write */ 1144 if (num_written != count) 1145 err = -EIO; 1146 } 1147 } 1148 fuse_put_request(fc, req); 1149 } while (!err && iov_iter_count(ii)); 1150 1151 if (res > 0) 1152 fuse_write_update_size(inode, pos); 1153 1154 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1155 fuse_invalidate_attr(inode); 1156 1157 return res > 0 ? res : err; 1158 } 1159 1160 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1161 { 1162 struct file *file = iocb->ki_filp; 1163 struct address_space *mapping = file->f_mapping; 1164 ssize_t written = 0; 1165 ssize_t written_buffered = 0; 1166 struct inode *inode = mapping->host; 1167 ssize_t err; 1168 loff_t endbyte = 0; 1169 1170 if (get_fuse_conn(inode)->writeback_cache) { 1171 /* Update size (EOF optimization) and mode (SUID clearing) */ 1172 err = fuse_update_attributes(mapping->host, NULL, file, NULL); 1173 if (err) 1174 return err; 1175 1176 return generic_file_write_iter(iocb, from); 1177 } 1178 1179 inode_lock(inode); 1180 1181 /* We can write back this queue in page reclaim */ 1182 current->backing_dev_info = inode_to_bdi(inode); 1183 1184 err = generic_write_checks(iocb, from); 1185 if (err <= 0) 1186 goto out; 1187 1188 err = file_remove_privs(file); 1189 if (err) 1190 goto out; 1191 1192 err = file_update_time(file); 1193 if (err) 1194 goto out; 1195 1196 if (iocb->ki_flags & IOCB_DIRECT) { 1197 loff_t pos = iocb->ki_pos; 1198 written = generic_file_direct_write(iocb, from); 1199 if (written < 0 || !iov_iter_count(from)) 1200 goto out; 1201 1202 pos += written; 1203 1204 written_buffered = fuse_perform_write(file, mapping, from, pos); 1205 if (written_buffered < 0) { 1206 err = written_buffered; 1207 goto out; 1208 } 1209 endbyte = pos + written_buffered - 1; 1210 1211 err = filemap_write_and_wait_range(file->f_mapping, pos, 1212 endbyte); 1213 if (err) 1214 goto out; 1215 1216 invalidate_mapping_pages(file->f_mapping, 1217 pos >> PAGE_SHIFT, 1218 endbyte >> PAGE_SHIFT); 1219 1220 written += written_buffered; 1221 iocb->ki_pos = pos + written_buffered; 1222 } else { 1223 written = fuse_perform_write(file, mapping, from, iocb->ki_pos); 1224 if (written >= 0) 1225 iocb->ki_pos += written; 1226 } 1227 out: 1228 current->backing_dev_info = NULL; 1229 inode_unlock(inode); 1230 1231 return written ? written : err; 1232 } 1233 1234 static inline void fuse_page_descs_length_init(struct fuse_req *req, 1235 unsigned index, unsigned nr_pages) 1236 { 1237 int i; 1238 1239 for (i = index; i < index + nr_pages; i++) 1240 req->page_descs[i].length = PAGE_SIZE - 1241 req->page_descs[i].offset; 1242 } 1243 1244 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1245 { 1246 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1247 } 1248 1249 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1250 size_t max_size) 1251 { 1252 return min(iov_iter_single_seg_count(ii), max_size); 1253 } 1254 1255 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii, 1256 size_t *nbytesp, int write) 1257 { 1258 size_t nbytes = 0; /* # bytes already packed in req */ 1259 ssize_t ret = 0; 1260 1261 /* Special case for kernel I/O: can copy directly into the buffer */ 1262 if (ii->type & ITER_KVEC) { 1263 unsigned long user_addr = fuse_get_user_addr(ii); 1264 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1265 1266 if (write) 1267 req->in.args[1].value = (void *) user_addr; 1268 else 1269 req->out.args[0].value = (void *) user_addr; 1270 1271 iov_iter_advance(ii, frag_size); 1272 *nbytesp = frag_size; 1273 return 0; 1274 } 1275 1276 while (nbytes < *nbytesp && req->num_pages < req->max_pages) { 1277 unsigned npages; 1278 size_t start; 1279 ret = iov_iter_get_pages(ii, &req->pages[req->num_pages], 1280 *nbytesp - nbytes, 1281 req->max_pages - req->num_pages, 1282 &start); 1283 if (ret < 0) 1284 break; 1285 1286 iov_iter_advance(ii, ret); 1287 nbytes += ret; 1288 1289 ret += start; 1290 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1291 1292 req->page_descs[req->num_pages].offset = start; 1293 fuse_page_descs_length_init(req, req->num_pages, npages); 1294 1295 req->num_pages += npages; 1296 req->page_descs[req->num_pages - 1].length -= 1297 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1298 } 1299 1300 if (write) 1301 req->in.argpages = 1; 1302 else 1303 req->out.argpages = 1; 1304 1305 *nbytesp = nbytes; 1306 1307 return ret < 0 ? ret : 0; 1308 } 1309 1310 static inline int fuse_iter_npages(const struct iov_iter *ii_p) 1311 { 1312 return iov_iter_npages(ii_p, FUSE_MAX_PAGES_PER_REQ); 1313 } 1314 1315 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1316 loff_t *ppos, int flags) 1317 { 1318 int write = flags & FUSE_DIO_WRITE; 1319 int cuse = flags & FUSE_DIO_CUSE; 1320 struct file *file = io->file; 1321 struct inode *inode = file->f_mapping->host; 1322 struct fuse_file *ff = file->private_data; 1323 struct fuse_conn *fc = ff->fc; 1324 size_t nmax = write ? fc->max_write : fc->max_read; 1325 loff_t pos = *ppos; 1326 size_t count = iov_iter_count(iter); 1327 pgoff_t idx_from = pos >> PAGE_SHIFT; 1328 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1329 ssize_t res = 0; 1330 struct fuse_req *req; 1331 int err = 0; 1332 1333 if (io->async) 1334 req = fuse_get_req_for_background(fc, fuse_iter_npages(iter)); 1335 else 1336 req = fuse_get_req(fc, fuse_iter_npages(iter)); 1337 if (IS_ERR(req)) 1338 return PTR_ERR(req); 1339 1340 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1341 if (!write) 1342 inode_lock(inode); 1343 fuse_sync_writes(inode); 1344 if (!write) 1345 inode_unlock(inode); 1346 } 1347 1348 io->should_dirty = !write && iter_is_iovec(iter); 1349 while (count) { 1350 size_t nres; 1351 fl_owner_t owner = current->files; 1352 size_t nbytes = min(count, nmax); 1353 err = fuse_get_user_pages(req, iter, &nbytes, write); 1354 if (err && !nbytes) 1355 break; 1356 1357 if (write) 1358 nres = fuse_send_write(req, io, pos, nbytes, owner); 1359 else 1360 nres = fuse_send_read(req, io, pos, nbytes, owner); 1361 1362 if (!io->async) 1363 fuse_release_user_pages(req, io->should_dirty); 1364 if (req->out.h.error) { 1365 err = req->out.h.error; 1366 break; 1367 } else if (nres > nbytes) { 1368 res = 0; 1369 err = -EIO; 1370 break; 1371 } 1372 count -= nres; 1373 res += nres; 1374 pos += nres; 1375 if (nres != nbytes) 1376 break; 1377 if (count) { 1378 fuse_put_request(fc, req); 1379 if (io->async) 1380 req = fuse_get_req_for_background(fc, 1381 fuse_iter_npages(iter)); 1382 else 1383 req = fuse_get_req(fc, fuse_iter_npages(iter)); 1384 if (IS_ERR(req)) 1385 break; 1386 } 1387 } 1388 if (!IS_ERR(req)) 1389 fuse_put_request(fc, req); 1390 if (res > 0) 1391 *ppos = pos; 1392 1393 return res > 0 ? res : err; 1394 } 1395 EXPORT_SYMBOL_GPL(fuse_direct_io); 1396 1397 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1398 struct iov_iter *iter, 1399 loff_t *ppos) 1400 { 1401 ssize_t res; 1402 struct file *file = io->file; 1403 struct inode *inode = file_inode(file); 1404 1405 if (is_bad_inode(inode)) 1406 return -EIO; 1407 1408 res = fuse_direct_io(io, iter, ppos, 0); 1409 1410 fuse_invalidate_attr(inode); 1411 1412 return res; 1413 } 1414 1415 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1416 { 1417 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb->ki_filp); 1418 return __fuse_direct_read(&io, to, &iocb->ki_pos); 1419 } 1420 1421 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1422 { 1423 struct file *file = iocb->ki_filp; 1424 struct inode *inode = file_inode(file); 1425 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(file); 1426 ssize_t res; 1427 1428 if (is_bad_inode(inode)) 1429 return -EIO; 1430 1431 /* Don't allow parallel writes to the same file */ 1432 inode_lock(inode); 1433 res = generic_write_checks(iocb, from); 1434 if (res > 0) 1435 res = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE); 1436 fuse_invalidate_attr(inode); 1437 if (res > 0) 1438 fuse_write_update_size(inode, iocb->ki_pos); 1439 inode_unlock(inode); 1440 1441 return res; 1442 } 1443 1444 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req) 1445 { 1446 int i; 1447 1448 for (i = 0; i < req->num_pages; i++) 1449 __free_page(req->pages[i]); 1450 1451 if (req->ff) 1452 fuse_file_put(req->ff, false); 1453 } 1454 1455 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req) 1456 { 1457 struct inode *inode = req->inode; 1458 struct fuse_inode *fi = get_fuse_inode(inode); 1459 struct backing_dev_info *bdi = inode_to_bdi(inode); 1460 int i; 1461 1462 list_del(&req->writepages_entry); 1463 for (i = 0; i < req->num_pages; i++) { 1464 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1465 dec_node_page_state(req->pages[i], NR_WRITEBACK_TEMP); 1466 wb_writeout_inc(&bdi->wb); 1467 } 1468 wake_up(&fi->page_waitq); 1469 } 1470 1471 /* Called under fc->lock, may release and reacquire it */ 1472 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req, 1473 loff_t size) 1474 __releases(fc->lock) 1475 __acquires(fc->lock) 1476 { 1477 struct fuse_inode *fi = get_fuse_inode(req->inode); 1478 struct fuse_write_in *inarg = &req->misc.write.in; 1479 __u64 data_size = req->num_pages * PAGE_SIZE; 1480 1481 if (!fc->connected) 1482 goto out_free; 1483 1484 if (inarg->offset + data_size <= size) { 1485 inarg->size = data_size; 1486 } else if (inarg->offset < size) { 1487 inarg->size = size - inarg->offset; 1488 } else { 1489 /* Got truncated off completely */ 1490 goto out_free; 1491 } 1492 1493 req->in.args[1].size = inarg->size; 1494 fi->writectr++; 1495 fuse_request_send_background_locked(fc, req); 1496 return; 1497 1498 out_free: 1499 fuse_writepage_finish(fc, req); 1500 spin_unlock(&fc->lock); 1501 fuse_writepage_free(fc, req); 1502 fuse_put_request(fc, req); 1503 spin_lock(&fc->lock); 1504 } 1505 1506 /* 1507 * If fi->writectr is positive (no truncate or fsync going on) send 1508 * all queued writepage requests. 1509 * 1510 * Called with fc->lock 1511 */ 1512 void fuse_flush_writepages(struct inode *inode) 1513 __releases(fc->lock) 1514 __acquires(fc->lock) 1515 { 1516 struct fuse_conn *fc = get_fuse_conn(inode); 1517 struct fuse_inode *fi = get_fuse_inode(inode); 1518 size_t crop = i_size_read(inode); 1519 struct fuse_req *req; 1520 1521 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1522 req = list_entry(fi->queued_writes.next, struct fuse_req, list); 1523 list_del_init(&req->list); 1524 fuse_send_writepage(fc, req, crop); 1525 } 1526 } 1527 1528 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req) 1529 { 1530 struct inode *inode = req->inode; 1531 struct fuse_inode *fi = get_fuse_inode(inode); 1532 1533 mapping_set_error(inode->i_mapping, req->out.h.error); 1534 spin_lock(&fc->lock); 1535 while (req->misc.write.next) { 1536 struct fuse_conn *fc = get_fuse_conn(inode); 1537 struct fuse_write_in *inarg = &req->misc.write.in; 1538 struct fuse_req *next = req->misc.write.next; 1539 req->misc.write.next = next->misc.write.next; 1540 next->misc.write.next = NULL; 1541 next->ff = fuse_file_get(req->ff); 1542 list_add(&next->writepages_entry, &fi->writepages); 1543 1544 /* 1545 * Skip fuse_flush_writepages() to make it easy to crop requests 1546 * based on primary request size. 1547 * 1548 * 1st case (trivial): there are no concurrent activities using 1549 * fuse_set/release_nowrite. Then we're on safe side because 1550 * fuse_flush_writepages() would call fuse_send_writepage() 1551 * anyway. 1552 * 1553 * 2nd case: someone called fuse_set_nowrite and it is waiting 1554 * now for completion of all in-flight requests. This happens 1555 * rarely and no more than once per page, so this should be 1556 * okay. 1557 * 1558 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1559 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1560 * that fuse_set_nowrite returned implies that all in-flight 1561 * requests were completed along with all of their secondary 1562 * requests. Further primary requests are blocked by negative 1563 * writectr. Hence there cannot be any in-flight requests and 1564 * no invocations of fuse_writepage_end() while we're in 1565 * fuse_set_nowrite..fuse_release_nowrite section. 1566 */ 1567 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1568 } 1569 fi->writectr--; 1570 fuse_writepage_finish(fc, req); 1571 spin_unlock(&fc->lock); 1572 fuse_writepage_free(fc, req); 1573 } 1574 1575 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1576 struct fuse_inode *fi) 1577 { 1578 struct fuse_file *ff = NULL; 1579 1580 spin_lock(&fc->lock); 1581 if (!list_empty(&fi->write_files)) { 1582 ff = list_entry(fi->write_files.next, struct fuse_file, 1583 write_entry); 1584 fuse_file_get(ff); 1585 } 1586 spin_unlock(&fc->lock); 1587 1588 return ff; 1589 } 1590 1591 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1592 struct fuse_inode *fi) 1593 { 1594 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1595 WARN_ON(!ff); 1596 return ff; 1597 } 1598 1599 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1600 { 1601 struct fuse_conn *fc = get_fuse_conn(inode); 1602 struct fuse_inode *fi = get_fuse_inode(inode); 1603 struct fuse_file *ff; 1604 int err; 1605 1606 ff = __fuse_write_file_get(fc, fi); 1607 err = fuse_flush_times(inode, ff); 1608 if (ff) 1609 fuse_file_put(ff, 0); 1610 1611 return err; 1612 } 1613 1614 static int fuse_writepage_locked(struct page *page) 1615 { 1616 struct address_space *mapping = page->mapping; 1617 struct inode *inode = mapping->host; 1618 struct fuse_conn *fc = get_fuse_conn(inode); 1619 struct fuse_inode *fi = get_fuse_inode(inode); 1620 struct fuse_req *req; 1621 struct page *tmp_page; 1622 int error = -ENOMEM; 1623 1624 set_page_writeback(page); 1625 1626 req = fuse_request_alloc_nofs(1); 1627 if (!req) 1628 goto err; 1629 1630 /* writeback always goes to bg_queue */ 1631 __set_bit(FR_BACKGROUND, &req->flags); 1632 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1633 if (!tmp_page) 1634 goto err_free; 1635 1636 error = -EIO; 1637 req->ff = fuse_write_file_get(fc, fi); 1638 if (!req->ff) 1639 goto err_nofile; 1640 1641 fuse_write_fill(req, req->ff, page_offset(page), 0); 1642 1643 copy_highpage(tmp_page, page); 1644 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1645 req->misc.write.next = NULL; 1646 req->in.argpages = 1; 1647 req->num_pages = 1; 1648 req->pages[0] = tmp_page; 1649 req->page_descs[0].offset = 0; 1650 req->page_descs[0].length = PAGE_SIZE; 1651 req->end = fuse_writepage_end; 1652 req->inode = inode; 1653 1654 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1655 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1656 1657 spin_lock(&fc->lock); 1658 list_add(&req->writepages_entry, &fi->writepages); 1659 list_add_tail(&req->list, &fi->queued_writes); 1660 fuse_flush_writepages(inode); 1661 spin_unlock(&fc->lock); 1662 1663 end_page_writeback(page); 1664 1665 return 0; 1666 1667 err_nofile: 1668 __free_page(tmp_page); 1669 err_free: 1670 fuse_request_free(req); 1671 err: 1672 mapping_set_error(page->mapping, error); 1673 end_page_writeback(page); 1674 return error; 1675 } 1676 1677 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1678 { 1679 int err; 1680 1681 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1682 /* 1683 * ->writepages() should be called for sync() and friends. We 1684 * should only get here on direct reclaim and then we are 1685 * allowed to skip a page which is already in flight 1686 */ 1687 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1688 1689 redirty_page_for_writepage(wbc, page); 1690 return 0; 1691 } 1692 1693 err = fuse_writepage_locked(page); 1694 unlock_page(page); 1695 1696 return err; 1697 } 1698 1699 struct fuse_fill_wb_data { 1700 struct fuse_req *req; 1701 struct fuse_file *ff; 1702 struct inode *inode; 1703 struct page **orig_pages; 1704 }; 1705 1706 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1707 { 1708 struct fuse_req *req = data->req; 1709 struct inode *inode = data->inode; 1710 struct fuse_conn *fc = get_fuse_conn(inode); 1711 struct fuse_inode *fi = get_fuse_inode(inode); 1712 int num_pages = req->num_pages; 1713 int i; 1714 1715 req->ff = fuse_file_get(data->ff); 1716 spin_lock(&fc->lock); 1717 list_add_tail(&req->list, &fi->queued_writes); 1718 fuse_flush_writepages(inode); 1719 spin_unlock(&fc->lock); 1720 1721 for (i = 0; i < num_pages; i++) 1722 end_page_writeback(data->orig_pages[i]); 1723 } 1724 1725 static bool fuse_writepage_in_flight(struct fuse_req *new_req, 1726 struct page *page) 1727 { 1728 struct fuse_conn *fc = get_fuse_conn(new_req->inode); 1729 struct fuse_inode *fi = get_fuse_inode(new_req->inode); 1730 struct fuse_req *tmp; 1731 struct fuse_req *old_req; 1732 bool found = false; 1733 pgoff_t curr_index; 1734 1735 BUG_ON(new_req->num_pages != 0); 1736 1737 spin_lock(&fc->lock); 1738 list_del(&new_req->writepages_entry); 1739 list_for_each_entry(old_req, &fi->writepages, writepages_entry) { 1740 BUG_ON(old_req->inode != new_req->inode); 1741 curr_index = old_req->misc.write.in.offset >> PAGE_SHIFT; 1742 if (curr_index <= page->index && 1743 page->index < curr_index + old_req->num_pages) { 1744 found = true; 1745 break; 1746 } 1747 } 1748 if (!found) { 1749 list_add(&new_req->writepages_entry, &fi->writepages); 1750 goto out_unlock; 1751 } 1752 1753 new_req->num_pages = 1; 1754 for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) { 1755 BUG_ON(tmp->inode != new_req->inode); 1756 curr_index = tmp->misc.write.in.offset >> PAGE_SHIFT; 1757 if (tmp->num_pages == 1 && 1758 curr_index == page->index) { 1759 old_req = tmp; 1760 } 1761 } 1762 1763 if (old_req->num_pages == 1 && test_bit(FR_PENDING, &old_req->flags)) { 1764 struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host); 1765 1766 copy_highpage(old_req->pages[0], page); 1767 spin_unlock(&fc->lock); 1768 1769 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1770 dec_node_page_state(page, NR_WRITEBACK_TEMP); 1771 wb_writeout_inc(&bdi->wb); 1772 fuse_writepage_free(fc, new_req); 1773 fuse_request_free(new_req); 1774 goto out; 1775 } else { 1776 new_req->misc.write.next = old_req->misc.write.next; 1777 old_req->misc.write.next = new_req; 1778 } 1779 out_unlock: 1780 spin_unlock(&fc->lock); 1781 out: 1782 return found; 1783 } 1784 1785 static int fuse_writepages_fill(struct page *page, 1786 struct writeback_control *wbc, void *_data) 1787 { 1788 struct fuse_fill_wb_data *data = _data; 1789 struct fuse_req *req = data->req; 1790 struct inode *inode = data->inode; 1791 struct fuse_conn *fc = get_fuse_conn(inode); 1792 struct page *tmp_page; 1793 bool is_writeback; 1794 int err; 1795 1796 if (!data->ff) { 1797 err = -EIO; 1798 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode)); 1799 if (!data->ff) 1800 goto out_unlock; 1801 } 1802 1803 /* 1804 * Being under writeback is unlikely but possible. For example direct 1805 * read to an mmaped fuse file will set the page dirty twice; once when 1806 * the pages are faulted with get_user_pages(), and then after the read 1807 * completed. 1808 */ 1809 is_writeback = fuse_page_is_writeback(inode, page->index); 1810 1811 if (req && req->num_pages && 1812 (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ || 1813 (req->num_pages + 1) * PAGE_SIZE > fc->max_write || 1814 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) { 1815 fuse_writepages_send(data); 1816 data->req = NULL; 1817 } 1818 err = -ENOMEM; 1819 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1820 if (!tmp_page) 1821 goto out_unlock; 1822 1823 /* 1824 * The page must not be redirtied until the writeout is completed 1825 * (i.e. userspace has sent a reply to the write request). Otherwise 1826 * there could be more than one temporary page instance for each real 1827 * page. 1828 * 1829 * This is ensured by holding the page lock in page_mkwrite() while 1830 * checking fuse_page_is_writeback(). We already hold the page lock 1831 * since clear_page_dirty_for_io() and keep it held until we add the 1832 * request to the fi->writepages list and increment req->num_pages. 1833 * After this fuse_page_is_writeback() will indicate that the page is 1834 * under writeback, so we can release the page lock. 1835 */ 1836 if (data->req == NULL) { 1837 struct fuse_inode *fi = get_fuse_inode(inode); 1838 1839 err = -ENOMEM; 1840 req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ); 1841 if (!req) { 1842 __free_page(tmp_page); 1843 goto out_unlock; 1844 } 1845 1846 fuse_write_fill(req, data->ff, page_offset(page), 0); 1847 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1848 req->misc.write.next = NULL; 1849 req->in.argpages = 1; 1850 __set_bit(FR_BACKGROUND, &req->flags); 1851 req->num_pages = 0; 1852 req->end = fuse_writepage_end; 1853 req->inode = inode; 1854 1855 spin_lock(&fc->lock); 1856 list_add(&req->writepages_entry, &fi->writepages); 1857 spin_unlock(&fc->lock); 1858 1859 data->req = req; 1860 } 1861 set_page_writeback(page); 1862 1863 copy_highpage(tmp_page, page); 1864 req->pages[req->num_pages] = tmp_page; 1865 req->page_descs[req->num_pages].offset = 0; 1866 req->page_descs[req->num_pages].length = PAGE_SIZE; 1867 1868 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1869 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1870 1871 err = 0; 1872 if (is_writeback && fuse_writepage_in_flight(req, page)) { 1873 end_page_writeback(page); 1874 data->req = NULL; 1875 goto out_unlock; 1876 } 1877 data->orig_pages[req->num_pages] = page; 1878 1879 /* 1880 * Protected by fc->lock against concurrent access by 1881 * fuse_page_is_writeback(). 1882 */ 1883 spin_lock(&fc->lock); 1884 req->num_pages++; 1885 spin_unlock(&fc->lock); 1886 1887 out_unlock: 1888 unlock_page(page); 1889 1890 return err; 1891 } 1892 1893 static int fuse_writepages(struct address_space *mapping, 1894 struct writeback_control *wbc) 1895 { 1896 struct inode *inode = mapping->host; 1897 struct fuse_fill_wb_data data; 1898 int err; 1899 1900 err = -EIO; 1901 if (is_bad_inode(inode)) 1902 goto out; 1903 1904 data.inode = inode; 1905 data.req = NULL; 1906 data.ff = NULL; 1907 1908 err = -ENOMEM; 1909 data.orig_pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, 1910 sizeof(struct page *), 1911 GFP_NOFS); 1912 if (!data.orig_pages) 1913 goto out; 1914 1915 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 1916 if (data.req) { 1917 /* Ignore errors if we can write at least one page */ 1918 BUG_ON(!data.req->num_pages); 1919 fuse_writepages_send(&data); 1920 err = 0; 1921 } 1922 if (data.ff) 1923 fuse_file_put(data.ff, false); 1924 1925 kfree(data.orig_pages); 1926 out: 1927 return err; 1928 } 1929 1930 /* 1931 * It's worthy to make sure that space is reserved on disk for the write, 1932 * but how to implement it without killing performance need more thinking. 1933 */ 1934 static int fuse_write_begin(struct file *file, struct address_space *mapping, 1935 loff_t pos, unsigned len, unsigned flags, 1936 struct page **pagep, void **fsdata) 1937 { 1938 pgoff_t index = pos >> PAGE_SHIFT; 1939 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 1940 struct page *page; 1941 loff_t fsize; 1942 int err = -ENOMEM; 1943 1944 WARN_ON(!fc->writeback_cache); 1945 1946 page = grab_cache_page_write_begin(mapping, index, flags); 1947 if (!page) 1948 goto error; 1949 1950 fuse_wait_on_page_writeback(mapping->host, page->index); 1951 1952 if (PageUptodate(page) || len == PAGE_SIZE) 1953 goto success; 1954 /* 1955 * Check if the start this page comes after the end of file, in which 1956 * case the readpage can be optimized away. 1957 */ 1958 fsize = i_size_read(mapping->host); 1959 if (fsize <= (pos & PAGE_MASK)) { 1960 size_t off = pos & ~PAGE_MASK; 1961 if (off) 1962 zero_user_segment(page, 0, off); 1963 goto success; 1964 } 1965 err = fuse_do_readpage(file, page); 1966 if (err) 1967 goto cleanup; 1968 success: 1969 *pagep = page; 1970 return 0; 1971 1972 cleanup: 1973 unlock_page(page); 1974 put_page(page); 1975 error: 1976 return err; 1977 } 1978 1979 static int fuse_write_end(struct file *file, struct address_space *mapping, 1980 loff_t pos, unsigned len, unsigned copied, 1981 struct page *page, void *fsdata) 1982 { 1983 struct inode *inode = page->mapping->host; 1984 1985 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 1986 if (!copied) 1987 goto unlock; 1988 1989 if (!PageUptodate(page)) { 1990 /* Zero any unwritten bytes at the end of the page */ 1991 size_t endoff = (pos + copied) & ~PAGE_MASK; 1992 if (endoff) 1993 zero_user_segment(page, endoff, PAGE_SIZE); 1994 SetPageUptodate(page); 1995 } 1996 1997 fuse_write_update_size(inode, pos + copied); 1998 set_page_dirty(page); 1999 2000 unlock: 2001 unlock_page(page); 2002 put_page(page); 2003 2004 return copied; 2005 } 2006 2007 static int fuse_launder_page(struct page *page) 2008 { 2009 int err = 0; 2010 if (clear_page_dirty_for_io(page)) { 2011 struct inode *inode = page->mapping->host; 2012 err = fuse_writepage_locked(page); 2013 if (!err) 2014 fuse_wait_on_page_writeback(inode, page->index); 2015 } 2016 return err; 2017 } 2018 2019 /* 2020 * Write back dirty pages now, because there may not be any suitable 2021 * open files later 2022 */ 2023 static void fuse_vma_close(struct vm_area_struct *vma) 2024 { 2025 filemap_write_and_wait(vma->vm_file->f_mapping); 2026 } 2027 2028 /* 2029 * Wait for writeback against this page to complete before allowing it 2030 * to be marked dirty again, and hence written back again, possibly 2031 * before the previous writepage completed. 2032 * 2033 * Block here, instead of in ->writepage(), so that the userspace fs 2034 * can only block processes actually operating on the filesystem. 2035 * 2036 * Otherwise unprivileged userspace fs would be able to block 2037 * unrelated: 2038 * 2039 * - page migration 2040 * - sync(2) 2041 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2042 */ 2043 static int fuse_page_mkwrite(struct vm_fault *vmf) 2044 { 2045 struct page *page = vmf->page; 2046 struct inode *inode = file_inode(vmf->vma->vm_file); 2047 2048 file_update_time(vmf->vma->vm_file); 2049 lock_page(page); 2050 if (page->mapping != inode->i_mapping) { 2051 unlock_page(page); 2052 return VM_FAULT_NOPAGE; 2053 } 2054 2055 fuse_wait_on_page_writeback(inode, page->index); 2056 return VM_FAULT_LOCKED; 2057 } 2058 2059 static const struct vm_operations_struct fuse_file_vm_ops = { 2060 .close = fuse_vma_close, 2061 .fault = filemap_fault, 2062 .map_pages = filemap_map_pages, 2063 .page_mkwrite = fuse_page_mkwrite, 2064 }; 2065 2066 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2067 { 2068 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2069 fuse_link_write_file(file); 2070 2071 file_accessed(file); 2072 vma->vm_ops = &fuse_file_vm_ops; 2073 return 0; 2074 } 2075 2076 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma) 2077 { 2078 /* Can't provide the coherency needed for MAP_SHARED */ 2079 if (vma->vm_flags & VM_MAYSHARE) 2080 return -ENODEV; 2081 2082 invalidate_inode_pages2(file->f_mapping); 2083 2084 return generic_file_mmap(file, vma); 2085 } 2086 2087 static int convert_fuse_file_lock(struct fuse_conn *fc, 2088 const struct fuse_file_lock *ffl, 2089 struct file_lock *fl) 2090 { 2091 switch (ffl->type) { 2092 case F_UNLCK: 2093 break; 2094 2095 case F_RDLCK: 2096 case F_WRLCK: 2097 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2098 ffl->end < ffl->start) 2099 return -EIO; 2100 2101 fl->fl_start = ffl->start; 2102 fl->fl_end = ffl->end; 2103 2104 /* 2105 * Convert pid into the caller's pid namespace. If the pid 2106 * does not map into the namespace fl_pid will get set to 0. 2107 */ 2108 rcu_read_lock(); 2109 fl->fl_pid = pid_vnr(find_pid_ns(ffl->pid, fc->pid_ns)); 2110 rcu_read_unlock(); 2111 break; 2112 2113 default: 2114 return -EIO; 2115 } 2116 fl->fl_type = ffl->type; 2117 return 0; 2118 } 2119 2120 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2121 const struct file_lock *fl, int opcode, pid_t pid, 2122 int flock, struct fuse_lk_in *inarg) 2123 { 2124 struct inode *inode = file_inode(file); 2125 struct fuse_conn *fc = get_fuse_conn(inode); 2126 struct fuse_file *ff = file->private_data; 2127 2128 memset(inarg, 0, sizeof(*inarg)); 2129 inarg->fh = ff->fh; 2130 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2131 inarg->lk.start = fl->fl_start; 2132 inarg->lk.end = fl->fl_end; 2133 inarg->lk.type = fl->fl_type; 2134 inarg->lk.pid = pid; 2135 if (flock) 2136 inarg->lk_flags |= FUSE_LK_FLOCK; 2137 args->in.h.opcode = opcode; 2138 args->in.h.nodeid = get_node_id(inode); 2139 args->in.numargs = 1; 2140 args->in.args[0].size = sizeof(*inarg); 2141 args->in.args[0].value = inarg; 2142 } 2143 2144 static int fuse_getlk(struct file *file, struct file_lock *fl) 2145 { 2146 struct inode *inode = file_inode(file); 2147 struct fuse_conn *fc = get_fuse_conn(inode); 2148 FUSE_ARGS(args); 2149 struct fuse_lk_in inarg; 2150 struct fuse_lk_out outarg; 2151 int err; 2152 2153 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2154 args.out.numargs = 1; 2155 args.out.args[0].size = sizeof(outarg); 2156 args.out.args[0].value = &outarg; 2157 err = fuse_simple_request(fc, &args); 2158 if (!err) 2159 err = convert_fuse_file_lock(fc, &outarg.lk, fl); 2160 2161 return err; 2162 } 2163 2164 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2165 { 2166 struct inode *inode = file_inode(file); 2167 struct fuse_conn *fc = get_fuse_conn(inode); 2168 FUSE_ARGS(args); 2169 struct fuse_lk_in inarg; 2170 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2171 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2172 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns); 2173 int err; 2174 2175 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2176 /* NLM needs asynchronous locks, which we don't support yet */ 2177 return -ENOLCK; 2178 } 2179 2180 /* Unlock on close is handled by the flush method */ 2181 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2182 return 0; 2183 2184 if (pid && pid_nr == 0) 2185 return -EOVERFLOW; 2186 2187 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2188 err = fuse_simple_request(fc, &args); 2189 2190 /* locking is restartable */ 2191 if (err == -EINTR) 2192 err = -ERESTARTSYS; 2193 2194 return err; 2195 } 2196 2197 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2198 { 2199 struct inode *inode = file_inode(file); 2200 struct fuse_conn *fc = get_fuse_conn(inode); 2201 int err; 2202 2203 if (cmd == F_CANCELLK) { 2204 err = 0; 2205 } else if (cmd == F_GETLK) { 2206 if (fc->no_lock) { 2207 posix_test_lock(file, fl); 2208 err = 0; 2209 } else 2210 err = fuse_getlk(file, fl); 2211 } else { 2212 if (fc->no_lock) 2213 err = posix_lock_file(file, fl, NULL); 2214 else 2215 err = fuse_setlk(file, fl, 0); 2216 } 2217 return err; 2218 } 2219 2220 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2221 { 2222 struct inode *inode = file_inode(file); 2223 struct fuse_conn *fc = get_fuse_conn(inode); 2224 int err; 2225 2226 if (fc->no_flock) { 2227 err = locks_lock_file_wait(file, fl); 2228 } else { 2229 struct fuse_file *ff = file->private_data; 2230 2231 /* emulate flock with POSIX locks */ 2232 ff->flock = true; 2233 err = fuse_setlk(file, fl, 1); 2234 } 2235 2236 return err; 2237 } 2238 2239 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2240 { 2241 struct inode *inode = mapping->host; 2242 struct fuse_conn *fc = get_fuse_conn(inode); 2243 FUSE_ARGS(args); 2244 struct fuse_bmap_in inarg; 2245 struct fuse_bmap_out outarg; 2246 int err; 2247 2248 if (!inode->i_sb->s_bdev || fc->no_bmap) 2249 return 0; 2250 2251 memset(&inarg, 0, sizeof(inarg)); 2252 inarg.block = block; 2253 inarg.blocksize = inode->i_sb->s_blocksize; 2254 args.in.h.opcode = FUSE_BMAP; 2255 args.in.h.nodeid = get_node_id(inode); 2256 args.in.numargs = 1; 2257 args.in.args[0].size = sizeof(inarg); 2258 args.in.args[0].value = &inarg; 2259 args.out.numargs = 1; 2260 args.out.args[0].size = sizeof(outarg); 2261 args.out.args[0].value = &outarg; 2262 err = fuse_simple_request(fc, &args); 2263 if (err == -ENOSYS) 2264 fc->no_bmap = 1; 2265 2266 return err ? 0 : outarg.block; 2267 } 2268 2269 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2270 { 2271 struct inode *inode = file->f_mapping->host; 2272 struct fuse_conn *fc = get_fuse_conn(inode); 2273 struct fuse_file *ff = file->private_data; 2274 FUSE_ARGS(args); 2275 struct fuse_lseek_in inarg = { 2276 .fh = ff->fh, 2277 .offset = offset, 2278 .whence = whence 2279 }; 2280 struct fuse_lseek_out outarg; 2281 int err; 2282 2283 if (fc->no_lseek) 2284 goto fallback; 2285 2286 args.in.h.opcode = FUSE_LSEEK; 2287 args.in.h.nodeid = ff->nodeid; 2288 args.in.numargs = 1; 2289 args.in.args[0].size = sizeof(inarg); 2290 args.in.args[0].value = &inarg; 2291 args.out.numargs = 1; 2292 args.out.args[0].size = sizeof(outarg); 2293 args.out.args[0].value = &outarg; 2294 err = fuse_simple_request(fc, &args); 2295 if (err) { 2296 if (err == -ENOSYS) { 2297 fc->no_lseek = 1; 2298 goto fallback; 2299 } 2300 return err; 2301 } 2302 2303 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2304 2305 fallback: 2306 err = fuse_update_attributes(inode, NULL, file, NULL); 2307 if (!err) 2308 return generic_file_llseek(file, offset, whence); 2309 else 2310 return err; 2311 } 2312 2313 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2314 { 2315 loff_t retval; 2316 struct inode *inode = file_inode(file); 2317 2318 switch (whence) { 2319 case SEEK_SET: 2320 case SEEK_CUR: 2321 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2322 retval = generic_file_llseek(file, offset, whence); 2323 break; 2324 case SEEK_END: 2325 inode_lock(inode); 2326 retval = fuse_update_attributes(inode, NULL, file, NULL); 2327 if (!retval) 2328 retval = generic_file_llseek(file, offset, whence); 2329 inode_unlock(inode); 2330 break; 2331 case SEEK_HOLE: 2332 case SEEK_DATA: 2333 inode_lock(inode); 2334 retval = fuse_lseek(file, offset, whence); 2335 inode_unlock(inode); 2336 break; 2337 default: 2338 retval = -EINVAL; 2339 } 2340 2341 return retval; 2342 } 2343 2344 /* 2345 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2346 * ABI was defined to be 'struct iovec' which is different on 32bit 2347 * and 64bit. Fortunately we can determine which structure the server 2348 * used from the size of the reply. 2349 */ 2350 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2351 size_t transferred, unsigned count, 2352 bool is_compat) 2353 { 2354 #ifdef CONFIG_COMPAT 2355 if (count * sizeof(struct compat_iovec) == transferred) { 2356 struct compat_iovec *ciov = src; 2357 unsigned i; 2358 2359 /* 2360 * With this interface a 32bit server cannot support 2361 * non-compat (i.e. ones coming from 64bit apps) ioctl 2362 * requests 2363 */ 2364 if (!is_compat) 2365 return -EINVAL; 2366 2367 for (i = 0; i < count; i++) { 2368 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2369 dst[i].iov_len = ciov[i].iov_len; 2370 } 2371 return 0; 2372 } 2373 #endif 2374 2375 if (count * sizeof(struct iovec) != transferred) 2376 return -EIO; 2377 2378 memcpy(dst, src, transferred); 2379 return 0; 2380 } 2381 2382 /* Make sure iov_length() won't overflow */ 2383 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count) 2384 { 2385 size_t n; 2386 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT; 2387 2388 for (n = 0; n < count; n++, iov++) { 2389 if (iov->iov_len > (size_t) max) 2390 return -ENOMEM; 2391 max -= iov->iov_len; 2392 } 2393 return 0; 2394 } 2395 2396 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2397 void *src, size_t transferred, unsigned count, 2398 bool is_compat) 2399 { 2400 unsigned i; 2401 struct fuse_ioctl_iovec *fiov = src; 2402 2403 if (fc->minor < 16) { 2404 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2405 count, is_compat); 2406 } 2407 2408 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2409 return -EIO; 2410 2411 for (i = 0; i < count; i++) { 2412 /* Did the server supply an inappropriate value? */ 2413 if (fiov[i].base != (unsigned long) fiov[i].base || 2414 fiov[i].len != (unsigned long) fiov[i].len) 2415 return -EIO; 2416 2417 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2418 dst[i].iov_len = (size_t) fiov[i].len; 2419 2420 #ifdef CONFIG_COMPAT 2421 if (is_compat && 2422 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2423 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2424 return -EIO; 2425 #endif 2426 } 2427 2428 return 0; 2429 } 2430 2431 2432 /* 2433 * For ioctls, there is no generic way to determine how much memory 2434 * needs to be read and/or written. Furthermore, ioctls are allowed 2435 * to dereference the passed pointer, so the parameter requires deep 2436 * copying but FUSE has no idea whatsoever about what to copy in or 2437 * out. 2438 * 2439 * This is solved by allowing FUSE server to retry ioctl with 2440 * necessary in/out iovecs. Let's assume the ioctl implementation 2441 * needs to read in the following structure. 2442 * 2443 * struct a { 2444 * char *buf; 2445 * size_t buflen; 2446 * } 2447 * 2448 * On the first callout to FUSE server, inarg->in_size and 2449 * inarg->out_size will be NULL; then, the server completes the ioctl 2450 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2451 * the actual iov array to 2452 * 2453 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2454 * 2455 * which tells FUSE to copy in the requested area and retry the ioctl. 2456 * On the second round, the server has access to the structure and 2457 * from that it can tell what to look for next, so on the invocation, 2458 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2459 * 2460 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2461 * { .iov_base = a.buf, .iov_len = a.buflen } } 2462 * 2463 * FUSE will copy both struct a and the pointed buffer from the 2464 * process doing the ioctl and retry ioctl with both struct a and the 2465 * buffer. 2466 * 2467 * This time, FUSE server has everything it needs and completes ioctl 2468 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2469 * 2470 * Copying data out works the same way. 2471 * 2472 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2473 * automatically initializes in and out iovs by decoding @cmd with 2474 * _IOC_* macros and the server is not allowed to request RETRY. This 2475 * limits ioctl data transfers to well-formed ioctls and is the forced 2476 * behavior for all FUSE servers. 2477 */ 2478 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2479 unsigned int flags) 2480 { 2481 struct fuse_file *ff = file->private_data; 2482 struct fuse_conn *fc = ff->fc; 2483 struct fuse_ioctl_in inarg = { 2484 .fh = ff->fh, 2485 .cmd = cmd, 2486 .arg = arg, 2487 .flags = flags 2488 }; 2489 struct fuse_ioctl_out outarg; 2490 struct fuse_req *req = NULL; 2491 struct page **pages = NULL; 2492 struct iovec *iov_page = NULL; 2493 struct iovec *in_iov = NULL, *out_iov = NULL; 2494 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages; 2495 size_t in_size, out_size, transferred, c; 2496 int err, i; 2497 struct iov_iter ii; 2498 2499 #if BITS_PER_LONG == 32 2500 inarg.flags |= FUSE_IOCTL_32BIT; 2501 #else 2502 if (flags & FUSE_IOCTL_COMPAT) 2503 inarg.flags |= FUSE_IOCTL_32BIT; 2504 #endif 2505 2506 /* assume all the iovs returned by client always fits in a page */ 2507 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2508 2509 err = -ENOMEM; 2510 pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL); 2511 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2512 if (!pages || !iov_page) 2513 goto out; 2514 2515 /* 2516 * If restricted, initialize IO parameters as encoded in @cmd. 2517 * RETRY from server is not allowed. 2518 */ 2519 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2520 struct iovec *iov = iov_page; 2521 2522 iov->iov_base = (void __user *)arg; 2523 iov->iov_len = _IOC_SIZE(cmd); 2524 2525 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2526 in_iov = iov; 2527 in_iovs = 1; 2528 } 2529 2530 if (_IOC_DIR(cmd) & _IOC_READ) { 2531 out_iov = iov; 2532 out_iovs = 1; 2533 } 2534 } 2535 2536 retry: 2537 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2538 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2539 2540 /* 2541 * Out data can be used either for actual out data or iovs, 2542 * make sure there always is at least one page. 2543 */ 2544 out_size = max_t(size_t, out_size, PAGE_SIZE); 2545 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2546 2547 /* make sure there are enough buffer pages and init request with them */ 2548 err = -ENOMEM; 2549 if (max_pages > FUSE_MAX_PAGES_PER_REQ) 2550 goto out; 2551 while (num_pages < max_pages) { 2552 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2553 if (!pages[num_pages]) 2554 goto out; 2555 num_pages++; 2556 } 2557 2558 req = fuse_get_req(fc, num_pages); 2559 if (IS_ERR(req)) { 2560 err = PTR_ERR(req); 2561 req = NULL; 2562 goto out; 2563 } 2564 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages); 2565 req->num_pages = num_pages; 2566 fuse_page_descs_length_init(req, 0, req->num_pages); 2567 2568 /* okay, let's send it to the client */ 2569 req->in.h.opcode = FUSE_IOCTL; 2570 req->in.h.nodeid = ff->nodeid; 2571 req->in.numargs = 1; 2572 req->in.args[0].size = sizeof(inarg); 2573 req->in.args[0].value = &inarg; 2574 if (in_size) { 2575 req->in.numargs++; 2576 req->in.args[1].size = in_size; 2577 req->in.argpages = 1; 2578 2579 err = -EFAULT; 2580 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size); 2581 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) { 2582 c = copy_page_from_iter(pages[i], 0, PAGE_SIZE, &ii); 2583 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2584 goto out; 2585 } 2586 } 2587 2588 req->out.numargs = 2; 2589 req->out.args[0].size = sizeof(outarg); 2590 req->out.args[0].value = &outarg; 2591 req->out.args[1].size = out_size; 2592 req->out.argpages = 1; 2593 req->out.argvar = 1; 2594 2595 fuse_request_send(fc, req); 2596 err = req->out.h.error; 2597 transferred = req->out.args[1].size; 2598 fuse_put_request(fc, req); 2599 req = NULL; 2600 if (err) 2601 goto out; 2602 2603 /* did it ask for retry? */ 2604 if (outarg.flags & FUSE_IOCTL_RETRY) { 2605 void *vaddr; 2606 2607 /* no retry if in restricted mode */ 2608 err = -EIO; 2609 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2610 goto out; 2611 2612 in_iovs = outarg.in_iovs; 2613 out_iovs = outarg.out_iovs; 2614 2615 /* 2616 * Make sure things are in boundary, separate checks 2617 * are to protect against overflow. 2618 */ 2619 err = -ENOMEM; 2620 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2621 out_iovs > FUSE_IOCTL_MAX_IOV || 2622 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2623 goto out; 2624 2625 vaddr = kmap_atomic(pages[0]); 2626 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2627 transferred, in_iovs + out_iovs, 2628 (flags & FUSE_IOCTL_COMPAT) != 0); 2629 kunmap_atomic(vaddr); 2630 if (err) 2631 goto out; 2632 2633 in_iov = iov_page; 2634 out_iov = in_iov + in_iovs; 2635 2636 err = fuse_verify_ioctl_iov(in_iov, in_iovs); 2637 if (err) 2638 goto out; 2639 2640 err = fuse_verify_ioctl_iov(out_iov, out_iovs); 2641 if (err) 2642 goto out; 2643 2644 goto retry; 2645 } 2646 2647 err = -EIO; 2648 if (transferred > inarg.out_size) 2649 goto out; 2650 2651 err = -EFAULT; 2652 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred); 2653 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) { 2654 c = copy_page_to_iter(pages[i], 0, PAGE_SIZE, &ii); 2655 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2656 goto out; 2657 } 2658 err = 0; 2659 out: 2660 if (req) 2661 fuse_put_request(fc, req); 2662 free_page((unsigned long) iov_page); 2663 while (num_pages) 2664 __free_page(pages[--num_pages]); 2665 kfree(pages); 2666 2667 return err ? err : outarg.result; 2668 } 2669 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2670 2671 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2672 unsigned long arg, unsigned int flags) 2673 { 2674 struct inode *inode = file_inode(file); 2675 struct fuse_conn *fc = get_fuse_conn(inode); 2676 2677 if (!fuse_allow_current_process(fc)) 2678 return -EACCES; 2679 2680 if (is_bad_inode(inode)) 2681 return -EIO; 2682 2683 return fuse_do_ioctl(file, cmd, arg, flags); 2684 } 2685 2686 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2687 unsigned long arg) 2688 { 2689 return fuse_ioctl_common(file, cmd, arg, 0); 2690 } 2691 2692 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2693 unsigned long arg) 2694 { 2695 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2696 } 2697 2698 /* 2699 * All files which have been polled are linked to RB tree 2700 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2701 * find the matching one. 2702 */ 2703 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2704 struct rb_node **parent_out) 2705 { 2706 struct rb_node **link = &fc->polled_files.rb_node; 2707 struct rb_node *last = NULL; 2708 2709 while (*link) { 2710 struct fuse_file *ff; 2711 2712 last = *link; 2713 ff = rb_entry(last, struct fuse_file, polled_node); 2714 2715 if (kh < ff->kh) 2716 link = &last->rb_left; 2717 else if (kh > ff->kh) 2718 link = &last->rb_right; 2719 else 2720 return link; 2721 } 2722 2723 if (parent_out) 2724 *parent_out = last; 2725 return link; 2726 } 2727 2728 /* 2729 * The file is about to be polled. Make sure it's on the polled_files 2730 * RB tree. Note that files once added to the polled_files tree are 2731 * not removed before the file is released. This is because a file 2732 * polled once is likely to be polled again. 2733 */ 2734 static void fuse_register_polled_file(struct fuse_conn *fc, 2735 struct fuse_file *ff) 2736 { 2737 spin_lock(&fc->lock); 2738 if (RB_EMPTY_NODE(&ff->polled_node)) { 2739 struct rb_node **link, *uninitialized_var(parent); 2740 2741 link = fuse_find_polled_node(fc, ff->kh, &parent); 2742 BUG_ON(*link); 2743 rb_link_node(&ff->polled_node, parent, link); 2744 rb_insert_color(&ff->polled_node, &fc->polled_files); 2745 } 2746 spin_unlock(&fc->lock); 2747 } 2748 2749 unsigned fuse_file_poll(struct file *file, poll_table *wait) 2750 { 2751 struct fuse_file *ff = file->private_data; 2752 struct fuse_conn *fc = ff->fc; 2753 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2754 struct fuse_poll_out outarg; 2755 FUSE_ARGS(args); 2756 int err; 2757 2758 if (fc->no_poll) 2759 return DEFAULT_POLLMASK; 2760 2761 poll_wait(file, &ff->poll_wait, wait); 2762 inarg.events = (__u32)poll_requested_events(wait); 2763 2764 /* 2765 * Ask for notification iff there's someone waiting for it. 2766 * The client may ignore the flag and always notify. 2767 */ 2768 if (waitqueue_active(&ff->poll_wait)) { 2769 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2770 fuse_register_polled_file(fc, ff); 2771 } 2772 2773 args.in.h.opcode = FUSE_POLL; 2774 args.in.h.nodeid = ff->nodeid; 2775 args.in.numargs = 1; 2776 args.in.args[0].size = sizeof(inarg); 2777 args.in.args[0].value = &inarg; 2778 args.out.numargs = 1; 2779 args.out.args[0].size = sizeof(outarg); 2780 args.out.args[0].value = &outarg; 2781 err = fuse_simple_request(fc, &args); 2782 2783 if (!err) 2784 return outarg.revents; 2785 if (err == -ENOSYS) { 2786 fc->no_poll = 1; 2787 return DEFAULT_POLLMASK; 2788 } 2789 return POLLERR; 2790 } 2791 EXPORT_SYMBOL_GPL(fuse_file_poll); 2792 2793 /* 2794 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2795 * wakes up the poll waiters. 2796 */ 2797 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2798 struct fuse_notify_poll_wakeup_out *outarg) 2799 { 2800 u64 kh = outarg->kh; 2801 struct rb_node **link; 2802 2803 spin_lock(&fc->lock); 2804 2805 link = fuse_find_polled_node(fc, kh, NULL); 2806 if (*link) { 2807 struct fuse_file *ff; 2808 2809 ff = rb_entry(*link, struct fuse_file, polled_node); 2810 wake_up_interruptible_sync(&ff->poll_wait); 2811 } 2812 2813 spin_unlock(&fc->lock); 2814 return 0; 2815 } 2816 2817 static void fuse_do_truncate(struct file *file) 2818 { 2819 struct inode *inode = file->f_mapping->host; 2820 struct iattr attr; 2821 2822 attr.ia_valid = ATTR_SIZE; 2823 attr.ia_size = i_size_read(inode); 2824 2825 attr.ia_file = file; 2826 attr.ia_valid |= ATTR_FILE; 2827 2828 fuse_do_setattr(file_dentry(file), &attr, file); 2829 } 2830 2831 static inline loff_t fuse_round_up(loff_t off) 2832 { 2833 return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT); 2834 } 2835 2836 static ssize_t 2837 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2838 { 2839 DECLARE_COMPLETION_ONSTACK(wait); 2840 ssize_t ret = 0; 2841 struct file *file = iocb->ki_filp; 2842 struct fuse_file *ff = file->private_data; 2843 bool async_dio = ff->fc->async_dio; 2844 loff_t pos = 0; 2845 struct inode *inode; 2846 loff_t i_size; 2847 size_t count = iov_iter_count(iter); 2848 loff_t offset = iocb->ki_pos; 2849 struct fuse_io_priv *io; 2850 2851 pos = offset; 2852 inode = file->f_mapping->host; 2853 i_size = i_size_read(inode); 2854 2855 if ((iov_iter_rw(iter) == READ) && (offset > i_size)) 2856 return 0; 2857 2858 /* optimization for short read */ 2859 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) { 2860 if (offset >= i_size) 2861 return 0; 2862 iov_iter_truncate(iter, fuse_round_up(i_size - offset)); 2863 count = iov_iter_count(iter); 2864 } 2865 2866 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2867 if (!io) 2868 return -ENOMEM; 2869 spin_lock_init(&io->lock); 2870 kref_init(&io->refcnt); 2871 io->reqs = 1; 2872 io->bytes = -1; 2873 io->size = 0; 2874 io->offset = offset; 2875 io->write = (iov_iter_rw(iter) == WRITE); 2876 io->err = 0; 2877 io->file = file; 2878 /* 2879 * By default, we want to optimize all I/Os with async request 2880 * submission to the client filesystem if supported. 2881 */ 2882 io->async = async_dio; 2883 io->iocb = iocb; 2884 io->blocking = is_sync_kiocb(iocb); 2885 2886 /* 2887 * We cannot asynchronously extend the size of a file. 2888 * In such case the aio will behave exactly like sync io. 2889 */ 2890 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE) 2891 io->blocking = true; 2892 2893 if (io->async && io->blocking) { 2894 /* 2895 * Additional reference to keep io around after 2896 * calling fuse_aio_complete() 2897 */ 2898 kref_get(&io->refcnt); 2899 io->done = &wait; 2900 } 2901 2902 if (iov_iter_rw(iter) == WRITE) { 2903 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2904 fuse_invalidate_attr(inode); 2905 } else { 2906 ret = __fuse_direct_read(io, iter, &pos); 2907 } 2908 2909 if (io->async) { 2910 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2911 2912 /* we have a non-extending, async request, so return */ 2913 if (!io->blocking) 2914 return -EIOCBQUEUED; 2915 2916 wait_for_completion(&wait); 2917 ret = fuse_get_res_by_io(io); 2918 } 2919 2920 kref_put(&io->refcnt, fuse_io_release); 2921 2922 if (iov_iter_rw(iter) == WRITE) { 2923 if (ret > 0) 2924 fuse_write_update_size(inode, pos); 2925 else if (ret < 0 && offset + count > i_size) 2926 fuse_do_truncate(file); 2927 } 2928 2929 return ret; 2930 } 2931 2932 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2933 loff_t length) 2934 { 2935 struct fuse_file *ff = file->private_data; 2936 struct inode *inode = file_inode(file); 2937 struct fuse_inode *fi = get_fuse_inode(inode); 2938 struct fuse_conn *fc = ff->fc; 2939 FUSE_ARGS(args); 2940 struct fuse_fallocate_in inarg = { 2941 .fh = ff->fh, 2942 .offset = offset, 2943 .length = length, 2944 .mode = mode 2945 }; 2946 int err; 2947 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2948 (mode & FALLOC_FL_PUNCH_HOLE); 2949 2950 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2951 return -EOPNOTSUPP; 2952 2953 if (fc->no_fallocate) 2954 return -EOPNOTSUPP; 2955 2956 if (lock_inode) { 2957 inode_lock(inode); 2958 if (mode & FALLOC_FL_PUNCH_HOLE) { 2959 loff_t endbyte = offset + length - 1; 2960 err = filemap_write_and_wait_range(inode->i_mapping, 2961 offset, endbyte); 2962 if (err) 2963 goto out; 2964 2965 fuse_sync_writes(inode); 2966 } 2967 } 2968 2969 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2970 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2971 2972 args.in.h.opcode = FUSE_FALLOCATE; 2973 args.in.h.nodeid = ff->nodeid; 2974 args.in.numargs = 1; 2975 args.in.args[0].size = sizeof(inarg); 2976 args.in.args[0].value = &inarg; 2977 err = fuse_simple_request(fc, &args); 2978 if (err == -ENOSYS) { 2979 fc->no_fallocate = 1; 2980 err = -EOPNOTSUPP; 2981 } 2982 if (err) 2983 goto out; 2984 2985 /* we could have extended the file */ 2986 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 2987 bool changed = fuse_write_update_size(inode, offset + length); 2988 2989 if (changed && fc->writeback_cache) 2990 file_update_time(file); 2991 } 2992 2993 if (mode & FALLOC_FL_PUNCH_HOLE) 2994 truncate_pagecache_range(inode, offset, offset + length - 1); 2995 2996 fuse_invalidate_attr(inode); 2997 2998 out: 2999 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3000 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3001 3002 if (lock_inode) 3003 inode_unlock(inode); 3004 3005 return err; 3006 } 3007 3008 static const struct file_operations fuse_file_operations = { 3009 .llseek = fuse_file_llseek, 3010 .read_iter = fuse_file_read_iter, 3011 .write_iter = fuse_file_write_iter, 3012 .mmap = fuse_file_mmap, 3013 .open = fuse_open, 3014 .flush = fuse_flush, 3015 .release = fuse_release, 3016 .fsync = fuse_fsync, 3017 .lock = fuse_file_lock, 3018 .flock = fuse_file_flock, 3019 .splice_read = generic_file_splice_read, 3020 .unlocked_ioctl = fuse_file_ioctl, 3021 .compat_ioctl = fuse_file_compat_ioctl, 3022 .poll = fuse_file_poll, 3023 .fallocate = fuse_file_fallocate, 3024 }; 3025 3026 static const struct file_operations fuse_direct_io_file_operations = { 3027 .llseek = fuse_file_llseek, 3028 .read_iter = fuse_direct_read_iter, 3029 .write_iter = fuse_direct_write_iter, 3030 .mmap = fuse_direct_mmap, 3031 .open = fuse_open, 3032 .flush = fuse_flush, 3033 .release = fuse_release, 3034 .fsync = fuse_fsync, 3035 .lock = fuse_file_lock, 3036 .flock = fuse_file_flock, 3037 .unlocked_ioctl = fuse_file_ioctl, 3038 .compat_ioctl = fuse_file_compat_ioctl, 3039 .poll = fuse_file_poll, 3040 .fallocate = fuse_file_fallocate, 3041 /* no splice_read */ 3042 }; 3043 3044 static const struct address_space_operations fuse_file_aops = { 3045 .readpage = fuse_readpage, 3046 .writepage = fuse_writepage, 3047 .writepages = fuse_writepages, 3048 .launder_page = fuse_launder_page, 3049 .readpages = fuse_readpages, 3050 .set_page_dirty = __set_page_dirty_nobuffers, 3051 .bmap = fuse_bmap, 3052 .direct_IO = fuse_direct_IO, 3053 .write_begin = fuse_write_begin, 3054 .write_end = fuse_write_end, 3055 }; 3056 3057 void fuse_init_file_inode(struct inode *inode) 3058 { 3059 inode->i_fop = &fuse_file_operations; 3060 inode->i_data.a_ops = &fuse_file_aops; 3061 } 3062